// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ #include "ice.h" #include "ice_lib.h" /** * ice_setup_rx_ctx - Configure a receive ring context * @ring: The Rx ring to configure * * Configure the Rx descriptor ring in RLAN context. */ static int ice_setup_rx_ctx(struct ice_ring *ring) { struct ice_vsi *vsi = ring->vsi; struct ice_hw *hw = &vsi->back->hw; u32 rxdid = ICE_RXDID_FLEX_NIC; struct ice_rlan_ctx rlan_ctx; u32 regval; u16 pf_q; int err; /* what is RX queue number in global space of 2K Rx queues */ pf_q = vsi->rxq_map[ring->q_index]; /* clear the context structure first */ memset(&rlan_ctx, 0, sizeof(rlan_ctx)); rlan_ctx.base = ring->dma >> 7; rlan_ctx.qlen = ring->count; /* Receive Packet Data Buffer Size. * The Packet Data Buffer Size is defined in 128 byte units. */ rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; /* use 32 byte descriptors */ rlan_ctx.dsize = 1; /* Strip the Ethernet CRC bytes before the packet is posted to host * memory. */ rlan_ctx.crcstrip = 1; /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */ rlan_ctx.l2tsel = 1; rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; /* This controls whether VLAN is stripped from inner headers * The VLAN in the inner L2 header is stripped to the receive * descriptor if enabled by this flag. */ rlan_ctx.showiv = 0; /* Max packet size for this queue - must not be set to a larger value * than 5 x DBUF */ rlan_ctx.rxmax = min_t(u16, vsi->max_frame, ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len); /* Rx queue threshold in units of 64 */ rlan_ctx.lrxqthresh = 1; /* Enable Flexible Descriptors in the queue context which * allows this driver to select a specific receive descriptor format */ regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & QRXFLXP_CNTXT_RXDID_IDX_M; /* increasing context priority to pick up profile id; * default is 0x01; setting to 0x03 to ensure profile * is programming if prev context is of same priority */ regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) & QRXFLXP_CNTXT_RXDID_PRIO_M; wr32(hw, QRXFLXP_CNTXT(pf_q), regval); /* Absolute queue number out of 2K needs to be passed */ err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); if (err) { dev_err(&vsi->back->pdev->dev, "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", pf_q, err); return -EIO; } /* init queue specific tail register */ ring->tail = hw->hw_addr + QRX_TAIL(pf_q); writel(0, ring->tail); ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring)); return 0; } /** * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance * @ring: The Tx ring to configure * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized * @pf_q: queue index in the PF space * * Configure the Tx descriptor ring in TLAN context. */ static void ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) { struct ice_vsi *vsi = ring->vsi; struct ice_hw *hw = &vsi->back->hw; tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; tlan_ctx->port_num = vsi->port_info->lport; /* Transmit Queue Length */ tlan_ctx->qlen = ring->count; /* PF number */ tlan_ctx->pf_num = hw->pf_id; /* queue belongs to a specific VSI type * VF / VM index should be programmed per vmvf_type setting: * for vmvf_type = VF, it is VF number between 0-256 * for vmvf_type = VM, it is VM number between 0-767 * for PF or EMP this field should be set to zero */ switch (vsi->type) { case ICE_VSI_PF: tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; break; default: return; } /* make sure the context is associated with the right VSI */ tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); tlan_ctx->tso_ena = ICE_TX_LEGACY; tlan_ctx->tso_qnum = pf_q; /* Legacy or Advanced Host Interface: * 0: Advanced Host Interface * 1: Legacy Host Interface */ tlan_ctx->legacy_int = ICE_TX_LEGACY; } /** * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled * @pf: the PF being configured * @pf_q: the PF queue * @ena: enable or disable state of the queue * * This routine will wait for the given Rx queue of the PF to reach the * enabled or disabled state. * Returns -ETIMEDOUT in case of failing to reach the requested state after * multiple retries; else will return 0 in case of success. */ static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) { int i; for (i = 0; i < ICE_Q_WAIT_RETRY_LIMIT; i++) { u32 rx_reg = rd32(&pf->hw, QRX_CTRL(pf_q)); if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) break; usleep_range(10, 20); } if (i >= ICE_Q_WAIT_RETRY_LIMIT) return -ETIMEDOUT; return 0; } /** * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings * @vsi: the VSI being configured * @ena: start or stop the Rx rings */ static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; int i, j, ret = 0; for (i = 0; i < vsi->num_rxq; i++) { int pf_q = vsi->rxq_map[i]; u32 rx_reg; for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) { rx_reg = rd32(hw, QRX_CTRL(pf_q)); if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) == ((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1)) break; usleep_range(1000, 2000); } /* Skip if the queue is already in the requested state */ if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) continue; /* turn on/off the queue */ if (ena) rx_reg |= QRX_CTRL_QENA_REQ_M; else rx_reg &= ~QRX_CTRL_QENA_REQ_M; wr32(hw, QRX_CTRL(pf_q), rx_reg); /* wait for the change to finish */ ret = ice_pf_rxq_wait(pf, pf_q, ena); if (ret) { dev_err(&pf->pdev->dev, "VSI idx %d Rx ring %d %sable timeout\n", vsi->idx, pf_q, (ena ? "en" : "dis")); break; } } return ret; } /** * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI * @vsi: VSI pointer * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. * * On error: returns error code (negative) * On success: returns 0 */ static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors) { struct ice_pf *pf = vsi->back; /* allocate memory for both Tx and Rx ring pointers */ vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq, sizeof(struct ice_ring *), GFP_KERNEL); if (!vsi->tx_rings) goto err_txrings; vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq, sizeof(struct ice_ring *), GFP_KERNEL); if (!vsi->rx_rings) goto err_rxrings; if (alloc_qvectors) { /* allocate memory for q_vector pointers */ vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors, sizeof(struct ice_q_vector *), GFP_KERNEL); if (!vsi->q_vectors) goto err_vectors; } return 0; err_vectors: devm_kfree(&pf->pdev->dev, vsi->rx_rings); err_rxrings: devm_kfree(&pf->pdev->dev, vsi->tx_rings); err_txrings: return -ENOMEM; } /** * ice_vsi_set_num_qs - Set num queues, descriptors and vectors for a VSI * @vsi: the VSI being configured * * Return 0 on success and a negative value on error */ static void ice_vsi_set_num_qs(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; switch (vsi->type) { case ICE_VSI_PF: vsi->alloc_txq = pf->num_lan_tx; vsi->alloc_rxq = pf->num_lan_rx; vsi->num_desc = ALIGN(ICE_DFLT_NUM_DESC, ICE_REQ_DESC_MULTIPLE); vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx); break; default: dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", vsi->type); break; } } /** * ice_get_free_slot - get the next non-NULL location