// SPDX-License-Identifier: GPL-2.0 /* * Helper functions used by the EFI stub on multiple * architectures. This should be #included by the EFI stub * implementation files. * * Copyright 2011 Intel Corporation; author Matt Fleming */ #include #include #include "efistub.h" bool efi_nochunk; bool efi_nokaslr; bool efi_noinitrd; bool efi_quiet; bool efi_novamap; static bool efi_nosoftreserve; static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA); bool __pure __efi_soft_reserve_enabled(void) { return !efi_nosoftreserve; } void efi_char16_puts(efi_char16_t *str) { efi_call_proto(efi_table_attr(efi_system_table, con_out), output_string, str); } void efi_puts(const char *str) { while (*str) { efi_char16_t ch[] = { *str++, L'\0' }; if (ch[0] == L'\n') efi_char16_puts(L"\r\n"); else efi_char16_puts(ch); } } /* * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi= * option, e.g. efi=nochunk. * * It should be noted that efi= is parsed in two very different * environments, first in the early boot environment of the EFI boot * stub, and subsequently during the kernel boot. */ efi_status_t efi_parse_options(char const *cmdline) { size_t len = strlen(cmdline) + 1; efi_status_t status; char *str, *buf; status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf); if (status != EFI_SUCCESS) return status; str = skip_spaces(memcpy(buf, cmdline, len)); while (*str) { char *param, *val; str = next_arg(str, ¶m, &val); if (!strcmp(param, "nokaslr")) { efi_nokaslr = true; } else if (!strcmp(param, "quiet")) { efi_quiet = true; } else if (!strcmp(param, "noinitrd")) { efi_noinitrd = true; } else if (!strcmp(param, "efi") && val) { efi_nochunk = parse_option_str(val, "nochunk"); efi_novamap = parse_option_str(val, "novamap"); efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) && parse_option_str(val, "nosoftreserve"); if (parse_option_str(val, "disable_early_pci_dma")) efi_disable_pci_dma = true; if (parse_option_str(val, "no_disable_early_pci_dma")) efi_disable_pci_dma = false; } else if (!strcmp(param, "video") && val && strstarts(val, "efifb:")) { efi_parse_option_graphics(val + strlen("efifb:")); } } efi_bs_call(free_pool, buf); return EFI_SUCCESS; } /* * Get the number of UTF-8 bytes corresponding to an UTF-16 character. * This overestimates for surrogates, but that is okay. */ static int efi_utf8_bytes(u16 c) { return 1 + (c >= 0x80) + (c >= 0x800); } /* * Convert an UTF-16 string, not necessarily null terminated, to UTF-8. */ static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n) { unsigned int c; while (n--) { c = *src++; if (n && c >= 0xd800 && c <= 0xdbff && *src >= 0xdc00 && *src <= 0xdfff) { c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff); src++; n--; } if (c >= 0xd800 && c <= 0xdfff) c = 0xfffd; /* Unmatched surrogate */ if (c < 0x80) { *dst++ = c; continue; } if (c < 0x800) { *dst++ = 0xc0 + (c >> 6); goto t1; } if (c < 0x10000) { *dst++ = 0xe0 + (c >> 12); goto t2; } *dst++ = 0xf0 + (c >> 18); *dst++ = 0x80 + ((c >> 12) & 0x3f); t2: *dst++ = 0x80 + ((c >> 6) & 0x3f); t1: *dst++ = 0x80 + (c & 0x3f); } return dst; } /* * Convert the unicode UEFI command line to ASCII to pass to kernel. * Size of memory allocated return in *cmd_line_len. * Returns NULL on error. */ char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len, unsigned long max_addr) { const u16 *s2; u8 *s1 = NULL; unsigned long cmdline_addr = 0; int load_options_chars = efi_table_attr(image, load_options_size) / 2; const u16 *options = efi_table_attr(image, load_options); int options_bytes = 0; /* UTF-8 bytes */ int options_chars = 0; /* UTF-16 chars */ efi_status_t status; u16 zero = 0; if (options) { s2 = options; while (*s2 && *s2 != '\n' && options_chars < load_options_chars) { options_bytes += efi_utf8_bytes(*s2++); options_chars++; } } if (!options_chars) { /* No command line options, so return empty string*/ options = &zero; } options_bytes++; /* NUL termination */ status = efi_allocate_pages(options_bytes, &cmdline_addr, max_addr); if (status != EFI_SUCCESS) return NULL; s1 = (u8 *)cmdline_addr; s2 = (const u16 *)options; s1 = efi_utf16_to_utf8(s1, s2, options_chars); *s1 = '\0'; *cmd_line_len = options_bytes; return (char *)cmdline_addr; } /* * Handle calling ExitBootServices according to the requirements set out by the * spec. Obtains the current memory map, and returns that info after calling * ExitBootServices. The client must specify a function to perform any * processing of the memory map data prior to ExitBootServices. A client * specific structure may be passed to the function via priv. The client * function may be called multiple times. */ efi_status_t efi_exit_boot_services(void *handle, struct efi_boot_memmap *map, void *priv, efi_exit_boot_map_processing priv_func) { efi_status_t status; status = efi_get_memory_map(map); if (status != EFI_SUCCESS) goto fail; status = priv_func(map, priv); if (status != EFI_SUCCESS) goto free_map; if (efi_disable_pci_dma) efi_pci_disable_bridge_busmaster(); status = efi_bs_call(exit_boot_services, handle, *map->key_ptr); if (status == EFI_INVALID_PARAMETER) { /* * The memory map changed between efi_get_memory_map() and * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4: * EFI_BOOT_SERVICES.ExitBootServices