/* * raid5.c : Multiple Devices driver for Linux * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman * Copyright (C) 1999, 2000 Ingo Molnar * Copyright (C) 2002, 2003 H. Peter Anvin * * RAID-4/5/6 management functions. * Thanks to Penguin Computing for making the RAID-6 development possible * by donating a test server! * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * You should have received a copy of the GNU General Public License * (for example /usr/src/linux/COPYING); if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * BITMAP UNPLUGGING: * * The sequencing for updating the bitmap reliably is a little * subtle (and I got it wrong the first time) so it deserves some * explanation. * * We group bitmap updates into batches. Each batch has a number. * We may write out several batches at once, but that isn't very important. * conf->seq_write is the number of the last batch successfully written. * conf->seq_flush is the number of the last batch that was closed to * new additions. * When we discover that we will need to write to any block in a stripe * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq * the number of the batch it will be in. This is seq_flush+1. * When we are ready to do a write, if that batch hasn't been written yet, * we plug the array and queue the stripe for later. * When an unplug happens, we increment bm_flush, thus closing the current * batch. * When we notice that bm_flush > bm_write, we write out all pending updates * to the bitmap, and advance bm_write to where bm_flush was. * This may occasionally write a bit out twice, but is sure never to * miss any bits. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "md.h" #include "raid5.h" #include "raid0.h" #include "bitmap.h" #define cpu_to_group(cpu) cpu_to_node(cpu) #define ANY_GROUP NUMA_NO_NODE static struct workqueue_struct *raid5_wq; /* * Stripe cache */ #define NR_STRIPES 256 #define STRIPE_SIZE PAGE_SIZE #define STRIPE_SHIFT (PAGE_SHIFT - 9) #define STRIPE_SECTORS (STRIPE_SIZE>>9) #define IO_THRESHOLD 1 #define BYPASS_THRESHOLD 1 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) #define HASH_MASK (NR_HASH - 1) #define MAX_STRIPE_BATCH 8 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) { int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; return &conf->stripe_hashtbl[hash]; } static inline int stripe_hash_locks_hash(sector_t sect) { return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; } static inline void lock_device_hash_lock(struct r5conf *conf, int hash) { spin_lock_irq(conf->hash_locks + hash); spin_lock(&conf->device_lock); } static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) { spin_unlock(&conf->device_lock); spin_unlock_irq(conf->hash_locks + hash); } static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) { int i; local_irq_disable(); spin_lock(conf->hash_locks); for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); spin_lock(&conf->device_lock); } static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) { int i; spin_unlock(&conf->device_lock); for (i = NR_STRIPE_HASH_LOCKS; i; i--) spin_unlock(conf->hash_locks + i - 1); local_irq_enable(); } /* bio's attached to a stripe+device for I/O are linked together in bi_sector * order without overlap. There may be several bio's per stripe+device, and * a bio could span several devices. * When walking this list for a particular stripe+device, we must never proceed * beyond a bio that extends past this device, as the next bio might no longer * be valid. * This function is used to determine the 'next' bio in the list, given the sector * of the current stripe+device */ static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) { int sectors = bio_sectors(bio); if (bio->bi_sector + sectors < sector + STRIPE_SECTORS) return bio->bi_next; else return NULL; } /* * We maintain a biased count of active stripes in the bottom 16 bits of * bi_phys_segments, and a count of processed stripes in the upper 16 bits */ static inline int raid5_bi_processed_stripes(struct bio *bio) { atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; return (atomic_read(segments) >> 16) & 0xffff; } static inline int raid5_dec_bi_active_stripes(struct bio *bio) { atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; return atomic_sub_return(1, segments) & 0xffff; } static inline void raid5_inc_bi_active_stripes(struct bio *bio) { atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; atomic_inc(segments); } static inline void raid5_set_bi_processed_stripes(struct bio *bio, unsigned int cnt) { atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; int old, new; do { old = atomic_read(segments); new = (old & 0xffff) | (cnt << 16); } while (atomic_cmpxchg(segments, old, new) != old); } static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) { atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; atomic_set(segments, cnt); } /* Find first data disk in a raid6 stripe */ static inline int raid6_d0(struct stripe_head *sh) { if (sh->ddf_layout) /* ddf always start from first device */ return 0; /* md starts just after Q block */ if (sh->qd_idx == sh->disks - 1) return 0; else return sh->qd_idx + 1; } static inline int raid6_next_disk(int disk, int raid_disks) { disk++; return (disk < raid_disks) ? disk : 0; } /* When walking through the disks in a raid5, starting at raid6_d0, * We need to map each disk to a 'slot', where the data disks are slot * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk * is raid_disks-1. This help does that mapping. */ static int raid6_idx_to_slot(int idx, struct stripe_head *sh, int *count, int syndrome_disks) { int slot = *count; if (sh->ddf_layout) (*count)++; if (idx == sh->pd_idx) return syndrome_disks; if (idx == sh->qd_idx) return syndrome_disks + 1; if (!sh->ddf_layout) (*count)++; return slot; } static void return_io(struct bio *return_bi) { struct bio *bi = return_bi; while (bi) { return_bi = bi->bi_next; bi->bi_next = NULL; bi->bi_size = 0; trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), bi, 0); bio_endio(bi, 0); bi = return_bi; } } static void print_raid5_conf (struct r5conf *conf); static int stripe_operations_active(struct stripe_head *sh) { return sh->check_state || sh->reconstruct_state || test_bit(STRIPE_BIOFILL_RUN, &sh->state) || test_bit(STRIPE_COMPUTE_RUN, &sh->state); } static void raid5_wakeup_stripe_thread(struct stripe_head *sh) { struct r5conf *conf = sh->raid_conf; struct r5worker_group *group; int thread_cnt; int i, cpu = sh->cpu; if (!cpu_online(cpu)) { cpu = cpumask_any(cpu_online_mask); sh->cpu = cpu; } if (list_empty(&sh->lru)) { struct r5worker_group *group; group = conf->worker_groups + cpu_to_group(cpu); list_add_tail(&sh->lru, &group->handle_list); group->stripes_cnt++; sh->group = group; } if (conf->worker_cnt_per_group == 0) { md_wakeup_thread(conf->mddev->thread); return; } group = conf->worker_groups + cpu_to_group(sh->cpu); group->workers[0].working = true; /* at least one worker should run to avoid race */ queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; /* wakeup more workers */ for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { if (group->workers[i].working == false) { group->workers[i].working = true; queue_work_on(sh->cpu, raid5_wq, &group->workers[i].work); thread_cnt--; } } } static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, struct list_head *temp_inactive_list) { BUG_ON(!list_empty(&sh->lru)); BUG_ON(atomic_read(&conf->active_stripes)==0); if (test_bit(STRIPE_HANDLE, &sh->state)) { if (test_bit(STRIPE_DELAYED, &sh->state) && !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) list_add_tail(&sh->lru, &conf->delayed_list); else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && sh->bm_seq - conf->seq_write > 0) list_add_tail(&sh->lru, &conf->bitmap_list); else { clear_bit(STRIPE_DELAYED, &sh->state); clear_bit(STRIPE_BIT_DELAY, &sh->state); if (conf->worker_cnt_per_group == 0) { list_add_tail(&sh->lru, &conf->handle_list); } else { raid5_wakeup_stripe_thread(sh); return; } } md_wakeup_thread(conf->mddev->thread); } else { BUG_ON(stripe_operations_active(sh)); if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) if (atomic_dec_return(&conf->preread_active_stripes) < IO_THRESHOLD) md_wakeup_thread(conf->mddev->thread); atomic_dec(&conf->active_stripes); if (!test_bit(STRIPE_EXPANDING, &sh->state)) list_add_tail(&sh->lru, temp_inactive_list); } } static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, struct list_head *temp_inactive_list) { if (atomic_dec_and_test(&sh->count)) do_release_stripe(conf, sh, temp_inactive_list); } /* * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list * * Be careful: Only one task can add/delete stripes from temp_inactive_list at * given time. Adding stripes only takes device lock, while deleting stripes * only takes hash lock. */ static void release_inactive_stripe_list(struct r5conf *conf, struct list_head *temp_inactive_list, int hash) { int size; bool do_wakeup = false; unsigned long flags; if (hash == NR_STRIPE_HASH_LOCKS) { size = NR_STRIPE_HASH_LOCKS; hash = NR_STRIPE_HASH_LOCKS - 1; } else size = 1; while (size) { struct list_head *list = &temp_inactive_list[size - 1]; /* * We don't hold any lock here yet, get_active_stripe() might * remove stripes from the list */ if (!list_empty_careful(list)) { spin_lock_irqsave(conf->hash_locks + hash, flags); if (list_empty(conf->inactive_list + hash) && !list_empty(list)) atomic_dec(&conf->empty_inactive_list_nr); list_splice_tail_init(list, conf->inactive_list + hash); do_wakeup = true; spin_unlock_irqrestore(conf->hash_locks + hash, flags); } size--; hash--; } if (do_wakeup) { wake_up(&conf->wait_for_stripe); if (conf->retry_read_aligned) md_wakeup_thread(conf->mddev->thread); } } static struct llist_node *llist_reverse_order(struct llist_node *head) { struct llist_node *new_head = NULL; while (head) { struct llist_node *tmp = head; head = head->next; tmp->next = new_head; new_head = tmp; } return new_head; } /* should hold conf->device_lock already */ static int release_stripe_list(struct r5conf *conf, struct list_head *temp_inactive_list) { struct stripe_head *sh; int count = 0; struct llist_node *head; head = llist_del_all(&conf->released_stripes); head = llist_reverse_order(head); while (head) { int hash; sh = llist_entry(head, struct stripe_head, release_list); head = llist_next(head); /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ smp_mb(); clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); /* * Don't worry the bit is set here, because if the bit is set * again, the count is always > 1. This is true for * STRIPE_ON_UNPLUG_LIST bit too. */ hash = sh->hash_lock_index; __release_stripe(conf, sh, &temp_inactive_list[hash]); count++; } return count; } static void release_stripe(struct stripe_head *sh) { struct r5conf *conf = sh->raid_conf; unsigned long flags; struct list_head list; int hash; bool wakeup; if (unlikely(!conf->mddev->thread) || test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) goto slow_path; wakeup = llist_add(&sh->release_list, &conf->released_stripes); if (wakeup) md_wakeup_thread(conf->mddev->thread); return; slow_path: local_irq_save(flags); /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { INIT_LIST_HEAD(&list); hash = sh->hash_lock_index; do_release_stripe(conf, sh, &list); spin_unlock(&conf->device_lock); release_inactive_stripe_list(conf, &list, hash); } local_irq_restore(flags); } static inline void remove_hash(struct stripe_head *sh) { pr_debug("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector); hlist_del_init(&sh->hash); } static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) { struct hlist_head *hp = stripe_hash(conf, sh->sector); pr_debug("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector); hlist_add_head(&sh->hash, hp); } /* find an idle stripe, make sure it is unhashed, and return it. */ static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) { struct stripe_head *sh = NULL; struct list_head *first; if (list_empty(conf->inactive_list + hash)) goto out; first = (conf->inactive_list + hash)->next; sh = list_entry(first, struct stripe_head, lru); list_del_init(first); remove_hash(sh); atomic_inc(&conf->active_stripes); BUG_ON(hash != sh->hash_lock_index); if (list_empty(conf->inactive_list + hash)) atomic_inc(&conf->empty_inactive_list_nr); out: return sh; } static void shrink_buffers(struct stripe_head *sh) { struct page *p; int i; int num = sh->raid_conf->pool_size; for (i = 0; i < num ; i++) { p = sh->dev[i].page; if (!p) continue; sh->dev[i].page = NULL; put_page(p); } } static int grow_buffers(struct stripe_head *sh) { int i; int num = sh->raid_conf->pool_size; for (i = 0; i < num; i++) { struct page *page; if (!(page = alloc_page(GFP_KERNEL))) { return 1; } sh->dev[i].page = page; } return 0; } static void raid5_build_block(struct stripe_head *sh, int i, int previous); static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, struct stripe_head *sh); static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) { struct r5conf *conf = sh->raid_conf; int i, seq; BUG_ON(atomic_read(&sh->count) != 0); BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); BUG_ON(stripe_operations_active(sh)); pr_debug("init_stripe called, stripe %llu\n", (unsigned long long)sh->sector); remove_hash(sh); retry: seq = read_seqcount_begin(&conf->gen_lock); sh->generation = conf->generation - previous; sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; sh->sector = sector; stripe_set_idx(sector, conf, previous, sh); sh->state = 0; for (i = sh->disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (dev->toread || dev->read || dev->towrite || dev->written || test_bit(R5_LOCKED, &dev->flags)) { printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", (unsigned long long)sh->sector, i, dev->toread, dev->read, dev->towrite, dev->written, test_bit(R5_LOCKED, &dev->flags)); WARN_ON(1); } dev->flags = 0; raid5_build_block(sh, i, previous); } if (read_seqcount_retry(&conf->gen_lock, seq)) goto retry; insert_hash(conf, sh); sh->cpu = smp_processor_id(); } static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, short generation) { struct stripe_head *sh; pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) if (sh->sector == sector && sh->generation == generation) return sh; pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); return NULL; } /* * Need to check if array has failed when deciding whether to: * - start an array * - remove non-faulty devices * - add a spare * - allow a reshape * This determination is simple when no reshape is happening. * However if there is a reshape, we need to carefully check * both the before and after sections. * This is because some failed devices may only affect one * of the two sections, and some non-in_sync devices may * be insync in the section most affected by failed devices. */ static int calc_degraded(struct r5conf *conf) { int degraded, degraded2; int i; rcu_read_lock(); degraded = 0; for (i = 0; i < conf->previous_raid_disks; i++) { struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); if (rdev && test_bit(Faulty, &rdev->flags)) rdev = rcu_dereference(conf->disks[i].replacement); if (!rdev || test_bit(Faulty, &rdev->flags)) degraded++; else if (test_bit(In_sync, &rdev->flags)) ; else /* not in-sync or faulty. * If the reshape increases the number of devices, * this is being recovered by the reshape, so * this 'previous' section is not in_sync. * If the number of devices is being reduced however, * the device can only be part of the array if * we are reverting a reshape, so this section will * be in-sync. */ if (conf->raid_disks >= conf->previous_raid_disks) degraded++; } rcu_read_unlock(); if (conf->raid_disks == conf->previous_raid_disks) return degraded; rcu_read_lock(); degraded2 = 0; for (i = 0; i < conf->raid_disks; i++) { struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); if (rdev && test_bit(Faulty, &rdev->flags)) rdev = rcu_dereference(conf->disks[i].replacement); if (!rdev || test_bit(Faulty, &rdev->flags)) degraded2++; else if (test_bit(In_sync, &rdev->flags)) ; else /* not in-sync or faulty. * If reshape increases the number of devices, this * section has already been recovered, else it * almost certainly hasn't. */ if (conf->raid_disks <= conf->previous_raid_disks) degraded2++; } rcu_read_unlock(); if (degraded2 > degraded) return degraded2; return degraded; } static int has_failed(struct r5conf *conf) { int degraded; if (conf->mddev->reshape_position == MaxSector) return conf->mddev->degraded > conf->max_degraded; degraded = calc_degraded(conf); if (degraded > conf->max_degraded) return 1; return 0; } static struct stripe_head * get_active_stripe(struct r5conf *conf, sector_t sector, int previous, int noblock, int noquiesce) { struct stripe_head *sh; int hash = stripe_hash_locks_hash(sector); pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); spin_lock_irq(conf->hash_locks + hash); do { wait_event_lock_irq(conf->wait_for_stripe, conf->quiesce == 0 || noquiesce, *(conf->hash_locks + hash)); sh = __find_stripe(conf, sector, conf->generation - previous); if (!sh) { if (!conf->inactive_blocked) sh = get_free_stripe(conf, hash); if (noblock && sh == NULL) break; if (!sh) { conf->inactive_blocked = 1; wait_event_lock_irq( conf->wait_for_stripe, !list_empty(conf->inactive_list + hash) && (atomic_read(&conf->active_stripes) < (conf->max_nr_stripes * 3 / 4) || !conf->inactive_blocked), *(conf->hash_locks + hash)); conf->inactive_blocked = 0; } else init_stripe(sh, sector, previous); } else { if (atomic_read(&sh->count)) { BUG_ON(!list_empty(&sh->lru) && !test_bit(STRIPE_EXPANDING, &sh->state) && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state) && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); } else { spin_lock(&conf->device_lock); if (!test_bit(STRIPE_HANDLE, &sh->state)) atomic_inc(&conf->active_stripes); if (list_empty(&sh->lru) && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state) && !test_bit(STRIPE_EXPANDING, &sh->state)) BUG(); list_del_init(&sh->lru); if (sh->group) { sh->group->stripes_cnt--; sh->group = NULL; } spin_unlock(&conf->device_lock); } } } while (sh == NULL); if (sh) atomic_inc(&sh->count); spin_unlock_irq(conf->hash_locks + hash); return sh; } /* Determine if 'data_offset' or 'new_data_offset' should be used * in this stripe_head. */ static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) { sector_t progress = conf->reshape_progress; /* Need a memory barrier to make sure we see the value * of conf->generation, or ->data_offset that was set before * reshape_progress was updated. */ smp_rmb(); if (progress == MaxSector) return 0; if (sh->generation == conf->generation - 1) return 0; /* We are in a reshape, and this is a new-generation stripe, * so use new_data_offset. */ return 1; } static void raid5_end_read_request(struct bio *bi, int error); static void raid5_end_write_request(struct bio *bi, int error); static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) { struct r5conf *conf = sh->raid_conf; int i, disks = sh->disks; might_sleep(); for (i = disks; i--; ) { int rw; int replace_only = 0; struct bio *bi, *rbi; struct md_rdev *rdev, *rrdev = NULL; if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) rw = WRITE_FUA; else rw = WRITE; if (test_bit(R5_Discard, &sh->dev[i].flags)) rw |= REQ_DISCARD; } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) rw = READ; else if (test_and_clear_bit(R5_WantReplace, &sh->dev[i].flags)) { rw = WRITE; replace_only = 1; } else continue; if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) rw |= REQ_SYNC; bi = &sh->dev[i].req; rbi = &sh->dev[i].rreq; /* For writing to replacement */ rcu_read_lock(); rrdev = rcu_dereference(conf->disks[i].replacement); smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ rdev = rcu_dereference(conf->disks[i].rdev); if (!rdev) { rdev = rrdev; rrdev = NULL; } if (rw & WRITE) { if (replace_only) rdev = NULL; if (rdev == rrdev) /* We raced and saw duplicates */ rrdev = NULL; } else { if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev) rdev = rrdev; rrdev = NULL; } if (rdev && test_bit(Faulty, &rdev->flags)) rdev = NULL; if (rdev) atomic_inc(&rdev->nr_pending); if (rrdev && test_bit(Faulty, &rrdev->flags)) rrdev = NULL; if (rrdev) atomic_inc(&rrdev->nr_pending); rcu_read_unlock(); /* We have already checked bad blocks for reads. Now * need to check for writes. We never accept write errors * on the replacement, so we don't to check rrdev. */ while ((rw & WRITE) && rdev && test_bit(WriteErrorSeen, &rdev->flags)) { sector_t first_bad; int bad_sectors; int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, &first_bad, &bad_sectors); if (!bad) break; if (bad < 0) { set_bit(BlockedBadBlocks, &rdev->flags); if (!conf->mddev->external && conf->mddev->flags) { /* It is very unlikely, but we might * still need to write out the * bad block log - better give it * a chance*/ md_check_recovery(conf->mddev); } /* * Because md_wait_for_blocked_rdev * will dec nr_pending, we must * increment it first. */ atomic_inc(&rdev->nr_pending); md_wait_for_blocked_rdev(rdev, conf->mddev); } else { /* Acknowledged bad block - skip the write */ rdev_dec_pending(rdev, conf->mddev); rdev = NULL; } } if (rdev) { if (s->syncing || s->expanding || s->expanded || s->replacing) md_sync_acct(rdev->bdev, STRIPE_SECTORS); set_bit(STRIPE_IO_STARTED, &sh->state); bio_reset(bi); bi->bi_bdev = rdev->bdev; bi->bi_rw = rw; bi->bi_end_io = (rw & WRITE) ? raid5_end_write_request : raid5_end_read_request; bi->bi_private = sh; pr_debug("%s: for %llu schedule op %ld on disc %d\n", __func__, (unsigned long long)sh->sector, bi->bi_rw, i); atomic_inc(&sh->count); if (use_new_offset(conf, sh)) bi->bi_sector = (sh->sector + rdev->new_data_offset); else bi->bi_sector = (sh->sector + rdev->data_offset); if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) bi->bi_rw |= REQ_FLUSH; bi->bi_vcnt = 1; bi->bi_io_vec[0].bv_len = STRIPE_SIZE; bi->bi_io_vec[0].bv_offset = 0; bi->bi_size = STRIPE_SIZE; /* * If this is discard request, set bi_vcnt 0. We don't * want to confuse SCSI because SCSI will replace payload */ if (rw & REQ_DISCARD) bi->bi_vcnt = 0; if (rrdev) set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); if (conf->mddev->gendisk) trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), bi, disk_devt(conf->mddev->gendisk), sh->dev[i].sector); generic_make_request(bi); } if (rrdev) { if (s->syncing || s->expanding || s->expanded || s->replacing) md_sync_acct(rrdev->bdev, STRIPE_SECTORS); set_bit(STRIPE_IO_STARTED, &sh->state); bio_reset(rbi); rbi->bi_bdev = rrdev->bdev; rbi->bi_rw = rw; BUG_ON(!(rw & WRITE)); rbi->bi_end_io = raid5_end_write_request; rbi->bi_private = sh; pr_debug("%s: for %llu schedule op %ld on " "replacement disc %d\n", __func__, (unsigned long long)sh->sector, rbi->bi_rw, i); atomic_inc(&sh->count); if (use_new_offset(conf, sh)) rbi->bi_sector = (sh->sector + rrdev->new_data_offset); else rbi->bi_sector = (sh->sector + rrdev->data_offset); rbi->bi_vcnt = 1; rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; rbi->bi_io_vec[0].bv_offset = 0; rbi->bi_size = STRIPE_SIZE; /* * If this is discard request, set bi_vcnt 0. We don't * want to confuse SCSI because SCSI will replace payload */ if (rw & REQ_DISCARD) rbi->bi_vcnt = 0; if (conf->mddev->gendisk) trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), rbi, disk_devt(conf->mddev->gendisk), sh->dev[i].sector); generic_make_request(rbi); } if (!rdev && !rrdev) { if (rw & WRITE) set_bit(STRIPE_DEGRADED, &sh->state); pr_debug("skip op %ld on disc %d for sector %llu\n", bi->bi_rw, i, (unsigned long long)sh->sector); clear_bit(R5_LOCKED, &sh->dev[i].flags); set_bit(STRIPE_HANDLE, &sh->state); } } } static struct dma_async_tx_descriptor * async_copy_data(int frombio, struct bio *bio, struct page *page, sector_t sector, struct dma_async_tx_descriptor *tx) { struct bio_vec *bvl; struct page *bio_page; int i; int page_offset; struct async_submit_ctl submit; enum async_tx_flags flags = 0; if (bio->bi_sector >= sector) page_offset = (signed)(bio->bi_sector - sector) * 512; else page_offset = (signed)(sector - bio->bi_sector) * -512; if (frombio) flags |= ASYNC_TX_FENCE; init_async_submit(&submit, flags, tx, NULL, NULL, NULL); bio_for_each_segment(bvl, bio, i) { int len = bvl->bv_len; int clen; int b_offset = 0; if (page_offset < 0) { b_offset = -page_offset; page_offset += b_offset; len -= b_offset; } if (len > 0 && page_offset + len > STRIPE_SIZE) clen = STRIPE_SIZE - page_offset; else clen = len; if (clen > 0) { b_offset += bvl->bv_offset; bio_page = bvl->bv_page; if (frombio) tx = async_memcpy(page, bio_page, page_offset, b_offset, clen, &submit); else tx = async_memcpy(bio_page, page, b_offset, page_offset, clen, &submit); } /* chain the operations */ submit.depend_tx = tx; if (clen < len) /* hit end of page */ break; page_offset += len; } return tx; } static void ops_complete_biofill(void *stripe_head_ref) { struct stripe_head *sh = stripe_head_ref; struct bio *return_bi = NULL; int i; pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); /* clear completed biofills */ for (i = sh->disks; i--; ) { struct r5dev *dev = &sh->dev[i]; /* acknowledge completion of a biofill operation */ /* and check if we need to reply to a read request, * new R5_Wantfill requests are held off until * !STRIPE_BIOFILL_RUN */ if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { struct bio *rbi, *rbi2; BUG_ON(!dev->read); rbi = dev->read; dev->read = NULL; while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { rbi2 = r5_next_bio(rbi, dev->sector); if (!raid5_dec_bi_active_stripes(rbi)) { rbi->bi_next = return_bi; return_bi = rbi; } rbi = rbi2; } } } clear_bit(STRIPE_BIOFILL_RUN, &sh->state); return_io(return_bi); set_bit(STRIPE_HANDLE, &sh->state); release_stripe(sh); } static void ops_run_biofill(struct stripe_head *sh) { struct dma_async_tx_descriptor *tx = NULL; struct async_submit_ctl submit; int i; pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); for (i = sh->disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (test_bit(R5_Wantfill, &dev->flags)) { struct bio *rbi; spin_lock_irq(&sh->stripe_lock); dev->read = rbi = dev->toread; dev->toread = NULL; spin_unlock_irq(&sh->stripe_lock); while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { tx = async_copy_data(0, rbi, dev->page, dev->sector, tx); rbi = r5_next_bio(rbi, dev->sector); } } } atomic_inc(&sh->count); init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); async_trigger_callback(&submit); } static void mark_target_uptodate(struct stripe_head *sh, int target) { struct r5dev *tgt; if (target < 0) return; tgt = &sh->dev[target]; set_bit(R5_UPTODATE, &tgt->flags); BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); clear_bit(R5_Wantcompute, &tgt->flags); } static void ops_complete_compute(void *stripe_head_ref) { struct stripe_head *sh = stripe_head_ref; pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); /* mark the computed target(s) as uptodate */ mark_target_uptodate(sh, sh->ops.target); mark_target_uptodate(sh, sh->ops.target2); clear_bit(STRIPE_COMPUTE_RUN, &sh->state); if (sh->check_state == check_state_compute_run) sh->check_state = check_state_compute_result; set_bit(STRIPE_HANDLE, &sh->state); release_stripe(sh); } /* return a pointer to the address conversion region of the scribble buffer */ static addr_conv_t *to_addr_conv(struct stripe_head *sh, struct raid5_percpu *percpu) { return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); } static struct dma_async_tx_descriptor * ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) { int disks = sh->disks; struct page **xor_srcs = percpu->scribble; int target = sh->ops.target; struct r5dev *tgt = &sh->dev[target]; struct page *xor_dest = tgt->page; int count = 0; struct dma_async_tx_descriptor *tx; struct async_submit_ctl submit; int i; pr_debug("%s: stripe %llu block: %d\n", __func__, (unsigned long long)sh->sector, target); BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); for (i = disks; i--; ) if (i != target) xor_srcs[count++] = sh->dev[i].page; atomic_inc(&sh->count); init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, ops_complete_compute, sh, to_addr_conv(sh, percpu)); if (unlikely(count == 1)) tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); else tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); return tx; } /* set_syndrome_sources - populate source buffers for gen_syndrome * @srcs - (struct page *) array of size sh->disks * @sh - stripe_head to parse * * Populates srcs in proper layout order for the stripe and returns the * 'count' of sources to be used in a call to async_gen_syndrome. The P * destination buffer is recorded in srcs[count] and the Q destination * is recorded in srcs[count+1]]. */ static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) { int disks = sh->disks; int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); int d0_idx = raid6_d0(sh); int count; int i; for (i = 0; i < disks; i++) srcs[i] = NULL; count = 0; i = d0_idx; do { int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); srcs[slot] = sh->dev[i].page; i = raid6_next_disk(i, disks); } while (i != d0_idx); return syndrome_disks; } static struct dma_async_tx_descriptor * ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) { int disks = sh->disks; struct page **blocks = percpu->scribble; int target; int qd_idx = sh->qd_idx; struct dma_async_tx_descriptor *tx; struct async_submit_ctl submit; struct r5dev *tgt; struct page *dest; int i; int count; if (sh->ops.target < 0) target = sh->ops.target2; else if (sh->ops.target2 < 0) target = sh->ops.target; else /* we should only have one valid target */ BUG(); BUG_ON(target < 0); pr_debug("%s: stripe %llu block: %d\n", __func__, (unsigned long long)sh->sector, target); tgt = &sh->dev[target]; BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); dest = tgt->page; atomic_inc(&sh->count); if (target == qd_idx) { count = set_syndrome_sources(blocks, sh); blocks[count] = NULL; /* regenerating p is not necessary */ BUG_ON(blocks[count+1] != dest); /* q should already be set */ init_async_submit(&submit, ASYNC_TX_FENCE, NULL, ops_complete_compute, sh, to_addr_conv(sh, percpu)); tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); } else { /* Compute any data- or p-drive using XOR */ count = 0; for (i = disks; i-- ; ) { if (i == target || i == qd_idx) continue; blocks[count++] = sh->dev[i].page; } init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, ops_complete_compute, sh, to_addr_conv(sh, percpu)); tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); } return tx; } static struct dma_async_tx_descriptor * ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) { int i, count, disks = sh->disks; int syndrome_disks = sh->ddf_layout ? disks : disks-2; int d0_idx = raid6_d0(sh); int faila = -1, failb = -1; int target = sh->ops.target; int target2 = sh->ops.target2; struct r5dev *tgt = &sh->dev[target]; struct r5dev *tgt2 = &sh->dev[target2]; struct dma_async_tx_descriptor *tx; struct page **blocks = percpu->scribble; struct async_submit_ctl submit; pr_debug("%s: stripe %llu block1: %d block2: %d\n", __func__, (unsigned long long)sh->sector, target, target2); BUG_ON(target < 0 || target2 < 0); BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); /* we need to open-code set_syndrome_sources to handle the * slot number conversion for 'faila' and 'failb' */ for (i = 0; i < disks ; i++) blocks[i] = NULL; count = 0; i = d0_idx; do { int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); blocks[slot] = sh->dev[i].page; if (i == target) faila = slot; if (i == target2) failb = slot; i = raid6_next_disk(i, disks); } while (i != d0_idx); BUG_ON(faila == failb); if (failb < faila) swap(faila, failb); pr_debug("%s: stripe: %llu faila: %d failb: %d\n", __func__, (unsigned long long)sh->sector, faila, failb); atomic_inc(&sh->count); if (failb == syndrome_disks+1) { /* Q disk is one of the missing disks */ if (faila == syndrome_disks) { /* Missing P+Q, just recompute */ init_async_submit(&submit, ASYNC_TX_FENCE, NULL, ops_complete_compute, sh, to_addr_conv(sh, percpu)); return async_gen_syndrome(blocks, 0, syndrome_disks+2, STRIPE_SIZE, &submit); } else { struct page *dest; int data_target; int qd_idx = sh->qd_idx; /* Missing D+Q: recompute D from P, then recompute Q */ if (target == qd_idx) data_target = target2; else data_target = target; count = 0; for (i = disks; i-- ; ) { if (i == data_target || i == qd_idx) continue; blocks[count++] = sh->dev[i].page; } dest = sh->dev[data_target].page; init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, NULL, NULL, to_addr_conv(sh, percpu)); tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); count = set_syndrome_sources(blocks, sh); init_async_submit(&submit, ASYNC_TX_FENCE, tx, ops_complete_compute, sh, to_addr_conv(sh, percpu)); return async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); } } else { init_async_submit(&submit, ASYNC_TX_FENCE, NULL, ops_complete_compute, sh, to_addr_conv(sh, percpu)); if (failb == syndrome_disks) { /* We're missing D+P. */ return async_raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, blocks, &submit); } else { /* We're missing D+D. */ return async_raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb, blocks, &submit); } } } static void ops_complete_prexor(void *stripe_head_ref) { struct stripe_head *sh = stripe_head_ref; pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); } static struct dma_async_tx_descriptor * ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, struct dma_async_tx_descriptor *tx) { int disks = sh->disks; struct page **xor_srcs = percpu->scribble; int count = 0, pd_idx = sh->pd_idx, i; struct async_submit_ctl submit; /* existing parity data subtracted */ struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; /* Only process blocks that are known to be uptodate */ if (test_bit(R5_Wantdrain, &dev->flags)) xor_srcs[count++] = dev->page; } init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, ops_complete_prexor, sh, to_addr_conv(sh, percpu)); tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); return tx; } static struct dma_async_tx_descriptor * ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) { int disks = sh->disks; int i; pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; struct bio *chosen; if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { struct bio *wbi; spin_lock_irq(&sh->stripe_lock); chosen = dev->towrite; dev->towrite = NULL; BUG_ON(dev->written); wbi = dev->written = chosen; spin_unlock_irq(&sh->stripe_lock); while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) { if (wbi->bi_rw & REQ_FUA) set_bit(R5_WantFUA, &dev->flags); if (wbi->bi_rw & REQ_SYNC) set_bit(R5_SyncIO, &dev->flags); if (wbi->bi_rw & REQ_DISCARD) set_bit(R5_Discard, &dev->flags); else tx = async_copy_data(1, wbi, dev->page, dev->sector, tx); wbi = r5_next_bio(wbi, dev->sector); } } } return tx; } static void ops_complete_reconstruct(void *stripe_head_ref) { struct stripe_head *sh = stripe_head_ref; int disks = sh->disks; int pd_idx = sh->pd_idx; int qd_idx = sh->qd_idx; int i; bool fua = false, sync = false, discard = false; pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); for (i = disks; i--; ) { fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); discard |= test_bit(R5_Discard, &sh->dev[i].flags); } for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (dev->written || i == pd_idx || i == qd_idx) { if (!discard) set_bit(R5_UPTODATE, &dev->flags); if (fua) set_bit(R5_WantFUA, &dev->flags); if (sync) set_bit(R5_SyncIO, &dev->flags); } } if (sh->reconstruct_state == reconstruct_state_drain_run) sh->reconstruct_state = reconstruct_state_drain_result; else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) sh->reconstruct_state = reconstruct_state_prexor_drain_result; else { BUG_ON(sh->reconstruct_state != reconstruct_state_run); sh->reconstruct_state = reconstruct_state_result; } set_bit(STRIPE_HANDLE, &sh->state); release_stripe(sh); } static void ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, struct dma_async_tx_descriptor *tx) { int disks = sh->disks; struct page **xor_srcs = percpu->scribble; struct async_submit_ctl submit; int count = 0, pd_idx = sh->pd_idx, i; struct page *xor_dest; int prexor = 0; unsigned long flags; pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); for (i = 0; i < sh->disks; i++) { if (pd_idx == i) continue; if (!test_bit(R5_Discard, &sh->dev[i].flags)) break; } if (i >= sh->disks) { atomic_inc(&sh->count); set_bit(R5_Discard, &sh->dev[pd_idx].flags); ops_complete_reconstruct(sh); return; } /* check if prexor is active which means only process blocks * that are part of a read-modify-write (written) */ if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { prexor = 1; xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (dev->written) xor_srcs[count++] = dev->page; } } else { xor_dest = sh->dev[pd_idx].page; for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (i != pd_idx) xor_srcs[count++] = dev->page; } } /* 1/ if we prexor'd then the dest is reused as a source * 2/ if we did not prexor then we are redoing the parity * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST * for the synchronous xor case */ flags = ASYNC_TX_ACK | (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); atomic_inc(&sh->count); init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, to_addr_conv(sh, percpu)); if (unlikely(count == 1)) tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); else tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); } static void ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, struct dma_async_tx_descriptor *tx) { struct async_submit_ctl submit; struct page **blocks = percpu->scribble; int count, i; pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); for (i = 0; i < sh->disks; i++) { if (sh->pd_idx == i || sh->qd_idx == i) continue; if (!test_bit(R5_Discard, &sh->dev[i].flags)) break; } if (i >= sh->disks) { atomic_inc(&sh->count); set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); ops_complete_reconstruct(sh); return; } count = set_syndrome_sources(blocks, sh); atomic_inc(&sh->count); init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, sh, to_addr_conv(sh, percpu)); async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); } static void ops_complete_check(void *stripe_head_ref) { struct stripe_head *sh = stripe_head_ref; pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); sh->check_state = check_state_check_result; set_bit(STRIPE_HANDLE, &sh->state); release_stripe(sh); } static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) { int disks = sh->disks; int pd_idx = sh->pd_idx; int qd_idx = sh->qd_idx; struct page *xor_dest; struct page **xor_srcs = percpu->scribble; struct dma_async_tx_descriptor *tx; struct async_submit_ctl submit; int count; int i; pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); count = 0; xor_dest = sh->dev[pd_idx].page; xor_srcs[count++] = xor_dest; for (i = disks; i--; ) { if (i == pd_idx || i == qd_idx) continue; xor_srcs[count++] = sh->dev[i].page; } init_async_submit(&submit, 0, NULL, NULL, NULL, to_addr_conv(sh, percpu)); tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &sh->ops.zero_sum_result, &submit); atomic_inc(&sh->count); init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); tx = async_trigger_callback(&submit); } static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) { struct page **srcs = percpu->scribble; struct async_submit_ctl submit; int count; pr_debug("%s: stripe %llu checkp: %d\n", __func__, (unsigned long long)sh->sector, checkp); count = set_syndrome_sources(srcs, sh); if (!checkp) srcs[count] = NULL; atomic_inc(&sh->count); init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, sh, to_addr_conv(sh, percpu)); async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, &sh->ops.zero_sum_result, percpu->spare_page, &submit); } static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) { int overlap_clear = 0, i, disks = sh->disks; struct dma_async_tx_descriptor *tx = NULL; struct r5conf *conf = sh->raid_conf; int level = conf->level; struct raid5_percpu *percpu; unsigned long cpu; cpu = get_cpu(); percpu = per_cpu_ptr(conf->percpu, cpu); if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { ops_run_biofill(sh); overlap_clear++; } if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { if (level < 6) tx = ops_run_compute5(sh, percpu); else { if (sh->ops.target2 < 0 || sh->ops.target < 0) tx = ops_run_compute6_1(sh, percpu); else tx = ops_run_compute6_2(sh, percpu); } /* terminate the chain if reconstruct is not set to be run */ if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) async_tx_ack(tx); } if (test_bit(STRIPE_OP_PREXOR, &ops_request)) tx = ops_run_prexor(sh, percpu, tx); if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { tx = ops_run_biodrain(sh, tx); overlap_clear++; } if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { if (level < 6) ops_run_reconstruct5(sh, percpu, tx); else ops_run_reconstruct6(sh, percpu, tx); } if (test_bit(STRIPE_OP_CHECK, &ops_request)) { if (sh->check_state == check_state_run) ops_run_check_p(sh, percpu); else if (sh->check_state == check_state_run_q) ops_run_check_pq(sh, percpu, 0); else if (sh->check_state == check_state_run_pq) ops_run_check_pq(sh, percpu, 1); else BUG(); } if (overlap_clear) for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (test_and_clear_bit(R5_Overlap, &dev->flags)) wake_up(&sh->raid_conf->wait_for_overlap); } put_cpu(); } static int grow_one_stripe(struct r5conf *conf, int hash) { struct stripe_head *sh; sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL); if (!sh) return 0; sh->raid_conf = conf; spin_lock_init(&sh->stripe_lock); if (grow_buffers(sh)) { shrink_buffers(sh); kmem_cache_free(conf->slab_cache, sh); return 0; } sh->hash_lock_index = hash; /* we just created an active stripe so... */ atomic_set(&sh->count, 1); atomic_inc(&conf->active_stripes); INIT_LIST_HEAD(&sh->lru); release_stripe(sh); return 1; } static int grow_stripes(struct r5conf *conf, int num) { struct kmem_cache *sc; int devs = max(conf->raid_disks, conf->previous_raid_disks); int hash; if (conf->mddev->gendisk) sprintf(conf->cache_name[0], "raid%d-%s", conf->level, mdname(conf->mddev)); else sprintf(conf->cache_name[0], "raid%d-%p", conf->level, conf->mddev); sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); conf->active_name = 0; sc = kmem_cache_create(conf->cache_name[conf->active_name], sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 0, 0, NULL); if (!sc) return 1; conf->slab_cache = sc; conf->pool_size = devs; hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; while (num--) { if (!grow_one_stripe(conf, hash)) return 1; conf->max_nr_stripes++; hash = (hash + 1) % NR_STRIPE_HASH_LOCKS; } return 0; } /** * scribble_len - return the required size of the scribble region * @num - total number of disks in the array * * The size must be enough to contain: * 1/ a struct page pointer for each device in the array +2 * 2/ room to convert each entry in (1) to its corresponding dma * (dma_map_page()) or page (page_address()) address. * * Note: the +2 is for the destination buffers of the ddf/raid6 case where we * calculate over all devices (not just the data blocks), using zeros in place * of the P and Q blocks. */ static size_t scribble_len(int num) { size_t len; len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); return len; } static int resize_stripes(struct r5conf *conf, int newsize) { /* Make all the stripes able to hold 'newsize' devices. * New slots in each stripe get 'page' set to a new page. * * This happens in stages: * 1/ create a new kmem_cache and allocate the required number of * stripe_heads. * 2/ gather all the old stripe_heads and transfer the pages across * to the new stripe_heads. This will have the side effect of * freezing the array as once all stripe_heads have been collected, * no IO will be possible. Old stripe heads are freed once their * pages have been transferred over, and the old kmem_cache is * freed when all stripes are done. * 3/ reallocate conf->disks to be suitable bigger. If this fails, * we simple return a failre status - no need to clean anything up. * 4/ allocate new pages for the new slots in the new stripe_heads. * If this fails, we don't bother trying the shrink the * stripe_heads down again, we just leave them as they are. * As each stripe_head is processed the new one is released into * active service. * * Once step2 is started, we cannot afford to wait for a write, * so we use GFP_NOIO allocations. */ struct stripe_head *osh, *nsh; LIST_HEAD(newstripes); struct disk_info *ndisks; unsigned long cpu; int err; struct kmem_cache *sc; int i; int hash, cnt; if (newsize <= conf->pool_size) return 0; /* never bother to shrink */ err = md_allow_write(conf->mddev); if (err) return err; /* Step 1 */ sc = kmem_cache_create(conf->cache_name[1-conf->active_name], sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 0, 0, NULL); if (!sc) return -ENOMEM; for (i = conf->max_nr_stripes; i; i--) { nsh = kmem_cache_zalloc(sc, GFP_KERNEL); if (!nsh) break; nsh->raid_conf = conf; spin_lock_init(&nsh->stripe_lock); list_add(&nsh->lru, &newstripes); } if (i) { /* didn't get enough, give up */ while (!list_empty(&newstripes)) { nsh = list_entry(newstripes.next, struct stripe_head, lru); list_del(&nsh->lru); kmem_cache_free(sc, nsh); } kmem_cache_destroy(sc); return -ENOMEM; } /* Step 2 - Must use GFP_NOIO now. * OK, we have enough stripes, start collecting inactive * stripes and copying them over */ hash = 0; cnt = 0; list_for_each_entry(nsh, &newstripes, lru) { lock_device_hash_lock(conf, hash); wait_event_cmd(conf->wait_for_stripe, !list_empty(conf->inactive_list + hash), unlock_device_hash_lock(conf, hash), lock_device_hash_lock(conf, hash)); osh = get_free_stripe(conf, hash); unlock_device_hash_lock(conf, hash); atomic_set(&nsh->count, 1); for(i=0; ipool_size; i++) nsh->dev[i].page = osh->dev[i].page; for( ; idev[i].page = NULL; nsh->hash_lock_index = hash; kmem_cache_free(conf->slab_cache, osh); cnt++; if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { hash++; cnt = 0; } } kmem_cache_destroy(conf->slab_cache); /* Step 3. * At this point, we are holding all the stripes so the array * is completely stalled, so now is a good time to resize * conf->disks and the scribble region */ ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); if (ndisks) { for (i=0; iraid_disks; i++) ndisks[i] = conf->disks[i]; kfree(conf->disks); conf->disks = ndisks; } else err = -ENOMEM; get_online_cpus(); conf->scribble_len = scribble_len(newsize); for_each_present_cpu(cpu) { struct raid5_percpu *percpu; void *scribble; percpu = per_cpu_ptr(conf->percpu, cpu); scribble = kmalloc(conf->scribble_len, GFP_NOIO); if (scribble) { kfree(percpu->scribble); percpu->scribble = scribble; } else { err = -ENOMEM; break; } } put_online_cpus(); /* Step 4, return new stripes to service */ while(!list_empty(&newstripes)) { nsh = list_entry(newstripes.next, struct stripe_head, lru); list_del_init(&nsh->lru); for (i=conf->raid_disks; i < newsize; i++) if (nsh->dev[i].page == NULL) { struct page *p = alloc_page(GFP_NOIO); nsh->dev[i].page = p; if (!p) err = -ENOMEM; } release_stripe(nsh); } /* critical section pass, GFP_NOIO no longer needed */ conf->slab_cache = sc; conf->active_name = 1-conf->active_name; conf->pool_size = newsize; return err; } static int drop_one_stripe(struct r5conf *conf, int hash) { struct stripe_head *sh; spin_lock_irq(conf->hash_locks + hash); sh = get_free_stripe(conf, hash); spin_unlock_irq(conf->hash_locks + hash); if (!sh) return 0; BUG_ON(atomic_read(&sh->count)); shrink_buffers(sh); kmem_cache_free(conf->slab_cache, sh); atomic_dec(&conf->active_stripes); return 1; } static void shrink_stripes(struct r5conf *conf) { int hash; for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++) while (drop_one_stripe(conf, hash)) ; if (conf->slab_cache) kmem_cache_destroy(conf->slab_cache); conf->slab_cache = NULL; } static void raid5_end_read_request(struct bio * bi, int error) { struct stripe_head *sh = bi->bi_private; struct r5conf *conf = sh->raid_conf; int disks = sh->disks, i; int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); char b[BDEVNAME_SIZE]; struct md_rdev *rdev = NULL; sector_t s; for (i=0 ; idev[i].req) break; pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", (unsigned long long)sh->sector, i, atomic_read(&sh->count), uptodate); if (i == disks) { BUG(); return; } if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) /* If replacement finished while this request was outstanding, * 'replacement' might be NULL already. * In that case it moved down to 'rdev'. * rdev is not removed until all requests are finished. */ rdev = conf->disks[i].replacement; if (!rdev) rdev = conf->disks[i].rdev; if (use_new_offset(conf, sh)) s = sh->sector + rdev->new_data_offset; else s = sh->sector + rdev->data_offset; if (uptodate) { set_bit(R5_UPTODATE, &sh->dev[i].flags); if (test_bit(R5_ReadError, &sh->dev[i].flags)) { /* Note that this cannot happen on a * replacement device. We just fail those on * any error */ printk_ratelimited( KERN_INFO "md/raid:%s: read error corrected" " (%lu sectors at %llu on %s)\n", mdname(conf->mddev), STRIPE_SECTORS, (unsigned long long)s, bdevname(rdev->bdev, b)); atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); clear_bit(R5_ReadError, &sh->dev[i].flags); clear_bit(R5_ReWrite, &sh->dev[i].flags); } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); if (atomic_read(&rdev->read_errors)) atomic_set(&rdev->read_errors, 0); } else { const char *bdn = bdevname(rdev->bdev, b); int retry = 0; int set_bad = 0; clear_bit(R5_UPTODATE, &sh->dev[i].flags); atomic_inc(&rdev->read_errors); if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) printk_ratelimited( KERN_WARNING "md/raid:%s: read error on replacement device " "(sector %llu on %s).\n", mdname(conf->mddev), (unsigned long long)s, bdn); else if (conf->mddev->degraded >= conf->max_degraded) { set_bad = 1; printk_ratelimited( KERN_WARNING "md/raid:%s: read error not correctable " "(sector %llu on %s).\n", mdname(conf->mddev), (unsigned long long)s, bdn); } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { /* Oh, no!!! */ set_bad = 1; printk_ratelimited( KERN_WARNING "md/raid:%s: read error NOT corrected!! " "(sector %llu on %s).\n", mdname(conf->mddev), (unsigned long long)s, bdn); } else if (atomic_read(&rdev->read_errors) > conf->max_nr_stripes) printk(KERN_WARNING "md/raid:%s: Too many read errors, failing device %s.\n", mdname(conf->mddev), bdn); else retry = 1; if (set_bad && test_bit(In_sync, &rdev->flags) && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) retry = 1; if (retry) if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { set_bit(R5_ReadError, &sh->dev[i].flags); clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); } else set_bit(R5_ReadNoMerge, &sh->dev[i].flags); else { clear_bit(R5_ReadError, &sh->dev[i].flags); clear_bit(R5_ReWrite, &sh->dev[i].flags); if (!