index in array * @array: array to search * @size: size of the array * @curr: last known occupied index to be used as a search hint * * void * is being used to keep the functionality generic. This lets us use this * function on any array of pointers. */ static int ice_get_free_slot(void *array, int size, int curr) { int **tmp_array = (int **)array; int next; if (curr < (size - 1) && !tmp_array[curr + 1]) { next = curr + 1; } else { int i = 0; while ((i < size) && (tmp_array[i])) i++; if (i == size) next = ICE_NO_VSI; else next = i; } return next; } /** * ice_vsi_delete - delete a VSI from the switch * @vsi: pointer to VSI being removed */ void ice_vsi_delete(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct ice_vsi_ctx ctxt; enum ice_status status; ctxt.vsi_num = vsi->vsi_num; memcpy(&ctxt.info, &vsi->info, sizeof(struct ice_aqc_vsi_props)); status = ice_free_vsi(&pf->hw, vsi->idx, &ctxt, false, NULL); if (status) dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n", vsi->vsi_num); } /** * ice_vsi_free_arrays - clean up VSI resources * @vsi: pointer to VSI being cleared * @free_qvectors: bool to specify if q_vectors should be deallocated */ static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors) { struct ice_pf *pf = vsi->back; /* free the ring and vector containers */ if (free_qvectors && vsi->q_vectors) { devm_kfree(&pf->pdev->dev, vsi->q_vectors); vsi->q_vectors = NULL; } if (vsi->tx_rings) { devm_kfree(&pf->pdev->dev, vsi->tx_rings); vsi->tx_rings = NULL; } if (vsi->rx_rings) { devm_kfree(&pf->pdev->dev, vsi->rx_rings); vsi->rx_rings = NULL; } } /** * ice_vsi_clear - clean up and deallocate the provided VSI * @vsi: pointer to VSI being cleared * * This deallocates the VSI's queue resources, removes it from the PF's * VSI array if necessary, and deallocates the VSI * * Returns 0 on success, negative on failure */ int ice_vsi_clear(struct ice_vsi *vsi) { struct ice_pf *pf = NULL; if (!vsi) return 0; if (!vsi->back) return -EINVAL; pf = vsi->back; if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); return -EINVAL; } mutex_lock(&pf->sw_mutex); /* updates the PF for this cleared VSI */ pf->vsi[vsi->idx] = NULL; if (vsi->idx < pf->next_vsi) pf->next_vsi = vsi->idx; ice_vsi_free_arrays(vsi, true); mutex_unlock(&pf->sw_mutex); devm_kfree(&pf->pdev->dev, vsi); return 0; } /** * ice_msix_clean_rings - MSIX mode Interrupt Handler * @irq: interrupt number * @data: pointer to a q_vector */ irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) { struct ice_q_vector *q_vector = (struct ice_q_vector *)data; if (!q_vector->tx.ring && !q_vector->rx.ring) return IRQ_HANDLED; napi_schedule(&q_vector->napi); return IRQ_HANDLED; } /** * ice_vsi_alloc - Allocates the next available struct VSI in the PF * @pf: board private structure * @type: type of VSI * * returns a pointer to a VSI on success, NULL on failure. */ static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type) { struct ice_vsi *vsi = NULL; /* Need to protect the allocation of the VSIs at the PF level */ mutex_lock(&pf->sw_mutex); /* If we have already allocated our maximum number of VSIs, * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index * is available to be populated */ if (pf->next_vsi == ICE_NO_VSI) { dev_dbg(&pf->pdev->dev, "out of VSI slots!\n"); goto unlock_pf; } vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL); if (!vsi) goto unlock_pf; vsi->type = type; vsi->back = pf; set_bit(__ICE_DOWN, vsi->state); vsi->idx = pf->next_vsi; vsi->work_lmt = ICE_DFLT_IRQ_WORK; ice_vsi_set_num_qs(vsi); switch (vsi->type) { case ICE_VSI_PF: if (ice_vsi_alloc_arrays(vsi, true)) goto err_rings; /* Setup default MSIX irq handler for VSI */ vsi->irq_handler = ice_msix_clean_rings; break; default: dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); goto unlock_pf; } /* fill VSI slot in the PF struct */ pf->vsi[pf->next_vsi] = vsi; /* prepare pf->next_vsi for next use */ pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, pf->next_vsi); goto unlock_pf; err_rings: devm_kfree(&pf->pdev->dev, vsi); vsi = NULL; unlock_pf: mutex_unlock(&pf->sw_mutex); return vsi; } /** * ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI * @vsi: the VSI getting queues * * Return 0 on success and a negative value on error */ static int ice_vsi_get_qs_contig(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int offset, ret = 0; mutex_lock(&pf->avail_q_mutex); /* look for contiguous block of queues for Tx */ offset = bitmap_find_next_zero_area(pf->avail_txqs, ICE_MAX_TXQS, 0, vsi->alloc_txq, 0); if (offset < ICE_MAX_TXQS) { int i; bitmap_set(pf->avail_txqs, offset, vsi->alloc_txq); for (i = 0; i < vsi->alloc_txq; i++) vsi->txq_map[i] = i + offset; } else { ret = -ENOMEM; vsi->tx_mapping_mode = ICE_VSI_MAP_SCATTER; } /* look for contiguous block of queues for Rx */ offset = bitmap_find_next_zero_area(pf->avail_rxqs, ICE_MAX_RXQS, 0, vsi->alloc_rxq, 0); if (offset < ICE_MAX_RXQS) { int i; bitmap_set(pf->avail_rxqs, offset, vsi->alloc_rxq); for (i = 0; i < vsi->alloc_rxq; i++) vsi->rxq_map[i] = i + offset; } else { ret = -ENOMEM; vsi->rx_mapping_mode = ICE_VSI_MAP_SCATTER; } mutex_unlock(&pf->avail_q_mutex); return ret; } /** * ice_vsi_get_qs_scatter - Assign a scattered queues to VSI * @vsi: the VSI getting queues * * Return 0 on success and a negative value on error */ static int ice_vsi_get_qs_scatter(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int i, index = 0; mutex_lock(&pf->avail_q_mutex); if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) { for (i = 0; i < vsi->alloc_txq; i++) { index = find_next_zero_bit(pf->avail_txqs, ICE_MAX_TXQS, index); if (index < ICE_MAX_TXQS) { set_bit(index, pf->avail_txqs); vsi->txq_map[i] = index; } else { goto err_scatter_tx; } } } if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) { for (i = 0; i < vsi->alloc_rxq; i++) { index = find_next_zero_bit(pf->avail_rxqs, ICE_MAX_RXQS, index); if (index < ICE_MAX_RXQS) { set_bit(index, pf->avail_rxqs); vsi->rxq_map[i] = index; } else { goto err_scatter_rx; } } } mutex_unlock(&pf->avail_q_mutex); return 0; err_scatter_rx: /* unflag any queues we have grabbed (i is failed position) */ for (index = 0; index < i; index++) { clear_bit(vsi->rxq_map[index], pf->avail_rxqs); vsi->rxq_map[index] = 0; } i = vsi->alloc_txq; err_scatter_tx: /* i is either position of failed attempt or vsi->alloc_txq */ for (index = 0; index < i; index++) { clear_bit(vsi->txq_map[index], pf->avail_txqs); vsi->txq_map[index] = 0; } mutex_unlock(&pf->avail_q_mutex); return -ENOMEM; } /** * ice_vsi_get_qs - Assign queues from PF to VSI * @vsi: the VSI to assign queues to * * Returns 0 on success and a negative value on error */ static int ice_vsi_get_qs(struct ice_vsi *vsi) { int ret = 0; vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG; vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG; /* NOTE: ice_vsi_get_qs_contig() will set the Rx/Tx mapping * modes individually to scatter if assigning contiguous queues * to Rx or Tx fails */ ret = ice_vsi_get_qs_contig(vsi); if (ret < 0) { if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) vsi->alloc_txq = max_t(u16, vsi->alloc_txq, ICE_MAX_SCATTER_TXQS); if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) vsi->alloc_rxq = max_t(u16, vsi->alloc_rxq, ICE_MAX_SCATTER_RXQS); ret = ice_vsi_get_qs_scatter(vsi); } return ret; } /** * ice_vsi_put_qs - Release queues from VSI to PF * @vsi: the VSI that is going to release queues */ void ice_vsi_put_qs(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int i; mutex_lock(&pf->avail_q_mutex); for (i = 0; i < vsi->alloc_txq; i++) { clear_bit(vsi->txq_map[i], pf->avail_txqs); vsi->txq_map[i] = ICE_INVAL_Q_INDEX; } for (i = 0; i < vsi->alloc_rxq; i++) { clear_bit(vsi->rxq_map[i], pf->avail_rxqs); vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; } mutex_unlock(&pf->avail_q_mutex); } /** * ice_rss_clean - Delete RSS related VSI structures that hold user inputs * @vsi: the VSI being removed */ static void ice_rss_clean(struct ice_vsi *vsi) { struct ice_pf *pf; pf = vsi->back; if (vsi->rss_hkey_user) devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user); if (vsi->rss_lut_user) devm_kfree(&pf->pdev->dev, vsi->rss_lut_user); } /** * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type * @vsi: the VSI being configured */ static void ice_vsi_set_rss_params(struct ice_vsi *vsi) { struct ice_hw_common_caps *cap; struct ice_pf *pf = vsi->back; if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { vsi->rss_size = 1; return; } cap = &pf->hw.func_caps.common_cap; switch (vsi->type) { case ICE_VSI_PF: /* PF VSI will inherit RSS instance of PF */ vsi->rss_table_size = cap->rss_table_size; vsi->rss_size = min_t(int, num_online_cpus(), BIT(cap->rss_table_entry_width)); vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; break; default: dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); break; } } /** * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI * @ctxt: the VSI context being set * * This initializes a default VSI context for all sections except the Queues. */ static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) { u32 table = 0; memset(&ctxt->info, 0, sizeof(ctxt->info)); /* VSI's should be allocated from shared pool */ ctxt->alloc_from_pool = true; /* Src pruning enabled by default */ ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; /* Traffic from VSI can be sent to LAN */ ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all * packets untagged/tagged. */ ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & ICE_AQ_VSI_VLAN_MODE_M) >> ICE_AQ_VSI_VLAN_MODE_S); /* Have 1:1 UP mapping for both ingress/egress tables */ table |= ICE_UP_TABLE_TRANSLATE(0, 0); table |= ICE_UP_TABLE_TRANSLATE(1, 1); table |= ICE_UP_TABLE_TRANSLATE(2, 2); table |= ICE_UP_TABLE_TRANSLATE(3, 3); table |= ICE_UP_TABLE_TRANSLATE(4, 4); table |= ICE_UP_TABLE_TRANSLATE(5, 5); table |= ICE_UP_TABLE_TRANSLATE(6, 6); table |= ICE_UP_TABLE_TRANSLATE(7, 7); ctxt->info.ingress_table = cpu_to_le32(table); ctxt->info.egress_table = cpu_to_le32(table); /* Have 1:1 UP mapping for outer to inner UP table */ ctxt->info.outer_up_table = cpu_to_le32(table); /* No Outer tag support outer_tag_flags remains to zero */ } /** * ice_vsi_setup_q_map - Setup a VSI queue map * @vsi: the VSI being configured * @ctxt: VSI context structure */ static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) { u16 offset = 0, qmap = 0, numq_tc; u16 pow = 0, max_rss = 0, qcount; u16 qcount_tx = vsi->alloc_txq; u16 qcount_rx = vsi->alloc_rxq; bool ena_tc0 = false; int i; /* at least TC0 should be enabled by default */ if (vsi->tc_cfg.numtc) { if (!(vsi->tc_cfg.ena_tc & BIT(0))) ena_tc0 = true; } else { ena_tc0 = true; } if (ena_tc0) { vsi->tc_cfg.numtc++; vsi->tc_cfg.ena_tc |= 1; } numq_tc = qcount_rx / vsi->tc_cfg.numtc; /* TC mapping is a function of the number of Rx queues assigned to the * VSI for each traffic class and the offset of these queues. * The first 10 bits are for queue offset for TC0, next 4 bits for no:of * queues allocated to TC0. No:of queues is a power-of-2. * * If TC is not enabled, the queue offset is set to 0, and allocate one * queue, this way, traffic for the given TC will be sent to the default * queue. * * Setup number and offset of Rx queues for all TCs for the VSI */ /* qcount will change if RSS is enabled */ if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { if (vsi->type == ICE_VSI_PF) max_rss = ICE_MAX_LG_RSS_QS; else max_rss = ICE_MAX_SMALL_RSS_QS; qcount = min_t(int, numq_tc, max_rss); qcount = min_t(int, qcount, vsi->rss_size); } else { qcount = numq_tc; } /* find the (rounded up) power-of-2 of qcount */ pow = order_base_2(qcount); for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) { if (!(vsi->tc_cfg.ena_tc & BIT(i))) { /* TC is not enabled */ vsi->tc_cfg.tc_info[i].qoffset = 0; vsi->tc_cfg.tc_info[i].qcount = 1; ctxt->info.tc_mapping[i] = 0; continue; } /* TC is enabled */ vsi->tc_cfg.tc_info[i].qoffset = offset; vsi->tc_cfg.tc_info[i].qcount = qcount; qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & ICE_AQ_VSI_TC_Q_OFFSET_M) | ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); offset += qcount; ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); } vsi->num_txq = qcount_tx; vsi->num_rxq = offset; /* Rx queue mapping */ ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); /* q_mapping buffer holds the info for the first queue allocated for * this VSI in the PF space and also the number of queues associated * with this VSI. */ ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); } /** * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI * @ctxt: the VSI context being set * @vsi: the VSI being configured */ static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) { u8 lut_type, hash_type; switch (vsi->type) { case ICE_VSI_PF: /* PF VSI will inherit RSS instance of PF */ lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; break; default: dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", vsi->type); return; } ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & ICE_AQ_VSI_Q_OPT_RSS_HASH_M); } /** * ice_vsi_init - Create and initialize a VSI * @vsi: the VSI being configured * * This initializes a VSI context depending on the VSI type to be added and * passes it down to the add_vsi aq command to create a new VSI. */ static int ice_vsi_init(struct ice_vsi *vsi) { struct ice_vsi_ctx ctxt = { 0 }; struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; int ret = 0; switch (vsi->type) { case ICE_VSI_PF: ctxt.flags = ICE_AQ_VSI_TYPE_PF; break; default: return -ENODEV; } ice_set_dflt_vsi_ctx(&ctxt); /* if the switch is in VEB mode, allow VSI loopback */ if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; /* Set LUT type and HASH type if RSS is enabled */ if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) ice_set_rss_vsi_ctx(&ctxt, vsi); ctxt.info.sw_id = vsi->port_info->sw_id; ice_vsi_setup_q_map(vsi, &ctxt); ret = ice_add_vsi(hw, vsi->idx, &ctxt, NULL); if (ret) { dev_err(&pf->pdev->dev, "Add VSI failed, err %d\n", ret); return -EIO; } /* keep context for update VSI operations */ vsi->info = ctxt.info; /* record VSI number returned */ vsi->vsi_num = ctxt.vsi_num; return ret; } /** * ice_free_q_vector - Free