// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2000 Ani Joshi * Copyright (C) 2000, 2001, 06 Ralf Baechle * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. */ #include #include #include #include #include #include #include #include /* * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively * fill random cachelines with stale data at any time, requiring an extra * flush post-DMA. * * Warning on the terminology - Linux calls an uncached area coherent; MIPS * terminology calls memory areas with hardware maintained coherency coherent. * * Note that the R14000 and R16000 should also be checked for in this condition. * However this function is only called on non-I/O-coherent systems and only the * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp. * SGI IP32 aka O2. */ static inline bool cpu_needs_post_dma_flush(void) { switch (boot_cpu_type()) { case CPU_R10000: case CPU_R12000: case CPU_BMIPS5000: case CPU_LOONGSON2EF: return true; default: /* * Presence of MAARs suggests that the CPU supports * speculatively prefetching data, and therefore requires * the post-DMA flush/invalidate. */ return cpu_has_maar; } } void arch_dma_prep_coherent(struct page *page, size_t size) { dma_cache_wback_inv((unsigned long)page_address(page), size); } void *arch_dma_set_uncached(void *addr, size_t size) { return (void *)(__pa(addr) + UNCAC_BASE); } static inline void dma_sync_virt_for_device(void *addr, size_t size, enum dma_data_direction dir) { switch (dir) { case DMA_TO_DEVICE: dma_cache_wback((unsigned long)addr, size); break; case DMA_FROM_DEVICE: dma_cache_inv((unsigned long)addr, size); break; case DMA_BIDIRECTIONAL: dma_cache_wback_inv((unsigned long)addr, size); break; default: BUG(); } } static inline void dma_sync_virt_for_cpu(void *addr, size_t size, enum dma_data_direction dir) { switch (dir) { case DMA_TO_DEVICE: break; case DMA_FROM_DEVICE: case DMA_BIDIRECTIONAL: dma_cache_inv((unsigned long)addr, size); break; default: BUG(); } } /* * A single sg entry may refer to multiple physically contiguous pages. But * we still need to process highmem pages individually. If highmem is not * configured then the bulk of this loop gets optimized out. */ static inline void dma_sync_phys(phys_addr_t paddr, size_t size, enum dma_data_direction dir, bool for_device) { struct page *page = pfn_to_page(paddr >> PAGE_SHIFT); unsigned long offset = paddr & ~PAGE_MASK; size_t left = size; do { size_t len = left; void *addr; if (PageHighMem(page)) { if (offset + len > PAGE_SIZE) len = PAGE_SIZE - offset; } addr = kmap_atomic(page); if (for_device) dma_sync_virt_for_device(addr + offset, len, dir); else dma_sync_virt_for_cpu(addr + offset, len, dir); kunmap_atomic(addr); offset = 0; page++; left -= len; } while (left); } void arch_sync_dma_for_device(phys_addr_t paddr, size_t size, enum dma_data_direction dir) { dma_sync_phys(paddr, size, dir, true); } #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size, enum dma_data_direction dir) { if (cpu_needs_post_dma_flush()) dma_sync_phys(paddr, size, dir, false); } #endif void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size, enum dma_data_direction direction) { dma_sync_virt_for_device(vaddr, size, direction); } #ifdef CONFIG_DMA_PERDEV_COHERENT void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *iommu, bool coherent) { dev->dma_coherent = coherent; } #endif