(set_bad && test_bit(In_sync, &rdev->flags) && rdev_set_badblocks( rdev, sh->sector, STRIPE_SECTORS, 0))) md_error(conf->mddev, rdev); } } rdev_dec_pending(rdev, conf->mddev); clear_bit(R5_LOCKED, &sh->dev[i].flags); set_bit(STRIPE_HANDLE, &sh->state); release_stripe(sh); } static void raid5_end_write_request(struct bio *bi, int error) { struct stripe_head *sh = bi->bi_private; struct r5conf *conf = sh->raid_conf; int disks = sh->disks, i; struct md_rdev *uninitialized_var(rdev); int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); sector_t first_bad; int bad_sectors; int replacement = 0; for (i = 0 ; i < disks; i++) { if (bi == &sh->dev[i].req) { rdev = conf->disks[i].rdev; break; } if (bi == &sh->dev[i].rreq) { rdev = conf->disks[i].replacement; if (rdev) replacement = 1; else /* rdev was removed and 'replacement' * replaced it. rdev is not removed * until all requests are finished. */ rdev = conf->disks[i].rdev; break; } } pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", (unsigned long long)sh->sector, i, atomic_read(&sh->count), uptodate); if (i == disks) { BUG(); return; } if (replacement) { if (!uptodate) md_error(conf->mddev, rdev); else if (is_badblock(rdev, sh->sector, STRIPE_SECTORS, &first_bad, &bad_sectors)) set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); } else { if (!uptodate) { set_bit(WriteErrorSeen, &rdev->flags); set_bit(R5_WriteError, &sh->dev[i].flags); if (!test_and_set_bit(WantReplacement, &rdev->flags)) set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); } else if (is_badblock(rdev, sh->sector, STRIPE_SECTORS, &first_bad, &bad_sectors)) { set_bit(R5_MadeGood, &sh->dev[i].flags); if (test_bit(R5_ReadError, &sh->dev[i].flags)) /* That was a successful write so make * sure it looks like we already did * a re-write. */ set_bit(R5_ReWrite, &sh->dev[i].flags); } } rdev_dec_pending(rdev, conf->mddev); if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) clear_bit(R5_LOCKED, &sh->dev[i].flags); set_bit(STRIPE_HANDLE, &sh->state); release_stripe(sh); } static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); static void raid5_build_block(struct stripe_head *sh, int i, int previous) { struct r5dev *dev = &sh->dev[i]; bio_init(&dev->req); dev->req.bi_io_vec = &dev->vec; dev->req.bi_vcnt++; dev->req.bi_max_vecs++; dev->req.bi_private = sh; dev->vec.bv_page = dev->page; bio_init(&dev->rreq); dev->rreq.bi_io_vec = &dev->rvec; dev->rreq.bi_vcnt++; dev->rreq.bi_max_vecs++; dev->rreq.bi_private = sh; dev->rvec.bv_page = dev->page; dev->flags = 0; dev->sector = compute_blocknr(sh, i, previous); } static void error(struct mddev *mddev, struct md_rdev *rdev) { char b[BDEVNAME_SIZE]; struct r5conf *conf = mddev->private; unsigned long flags; pr_debug("raid456: error called\n"); spin_lock_irqsave(&conf->device_lock, flags); clear_bit(In_sync, &rdev->flags); mddev->degraded = calc_degraded(conf); spin_unlock_irqrestore(&conf->device_lock, flags); set_bit(MD_RECOVERY_INTR, &mddev->recovery); set_bit(Blocked, &rdev->flags); set_bit(Faulty, &rdev->flags); set_bit(MD_CHANGE_DEVS, &mddev->flags); printk(KERN_ALERT "md/raid:%s: Disk failure on %s, disabling device.\n" "md/raid:%s: Operation continuing on %d devices.\n", mdname(mddev), bdevname(rdev->bdev, b), mdname(mddev), conf->raid_disks - mddev->degraded); } /* * Input: a 'big' sector number, * Output: index of the data and parity disk, and the sector # in them. */ static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, int previous, int *dd_idx, struct stripe_head *sh) { sector_t stripe, stripe2; sector_t chunk_number; unsigned int chunk_offset; int pd_idx, qd_idx; int ddf_layout = 0; sector_t new_sector; int algorithm = previous ? conf->prev_algo : conf->algorithm; int sectors_per_chunk = previous ? conf->prev_chunk_sectors : conf->chunk_sectors; int raid_disks = previous ? conf->previous_raid_disks : conf->raid_disks; int data_disks = raid_disks - conf->max_degraded; /* First compute the information on this sector */ /* * Compute the chunk number and the sector offset inside the chunk */ chunk_offset = sector_div(r_sector, sectors_per_chunk); chunk_number = r_sector; /* * Compute the stripe number */ stripe = chunk_number; *dd_idx = sector_div(stripe, data_disks); stripe2 = stripe; /* * Select the parity disk based on the user selected algorithm. */ pd_idx = qd_idx = -1; switch(conf->level) { case 4: pd_idx = data_disks; break; case 5: switch (algorithm) { case ALGORITHM_LEFT_ASYMMETRIC: pd_idx = data_disks - sector_div(stripe2, raid_disks); if (*dd_idx >= pd_idx) (*dd_idx)++; break; case ALGORITHM_RIGHT_ASYMMETRIC: pd_idx = sector_div(stripe2, raid_disks); if (*dd_idx >= pd_idx) (*dd_idx)++; break; case ALGORITHM_LEFT_SYMMETRIC: pd_idx = data_disks - sector_div(stripe2, raid_disks); *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; break; case ALGORITHM_RIGHT_SYMMETRIC: pd_idx = sector_div(stripe2, raid_disks); *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; break; case ALGORITHM_PARITY_0: pd_idx = 0; (*dd_idx)++; break; case ALGORITHM_PARITY_N: pd_idx = data_disks; break; default: BUG(); } break; case 6: switch (algorithm) { case ALGORITHM_LEFT_ASYMMETRIC: pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); qd_idx = pd_idx + 1; if (pd_idx == raid_disks-1) { (*dd_idx)++; /* Q D D D P */ qd_idx = 0; } else if (*dd_idx >= pd_idx) (*dd_idx) += 2; /* D D P Q D */ break; case ALGORITHM_RIGHT_ASYMMETRIC: pd_idx = sector_div(stripe2, raid_disks); qd_idx = pd_idx + 1; if (pd_idx == raid_disks-1) { (*dd_idx)++; /* Q D D D P */ qd_idx = 0; } else if (*dd_idx >= pd_idx) (*dd_idx) += 2; /* D D P Q D */ break; case ALGORITHM_LEFT_SYMMETRIC: pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); qd_idx = (pd_idx + 1) % raid_disks; *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; break; case ALGORITHM_RIGHT_SYMMETRIC: pd_idx = sector_div(stripe2, raid_disks); qd_idx = (pd_idx + 1) % raid_disks; *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; break; case ALGORITHM_PARITY_0: pd_idx = 0; qd_idx = 1; (*dd_idx) += 2; break; case ALGORITHM_PARITY_N: pd_idx = data_disks; qd_idx = data_disks + 1; break; case ALGORITHM_ROTATING_ZERO_RESTART: /* Exactly the same as RIGHT_ASYMMETRIC, but or * of blocks for computing Q is different. */ pd_idx = sector_div(stripe2, raid_disks); qd_idx = pd_idx + 1; if (pd_idx == raid_disks-1) { (*dd_idx)++; /* Q D D D P */ qd_idx = 0; } else if (*dd_idx >= pd_idx) (*dd_idx) += 2; /* D D P Q D */ ddf_layout = 1; break; case ALGORITHM_ROTATING_N_RESTART: /* Same a left_asymmetric, by first stripe is * D D D P Q rather than * Q D D D P */ stripe2 += 1; pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); qd_idx = pd_idx + 1; if (pd_idx == raid_disks-1) { (*dd_idx)++; /* Q D D D P */ qd_idx = 0; } else if (*dd_idx >= pd_idx) (*dd_idx) += 2; /* D D P Q D */ ddf_layout = 1; break; case ALGORITHM_ROTATING_N_CONTINUE: /* Same as left_symmetric but Q is before P */ pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); qd_idx = (pd_idx + raid_disks - 1) % raid_disks; *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; ddf_layout = 1; break; case ALGORITHM_LEFT_ASYMMETRIC_6: /* RAID5 left_asymmetric, with Q on last device */ pd_idx = data_disks - sector_div(stripe2, raid_disks-1); if (*dd_idx >= pd_idx) (*dd_idx)++; qd_idx = raid_disks - 1; break; case ALGORITHM_RIGHT_ASYMMETRIC_6: pd_idx = sector_div(stripe2, raid_disks-1); if (*dd_idx >= pd_idx) (*dd_idx)++; qd_idx = raid_disks - 1; break; case ALGORITHM_LEFT_SYMMETRIC_6: pd_idx = data_disks - sector_div(stripe2, raid_disks-1); *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); qd_idx = raid_disks - 1; break; case ALGORITHM_RIGHT_SYMMETRIC_6: pd_idx = sector_div(stripe2, raid_disks-1); *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); qd_idx = raid_disks - 1; break; case ALGORITHM_PARITY_0_6: pd_idx = 0; (*dd_idx)++; qd_idx = raid_disks - 1; break; default: BUG(); } break; } if (sh) { sh->pd_idx = pd_idx; sh->qd_idx = qd_idx; sh->ddf_layout = ddf_layout; } /* * Finally, compute the new sector number */ new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; return new_sector; } static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) { struct r5conf *conf = sh->raid_conf; int raid_disks = sh->disks; int data_disks = raid_disks - conf->max_degraded; sector_t new_sector = sh->sector, check; int sectors_per_chunk = previous ? conf->prev_chunk_sectors : conf->chunk_sectors; int algorithm = previous ? conf->prev_algo : conf->algorithm; sector_t stripe; int chunk_offset; sector_t chunk_number; int dummy1, dd_idx = i; sector_t r_sector; struct stripe_head sh2; chunk_offset = sector_div(new_sector, sectors_per_chunk); stripe = new_sector; if (i == sh->pd_idx) return 0; switch(conf->level) { case 4: break; case 5: switch (algorithm) { case ALGORITHM_LEFT_ASYMMETRIC: case ALGORITHM_RIGHT_ASYMMETRIC: if (i > sh->pd_idx) i--; break; case ALGORITHM_LEFT_SYMMETRIC: case ALGORITHM_RIGHT_SYMMETRIC: if (i < sh->pd_idx) i += raid_disks; i -= (sh->pd_idx + 1); break; case ALGORITHM_PARITY_0: i -= 1; break; case ALGORITHM_PARITY_N: break; default: BUG(); } break; case 6: if (i == sh->qd_idx) return 0; /* It is the Q disk */ switch (algorithm) { case ALGORITHM_LEFT_ASYMMETRIC: case ALGORITHM_RIGHT_ASYMMETRIC: case ALGORITHM_ROTATING_ZERO_RESTART: case ALGORITHM_ROTATING_N_RESTART: if (sh->pd_idx == raid_disks-1) i--; /* Q D D D P */ else if (i > sh->pd_idx) i -= 2; /* D D P Q D */ break; case ALGORITHM_LEFT_SYMMETRIC: case ALGORITHM_RIGHT_SYMMETRIC: if (sh->pd_idx == raid_disks-1) i--; /* Q D D D P */ else { /* D D P Q D */ if (i < sh->pd_idx) i += raid_disks; i -= (sh->pd_idx + 2); } break; case ALGORITHM_PARITY_0: i -= 2; break; case ALGORITHM_PARITY_N: break; case ALGORITHM_ROTATING_N_CONTINUE: /* Like left_symmetric, but P is before Q */ if (sh->pd_idx == 0) i--; /* P D D D Q */ else { /* D D Q P D */ if (i < sh->pd_idx) i += raid_disks; i -= (sh->pd_idx + 1); } break; case ALGORITHM_LEFT_ASYMMETRIC_6: case ALGORITHM_RIGHT_ASYMMETRIC_6: if (i > sh->pd_idx) i--; break; case ALGORITHM_LEFT_SYMMETRIC_6: case ALGORITHM_RIGHT_SYMMETRIC_6: if (i < sh->pd_idx) i += data_disks + 1; i -= (sh->pd_idx + 1); break; case ALGORITHM_PARITY_0_6: i -= 1; break; default: BUG(); } break; } chunk_number = stripe * data_disks + i; r_sector = chunk_number * sectors_per_chunk + chunk_offset; check = raid5_compute_sector(conf, r_sector, previous, &dummy1, &sh2); if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx || sh2.qd_idx != sh->qd_idx) { printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", mdname(conf->mddev)); return 0; } return r_sector; } static void schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, int rcw, int expand) { int i, pd_idx = sh->pd_idx, disks = sh->disks; struct r5conf *conf = sh->raid_conf; int level = conf->level; if (rcw) { for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (dev->towrite) { set_bit(R5_LOCKED, &dev->flags); set_bit(R5_Wantdrain, &dev->flags); if (!expand) clear_bit(R5_UPTODATE, &dev->flags); s->locked++; } } /* if we are not expanding this is a proper write request, and * there will be bios with new data to be drained into the * stripe cache */ if (!expand) { if (!s->locked) /* False alarm, nothing to do */ return; sh->reconstruct_state = reconstruct_state_drain_run; set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); } else sh->reconstruct_state = reconstruct_state_run; set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); if (s->locked + conf->max_degraded == disks) if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) atomic_inc(&conf->pending_full_writes); } else { BUG_ON(level == 6); BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (i == pd_idx) continue; if (dev->towrite && (test_bit(R5_UPTODATE, &dev->flags) || test_bit(R5_Wantcompute, &dev->flags))) { set_bit(R5_Wantdrain, &dev->flags); set_bit(R5_LOCKED, &dev->flags); clear_bit(R5_UPTODATE, &dev->flags); s->locked++; } } if (!s->locked) /* False alarm - nothing to do */ return; sh->reconstruct_state = reconstruct_state_prexor_drain_run; set_bit(STRIPE_OP_PREXOR, &s->ops_request); set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); } /* keep the parity disk(s) locked while asynchronous operations * are in flight */ set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); s->locked++; if (level == 6) { int qd_idx = sh->qd_idx; struct r5dev *dev = &sh->dev[qd_idx]; set_bit(R5_LOCKED, &dev->flags); clear_bit(R5_UPTODATE, &dev->flags); s->locked++; } pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", __func__, (unsigned long long)sh->sector, s->locked, s->ops_request); } /* * Each stripe/dev can have one or more bion attached. * toread/towrite point to the first in a chain. * The bi_next chain must be in order. */ static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) { struct bio **bip; struct r5conf *conf = sh->raid_conf; int firstwrite=0; pr_debug("adding bi b#%llu to stripe s#%llu\n", (unsigned long long)bi->bi_sector, (unsigned long long)sh->sector); /* * If several bio share a stripe. The bio bi_phys_segments acts as a * reference count to avoid race. The reference count should already be * increased before this function is called (for example, in * make_request()), so other bio sharing this stripe will not free the * stripe. If a stripe is owned by one stripe, the stripe lock will * protect it. */ spin_lock_irq(&sh->stripe_lock); if (forwrite) { bip = &sh->dev[dd_idx].towrite; if (*bip == NULL) firstwrite = 1; } else bip = &sh->dev[dd_idx].toread; while (*bip && (*bip)->bi_sector < bi->bi_sector) { if (bio_end_sector(*bip) > bi->bi_sector) goto overlap; bip = & (*bip)->bi_next; } if (*bip && (*bip)->bi_sector < bio_end_sector(bi)) goto overlap; BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); if (*bip) bi->bi_next = *bip; *bip = bi; raid5_inc_bi_active_stripes(bi); if (forwrite) { /* check if page is covered */ sector_t sector = sh->dev[dd_idx].sector; for (bi=sh->dev[dd_idx].towrite; sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && bi && bi->bi_sector <= sector; bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { if (bio_end_sector(bi) >= sector) sector = bio_end_sector(bi); } if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); } pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", (unsigned long long)(*bip)->bi_sector, (unsigned long long)sh->sector, dd_idx); spin_unlock_irq(&sh->stripe_lock); if (conf->mddev->bitmap && firstwrite) { bitmap_startwrite(conf->mddev->bitmap, sh->sector, STRIPE_SECTORS, 0); sh->bm_seq = conf->seq_flush+1; set_bit(STRIPE_BIT_DELAY, &sh->state); } return 1; overlap: set_bit(R5_Overlap, &sh->dev[dd_idx].flags); spin_unlock_irq(&sh->stripe_lock); return 0; } static void end_reshape(struct r5conf *conf); static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, struct stripe_head *sh) { int sectors_per_chunk = previous ? conf->prev_chunk_sectors : conf->chunk_sectors; int dd_idx; int chunk_offset = sector_div(stripe, sectors_per_chunk); int disks = previous ? conf->previous_raid_disks : conf->raid_disks; raid5_compute_sector(conf, stripe * (disks - conf->max_degraded) *sectors_per_chunk + chunk_offset, previous, &dd_idx, sh); } static void handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, struct stripe_head_state *s, int disks, struct bio **return_bi) { int i; for (i = disks; i--; ) { struct bio *bi; int bitmap_end = 0; if (test_bit(R5_ReadError, &sh->dev[i].flags)) { struct md_rdev *rdev; rcu_read_lock(); rdev = rcu_dereference(conf->disks[i].rdev); if (rdev && test_bit(In_sync, &rdev->flags)) atomic_inc(&rdev->nr_pending); else rdev = NULL; rcu_read_unlock(); if (rdev) { if (!rdev_set_badblocks( rdev, sh->sector, STRIPE_SECTORS, 0)) md_error(conf->mddev, rdev); rdev_dec_pending(rdev, conf->mddev); } } spin_lock_irq(&sh->stripe_lock); /* fail all writes first */ bi = sh->dev[i].towrite; sh->dev[i].towrite = NULL; spin_unlock_irq(&sh->stripe_lock); if (bi) bitmap_end = 1; if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) wake_up(&conf->wait_for_overlap); while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); clear_bit(BIO_UPTODATE, &bi->bi_flags); if (!raid5_dec_bi_active_stripes(bi)) { md_write_end(conf->mddev); bi->bi_next = *return_bi; *return_bi = bi; } bi = nextbi; } if (bitmap_end) bitmap_endwrite(conf->mddev->bitmap, sh->sector, STRIPE_SECTORS, 0, 0); bitmap_end = 0; /* and fail all 'written' */ bi = sh->dev[i].written; sh->dev[i].written = NULL; if (bi) bitmap_end = 1; while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); clear_bit(BIO_UPTODATE, &bi->bi_flags); if (!raid5_dec_bi_active_stripes(bi)) { md_write_end(conf->mddev); bi->bi_next = *return_bi; *return_bi = bi; } bi = bi2; } /* fail any reads if this device is non-operational and * the data has not reached the cache yet. */ if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && (!test_bit(R5_Insync, &sh->dev[i].flags) || test_bit(R5_ReadError, &sh->dev[i].flags))) { spin_lock_irq(&sh->stripe_lock); bi = sh->dev[i].toread; sh->dev[i].toread = NULL; spin_unlock_irq(&sh->stripe_lock); if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) wake_up(&conf->wait_for_overlap); while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); clear_bit(BIO_UPTODATE, &bi->bi_flags); if (!raid5_dec_bi_active_stripes(bi)) { bi->bi_next = *return_bi; *return_bi = bi; } bi = nextbi; } } if (bitmap_end) bitmap_endwrite(conf->mddev->bitmap, sh->sector, STRIPE_SECTORS, 0, 0); /* If we were in the middle of a write the parity block might * still be locked - so just clear all R5_LOCKED flags */ clear_bit(R5_LOCKED, &sh->dev[i].flags); } if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) if (atomic_dec_and_test(&conf->pending_full_writes)) md_wakeup_thread(conf->mddev->thread); } static void handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, struct stripe_head_state *s) { int abort = 0; int i; clear_bit(STRIPE_SYNCING, &sh->state); if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) wake_up(&conf->wait_for_overlap); s->syncing = 0; s->replacing = 0; /* There is nothing more to do for sync/check/repair. * Don't even need to abort as that is handled elsewhere * if needed, and not always wanted e.g. if there is a known * bad block here. * For recover/replace we need to record a bad block on all * non-sync devices, or abort the recovery */ if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { /* During recovery devices cannot be removed, so * locking and refcounting of rdevs is not needed */ for (i = 0; i < conf->raid_disks; i++) { struct md_rdev *rdev = conf->disks[i].rdev; if (rdev && !test_bit(Faulty, &rdev->flags) && !test_bit(In_sync, &rdev->flags) && !rdev_set_badblocks(rdev, sh->sector, STRIPE_SECTORS, 0)) abort = 1; rdev = conf->disks[i].replacement; if (rdev && !test_bit(Faulty, &rdev->flags) && !test_bit(In_sync, &rdev->flags) && !rdev_set_badblocks(rdev, sh->sector, STRIPE_SECTORS, 0)) abort = 1; } if (abort) conf->recovery_disabled = conf->mddev->recovery_disabled; } md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); } static int want_replace(struct stripe_head *sh, int disk_idx) { struct md_rdev *rdev; int rv = 0; /* Doing recovery so rcu locking not required */ rdev = sh->raid_conf->disks[disk_idx].replacement; if (rdev && !test_bit(Faulty, &rdev->flags) && !test_bit(In_sync, &rdev->flags) && (rdev->recovery_offset <= sh->sector || rdev->mddev->recovery_cp <= sh->sector)) rv = 1; return rv; } /* fetch_block - checks the given member device to see if its data needs * to be read or computed to satisfy a request. * * Returns 1 when no more member devices need to be checked, otherwise returns * 0 to tell the loop in handle_stripe_fill to continue */ static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, int disk_idx, int disks) { struct r5dev *dev = &sh->dev[disk_idx]; struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], &sh->dev[s->failed_num[1]] }; /* is the data in this block needed, and can we get it? */ if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread || (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || s->syncing || s->expanding || (s->replacing && want_replace(sh, disk_idx)) || (s->failed >= 1 && fdev[0]->toread) || (s->failed >= 2 && fdev[1]->toread) || (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite && !test_bit(R5_OVERWRITE, &fdev[0]->flags)) || (sh->raid_conf->level == 6 && s->failed && s->to_write))) { /* we would like to get this block, possibly by computing it, * otherwise read it if the backing disk is insync */ BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); BUG_ON(test_bit(R5_Wantread, &dev->flags)); if ((s->uptodate == disks - 1) && (s->failed && (disk_idx == s->failed_num[0] || disk_idx == s->failed_num[1]))) { /* have disk failed, and we're requested to fetch it; * do compute it */ pr_debug("Computing stripe %llu block %d\n", (unsigned long long)sh->sector, disk_idx); set_bit(STRIPE_COMPUTE_RUN, &sh->state); set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); set_bit(R5_Wantcompute, &dev->flags); sh->ops.target = disk_idx; sh->ops.target2 = -1; /* no 2nd target */ s->req_compute = 1; /* Careful: from this point on 'uptodate' is in the eye * of raid_run_ops which services 'compute' operations * before writes. R5_Wantcompute flags a block that will * be R5_UPTODATE by the time it is needed for a * subsequent operation. */ s->uptodate++; return 1; } else if (s->uptodate == disks-2 && s->failed >= 2) { /* Computing 2-failure is *very* expensive; only * do it if failed >= 2 */ int other; for (other = disks; other--; ) { if (other == disk_idx) continue; if (!test_bit(R5_UPTODATE, &sh->dev[other].flags)) break; } BUG_ON(other < 0); pr_debug("Computing stripe %llu blocks %d,%d\n", (unsigned long long)sh->sector, disk_idx, other); set_bit(STRIPE_COMPUTE_RUN, &sh->state); set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); set_bit(R5_Wantcompute, &sh->dev[other].flags); sh->ops.target = disk_idx; sh->ops.target2 = other; s->uptodate += 2; s->req_compute = 1; return 1; } else if (test_bit(R5_Insync, &dev->flags)) { set_bit(R5_LOCKED, &dev->flags); set_bit(R5_Wantread, &dev->flags); s->locked++; pr_debug("Reading block %d (sync=%d)\n", disk_idx, s->syncing); } } return 0; } /** * handle_stripe_fill - read or compute data to satisfy pending requests. */ static void handle_stripe_fill(struct stripe_head *sh, struct stripe_head_state *s, int disks) { int i; /* look for blocks to read/compute, skip this if a compute * is already in flight, or if the stripe contents are in the * midst of changing due to a write */ if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && !sh->reconstruct_state) for (i = disks; i--; ) if (fetch_block(sh, s, i, disks)) break; set_bit(STRIPE_HANDLE, &sh->state); } /* handle_stripe_clean_event * any written block on an uptodate or failed drive can be returned. * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but * never LOCKED, so we don't need to test 'failed' directly. */ static void handle_stripe_clean_event(struct r5conf *conf, struct stripe_head *sh, int disks, struct bio **return_bi) { int i; struct r5dev *dev; int discard_pending = 0; for (i = disks; i--; ) if (sh->dev[i].written) { dev = &sh->dev[i]; if (!test_bit(R5_LOCKED, &dev->flags) && (test_bit(R5_UPTODATE, &dev->flags) || test_bit(R5_Discard, &dev->flags))) { /* We can return any write requests */ struct bio *wbi, *wbi2; pr_debug("Return write for disc %d\n", i); if (test_and_clear_bit(R5_Discard, &dev->flags)) clear_bit(R5_UPTODATE, &dev->flags); wbi = dev->written; dev->written = NULL; while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) { wbi2 = r5_next_bio(wbi, dev->sector); if (!raid5_dec_bi_active_stripes(wbi)) { md_write_end(conf->mddev); wbi->bi_next = *return_bi; *return_bi = wbi; } wbi = wbi2; } bitmap_endwrite(conf->mddev->bitmap, sh->sector, STRIPE_SECTORS, !test_bit(STRIPE_DEGRADED, &sh->state), 0); } else if (test_bit(R5_Discard, &dev->flags)) discard_pending = 1; } if (!discard_pending && test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); if (sh->qd_idx >= 0) { clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); } /* now that discard is done we can proceed with any sync */ clear_bit(STRIPE_DISCARD, &sh->state); /* * SCSI discard will change some bio fields and the stripe has * no updated data, so remove it from hash list and the stripe * will be reinitialized */ spin_lock_irq(&conf->device_lock); remove_hash(sh); spin_unlock_irq(&conf->device_lock); if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) set_bit(STRIPE_HANDLE, &sh->state); } if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) if (atomic_dec_and_test(&conf->pending_full_writes)) md_wakeup_thread(conf->mddev->thread); } static void handle_stripe_dirtying(struct r5conf *conf, struct stripe_head *sh, struct stripe_head_state *s, int disks) { int rmw = 0, rcw = 0, i; sector_t recovery_cp = conf->mddev->recovery_cp; /* RAID6 requires 'rcw' in current implementation. * Otherwise, check whether resync is now happening or should start. * If yes, then the array is dirty (after unclean shutdown or * initial creation), so parity in some stripes might be inconsistent. * In this case, we need to always do reconstruct-write, to ensure * that in case of drive failure or read-error correction, we * generate correct data from the parity. */ if (conf->max_degraded == 2 || (recovery_cp < MaxSector && sh->sector >= recovery_cp)) { /* Calculate the real rcw later - for now make it * look like rcw is cheaper */ rcw = 1; rmw = 2; pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n", conf->max_degraded, (unsigned long long)recovery_cp, (unsigned long long)sh->sector); } else for (i = disks; i--; ) { /* would I have to read this buffer for read_modify_write */ struct r5dev *dev = &sh->dev[i]; if ((dev->towrite || i == sh->pd_idx) && !test_bit(R5_LOCKED, &dev->flags) && !(test_bit(R5_UPTODATE, &dev->flags) || test_bit(R5_Wantcompute, &dev->flags))) { if (test_bit(R5_Insync, &dev->flags)) rmw++; else rmw += 2*disks; /* cannot read it */ } /* Would I have to read this buffer for reconstruct_write */ if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && !test_bit(R5_LOCKED, &dev->flags) && !(test_bit(R5_UPTODATE, &dev->flags) || test_bit(R5_Wantcompute, &dev->flags))) { if (test_bit(R5_Insync, &dev->flags)) rcw++; else rcw += 2*disks; } } pr_debug("for sector %llu, rmw=%d rcw=%d\n", (unsigned long long)sh->sector, rmw, rcw); set_bit(STRIPE_HANDLE, &sh->state); if (rmw < rcw && rmw > 0) { /* prefer read-modify-write, but need to get some data */ if (conf->mddev->queue) blk_add_trace_msg(conf->mddev->queue, "raid5 rmw %llu %d", (unsigned long long)sh->sector, rmw); for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if ((dev->towrite || i == sh->pd_idx) && !test_bit(R5_LOCKED, &dev->flags) && !(test_bit(R5_UPTODATE, &dev->flags) || test_bit(R5_Wantcompute, &dev->flags)) && test_bit(R5_Insync, &dev->flags)) { if ( test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { pr_debug("Read_old block " "%d for r-m-w\n", i); set_bit(R5_LOCKED, &dev->flags); set_bit(R5_Wantread, &dev->flags); s->locked++; } else { set_bit(STRIPE_DELAYED, &sh->state); set_bit(STRIPE_HANDLE, &sh->state); } } } } if (rcw <= rmw && rcw > 0) { /* want reconstruct write, but need to get some data */ int qread =0; rcw = 0; for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && i != sh->qd_idx && !test_bit(R5_LOCKED, &dev->flags) && !(test_bit(R5_UPTODATE, &dev->flags) || test_bit(R5_Wantcompute, &dev->flags))) { rcw++; if (!test_bit(R5_Insync, &dev->flags)) continue; /* it's a failed drive */ if ( test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { pr_debug("Read_old block " "%d for Reconstruct\n", i); set_bit(R5_LOCKED, &dev->flags); set_bit(R5_Wantread, &dev->flags); s->locked++; qread++; } else { set_bit(STRIPE_DELAYED, &sh->state); set_bit(STRIPE_HANDLE, &sh->state); } } } if (rcw && conf->mddev->queue) blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", (unsigned long long)sh->sector, rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); } /* now if nothing is locked, and if we have enough data, * we can start a write request */ /* since handle_stripe can be called at any time we need to handle the * case where a compute block operation has been submitted and then a * subsequent call wants to start a write request. raid_run_ops only * handles the case where compute block and reconstruct are requested * simultaneously. If this is not the case then new writes need to be * held off until the compute completes. */ if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && (s->locked == 0 && (rcw == 0 || rmw == 0) && !test_bit(STRIPE_BIT_DELAY, &sh->state))) schedule_reconstruction(sh, s, rcw == 0, 0); } static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, struct stripe_head_state *s, int disks) { struct r5dev *dev = NULL; set_bit(STRIPE_HANDLE, &sh->state); switch (sh->check_state) { case check_state_idle: /* start a new check operation if there are no failures */ if (s->failed == 0) { BUG_ON(s->uptodate != disks); sh->check_state = check_state_run; set_bit(STRIPE_OP_CHECK, &s->ops_request); clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); s->uptodate--; break; } dev = &sh->dev[s->failed_num[0]]; /* fall through */ case check_state_compute_result: sh->check_state = check_state_idle; if (!dev) dev = &sh->dev[sh->pd_idx]; /* check that a write has not made the stripe insync */ if (test_bit(STRIPE_INSYNC, &sh->state)) break; /* either failed parity check, or recovery is happening */ BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); BUG_ON(s->uptodate != disks); set_bit(R5_LOCKED, &dev->flags); s->locked++; set_bit(R5_Wantwrite, &dev->flags); clear_bit(STRIPE_DEGRADED, &sh->state); set_bit(STRIPE_INSYNC, &sh->state); break; case check_state_run: break; /* we will be called again upon completion */ case check_state_check_result: sh->check_state = check_state_idle; /* if a failure occurred during the check operation, leave * STRIPE_INSYNC not set and let the stripe be handled again */ if (s->failed) break; /* handle a successful check operation, if parity is correct * we are done. Otherwise update the mismatch count and repair * parity if !MD_RECOVERY_CHECK */ if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) /* parity is correct (on disc, * not in buffer any more) */ set_bit(STRIPE_INSYNC, &sh->state); else { atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) /* don't try to repair!! */ set_bit(STRIPE_INSYNC, &sh->state); else { sh->check_state = check_state_compute_run; set_bit(STRIPE_COMPUTE_RUN, &sh->state); set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); set_bit(R5_Wantcompute, &sh->dev[sh->pd_idx].flags); sh->ops.target = sh->pd_idx; sh->ops.target2 = -1; s->uptodate++; } } break; case check_state_compute_run: break; default: printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", __func__, sh->check_state, (unsigned long long) sh->sector); BUG(); } } static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, struct stripe_head_state *s, int disks) { int pd_idx = sh->pd_idx; int qd_idx = sh->qd_idx; struct r5dev *dev; set_bit(STRIPE_HANDLE, &sh->state); BUG_ON(s->failed > 2); /* Want to check and possibly repair P and Q. * However there could be one 'failed' device, in which * case we can only check one of them, possibly using the * other to generate missing data */ switch (sh->check_state) { case check_state_idle: /* start a new check operation if there are < 2 failures */ if (s->failed == s->q_failed) { /* The only possible failed device holds Q, so it * makes sense to check P (If anything else were failed, * we would have used P to recreate it). */ sh->check_state = check_state_run; } if (!s->q_failed && s->failed < 2) { /* Q is not failed, and we didn't use it to generate * anything, so it makes sense to check it */ if (sh->check_state == check_state_run) sh->check_state = check_state_run_pq; else sh->check_state = check_state_run_q; } /* discard potentially stale zero_sum_result */ sh->ops.zero_sum_result = 0; if (sh->check_state == check_state_run) { /* async_xor_zero_sum destroys the contents of P */ clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); s->uptodate--; } if (sh->check_state >= check_state_run && sh->check_state <= check_state_run_pq) { /* async_syndrome_zero_sum preserves P and Q, so * no need to mark them !uptodate here */ set_bit(STRIPE_OP_CHECK, &s->ops_request); break; } /* we have 2-disk failure */ BUG_ON(s->failed != 2); /* fall through */ case check_state_compute_result: sh->check_state = check_state_idle; /* check that a write has not made the stripe insync */ if (test_bit(STRIPE_INSYNC, &sh->state)) break; /* now write out any block on a failed drive, * or P or Q if they were recomputed */ BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ if (s->failed == 2) { dev = &sh->dev[s->failed_num[1]]; s->locked++; set_bit(R5_LOCKED, &dev->flags); set_bit(R5_Wantwrite, &dev->flags); } if (s->failed >= 1) { dev = &sh->dev[s->failed_num[0]]; s->locked++; set_bit(R5_LOCKED, &dev->flags); set_bit(R5_Wantwrite, &dev->flags); } if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { dev = &sh->dev[pd_idx]; s->locked++; set_bit(R5_LOCKED, &dev->flags); set_bit(R5_Wantwrite, &dev->flags); } if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { dev = &sh->dev[qd_idx]; s->locked++; set_bit(R5_LOCKED, &dev->flags); set_bit(R5_Wantwrite, &dev->flags); } clear_bit(STRIPE_DEGRADED, &sh->state); set_bit(STRIPE_INSYNC, &sh->state); break; case check_state_run: case check_state_run_q: case check_state_run_pq: break; /* we will be called again upon completion */ case check_state_check_result: sh->check_state = check_state_idle; /* handle a successful check operation, if parity is correct * we are done. Otherwise update the mismatch count and repair * parity if !MD_RECOVERY_CHECK */ if (sh->ops.zero_sum_result == 0) { /* both parities are correct */ if (!s->failed) set_bit(STRIPE_INSYNC, &sh->state); else { /* in contrast to the raid5 case we can validate * parity, but still have a failure to write * back */ sh->check_state = check_state_compute_result; /* Returning at this point means that we may go * off and bring p and/or q uptodate again so * we make sure to check zero_sum_result again * to verify if p or q need writeback */ } } else { atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) /* don't try to repair!! */ set_bit(STRIPE_INSYNC, &sh->state); else { int *target = &sh->ops.target; sh->ops.target = -1; sh->ops.target2 = -1; sh->check_state = check_state_compute_run; set_bit(STRIPE_COMPUTE_RUN, &sh->state); set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { set_bit(R5_Wantcompute, &sh->dev[pd_idx].flags); *target = pd_idx; target = &sh->ops.target2; s->uptodate++; } if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { set_bit(R5_Wantcompute, &sh->dev[qd_idx].flags); *target = qd_idx; s->uptodate++; } } } break; case check_state_compute_run: break; default: printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", __func__, sh->check_state, (unsigned long long) sh->sector); BUG(); } } static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) { int i; /* We have read all the blocks in this stripe and now we need to * copy some of them into a target stripe for expand. */ struct dma_async_tx_descriptor *tx = NULL; clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); for (i = 0; i < sh->disks; i++) if (i != sh->pd_idx && i != sh->qd_idx) { int dd_idx, j; struct stripe_head *sh2; struct async_submit_ctl submit; sector_t bn = compute_blocknr(sh, i, 1); sector_t s = raid5_compute_sector(conf, bn, 0, &dd_idx, NULL); sh2 = get_active_stripe(conf, s, 0, 1, 1); if (sh2 == NULL) /* so far only the early blocks of this stripe * have been requested. When later blocks * get requested, we will try again */ continue; if (!test_bit(STRIPE_EXPANDING, &sh2->state) || test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { /* must have already done this block */ release_stripe(sh2); continue; } /* place all the copies on one channel */ init_async_submit(&submit, 0, tx, NULL, NULL, NULL); tx = async_memcpy(sh2->dev[dd_idx].page, sh->dev[i].page, 0, 0, STRIPE_SIZE, &submit); set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); for (j = 0; j < conf->raid_disks; j++) if (j != sh2->pd_idx && j != sh2->qd_idx && !test_bit(R5_Expanded, &sh2->dev[j].flags)) break; if (j == conf->raid_disks) { set_bit(STRIPE_EXPAND_READY, &sh2->state); set_bit(STRIPE_HANDLE, &sh2->state); } release_stripe(sh2); } /* done submitting copies, wait for them to complete */ async_tx_quiesce(&tx); } /* * handle_stripe - do things to a stripe. * * We lock the stripe by setting STRIPE_ACTIVE and then examine the * state of various bits to see what needs to be done. * Possible results: * return some read requests which now have data * return some write requests which are safely on storage * schedule a read on some buffers * schedule a write of some buffers * return confirmation of parity correctness * */ static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) { struct r5conf *conf = sh->raid_conf; int disks = sh->disks; struct r5dev *dev; int i; int do_recovery = 0; memset(s, 0, sizeof(*s)); s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); s->failed_num[0] = -1; s->failed_num[1] = -1; /* Now to look around and see what can be done */ rcu_read_lock(); for (i=disks; i--; ) { struct md_rdev *rdev; sector_t first_bad; int bad_sectors; int is_bad = 0; dev = &sh->dev[i]; pr_debug("check %d: state 0x%lx read %p write %p written %p\n", i, dev->flags, dev->toread, dev->towrite, dev->written); /* maybe we can reply to a read * * new wantfill requests are only permitted while * ops_complete_biofill is guaranteed to be inactive */ if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) set_bit(R5_Wantfill, &dev->flags); /* now count some things */ if (test_bit(R5_LOCKED, &dev->flags)) s->locked++; if (test_bit(R5_UPTODATE, &dev->flags)) s->uptodate++; if (test_bit(R5_Wantcompute, &dev->flags)) { s->compute++; BUG_ON(s->compute > 2); } if (test_bit(R5_Wantfill, &dev->flags)) s->to_fill++; else if (dev->toread) s->to_read++; if (dev->towrite) { s->to_write++; if (!test_bit(R5_OVERWRITE, &dev->flags)) s->non_overwrite++; } if (dev->written) s->written++; /* Prefer to use the replacement for reads, but only * if it is recovered enough and has no bad blocks. */ rdev = rcu_dereference(conf->disks[i].replacement); if (rdev && !test_bit(Faulty, &rdev->flags) && rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && !is_badblock(rdev, sh->sector, STRIPE_SECTORS, &first_bad, &bad_sectors)) set_bit(R5_ReadRepl, &dev->flags); else { if (rdev) set_bit(R5_NeedReplace, &dev->flags); rdev = rcu_dereference(conf->disks[i].rdev); clear_bit(R5_ReadRepl, &dev->flags); } if (rdev && test_bit(Faulty, &rdev->flags)) rdev = NULL; if (rdev) { is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, &first_bad, &bad_sectors); if (s->blocked_rdev == NULL && (test_bit(Blocked, &rdev->flags) || is_bad < 0)) { if (is_bad < 0) set_bit(BlockedBadBlocks, &rdev->flags); s->blocked_rdev = rdev; atomic_inc(&rdev->nr_pending); } } clear_bit(R5_Insync, &dev->flags); if (!rdev) /* Not in-sync */; else if (is_bad) { /* also not in-sync */ if (!test_bit(WriteErrorSeen, &rdev->flags) && test_bit(R5_UPTODATE, &dev->flags)) { /* treat as in-sync, but with a read error * which we can now try to correct */ set_bit(R5_Insync, &dev->flags); set_bit(R5_ReadError, &dev->flags); } } else if (test_bit(In_sync, &rdev->flags)) set_bit(R5_Insync, &dev->flags); else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) /* in sync if before recovery_offset */ set_bit(R5_Insync, &dev->flags); else if (test_bit(R5_UPTODATE, &dev->flags) && test_bit(R5_Expanded, &dev->flags)) /* If we've reshaped into here, we assume it is Insync. * We will shortly update recovery_offset to make * it official. */ set_bit(R5_Insync, &dev->flags); if (rdev && test_bit(R5_WriteError, &dev->flags)) { /* This flag does not apply to '.replacement' * only to .rdev, so make sure to check that*/ struct md_rdev *rdev2 = rcu_dereference( conf->disks[i].rdev); if (rdev2 == rdev) clear_bit(R5_Insync, &dev->flags); if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { s->handle_bad_blocks = 1; atomic_inc(&rdev2->nr_pending); } else clear_bit(R5_WriteError, &dev->flags); } if (rdev && test_bit(R5_MadeGood, &dev->flags)) { /* This flag does not apply to '.replacement' * only to .rdev, so make sure to check that*/ struct md_rdev *rdev2 = rcu_dereference( conf->disks[i].rdev); if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { s->handle_bad_blocks = 1; atomic_inc(&rdev2->nr_pending); } else clear_bit(R5_MadeGood, &dev->flags); } if (test_bit(R5_MadeGoodRepl, &dev->flags)) { struct md_rdev *rdev2 = rcu_dereference( conf->disks[i].replacement); if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { s->handle_bad_blocks = 1; atomic_inc(&rdev2->nr_pending); } else clear_bit(R5_MadeGoodRepl, &dev->flags); } if (!test_bit(R5_Insync, &dev->flags)) { /* The ReadError flag will just be confusing now */ clear_bit(R5_ReadError, &dev->flags); clear_bit(R5_ReWrite, &dev->flags); } if (test_bit(R5_ReadError, &dev->flags)) clear_bit(R5_Insync, &dev->flags); if (!test_bit(R5_Insync, &dev->flags)) { if (s->failed < 2) s->failed_num[s->failed] = i; s->failed++; if (rdev && !test_bit(Faulty, &rdev->flags)) do_recovery = 1; } } if (test_bit(STRIPE_SYNCING, &sh->state)) { /* If there is a failed device being replaced, * we must be recovering. * else if we are after recovery_cp, we must be syncing * else if MD_RECOVERY_REQUESTED is set, we also are syncing. * else we can only be replacing * sync and recovery both need to read all devices, and so * use the same flag. */ if (do_recovery || sh->sector >= conf->mddev->recovery_cp || test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) s->syncing = 1; else s->replacing = 1; } rcu_read_unlock(); } static void handle_stripe(struct stripe_head *sh) { struct stripe_head_state s; struct r5conf *conf = sh->raid_conf; int i; int prexor; int disks = sh->disks; struct r5dev *pdev, *qdev; clear_bit(STRIPE_HANDLE, &sh->state); if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { /* already being handled, ensure it gets handled * again when current action finishes */ set_bit(STRIPE_HANDLE, &sh->state); return; } if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { spin_lock(&sh->stripe_lock); /* Cannot process 'sync' concurrently with 'discard' */ if (!test_bit(STRIPE_DISCARD, &sh->state) && test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { set_bit(STRIPE_SYNCING, &sh->state); clear_bit(STRIPE_INSYNC, &sh->state); clear_bit(STRIPE_REPLACED, &sh->state); } spin_unlock(&sh->stripe_lock); } clear_bit(STRIPE_DELAYED, &sh->state); pr_debug("handling stripe %llu, state=%#lx cnt=%d, " "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, sh->check_state, sh->reconstruct_state); analyse_stripe(sh, &s); if (s.handle_bad_blocks) { set_bit(STRIPE_HANDLE, &sh->state); goto finish; } if (unlikely(s.blocked_rdev)) { if (s.syncing || s.expanding || s.expanded || s.replacing || s.to_write || s.written) { set_bit(STRIPE_HANDLE, &sh->state); goto finish; } /* There is nothing for the blocked_rdev to block */ rdev_dec_pending(s.blocked_rdev, conf->mddev); s.blocked_rdev = NULL; } if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { set_bit(STRIPE_OP_BIOFILL, &s.ops_request); set_bit(STRIPE_BIOFILL_RUN, &sh->state); } pr_debug("locked=%d uptodate=%d to_read=%d" " to_write=%d failed=%d failed_num=%d,%d\n", s.locked, s.uptodate, s.to_read, s.to_write, s.failed, s.failed_num[0], s.failed_num[1]); /* check if the array has lost more than max_degraded devices and, * if so, some requests might need to be failed. */ if (s.failed > conf->max_degraded) { sh->check_state = 0; sh->reconstruct_state = 0; if (s.to_read+s.to_write+s.written) handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); if (s.syncing + s.replacing) handle_failed_sync(conf, sh, &s); } /* Now we check to see if any write operations have recently * completed */ prexor = 0; if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) prexor = 1; if (sh->reconstruct_state == reconstruct_state_drain_result || sh->reconstruct_state == reconstruct_state_prexor_drain_result) { sh->reconstruct_state = reconstruct_state_idle; /* All the 'written' buffers and the parity block are ready to * be written back to disk */ BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); BUG_ON(sh->qd_idx >= 0 && !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (test_bit(R5_LOCKED, &dev->flags) && (i == sh->pd_idx || i == sh->qd_idx || dev->written)) { pr_debug("Writing block %d\n", i); set_bit(R5_Wantwrite, &dev->flags); if (prexor) continue; if (!test_bit(R5_Insync, &dev->flags) || ((i == sh->pd_idx || i == sh->qd_idx) && s.failed == 0)) set_bit(STRIPE_INSYNC, &sh->state); } } if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) s.dec_preread_active = 1; } /* * might be able to return some write requests if the parity blocks * are safe, or on a failed drive */ pdev = &sh->dev[sh->pd_idx]; s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); qdev = &sh->dev[sh->qd_idx]; s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) || conf->level < 6; if (s.written && (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) && !test_bit(R5_LOCKED, &pdev->flags) && (test_bit(R5_UPTODATE, &pdev->flags) || test_bit(R5_Discard, &pdev->flags))))) && (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) && !test_bit(R5_LOCKED, &qdev->flags) && (test_bit(R5_UPTODATE, &qdev->flags) || test_bit(R5_Discard, &qdev->flags)))))) handle_stripe_clean_event(conf, sh, disks, &s.return_bi); /* Now we might consider reading some blocks, either to check/generate * parity, or to satisfy requests * or to load a block that is being partially written. */ if (s.to_read || s.non_overwrite || (conf->level == 6 && s.to_write && s.failed) || (s.syncing && (s.uptodate + s.compute < disks)) || s.replacing || s.expanding) handle_stripe_fill(sh, &s, disks); /* Now to consider new write requests and what else, if anything * should be read. We do not handle new writes when: * 1/ A 'write' operation (copy+xor) is already in flight. * 2/ A 'check' operation is in flight, as it may clobber the parity * block. */ if (s.to_write && !sh->reconstruct_state && !sh->check_state) handle_stripe_dirtying(conf, sh, &s, disks); /* maybe we need to check and possibly fix the parity for this stripe * Any reads will already have been scheduled, so we just see if enough * data is available. The parity check is held off while parity * dependent operations are in flight. */ if (sh->check_state || (s.syncing && s.locked == 0 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !test_bit(STRIPE_INSYNC, &sh->state))) { if (conf->level == 6) handle_parity_checks6(conf, sh, &s, disks); else handle_parity_checks5(conf, sh, &s, disks); } if ((s.replacing || s.syncing) && s.locked == 0 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !test_bit(STRIPE_REPLACED, &sh->state)) { /* Write out to replacement devices where possible */ for (i = 0; i < conf->raid_disks; i++) if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); set_bit(R5_WantReplace, &sh->dev[i].flags); set_bit(R5_LOCKED, &sh->dev[i].flags); s.locked++; } if (s.replacing) set_bit(STRIPE_INSYNC, &sh->state); set_bit(STRIPE_REPLACED, &sh->state); } if ((s.syncing || s.replacing) && s.locked == 0 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && test_bit(STRIPE_INSYNC, &sh->state)) { md_done_sync(conf->mddev, STRIPE_SECTORS, 1); clear_bit(STRIPE_SYNCING, &sh->state); if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) wake_up(&conf->wait_for_overlap); } /* If the failed drives are just a ReadError, then we might need * to progress the repair/check process */ if (s.failed <= conf->max_degraded && !conf->mddev->ro) for (i = 0; i < s.failed; i++) { struct r5dev *dev = &sh->dev[s.failed_num[i]]; if (test_bit(R5_ReadError, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) && test_bit(R5_UPTODATE, &dev->flags) ) { if (!test_bit(R5_ReWrite, &dev->flags)) { set_bit(R5_Wantwrite, &dev->flags); set_bit(R5_ReWrite, &dev->flags); set_bit(R5_LOCKED, &dev->flags); s.locked++; } else { /* let's read it back */ set_bit(R5_Wantread, &dev->flags); set_bit(R5_LOCKED, &dev->flags); s.locked++; } } } /* Finish reconstruct operations initiated by the expansion process */ if (sh->reconstruct_state == reconstruct_state_result) { struct stripe_head *sh_src = get_active_stripe(conf, sh->sector, 1, 1, 1); if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { /* sh cannot be written until sh_src has been read. * so arrange for sh to be delayed a little */ set_bit(STRIPE_DELAYED, &sh->state); set_bit(STRIPE_HANDLE, &sh->state); if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh_src->state)) atomic_inc(&conf->preread_active_stripes); release_stripe(sh_src); goto finish; } if (sh_src) release_stripe(sh_src); sh->reconstruct_state = reconstruct_state_idle; clear_bit(STRIPE_EXPANDING, &sh->state); for (i = conf->raid_disks; i--; ) { set_bit(R5_Wantwrite, &sh->dev[i].flags); set_bit(R5_LOCKED, &sh->dev[i].flags); s.locked++; } } if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && !sh->reconstruct_state) { /* Need to write out all blocks after computing parity */ sh->disks = conf->raid_disks; stripe_set_idx(sh->sector, conf, 0, sh); schedule_reconstruction(sh, &s, 1, 1); } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { clear_bit(STRIPE_EXPAND_READY, &sh->state); atomic_dec(&conf->reshape_stripes); wake_up(&conf->wait_for_overlap); md_done_sync(conf->mddev, STRIPE_SECTORS, 1); } if (s.expanding && s.locked == 0 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) handle_stripe_expansion(conf, sh); finish: /* wait for this device to become unblocked */ if (unlikely(s.blocked_rdev)) { if (conf->mddev->external) md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev); else /* Internal metadata will immediately * be written by raid5d, so we don't * need to wait here. */ rdev_dec_pending(s.blocked_rdev, conf->mddev); } if (s.handle_bad_blocks) for (i = disks; i--; ) { struct md_rdev *rdev; struct r5dev *dev = &sh->dev[i]; if (test_and_clear_bit(R5_WriteError, &dev->flags)) { /* We own a safe reference to the rdev */ rdev = conf->disks[i].rdev; if (!rdev_set_badblocks(rdev, sh->sector, STRIPE_SECTORS, 0)) md_error(conf->mddev, rdev); rdev_dec_pending(rdev, conf->mddev); } if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { rdev = conf->disks[i].rdev; rdev_clear_badblocks(rdev, sh->sector, STRIPE_SECTORS, 0); rdev_dec_pending(rdev, conf->mddev); } if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { rdev = conf->disks[i].replacement; if (!rdev) /* rdev have been moved down */ rdev = conf->disks[i].rdev; rdev_clear_badblocks(rdev, sh->sector, STRIPE_SECTORS, 0); rdev_dec_pending(rdev, conf->mddev); } } if (s.ops_request) raid_run_ops(sh, s.ops_request); ops_run_io(sh, &s); if (s.dec_preread_active) { /* We delay this until after ops_run_io so that if make_request * is waiting on a flush, it won't continue until the writes * have actually been submitted. */ atomic_dec(&conf->preread_active_stripes); if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) md_wakeup_thread(conf->mddev->thread); } return_io(s.return_bi); clear_bit_unlock(STRIPE_ACTIVE, &sh->state); } static void raid5_activate_delayed(struct r5conf *conf) { if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { while (!list_empty(&conf->delayed_list)) { struct list_head *l = conf->delayed_list.next; struct stripe_head *sh; sh = list_entry(l, struct stripe_head, lru); list_del_init(l); clear_bit(STRIPE_DELAYED, &sh->state); if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) atomic_inc(&conf->preread_active_stripes); list_add_tail(&sh->lru, &conf->hold_list); raid5_wakeup_stripe_thread(sh); } } } static void activate_bit_delay(struct r5conf *conf, struct list_head *temp_inactive_list) { /* device_lock is held */ struct list_head head; list_add(&head, &conf->bitmap_list); list_del_init(&conf->bitmap_list); while (!list_empty(&head)) { struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); int hash; list_del_init(&sh->lru); atomic_inc(&sh->count); hash = sh->hash_lock_index; __release_stripe(conf, sh, &temp_inactive_list[hash]); } } int md_raid5_congested(struct mddev *mddev, int bits) { struct r5conf *conf = mddev->private; /* No difference between reads and writes. Just check * how busy the stripe_cache is */ if (conf->inactive_blocked) return 1; if (conf->quiesce) return 1; if (atomic_read(&conf->empty_inactive_list_nr)) return 1; return 0; } EXPORT_SYMBOL_GPL(md_raid5_congested); static int raid5_congested(void *data, int bits) { struct mddev *mddev = data; return mddev_congested(mddev, bits) || md_raid5_congested(mddev, bits); } /* We want read requests to align with chunks where possible, * but write requests don't need to. */ static int raid5_mergeable_bvec(struct request_queue *q, struct bvec_merge_data *bvm, struct bio_vec *biovec) { struct mddev *mddev = q->queuedata; sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); int max; unsigned int chunk_sectors = mddev->chunk_sectors; unsigned int bio_sectors = bvm->bi_size >> 9; if ((bvm->bi_rw & 1) == WRITE) return biovec->bv_len; /* always allow writes to be mergeable */ if (mddev->new_chunk_sectors < mddev->chunk_sectors) chunk_sectors = mddev->new_chunk_sectors; max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; if (max < 0) max = 0; if (max <= biovec->bv_len && bio_sectors == 0) return biovec->bv_len; else return max; } static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) { sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); unsigned int chunk_sectors = mddev->chunk_sectors; unsigned int bio_sectors = bio_sectors(bio); if (mddev->new_chunk_sectors < mddev->chunk_sectors) chunk_sectors = mddev->new_chunk_sectors; return chunk_sectors >= ((sector & (chunk_sectors - 1)) + bio_sectors); } /* * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) * later sampled by raid5d. */ static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) { unsigned long flags; spin_lock_irqsave(&conf->device_lock, flags); bi->bi_next = conf->retry_read_aligned_list; conf->retry_read_aligned_list = bi; spin_unlock_irqrestore(&conf->device_lock, flags); md_wakeup_thread(conf->mddev->thread); } static struct bio *remove_bio_from_retry(struct r5conf *conf) { struct bio *bi; bi = conf->retry_read_aligned; if (bi) { conf->retry_read_aligned = NULL; return bi; } bi = conf->retry_read_aligned_list; if(bi) { conf->retry_read_aligned_list = bi->bi_next; bi->bi_next = NULL; /* * this sets the active strip count to 1 and the processed * strip count to zero (upper 8 bits) */ raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ } return bi; } /* * The "raid5_align_endio" should check if the read succeeded and if it * did, call bio_endio on the original bio (having bio_put the new bio * first). * If the read failed.. */ static void raid5_align_endio(struct bio *bi, int error) { struct bio* raid_bi = bi->bi_private; struct mddev *mddev; struct r5conf *conf; int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); struct md_rdev *rdev; bio_put(bi); rdev = (void*)raid_bi->bi_next; raid_bi->bi_next = NULL; mddev = rdev->mddev; conf = mddev->private; rdev_dec_pending(rdev, conf->mddev); if (!error && uptodate) { trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), raid_bi, 0); bio_endio(raid_bi, 0); if (atomic_dec_and_test(&conf->active_aligned_reads)) wake_up(&conf->wait_for_stripe); return; } pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); add_bio_to_retry(raid_bi, conf); } static int bio_fits_rdev(struct bio *bi) { struct request_queue *q = bdev_get_queue(bi->bi_bdev); if (bio_sectors(bi) > queue_max_sectors(q)) return 0; blk_recount_segments(q, bi); if (bi->bi_phys_segments > queue_max_segments(q)) return 0; if (q->merge_bvec_fn) /* it's too hard to apply the merge_bvec_fn at this stage, * just just give up */ return 0; return 1; } static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) { struct r5conf *conf = mddev->private; int dd_idx; struct bio* align_bi; struct md_rdev *rdev; sector_t end_sector; if (!in_chunk_boundary(mddev, raid_bio)) { pr_debug("chunk_aligned_read : non aligned\n"); return 0; } /* * use bio_clone_mddev to make a copy of the bio */ align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); if (!align_bi) return 0; /* * set bi_end_io to a new function, and set bi_private to the * original bio. */ align_bi->bi_end_io = raid5_align_endio; align_bi->bi_private = raid_bio; /* * compute position */ align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector, 0, &dd_idx, NULL); end_sector = bio_end_sector(align_bi); rcu_read_lock(); rdev = rcu_dereference(conf->disks[dd_idx].replacement); if (!rdev || test_bit(Faulty, &rdev->flags) || rdev->recovery_offset < end_sector) { rdev = rcu_dereference(conf->disks[dd_idx].rdev); if (rdev && (test_bit(Faulty, &rdev->flags) || !(test_bit(In_sync, &rdev->flags) || rdev->recovery_offset >= end_sector))) rdev = NULL; } if (rdev) { sector_t first_bad; int bad_sectors; atomic_inc(&rdev->nr_pending); rcu_read_unlock(); raid_bio->bi_next = (void*)rdev; align_bi->bi_bdev = rdev->bdev; align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); if (!bio_fits_rdev(align_bi) || is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi), &first_bad, &bad_sectors)) { /* too big in some way, or has a known bad block */ bio_put(align_bi); rdev_dec_pending(rdev, mddev); return 0; } /* No reshape active, so we can trust rdev->data_offset */ align_bi->bi_sector += rdev->data_offset; spin_lock_irq(&conf->device_lock); wait_event_lock_irq(conf->wait_for_stripe, conf->quiesce == 0, conf->device_lock); atomic_inc(&conf->active_aligned_reads); spin_unlock_irq(&conf->device_lock); if (mddev->gendisk) trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), align_bi, disk_devt(mddev->gendisk), raid_bio->bi_sector); generic_make_request(align_bi); return 1; } else { rcu_read_unlock(); bio_put(align_bi); return 0; } } /* __get_priority_stripe - get the next stripe to process * * Full stripe writes are allowed to pass preread active stripes up until * the bypass_threshold is exceeded. In general the bypass_count * increments when the handle_list is handled before the hold_list; however, it * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a * stripe with in flight i/o. The bypass_count will be reset when the * head of the hold_list has changed, i.e. the head was promoted to the * handle_list. */ static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) { struct stripe_head *sh = NULL, *tmp; struct list_head *handle_list = NULL; struct r5worker_group *wg = NULL; if (conf->worker_cnt_per_group == 0) { handle_list = &conf->handle_list; } else if (group != ANY_GROUP) { handle_list = &conf->worker_groups[group].handle_list; wg = &conf->worker_groups[group]; } else { int i; for (i = 0; i < conf->group_cnt; i++) { handle_list = &conf->worker_groups[i].handle_list; wg = &conf->worker_groups[i]; if (!list_empty(handle_list)) break; } } pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", __func__, list_empty(handle_list) ? "empty" : "busy", list_empty(&conf->hold_list) ? "empty" : "busy", atomic_read(&conf->pending_full_writes), conf->bypass_count); if (!list_empty(handle_list)) { sh = list_entry(handle_list->next, typeof(*sh), lru); if (list_empty(&conf->hold_list)) conf->bypass_count = 0; else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { if (conf->hold_list.next == conf->last_hold) conf->bypass_count++; else { conf->last_hold = conf->hold_list.next; conf->bypass_count -= conf->bypass_threshold; if (conf->bypass_count < 0) conf->bypass_count = 0; } } } else if (!list_empty(&conf->hold_list) && ((conf->bypass_threshold && conf->bypass_count > conf->bypass_threshold) || atomic_read(&conf->pending_full_writes) == 0)) { list_for_each_entry(tmp, &conf->hold_list, lru) { if (conf->worker_cnt_per_group == 0 || group == ANY_GROUP || !cpu_online(tmp->cpu) || cpu_to_group(tmp->cpu) == group) { sh = tmp; break; } } if (sh) { conf->bypass_count -= conf->bypass_threshold; if (conf->bypass_count < 0) conf->bypass_count = 0; } wg = NULL; } if (!sh) return NULL; if (wg) { wg->stripes_cnt--; sh->group = NULL; } list_del_init(&sh->lru); atomic_inc(&sh->count); BUG_ON(atomic_read(&sh->count) != 1); return sh; } struct raid5_plug_cb { struct blk_plug_cb cb; struct list_head list; struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; }; static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) { struct raid5_plug_cb *cb = container_of( blk_cb, struct raid5_plug_cb, cb); struct stripe_head *sh; struct mddev *mddev = cb->cb.data; struct r5conf *conf = mddev->private; int cnt = 0; int hash; if (cb->list.next && !list_empty(&cb->list)) { spin_lock_irq(&conf->device_lock); while (!list_empty(&cb->list)) { sh = list_first_entry(&cb->list, struct stripe_head, lru); list_del_init(&sh->lru); /* * avoid race release_stripe_plug() sees * STRIPE_ON_UNPLUG_LIST clear but the stripe * is still in our list */ smp_mb__before_clear_bit(); clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); /* * STRIPE_ON_RELEASE_LIST could be set here. In that * case, the count is always > 1 here */ hash = sh->hash_lock_index; __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); cnt++; } spin_unlock_irq(&conf->device_lock); } release_inactive_stripe_list(conf, cb->temp_inactive_list, NR_STRIPE_HASH_LOCKS); if (mddev->queue) trace_block_unplug(mddev->queue, cnt, !from_schedule); kfree(cb); } static void release_stripe_plug(struct mddev *mddev, struct stripe_head *sh) { struct blk_plug_cb *blk_cb = blk_check_plugged( raid5_unplug, mddev, sizeof(struct raid5_plug_cb)); struct raid5_plug_cb *cb; if (!blk_cb) { release_stripe(sh); return; } cb = container_of(blk_cb, struct raid5_plug_cb, cb); if (cb->list.next == NULL) { int i; INIT_LIST_HEAD(&cb->list); for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) INIT_LIST_HEAD(cb->temp_inactive_list + i); } if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) list_add_tail(&sh->lru, &cb->list); else release_stripe(sh); } static void make_discard_request(struct mddev *mddev, struct bio *bi) { struct r5conf *conf = mddev->private; sector_t logical_sector, last_sector; struct stripe_head *sh; int remaining; int stripe_sectors; if (mddev->reshape_position != MaxSector) /* Skip discard while reshape is happening */ return; logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); last_sector = bi->bi_sector + (bi->bi_size>>9); bi->bi_next = NULL; bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ stripe_sectors = conf->chunk_sectors * (conf->raid_disks - conf->max_degraded); logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, stripe_sectors); sector_div(last_sector, stripe_sectors); logical_sector *= conf->chunk_sectors; last_sector *= conf->chunk_sectors; for (; logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { DEFINE_WAIT(w); int d; again: sh = get_active_stripe(conf, logical_sector, 0, 0, 0); prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); if (test_bit(STRIPE_SYNCING, &sh->state)) { release_stripe(sh); schedule(); goto again; } clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); spin_lock_irq(&sh->stripe_lock); for (d = 0; d < conf->raid_disks; d++) { if (d == sh->pd_idx || d == sh->qd_idx) continue; if (sh->dev[d].towrite || sh->dev[d].toread) { set_bit(R5_Overlap, &sh->dev[d].flags); spin_unlock_irq(&sh->stripe_lock); release_stripe(sh); schedule(); goto again; } } set_bit(STRIPE_DISCARD, &sh->state); finish_wait(&conf->wait_for_overlap, &w); for (d = 0; d < conf->raid_disks; d++) { if (d == sh->pd_idx || d == sh->qd_idx) continue; sh->dev[d].towrite = bi; set_bit(R5_OVERWRITE, &sh->dev[d].flags); raid5_inc_bi_active_stripes(bi); } spin_unlock_irq(&sh->stripe_lock); if (conf->mddev->bitmap) { for (d = 0; d < conf->raid_disks - conf->max_degraded; d++) bitmap_startwrite(mddev->bitmap, sh->sector, STRIPE_SECTORS, 0); sh->bm_seq = conf->seq_flush + 1; set_bit(STRIPE_BIT_DELAY, &sh->state); } set_bit(STRIPE_HANDLE, &sh->state); clear_bit(STRIPE_DELAYED, &sh->state); if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) atomic_inc(&conf->preread_active_stripes); release_stripe_plug(mddev, sh); } remaining = raid5_dec_bi_active_stripes(bi); if (remaining == 0) { md_write_end(mddev); bio_endio(bi, 0); } } static void make_request(struct mddev *mddev, struct bio * bi) { struct r5conf *conf = mddev->private; int dd_idx; sector_t new_sector; sector_t logical_sector, last_sector; struct stripe_head *sh; const int rw = bio_data_dir(bi); int remaining; if (unlikely(bi->bi_rw & REQ_FLUSH)) { md_flush_request(mddev, bi); return; } md_write_start(mddev, bi); if (rw == READ && mddev->reshape_position == MaxSector && chunk_aligned_read(mddev,bi)) return; if (unlikely(bi->bi_rw & REQ_DISCARD)) { make_discard_request(mddev, bi); return; } logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); last_sector = bio_end_sector(bi); bi->bi_next = NULL; bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { DEFINE_WAIT(w); int previous; int seq; retry: seq = read_seqcount_begin(&conf->gen_lock); previous = 0; prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); if (unlikely(conf->reshape_progress != MaxSector)) { /* spinlock is needed as reshape_progress may be * 64bit on a 32bit platform, and so it might be * possible to see a half-updated value * Of course reshape_progress could change after * the lock is dropped, so once we get a reference * to the stripe that we think it is, we will have * to check again. */ spin_lock_irq(&conf->device_lock); if (mddev->reshape_backwards ? logical_sector < conf->reshape_progress : logical_sector >= conf->reshape_progress) { previous = 1; } else { if (mddev->reshape_backwards ? logical_sector < conf->reshape_safe : logical_sector >= conf->reshape_safe) { spin_unlock_irq(&conf->device_lock); schedule(); goto retry; } } spin_unlock_irq(&conf->device_lock); } new_sector = raid5_compute_sector(conf, logical_sector, previous, &dd_idx, NULL); pr_debug("raid456: make_request, sector %llu logical %llu\n", (unsigned long long)new_sector, (unsigned long long)logical_sector); sh = get_active_stripe(conf, new_sector, previous, (bi->bi_rw&RWA_MASK), 0); if (sh) { if (unlikely(previous)) { /* expansion might have moved on while waiting for a * stripe, so we must do the range check again. * Expansion could still move past after this * test, but as we are holding a reference to * 'sh', we know that if that happens, * STRIPE_EXPANDING will get set and the expansion * won't proceed until we finish with the stripe. */ int must_retry = 0; spin_lock_irq(&conf->device_lock); if (mddev->reshape_backwards ? logical_sector >= conf->reshape_progress : logical_sector < conf->reshape_progress) /* mismatch, need to try again */ must_retry = 1; spin_unlock_irq(&conf->device_lock); if (must_retry) { release_stripe(sh); schedule(); goto retry; } } if (read_seqcount_retry(&conf->gen_lock, seq)) { /* Might have got the wrong stripe_head * by accident */ release_stripe(sh); goto retry; } if (rw == WRITE && logical_sector >= mddev->suspend_lo && logical_sector < mddev->suspend_hi) { release_stripe(sh); /* As the suspend_* range is controlled by * userspace, we want an interruptible * wait. */ flush_signals(current); prepare_to_wait(&conf->wait_for_overlap, &w, TASK_INTERRUPTIBLE); if (logical_sector >= mddev->suspend_lo && logical_sector < mddev->suspend_hi) schedule(); goto retry; } if (test_bit(STRIPE_EXPANDING, &sh->state) || !add_stripe_bio(sh, bi, dd_idx, rw)) { /* Stripe is busy expanding or * add failed due to overlap. Flush everything * and wait a while */ md_wakeup_thread(mddev->thread); release_stripe(sh); schedule(); goto retry; } finish_wait(&conf->wait_for_overlap, &w); set_bit(STRIPE_HANDLE, &sh->state); clear_bit(STRIPE_DELAYED, &sh->state); if ((bi->bi_rw & REQ_SYNC) && !