memory allocated for a specific interrupt vector * @vsi: VSI having the memory freed * @v_idx: index of the vector to be freed */ static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) { struct ice_q_vector *q_vector; struct ice_ring *ring; if (!vsi->q_vectors[v_idx]) { dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n", v_idx); return; } q_vector = vsi->q_vectors[v_idx]; ice_for_each_ring(ring, q_vector->tx) ring->q_vector = NULL; ice_for_each_ring(ring, q_vector->rx) ring->q_vector = NULL; /* only VSI with an associated netdev is set up with NAPI */ if (vsi->netdev) netif_napi_del(&q_vector->napi); devm_kfree(&vsi->back->pdev->dev, q_vector); vsi->q_vectors[v_idx] = NULL; } /** * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors * @vsi: the VSI having memory freed */ void ice_vsi_free_q_vectors(struct ice_vsi *vsi) { int v_idx; for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) ice_free_q_vector(vsi, v_idx); } /** * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector * @vsi: the VSI being configured * @v_idx: index of the vector in the VSI struct * * We allocate one q_vector. If allocation fails we return -ENOMEM. */ static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx) { struct ice_pf *pf = vsi->back; struct ice_q_vector *q_vector; /* allocate q_vector */ q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL); if (!q_vector) return -ENOMEM; q_vector->vsi = vsi; q_vector->v_idx = v_idx; /* only set affinity_mask if the CPU is online */ if (cpu_online(v_idx)) cpumask_set_cpu(v_idx, &q_vector->affinity_mask); /* This will not be called in the driver load path because the netdev * will not be created yet. All other cases with register the NAPI * handler here (i.e. resume, reset/rebuild, etc.) */ if (vsi->netdev) netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, NAPI_POLL_WEIGHT); /* tie q_vector and VSI together */ vsi->q_vectors[v_idx] = q_vector; return 0; } /** * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors * @vsi: the VSI being configured * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. */ static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int v_idx = 0, num_q_vectors; int err; if (vsi->q_vectors[0]) { dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); return -EEXIST; } if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { num_q_vectors = vsi->num_q_vectors; } else { err = -EINVAL; goto err_out; } for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { err = ice_vsi_alloc_q_vector(vsi, v_idx); if (err) goto err_out; } return 0; err_out: while (v_idx--) ice_free_q_vector(vsi, v_idx); dev_err(&pf->pdev->dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", vsi->num_q_vectors, vsi->vsi_num, err); vsi->num_q_vectors = 0; return err; } /** * ice_vsi_setup_vector_base - Set up the base vector for the given VSI * @vsi: ptr to the VSI * * This should only be called after ice_vsi_alloc() which allocates the * corresponding SW VSI structure and initializes num_queue_pairs for the * newly allocated VSI. * * Returns 0 on success or negative on failure */ static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int num_q_vectors = 0; if (vsi->sw_base_vector || vsi->hw_base_vector) { dev_dbg(&pf->pdev->dev, "VSI %d has non-zero HW base vector %d or SW base vector %d\n", vsi->vsi_num, vsi->hw_base_vector, vsi->sw_base_vector); return -EEXIST; } if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) return -ENOENT; switch (vsi->type) { case ICE_VSI_PF: num_q_vectors = vsi->num_q_vectors; /* reserve slots from OS requested IRQs */ vsi->sw_base_vector = ice_get_res(pf, pf->sw_irq_tracker, num_q_vectors, vsi->idx); if (vsi->sw_base_vector < 0) { dev_err(&pf->pdev->dev, "Failed to get tracking for %d SW vectors for VSI %d, err=%d\n", num_q_vectors, vsi->vsi_num, vsi->sw_base_vector); return -ENOENT; } pf->num_avail_sw_msix -= num_q_vectors; /* reserve slots from HW interrupts */ vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker, num_q_vectors, vsi->idx); break; default: dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n", vsi->type); break; } if (vsi->hw_base_vector < 0) { dev_err(&pf->pdev->dev, "Failed to get tracking for %d HW vectors for VSI %d, err=%d\n", num_q_vectors, vsi->vsi_num, vsi->hw_base_vector); ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx); pf->num_avail_sw_msix += num_q_vectors; return -ENOENT; } pf->num_avail_hw_msix -= num_q_vectors; return 0; } /** * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI * @vsi: the VSI having rings deallocated */ static void ice_vsi_clear_rings(struct ice_vsi *vsi) { int i; if (vsi->tx_rings) { for (i = 0; i < vsi->alloc_txq; i++) { if (vsi->tx_rings[i]) { kfree_rcu(vsi->tx_rings[i], rcu); vsi->tx_rings[i] = NULL; } } } if (vsi->rx_rings) { for (i = 0; i < vsi->alloc_rxq; i++) { if (vsi->rx_rings[i]) { kfree_rcu(vsi->rx_rings[i], rcu); vsi->rx_rings[i] = NULL; } } } } /** * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI * @vsi: VSI which is having rings allocated */ static int ice_vsi_alloc_rings(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int i; /* Allocate tx_rings */ for (i = 0; i < vsi->alloc_txq; i++) { struct ice_ring *ring; /* allocate with kzalloc(), free with kfree_rcu() */ ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) goto err_out; ring->q_index = i; ring->reg_idx = vsi->txq_map[i]; ring->ring_active = false; ring->vsi = vsi; ring->dev = &pf->pdev->dev; ring->count = vsi->num_desc; vsi->tx_rings[i] = ring; } /* Allocate rx_rings */ for (i = 0; i < vsi->alloc_rxq; i++) { struct ice_ring *ring; /* allocate with kzalloc(), free with kfree_rcu() */ ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) goto err_out; ring->q_index = i; ring->reg_idx = vsi->rxq_map[i]; ring->ring_active = false; ring->vsi = vsi; ring->netdev = vsi->netdev; ring->dev = &pf->pdev->dev; ring->count = vsi->num_desc; vsi->rx_rings[i] = ring; } return 0; err_out: ice_vsi_clear_rings(vsi); return -ENOMEM; } /** * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors * @vsi: the VSI being configured * * This function maps descriptor rings to the queue-specific vectors allotted * through the MSI-X enabling code. On a constrained vector budget, we map Tx * and Rx rings to the vector as "efficiently" as possible. */ static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) { int q_vectors = vsi->num_q_vectors; int tx_rings_rem, rx_rings_rem; int v_id; /* initially assigning remaining rings count to VSIs num queue value */ tx_rings_rem = vsi->num_txq; rx_rings_rem = vsi->num_rxq; for (v_id = 0; v_id < q_vectors; v_id++) { struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; int tx_rings_per_v, rx_rings_per_v, q_id, q_base; /* Tx rings mapping to vector */ tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id); q_vector->num_ring_tx = tx_rings_per_v; q_vector->tx.ring = NULL; q_base = vsi->num_txq - tx_rings_rem; for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { struct ice_ring *tx_ring = vsi->tx_rings[q_id]; tx_ring->q_vector = q_vector; tx_ring->next = q_vector->tx.ring; q_vector->tx.ring = tx_ring; } tx_rings_rem -= tx_rings_per_v; /* Rx