we need to get the * updated map, and try again. The spec implies one retry * should be sufficent, which is confirmed against the EDK2 * implementation. Per the spec, we can only invoke * get_memory_map() and exit_boot_services() - we cannot alloc * so efi_get_memory_map() cannot be used, and we must reuse * the buffer. For all practical purposes, the headroom in the * buffer should account for any changes in the map so the call * to get_memory_map() is expected to succeed here. */ *map->map_size = *map->buff_size; status = efi_bs_call(get_memory_map, map->map_size, *map->map, map->key_ptr, map->desc_size, map->desc_ver); /* exit_boot_services() was called, thus cannot free */ if (status != EFI_SUCCESS) goto fail; status = priv_func(map, priv); /* exit_boot_services() was called, thus cannot free */ if (status != EFI_SUCCESS) goto fail; status = efi_bs_call(exit_boot_services, handle, *map->key_ptr); } /* exit_boot_services() was called, thus cannot free */ if (status != EFI_SUCCESS) goto fail; return EFI_SUCCESS; free_map: efi_bs_call(free_pool, *map->map); fail: return status; } void *get_efi_config_table(efi_guid_t guid) { unsigned long tables = efi_table_attr(efi_system_table, tables); int nr_tables = efi_table_attr(efi_system_table, nr_tables); int i; for (i = 0; i < nr_tables; i++) { efi_config_table_t *t = (void *)tables; if (efi_guidcmp(t->guid, guid) == 0) return efi_table_attr(t, table); tables += efi_is_native() ? sizeof(efi_config_table_t) : sizeof(efi_config_table_32_t); } return NULL; } /* * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way * for the firmware or bootloader to expose the initrd data directly to the stub * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is * very easy to implement. It is a simple Linux initrd specific conduit between * kernel and firmware, allowing us to put the EFI stub (being part of the * kernel) in charge of where and when to load the initrd, while leaving it up * to the firmware to decide whether it needs to expose its filesystem hierarchy * via EFI protocols. */ static const struct { struct efi_vendor_dev_path vendor; struct efi_generic_dev_path end; } __packed initrd_dev_path = { { { EFI_DEV_MEDIA, EFI_DEV_MEDIA_VENDOR, sizeof(struct efi_vendor_dev_path), }, LINUX_EFI_INITRD_MEDIA_GUID }, { EFI_DEV_END_PATH, EFI_DEV_END_ENTIRE, sizeof(struct efi_generic_dev_path) } }; /** * efi_load_initrd_dev_path - load the initrd from the Linux initrd device path * @load_addr: pointer to store the address where the initrd was loaded * @load_size: pointer to store the size of the loaded initrd * @max: upper limit for the initrd memory allocation * @return: %EFI_SUCCESS if the initrd was loaded successfully, in which * case @load_addr and @load_size are assigned accordingly * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd * device path * %EFI_INVALID_PARAMETER if load_addr == NULL or load_size == NULL * %EFI_OUT_OF_RESOURCES if memory allocation failed * %EFI_LOAD_ERROR in all other cases */ static efi_status_t efi_load_initrd_dev_path(unsigned long *load_addr, unsigned long *load_size, unsigned long max) { efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID; efi_device_path_protocol_t *dp; efi_load_file2_protocol_t *lf2; unsigned long initrd_addr; unsigned long initrd_size; efi_handle_t handle; efi_status_t status; dp = (efi_device_path_protocol_t *)&initrd_dev_path; status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle); if (status != EFI_SUCCESS) return status; status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid, (void **)&lf2); if (status != EFI_SUCCESS) return status; status = efi_call_proto(lf2, load_file, dp, false, &initrd_size, NULL); if (status != EFI_BUFFER_TOO_SMALL) return EFI_LOAD_ERROR; status = efi_allocate_pages(initrd_size, &initrd_addr, max); if (status != EFI_SUCCESS) return status; status = efi_call_proto(lf2, load_file, dp, false, &initrd_size, (void *)initrd_addr); if (status != EFI_SUCCESS) { efi_free(initrd_size, initrd_addr); return EFI_LOAD_ERROR; } *load_addr = initrd_addr; *load_size = initrd_size; return EFI_SUCCESS; } static efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image, unsigned long *load_addr, unsigned long *load_size, unsigned long soft_limit, unsigned long hard_limit) { if (!IS_ENABLED(CONFIG_EFI_GENERIC_STUB_INITRD_CMDLINE_LOADER) || (IS_ENABLED(CONFIG_X86) && (!efi_is_native() || image == NULL))) { *load_addr = *load_size = 0; return EFI_SUCCESS; } return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2, soft_limit, hard_limit, load_addr, load_size); } efi_status_t efi_load_initrd(efi_loaded_image_t *image, unsigned long *load_addr, unsigned long *load_size, unsigned long soft_limit, unsigned long hard_limit) { efi_status_t status; if (!load_addr || !load_size) return EFI_INVALID_PARAMETER; status = efi_load_initrd_dev_path(load_addr, load_size, hard_limit); if (status == EFI_SUCCESS) { efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n"); } else if (status == EFI_NOT_FOUND) { status = efi_load_initrd_cmdline(image, load_addr, load_size, soft_limit, hard_limit); if (status == EFI_SUCCESS && *load_size > 0) efi_info("Loaded initrd from command line option\n"); } return status; }