rings mapping to vector */ rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id); q_vector->num_ring_rx = rx_rings_per_v; q_vector->rx.ring = NULL; q_base = vsi->num_rxq - rx_rings_rem; for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { struct ice_ring *rx_ring = vsi->rx_rings[q_id]; rx_ring->q_vector = q_vector; rx_ring->next = q_vector->rx.ring; q_vector->rx.ring = rx_ring; } rx_rings_rem -= rx_rings_per_v; } } /** * ice_vsi_manage_rss_lut - disable/enable RSS * @vsi: the VSI being changed * @ena: boolean value indicating if this is an enable or disable request * * In the event of disable request for RSS, this function will zero out RSS * LUT, while in the event of enable request for RSS, it will reconfigure RSS * LUT. */ int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) { int err = 0; u8 *lut; lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size, GFP_KERNEL); if (!lut) return -ENOMEM; if (ena) { if (vsi->rss_lut_user) memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); else ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); } err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); devm_kfree(&vsi->back->pdev->dev, lut); return err; } /** * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI * @vsi: VSI to be configured */ static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) { u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE]; struct ice_aqc_get_set_rss_keys *key; struct ice_pf *pf = vsi->back; enum ice_status status; int err = 0; u8 *lut; vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL); if (!lut) return -ENOMEM; if (vsi->rss_lut_user) memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); else ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, vsi->rss_table_size); if (status) { dev_err(&vsi->back->pdev->dev, "set_rss_lut failed, error %d\n", status); err = -EIO; goto ice_vsi_cfg_rss_exit; } key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL); if (!key) { err = -ENOMEM; goto ice_vsi_cfg_rss_exit; } if (vsi->rss_hkey_user) memcpy(seed, vsi->rss_hkey_user, ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); else netdev_rss_key_fill((void *)seed, ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); memcpy(&key->standard_rss_key, seed, ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE); status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); if (status) { dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n", status); err = -EIO; } devm_kfree(&pf->pdev->dev, key); ice_vsi_cfg_rss_exit: devm_kfree(&pf->pdev->dev, lut); return err; } /** * ice_add_mac_to_list - Add a mac address filter entry to the list * @vsi: the VSI to be forwarded to * @add_list: pointer to the list which contains MAC filter entries * @macaddr: the MAC address to be added. * * Adds mac address filter entry to the temp list * * Returns 0 on success or ENOMEM on failure. */ int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, const u8 *macaddr) { struct ice_fltr_list_entry *tmp; struct ice_pf *pf = vsi->back; tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC); if (!tmp) return -ENOMEM; tmp->fltr_info.flag = ICE_FLTR_TX; tmp->fltr_info.src_id = ICE_SRC_ID_VSI; tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; tmp->fltr_info.vsi_handle = vsi->idx; ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); INIT_LIST_HEAD(&tmp->list_entry); list_add(&tmp->list_entry, add_list); return 0; } /** * ice_update_eth_stats - Update VSI-specific ethernet statistics counters * @vsi: the VSI to be updated */ void ice_update_eth_stats(struct ice_vsi *vsi) { struct ice_eth_stats *prev_es, *cur_es; struct ice_hw *hw = &vsi->back->hw; u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ prev_es = &vsi->eth_stats_prev; cur_es = &vsi->eth_stats; ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_bytes, &cur_es->rx_bytes); ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_unicast, &cur_es->rx_unicast); ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_multicast, &cur_es->rx_multicast); ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_broadcast, &cur_es->rx_broadcast); ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_discards, &cur_es->rx_discards); ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_bytes, &cur_es->tx_bytes); ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_unicast, &cur_es->tx_unicast); ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_multicast, &cur_es->tx_multicast); ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_broadcast, &cur_es->tx_broadcast); ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_errors, &cur_es->tx_errors); vsi->stat_offsets_loaded = true; } /** * ice_free_fltr_list - free filter lists helper * @dev: pointer to the device struct * @h: pointer to the list head to be freed * * Helper function to free filter lists previously created using * ice_add_mac_to_list */ void ice_free_fltr_list(struct device *dev, struct list_head *h) { struct ice_fltr_list_entry *e, *tmp; list_for_each_entry_safe(e, tmp, h, list_entry) { list_del(&e->list_entry); devm_kfree(dev, e); } } /** * ice_vsi_add_vlan - Add VSI membership for given VLAN * @vsi: the VSI being configured * @vid: VLAN id to be added */ int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) { struct ice_fltr_list_entry *tmp; struct ice_pf *pf = vsi->back; LIST_HEAD(tmp_add_list); enum ice_status status; int err = 0; tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL); if (!tmp) return -ENOMEM; tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; tmp->fltr_info.flag = ICE_FLTR_TX; tmp->fltr_info.src_id = ICE_SRC_ID_VSI; tmp->fltr_info.vsi_handle = vsi->idx; tmp->fltr_info.l_data.vlan.vlan_id = vid; INIT_LIST_HEAD(&tmp->list_entry); list_add(&tmp->list_entry, &tmp_add_list); status = ice_add_vlan(&pf->hw, &tmp_add_list); if (status) { err = -ENODEV; dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n", vid, vsi->vsi_num); } ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); return err; } /** * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN * @vsi: the VSI being configured * @vid: VLAN id to be removed * * Returns 0 on success and negative on failure */ int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) { struct ice_fltr_list_entry *list; struct ice_pf *pf = vsi->back; LIST_HEAD(tmp_add_list); int status = 0; list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); if (!list) return -ENOMEM; list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; list->fltr_info.vsi_handle = vsi->idx; list->fltr_info.fltr_act = ICE_FWD_TO_VSI; list->fltr_info.l_data.vlan.vlan_id = vid; list->fltr_info.flag = ICE_FLTR_TX; list->fltr_info.src_id = ICE_SRC_ID_VSI; INIT_LIST_HEAD(&list->list_entry); list_add(&list->list_entry, &tmp_add_list); if (ice_remove_vlan(&pf->hw, &tmp_add_list)) { dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n", vid, vsi->vsi_num); status = -EIO; } ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); return status; } /** * ice_vsi_cfg_rxqs - Configure the VSI for Rx * @vsi: the VSI being configured * * Return 0 on success and a negative value on error * Configure the Rx VSI for operation. */ int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) { int err = 0; u16 i; if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN) vsi->max_frame = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; else vsi->max_frame = ICE_RXBUF_2048; vsi->rx_buf_len = ICE_RXBUF_2048; /* set up individual rings */ for (i = 0; i < vsi->num_rxq && !err; i++) err = ice_setup_rx_ctx(vsi->rx_rings[i]); if (err) { dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n"); return -EIO; } return err; } /** * ice_vsi_cfg_txqs - Configure the VSI for Tx * @vsi: the VSI being configured * * Return 0 on success and a negative value on error * Configure the Tx VSI for operation. */ int ice_vsi_cfg_txqs(struct ice_vsi *vsi) { struct ice_aqc_add_tx_qgrp *qg_buf; struct ice_aqc_add_txqs_perq *txq; struct ice_pf *pf = vsi->back; enum ice_status status; u16 buf_len, i, pf_q; int err = 0, tc = 0; u8 num_q_grps; buf_len = sizeof(struct ice_aqc_add_tx_qgrp); qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL); if (!qg_buf) return -ENOMEM; if (vsi->num_txq > ICE_MAX_TXQ_PER_TXQG) { err = -EINVAL; goto err_cfg_txqs; } qg_buf->num_txqs = 1; num_q_grps = 1; /* set up and configure the Tx queues */ ice_for_each_txq(vsi, i) { struct ice_tlan_ctx tlan_ctx = { 0 }; pf_q = vsi->txq_map[i]; ice_setup_tx_ctx(vsi->tx_rings[i], &tlan_ctx, pf_q); /* copy context contents into the qg_buf */ qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, ice_tlan_ctx_info); /* init queue specific tail reg. It is referred as transmit * comm scheduler queue doorbell. */ vsi->tx_rings[i]->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q); status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, num_q_grps, qg_buf, buf_len, NULL); if (status) { dev_err(&vsi->back->pdev->dev, "Failed to set LAN Tx queue context, error: %d\n", status); err = -ENODEV; goto err_cfg_txqs; } /* Add Tx Queue TEID into the VSI Tx ring from the response * This will complete configuring and enabling the queue. */ txq = &qg_buf->txqs[0]; if (pf_q == le16_to_cpu(txq->txq_id)) vsi->tx_rings[i]->txq_teid = le32_to_cpu(txq->q_teid); } err_cfg_txqs: devm_kfree(&pf->pdev->dev, qg_buf); return err; } /** * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW * @vsi: the VSI being configured */ void ice_vsi_cfg_msix(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; u16 vector = vsi->hw_base_vector; struct ice_hw *hw = &pf->hw; u32 txq = 0, rxq = 0; int i, q, itr; u8 itr_gran; for (i = 0; i < vsi->num_q_vectors; i++, vector++) { struct ice_q_vector *q_vector = vsi->q_vectors[i]; itr_gran = hw->itr_gran_200; if (q_vector->num_ring_rx) { q_vector->rx.itr = ITR_TO_REG(vsi->rx_rings[rxq]->rx_itr_setting, itr_gran); q_vector->rx.latency_range = ICE_LOW_LATENCY; } if (q_vector->num_ring_tx) { q_vector->tx.itr = ITR_TO_REG(vsi->tx_rings[txq]->tx_itr_setting, itr_gran); q_vector->tx.latency_range = ICE_LOW_LATENCY; } wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), q_vector->rx.itr); wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), q_vector->tx.itr); /* Both Transmit Queue Interrupt Cause Control register * and Receive Queue Interrupt Cause control register * expects MSIX_INDX field to be the vector index * within the function space and not the absolute * vector index across PF or across device. * For SR-IOV VF VSIs queue vector index always starts * with 1 since first vector index(0) is used for OICR * in VF space. Since VMDq and other PF VSIs are within * the PF function space, use the vector index that is * tracked for this PF. */ for (q = 0; q < q_vector->num_ring_tx; q++) { u32 val; itr = ICE_ITR_NONE; val = QINT_TQCTL_CAUSE_ENA_M | (itr << QINT_TQCTL_ITR_INDX_S) | (vector << QINT_TQCTL_MSIX_INDX_S); wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); txq++; } for (q = 0; q < q_vector->num_ring_rx; q++) { u32 val; itr = ICE_ITR_NONE; val = QINT_RQCTL_CAUSE_ENA_M | (itr << QINT_RQCTL_ITR_INDX_S) | (vector << QINT_RQCTL_MSIX_INDX_S); wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); rxq++; } } ice_flush(hw); } /** * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx * @vsi: the VSI being changed */ int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) { struct device *dev = &vsi->back->pdev->dev; struct ice_hw *hw = &vsi->back->hw; struct ice_vsi_ctx ctxt = { 0 }; enum ice_status status; /* Here we are configuring the VSI to let the driver add VLAN tags by * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag * insertion happens in the Tx hot path, in ice_tx_map. */ ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); if (status) { dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n", status, hw->adminq.sq_last_status); return -EIO; } vsi->info.vlan_flags = ctxt.info.vlan_flags; return 0; } /** * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx * @vsi: the VSI being changed * @ena: boolean value indicating if this is a enable or disable request */ int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) { struct device *dev = &vsi->back->pdev->dev; struct ice_hw *hw = &vsi->back->hw; struct ice_vsi_ctx ctxt = { 0 }; enum ice_status status; /* Here we are configuring what the VSI should do with the VLAN tag in * the Rx packet. We can either leave the tag in the packet or put it in * the Rx descriptor. */ if (ena) { /* Strip VLAN tag from Rx packet and put it in the desc */ ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; } else { /* Disable stripping. Leave tag in packet */ ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; } /* Allow all packets untagged/tagged */ ctxt.info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL); if (status) { dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n", ena, status, hw->adminq.sq_last_status); return -EIO; } vsi->info.vlan_flags = ctxt.info.vlan_flags; return 0; } /** * ice_vsi_start_rx_rings - start VSI's Rx rings * @vsi: the VSI whose rings are to be started * * Returns 0 on success and a negative value on error */ int ice_vsi_start_rx_rings(struct ice_vsi *vsi) { return ice_vsi_ctrl_rx_rings(vsi, true); } /** * ice_vsi_stop_rx_rings - stop VSI's Rx rings * @vsi: the VSI * * Returns 0 on success and a negative value on error */ int ice_vsi_stop_rx_rings(struct ice_vsi *vsi) { return ice_vsi_ctrl_rx_rings(vsi, false); } /** * ice_vsi_stop_tx_rings - Disable Tx rings * @vsi: the VSI being configured */ int ice_vsi_stop_tx_rings(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; enum ice_status status; u32 *q_teids, val; u16 *q_ids, i; int err = 0; if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) return -EINVAL; q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids), GFP_KERNEL); if (!q_teids) return -ENOMEM; q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids), GFP_KERNEL); if (!q_ids) { err = -ENOMEM; goto err_alloc_q_ids; } /* set up the Tx queue list to be disabled */ ice_for_each_txq(vsi, i) { u16 v_idx; if (!vsi->tx_rings || !vsi->tx_rings[i]) { err = -EINVAL; goto err_out; } q_ids[i] = vsi->txq_map[i]; q_teids[i] = vsi->tx_rings[i]->txq_teid; /* clear cause_ena bit for disabled queues */ val = rd32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); val &= ~QINT_TQCTL_CAUSE_ENA_M; wr32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); /* software is expected to wait for 100 ns */ ndelay(100); /* trigger a software interrupt for the vector associated to * the queue to schedule NAPI handler */ v_idx = vsi->tx_rings[i]->q_vector->v_idx; wr32(hw, GLINT_DYN_CTL(vsi->hw_base_vector + v_idx), GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M); } status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids, NULL); /* if the disable queue command was exercised during an active reset * flow, ICE_ERR_RESET_ONGOING is returned. This is not an error as * the reset operation disables queues at the hardware level anyway. */ if (status == ICE_ERR_RESET_ONGOING) { dev_info(&pf->pdev->dev, "Reset in progress. LAN Tx queues already disabled\n"); } else if (status) { dev_err(&pf->pdev->dev, "Failed to disable LAN Tx queues, error: %d\n", status); err = -ENODEV; } err_out: devm_kfree(&pf->pdev->dev, q_ids); err_alloc_q_ids: devm_kfree(&pf->pdev->dev, q_teids); return err; } /** * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI * @vsi: VSI to enable or disable VLAN pruning on * @ena: set to true to enable VLAN pruning and false to disable it * * returns 0 if VSI is updated, negative otherwise */ int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena) { struct ice_vsi_ctx *ctxt; struct device *dev; int status; if (!vsi) return -EINVAL; dev = &vsi->back->pdev->dev; ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); if (!ctxt) return -ENOMEM; ctxt->info = vsi->info; if (ena) { ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S; ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; } else { ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; } ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID | ICE_AQ_VSI_PROP_SW_VALID); status = ice_update_vsi(&vsi->back->hw, vsi->idx, ctxt, NULL); if (status) { netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n", ena ? "Ena" : "Dis", vsi->idx, vsi->vsi_num, status, vsi->back->hw.adminq.sq_last_status); goto err_out; } vsi->info.sec_flags = ctxt->info.sec_flags; vsi->info.sw_flags2 = ctxt->info.sw_flags2; devm_kfree(dev, ctxt); return 0; err_out: devm_kfree(dev, ctxt); return -EIO; } /** * ice_vsi_setup - Set up a VSI by a given type * @pf: board private structure * @pi: pointer to the port_info instance * @type: VSI type * @vf_id: defines VF id to which this VSI connects. This field is meant to be * used only for ICE_VSI_VF VSI type. For other VSI types, should * fill-in ICE_INVAL_VFID as input. * * This allocates the sw VSI structure and its queue resources. * * Returns pointer to the successfully allocated and configured VSI sw struct on * success, NULL on failure. */ struct ice_vsi * ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, enum ice_vsi_type type, u16 __always_unused vf_id) { u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; struct device *dev = &pf->pdev->dev; struct ice_vsi *vsi; int ret, i; vsi = ice_vsi_alloc(pf, type); if (!vsi) { dev_err(dev, "could not allocate VSI\n"); return NULL; } vsi->port_info = pi; vsi->vsw = pf->first_sw; if (ice_vsi_get_qs(vsi)) { dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", vsi->idx); goto unroll_get_qs; } /* set RSS capabilities */ ice_vsi_set_rss_params(vsi); /* create the VSI */ ret = ice_vsi_init(vsi); if (ret) goto unroll_get_qs; switch (vsi->type) { case ICE_VSI_PF: ret = ice_vsi_alloc_q_vectors(vsi); if (ret) goto unroll_vsi_init; ret = ice_vsi_setup_vector_base(vsi); if (ret) goto unroll_alloc_q_vector; ret = ice_vsi_alloc_rings(vsi); if (ret) goto unroll_vector_base; ice_vsi_map_rings_to_vectors(vsi); /* Do not exit if configuring RSS had an issue, at least * receive traffic on first queue. Hence no need to capture * return value */ if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) ice_vsi_cfg_rss_lut_key(vsi); break; default: /* if VSI type is not recognized, clean up the resources and * exit */ goto unroll_vsi_init; } ice_vsi_set_tc_cfg(vsi); /* configure VSI nodes based on number of queues and TC's */ for (i = 0; i < vsi->tc_cfg.numtc; i++) max_txqs[i] = vsi->num_txq; ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, max_txqs); if (ret) { dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n"); goto unroll_vector_base; } return vsi; unroll_vector_base: /* reclaim SW interrupts back to the common pool */ ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx); pf->num_avail_sw_msix += vsi->num_q_vectors; /* reclaim HW interrupt back to the common pool */ ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx); pf->num_avail_hw_msix += vsi->num_q_vectors; unroll_alloc_q_vector: ice_vsi_free_q_vectors(vsi); unroll_vsi_init: ice_vsi_delete(vsi); unroll_get_qs: ice_vsi_put_qs(vsi); pf->q_left_tx += vsi->alloc_txq; pf->q_left_rx += vsi->alloc_rxq; ice_vsi_clear(vsi); return NULL; } /** * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW * @vsi: the VSI being cleaned up */ static void ice_vsi_release_msix(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; u16 vector = vsi->hw_base_vector; struct ice_hw *hw = &pf->hw; u32 txq = 0; u32 rxq = 0; int i, q; for (i = 0; i < vsi->num_q_vectors; i++, vector++) { struct ice_q_vector *q_vector = vsi->q_vectors[i]; wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), 0); wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), 0); for (q = 0; q < q_vector->num_ring_tx; q++) { wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); txq++; } for (q = 0; q < q_vector->num_ring_rx; q++) { wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); rxq++; } } ice_flush(hw); } /** * ice_vsi_free_irq - Free the IRQ association with the OS * @vsi: the VSI being configured */ void ice_vsi_free_irq(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int base = vsi->sw_base_vector; if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { int i; if (!vsi->q_vectors || !vsi->irqs_ready) return; ice_vsi_release_msix(vsi); vsi->irqs_ready = false; for (i = 0; i < vsi->num_q_vectors; i++) { u16 vector = i + base; int irq_num; irq_num = pf->msix_entries[vector].vector; /* free only the irqs that were actually requested */ if (!vsi->q_vectors[i] || !(vsi->q_vectors[i]->num_ring_tx || vsi->q_vectors[i]->num_ring_rx)) continue; /* clear the affinity notifier in the IRQ descriptor */ irq_set_affinity_notifier(irq_num, NULL); /* clear the affinity_mask in the IRQ descriptor */ irq_set_affinity_hint(irq_num, NULL); synchronize_irq(irq_num); devm_free_irq(&pf->pdev->dev, irq_num, vsi->q_vectors[i]); } } } /** * ice_vsi_free_tx_rings - Free Tx resources for VSI queues * @vsi: the VSI having resources freed */ void ice_vsi_free_tx_rings(struct ice_vsi *vsi) { int i; if (!vsi->tx_rings) return; ice_for_each_txq(vsi, i) if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) ice_free_tx_ring(vsi->tx_rings[i]); } /** * ice_vsi_free_rx_rings - Free Rx resources for VSI queues * @vsi: the VSI having resources freed */ void ice_vsi_free_rx_rings(struct ice_vsi *vsi) { int i; if (!vsi->rx_rings) return; ice_for_each_rxq(vsi, i) if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) ice_free_rx_ring(vsi->rx_rings[i]); } /** * ice_vsi_close - Shut down a VSI * @vsi: the VSI being shut down */ void ice_vsi_close(struct ice_vsi *vsi) { if (!test_and_set_bit(__ICE_DOWN, vsi->state)) ice_down(vsi); ice_vsi_free_irq(vsi); ice_vsi_free_tx_rings(vsi); ice_vsi_free_rx_rings(vsi); } /** * ice_free_res - free a block of resources * @res: pointer to the resource * @index: starting index previously returned by ice_get_res * @id: identifier to track owner * * Returns number of resources freed */ int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) { int count = 0; int i; if (!res || index >= res->num_entries) return -EINVAL; id |= ICE_RES_VALID_BIT; for (i = index; i < res->num_entries && res->list[i] == id; i++) { res->list[i] = 0; count++; } return count; } /** * ice_search_res - Search the tracker for a block of resources * @res: pointer to the resource * @needed: size of the block needed * @id: identifier to track owner * * Returns the base item index of the block, or -ENOMEM for error */ static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) { int start = res->search_hint; int end = start; if ((start + needed) > res->num_entries) return -ENOMEM; id |= ICE_RES_VALID_BIT; do { /* skip already allocated entries */ if (res->list[end++] & ICE_RES_VALID_BIT) { start = end; if ((start + needed) > res->num_entries) break; } if (end == (start + needed)) { int i = start; /* there was enough, so assign it to the requestor */ while (i != end) res->list[i++] = id; if (end == res->num_entries) end = 0; res->search_hint = end; return start; } } while (1); return -ENOMEM; } /** * ice_get_res - get a block of resources * @pf: board private structure * @res: pointer to the resource * @needed: size of the block needed * @id: identifier to track owner * * Returns the base item index of the block, or -ENOMEM for error * The search_hint trick and lack of advanced fit-finding only works * because we're highly likely to have all the same sized requests. * Linear search time and any fragmentation should be minimal. */ int ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) { int ret; if (!res || !pf) return -EINVAL; if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { dev_err(&pf->pdev->dev, "param err: needed=%d, num_entries = %d id=0x%04x\n", needed, res->num_entries, id); return -EINVAL; } /* search based on search_hint */ ret = ice_search_res(res, needed, id); if (ret < 0) { /* previous search failed. Reset search hint and try again */ res->search_hint = 0; ret = ice_search_res(res, needed, id); } return ret; } /** * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI * @vsi: the VSI being un-configured */ void ice_vsi_dis_irq(struct ice_vsi *vsi) { int base = vsi->sw_base_vector; struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; u32 val; int i; /* disable interrupt causation from each queue */ if (vsi->tx_rings) { ice_for_each_txq(vsi, i) { if (vsi->tx_rings[i]) { u16 reg; reg = vsi->tx_rings[i]->reg_idx; val = rd32(hw, QINT_TQCTL(reg)); val &= ~QINT_TQCTL_CAUSE_ENA_M; wr32(hw, QINT_TQCTL(reg), val); } } } if (vsi->rx_rings) { ice_for_each_rxq(vsi, i) { if (vsi->rx_rings[i]) { u16 reg; reg = vsi->rx_rings[i]->reg_idx; val = rd32(hw, QINT_RQCTL(reg)); val &= ~QINT_RQCTL_CAUSE_ENA_M; wr32(hw, QINT_RQCTL(reg), val); } } } /* disable each interrupt */ if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) { for (i = vsi->hw_base_vector; i < (vsi->num_q_vectors + vsi->hw_base_vector); i++) wr32(hw, GLINT_DYN_CTL(i), 0); ice_flush(hw); for (i = 0; i < vsi->num_q_vectors; i++) synchronize_irq(pf->msix_entries[i + base].vector); } } /** * ice_vsi_release - Delete a VSI and free its resources * @vsi: the VSI being removed * * Returns 0 on success or < 0 on error */ int ice_vsi_release(struct ice_vsi *vsi) { struct ice_pf *pf; if (!vsi->back) return -ENODEV; pf = vsi->back; /* do not unregister and free netdevs while driver is in the reset * recovery pending state. Since reset/rebuild happens through PF * service task workqueue, its not a good idea to unregister netdev * that is associated to the PF that is running the work queue items * currently. This is done to avoid check_flush_dependency() warning * on this wq */ if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) { unregister_netdev(vsi->netdev); free_netdev(vsi->netdev); vsi->netdev = NULL; } if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) ice_rss_clean(vsi); /* Disable VSI and free resources */ ice_vsi_dis_irq(vsi); ice_vsi_close(vsi); /* reclaim interrupt vectors back to PF */ ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx); pf->num_avail_sw_msix += vsi->num_q_vectors; ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx); pf->num_avail_hw_msix += vsi->num_q_vectors; ice_remove_vsi_fltr(&pf->hw, vsi->idx); ice_vsi_delete(vsi); ice_vsi_free_q_vectors(vsi); ice_vsi_clear_rings(vsi); ice_vsi_put_qs(vsi); pf->q_left_tx += vsi->alloc_txq; pf->q_left_rx += vsi->alloc_rxq; /* retain SW VSI data structure since it is needed to unregister and * free VSI netdev when PF is not in reset recovery pending state,\ * for ex: during rmmod. */ if (!ice_is_reset_in_progress(pf->state)) ice_vsi_clear(vsi); return 0; } /** * ice_vsi_rebuild - Rebuild VSI after reset * @vsi: VSI to be rebuild * * Returns 0 on success and negative value on failure */ int ice_vsi_rebuild(struct ice_vsi *vsi) { u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; int ret, i; if (!vsi) return -EINVAL; ice_vsi_free_q_vectors(vsi); ice_free_res(vsi->back->sw_irq_tracker, vsi->sw_base_vector, vsi->idx); ice_free_res(vsi->back->hw_irq_tracker, vsi->hw_base_vector, vsi->idx); vsi->sw_base_vector = 0; vsi->hw_base_vector = 0; ice_vsi_clear_rings(vsi); ice_vsi_free_arrays(vsi, false); ice_vsi_set_num_qs(vsi); /* Initialize VSI struct elements and create VSI in FW */ ret = ice_vsi_init(vsi); if (ret < 0) goto err_vsi; ret = ice_vsi_alloc_arrays(vsi, false); if (ret < 0) goto err_vsi; switch (vsi->type) { case ICE_VSI_PF: ret = ice_vsi_alloc_q_vectors(vsi); if (ret) goto err_rings; ret = ice_vsi_setup_vector_base(vsi); if (ret) goto err_vectors; ret = ice_vsi_alloc_rings(vsi); if (ret) goto err_vectors; ice_vsi_map_rings_to_vectors(vsi); break; default: break; } ice_vsi_set_tc_cfg(vsi); /* configure VSI nodes based on number of queues and TC's */ for (i = 0; i < vsi->tc_cfg.numtc; i++) max_txqs[i] = vsi->num_txq; ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, max_txqs); if (ret) { dev_info(&vsi->back->pdev->dev, "Failed VSI lan queue config\n"); goto err_vectors; } return 0; err_vectors: ice_vsi_free_q_vectors(vsi); err_rings: if (vsi->netdev) { vsi->current_netdev_flags = 0; unregister_netdev(vsi->netdev); free_netdev(vsi->netdev); vsi->netdev = NULL; } err_vsi: ice_vsi_clear(vsi); set_bit(__ICE_RESET_FAILED, vsi->back->state); return ret; } /** * ice_is_reset_in_progress - check for a reset in progress * @state: pf state field */ bool ice_is_reset_in_progress(unsigned long *state) { return test_bit(__ICE_RESET_OICR_RECV, state) || test_bit(__ICE_PFR_REQ, state) || test_bit(__ICE_CORER_REQ, state) || test_bit(__ICE_GLOBR_REQ, state); }