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) atomic_inc(&conf->preread_active_stripes); release_stripe_plug(mddev, sh); } else { /* cannot get stripe for read-ahead, just give-up */ clear_bit(BIO_UPTODATE, &bi->bi_flags); finish_wait(&conf->wait_for_overlap, &w); break; } } remaining = raid5_dec_bi_active_stripes(bi); if (remaining == 0) { if ( rw == WRITE ) md_write_end(mddev); trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), bi, 0); bio_endio(bi, 0); } } static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) { /* reshaping is quite different to recovery/resync so it is * handled quite separately ... here. * * On each call to sync_request, we gather one chunk worth of * destination stripes and flag them as expanding. * Then we find all the source stripes and request reads. * As the reads complete, handle_stripe will copy the data * into the destination stripe and release that stripe. */ struct r5conf *conf = mddev->private; struct stripe_head *sh; sector_t first_sector, last_sector; int raid_disks = conf->previous_raid_disks; int data_disks = raid_disks - conf->max_degraded; int new_data_disks = conf->raid_disks - conf->max_degraded; int i; int dd_idx; sector_t writepos, readpos, safepos; sector_t stripe_addr; int reshape_sectors; struct list_head stripes; if (sector_nr == 0) { /* If restarting in the middle, skip the initial sectors */ if (mddev->reshape_backwards && conf->reshape_progress < raid5_size(mddev, 0, 0)) { sector_nr = raid5_size(mddev, 0, 0) - conf->reshape_progress; } else if (!mddev->reshape_backwards && conf->reshape_progress > 0) sector_nr = conf->reshape_progress; sector_div(sector_nr, new_data_disks); if (sector_nr) { mddev->curr_resync_completed = sector_nr; sysfs_notify(&mddev->kobj, NULL, "sync_completed"); *skipped = 1; return sector_nr; } } /* We need to process a full chunk at a time. * If old and new chunk sizes differ, we need to process the * largest of these */ if (mddev->new_chunk_sectors > mddev->chunk_sectors) reshape_sectors = mddev->new_chunk_sectors; else reshape_sectors = mddev->chunk_sectors; /* We update the metadata at least every 10 seconds, or when * the data about to be copied would over-write the source of * the data at the front of the range. i.e. one new_stripe * along from reshape_progress new_maps to after where * reshape_safe old_maps to */ writepos = conf->reshape_progress; sector_div(writepos, new_data_disks); readpos = conf->reshape_progress; sector_div(readpos, data_disks); safepos = conf->reshape_safe; sector_div(safepos, data_disks); if (mddev->reshape_backwards) { writepos -= min_t(sector_t, reshape_sectors, writepos); readpos += reshape_sectors; safepos += reshape_sectors; } else { writepos += reshape_sectors; readpos -= min_t(sector_t, reshape_sectors, readpos); safepos -= min_t(sector_t, reshape_sectors, safepos); } /* Having calculated the 'writepos' possibly use it * to set 'stripe_addr' which is where we will write to. */ if (mddev->reshape_backwards) { BUG_ON(conf->reshape_progress == 0); stripe_addr = writepos; BUG_ON((mddev->dev_sectors & ~((sector_t)reshape_sectors - 1)) - reshape_sectors - stripe_addr != sector_nr); } else { BUG_ON(writepos != sector_nr + reshape_sectors); stripe_addr = sector_nr; } /* 'writepos' is the most advanced device address we might write. * 'readpos' is the least advanced device address we might read. * 'safepos' is the least address recorded in the metadata as having * been reshaped. * If there is a min_offset_diff, these are adjusted either by * increasing the safepos/readpos if diff is negative, or * increasing writepos if diff is positive. * If 'readpos' is then behind 'writepos', there is no way that we can * ensure safety in the face of a crash - that must be done by userspace * making a backup of the data. So in that case there is no particular * rush to update metadata. * Otherwise if 'safepos' is behind 'writepos', then we really need to * update the metadata to advance 'safepos' to match 'readpos' so that * we can be safe in the event of a crash. * So we insist on updating metadata if safepos is behind writepos and * readpos is beyond writepos. * In any case, update the metadata every 10 seconds. * Maybe that number should be configurable, but I'm not sure it is * worth it.... maybe it could be a multiple of safemode_delay??? */ if (conf->min_offset_diff < 0) { safepos += -conf->min_offset_diff; readpos += -conf->min_offset_diff; } else writepos += conf->min_offset_diff; if ((mddev->reshape_backwards ? (safepos > writepos && readpos < writepos) : (safepos < writepos && readpos > writepos)) || time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { /* Cannot proceed until we've updated the superblock... */ wait_event(conf->wait_for_overlap, atomic_read(&conf->reshape_stripes)==0 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); if (atomic_read(&conf->reshape_stripes) != 0) return 0; mddev->reshape_position = conf->reshape_progress; mddev->curr_resync_completed = sector_nr; conf->reshape_checkpoint = jiffies; set_bit(MD_CHANGE_DEVS, &mddev->flags); md_wakeup_thread(mddev->thread); wait_event(mddev->sb_wait, mddev->flags == 0 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) return 0; spin_lock_irq(&conf->device_lock); conf->reshape_safe = mddev->reshape_position; spin_unlock_irq(&conf->device_lock); wake_up(&conf->wait_for_overlap); sysfs_notify(&mddev->kobj, NULL, "sync_completed"); } INIT_LIST_HEAD(&stripes); for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { int j; int skipped_disk = 0; sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); set_bit(STRIPE_EXPANDING, &sh->state); atomic_inc(&conf->reshape_stripes); /* If any of this stripe is beyond the end of the old * array, then we need to zero those blocks */ for (j=sh->disks; j--;) { sector_t s; if (j == sh->pd_idx) continue; if (conf->level == 6 && j == sh->qd_idx) continue; s = compute_blocknr(sh, j, 0); if (s < raid5_size(mddev, 0, 0)) { skipped_disk = 1; continue; } memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); set_bit(R5_Expanded, &sh->dev[j].flags); set_bit(R5_UPTODATE, &sh->dev[j].flags); } if (!skipped_disk) { set_bit(STRIPE_EXPAND_READY, &sh->state); set_bit(STRIPE_HANDLE, &sh->state); } list_add(&sh->lru, &stripes); } spin_lock_irq(&conf->device_lock); if (mddev->reshape_backwards) conf->reshape_progress -= reshape_sectors * new_data_disks; else conf->reshape_progress += reshape_sectors * new_data_disks; spin_unlock_irq(&conf->device_lock); /* Ok, those stripe are ready. We can start scheduling * reads on the source stripes. * The source stripes are determined by mapping the first and last * block on the destination stripes. */ first_sector = raid5_compute_sector(conf, stripe_addr*(new_data_disks), 1, &dd_idx, NULL); last_sector = raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) * new_data_disks - 1), 1, &dd_idx, NULL); if (last_sector >= mddev->dev_sectors) last_sector = mddev->dev_sectors - 1; while (first_sector <= last_sector) { sh = get_active_stripe(conf, first_sector, 1, 0, 1); set_bit(STRIPE_EXPAND_SOURCE, &sh->state); set_bit(STRIPE_HANDLE, &sh->state); release_stripe(sh); first_sector += STRIPE_SECTORS; } /* Now that the sources are clearly marked, we can release * the destination stripes */ while (!list_empty(&stripes)) { sh = list_entry(stripes.next, struct stripe_head, lru); list_del_init(&sh->lru); release_stripe(sh); } /* If this takes us to the resync_max point where we have to pause, * then we need to write out the superblock. */ sector_nr += reshape_sectors; if ((sector_nr - mddev->curr_resync_completed) * 2 >= mddev->resync_max - mddev->curr_resync_completed) { /* Cannot proceed until we've updated the superblock... */ wait_event(conf->wait_for_overlap, atomic_read(&conf->reshape_stripes) == 0 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); if (atomic_read(&conf->reshape_stripes) != 0) goto ret; mddev->reshape_position = conf->reshape_progress; mddev->curr_resync_completed = sector_nr; conf->reshape_checkpoint = jiffies; set_bit(MD_CHANGE_DEVS, &mddev->flags); md_wakeup_thread(mddev->thread); wait_event(mddev->sb_wait, !test_bit(MD_CHANGE_DEVS, &mddev->flags) || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) goto ret; spin_lock_irq(&conf->device_lock); conf->reshape_safe = mddev->reshape_position; spin_unlock_irq(&conf->device_lock); wake_up(&conf->wait_for_overlap); sysfs_notify(&mddev->kobj, NULL, "sync_completed"); } ret: return reshape_sectors; } /* FIXME go_faster isn't used */ static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) { struct r5conf *conf = mddev->private; struct stripe_head *sh; sector_t max_sector = mddev->dev_sectors; sector_t sync_blocks; int still_degraded = 0; int i; if (sector_nr >= max_sector) { /* just being told to finish up .. nothing much to do */ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { end_reshape(conf); return 0; } if (mddev->curr_resync < max_sector) /* aborted */ bitmap_end_sync(mddev->bitmap, mddev->curr_resync, &sync_blocks, 1); else /* completed sync */ conf->fullsync = 0; bitmap_close_sync(mddev->bitmap); return 0; } /* Allow raid5_quiesce to complete */ wait_event(conf->wait_for_overlap, conf->quiesce != 2); if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) return reshape_request(mddev, sector_nr, skipped); /* No need to check resync_max as we never do more than one * stripe, and as resync_max will always be on a chunk boundary, * if the check in md_do_sync didn't fire, there is no chance * of overstepping resync_max here */ /* if there is too many failed drives and we are trying * to resync, then assert that we are finished, because there is * nothing we can do. */ if (mddev->degraded >= conf->max_degraded && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { sector_t rv = mddev->dev_sectors - sector_nr; *skipped = 1; return rv; } if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && !conf->fullsync && !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && sync_blocks >= STRIPE_SECTORS) { /* we can skip this block, and probably more */ sync_blocks /= STRIPE_SECTORS; *skipped = 1; return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ } bitmap_cond_end_sync(mddev->bitmap, sector_nr); sh = get_active_stripe(conf, sector_nr, 0, 1, 0); if (sh == NULL) { sh = get_active_stripe(conf, sector_nr, 0, 0, 0); /* make sure we don't swamp the stripe cache if someone else * is trying to get access */ schedule_timeout_uninterruptible(1); } /* Need to check if array will still be degraded after recovery/resync * We don't need to check the 'failed' flag as when that gets set, * recovery aborts. */ for (i = 0; i < conf->raid_disks; i++) if (conf->disks[i].rdev == NULL) still_degraded = 1; bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); set_bit(STRIPE_SYNC_REQUESTED, &sh->state); handle_stripe(sh); release_stripe(sh); return STRIPE_SECTORS; } static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) { /* We may not be able to submit a whole bio at once as there * may not be enough stripe_heads available. * We cannot pre-allocate enough stripe_heads as we may need * more than exist in the cache (if we allow ever large chunks). * So we do one stripe head at a time and record in * ->bi_hw_segments how many have been done. * * We *know* that this entire raid_bio is in one chunk, so * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. */ struct stripe_head *sh; int dd_idx; sector_t sector, logical_sector, last_sector; int scnt = 0; int remaining; int handled = 0; logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); sector = raid5_compute_sector(conf, logical_sector, 0, &dd_idx, NULL); last_sector = bio_end_sector(raid_bio); for (; logical_sector < last_sector; logical_sector += STRIPE_SECTORS, sector += STRIPE_SECTORS, scnt++) { if (scnt < raid5_bi_processed_stripes(raid_bio)) /* already done this stripe */ continue; sh = get_active_stripe(conf, sector, 0, 1, 0); if (!sh) { /* failed to get a stripe - must wait */ raid5_set_bi_processed_stripes(raid_bio, scnt); conf->retry_read_aligned = raid_bio; return handled; } if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { release_stripe(sh); raid5_set_bi_processed_stripes(raid_bio, scnt); conf->retry_read_aligned = raid_bio; return handled; } set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); handle_stripe(sh); release_stripe(sh); handled++; } remaining = raid5_dec_bi_active_stripes(raid_bio); if (remaining == 0) { trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), raid_bio, 0); bio_endio(raid_bio, 0); } if (atomic_dec_and_test(&conf->active_aligned_reads)) wake_up(&conf->wait_for_stripe); return handled; } static int handle_active_stripes(struct r5conf *conf, int group, struct r5worker *worker, struct list_head *temp_inactive_list) { struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; int i, batch_size = 0, hash; bool release_inactive = false; while (batch_size < MAX_STRIPE_BATCH && (sh = __get_priority_stripe(conf, group)) != NULL) batch[batch_size++] = sh; if (batch_size == 0) { for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) if (!list_empty(temp_inactive_list + i)) break; if (i == NR_STRIPE_HASH_LOCKS) return batch_size; release_inactive = true; } spin_unlock_irq(&conf->device_lock); release_inactive_stripe_list(conf, temp_inactive_list, NR_STRIPE_HASH_LOCKS); if (release_inactive) { spin_lock_irq(&conf->device_lock); return 0; } for (i = 0; i < batch_size; i++) handle_stripe(batch[i]); cond_resched(); spin_lock_irq(&conf->device_lock); for (i = 0; i < batch_size; i++) { hash = batch[i]->hash_lock_index; __release_stripe(conf, batch[i], &temp_inactive_list[hash]); } return batch_size; } static void raid5_do_work(struct work_struct *work) { struct r5worker *worker = container_of(work, struct r5worker, work); struct r5worker_group *group = worker->group; struct r5conf *conf = group->conf; int group_id = group - conf->worker_groups; int handled; struct blk_plug plug; pr_debug("+++ raid5worker active\n"); blk_start_plug(&plug); handled = 0; spin_lock_irq(&conf->device_lock); while (1) { int batch_size, released; released = release_stripe_list(conf, worker->temp_inactive_list); batch_size = handle_active_stripes(conf, group_id, worker, worker->temp_inactive_list); worker->working = false; if (!batch_size && !released) break; handled += batch_size; } pr_debug("%d stripes handled\n", handled); spin_unlock_irq(&conf->device_lock); blk_finish_plug(&plug); pr_debug("--- raid5worker inactive\n"); } /* * This is our raid5 kernel thread. * * We scan the hash table for stripes which can be handled now. * During the scan, completed stripes are saved for us by the interrupt * handler, so that they will not have to wait for our next wakeup. */ static void raid5d(struct md_thread *thread) { struct mddev *mddev = thread->mddev; struct r5conf *conf = mddev->private; int handled; struct blk_plug plug; pr_debug("+++ raid5d active\n"); md_check_recovery(mddev); blk_start_plug(&plug); handled = 0; spin_lock_irq(&conf->device_lock); while (1) { struct bio *bio; int batch_size, released; released = release_stripe_list(conf, conf->temp_inactive_list); if ( !list_empty(&conf->bitmap_list)) { /* Now is a good time to flush some bitmap updates */ conf->seq_flush++; spin_unlock_irq(&conf->device_lock); bitmap_unplug(mddev->bitmap); spin_lock_irq(&conf->device_lock); conf->seq_write = conf->seq_flush; activate_bit_delay(conf, conf->temp_inactive_list); } raid5_activate_delayed(conf); while ((bio = remove_bio_from_retry(conf))) { int ok; spin_unlock_irq(&conf->device_lock); ok = retry_aligned_read(conf, bio); spin_lock_irq(&conf->device_lock); if (!ok) break; handled++; } batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, conf->temp_inactive_list); if (!batch_size && !released) break; handled += batch_size; if (mddev->flags & ~(1<device_lock); md_check_recovery(mddev); spin_lock_irq(&conf->device_lock); } } pr_debug("%d stripes handled\n", handled); spin_unlock_irq(&conf->device_lock); async_tx_issue_pending_all(); blk_finish_plug(&plug); pr_debug("--- raid5d inactive\n"); } static ssize_t raid5_show_stripe_cache_size(struct mddev *mddev, char *page) { struct r5conf *conf = mddev->private; if (conf) return sprintf(page, "%d\n", conf->max_nr_stripes); else return 0; } int raid5_set_cache_size(struct mddev *mddev, int size) { struct r5conf *conf = mddev->private; int err; int hash; if (size <= 16 || size > 32768) return -EINVAL; hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS; while (size < conf->max_nr_stripes) { if (drop_one_stripe(conf, hash)) conf->max_nr_stripes--; else break; hash--; if (hash < 0) hash = NR_STRIPE_HASH_LOCKS - 1; } err = md_allow_write(mddev); if (err) return err; hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; while (size > conf->max_nr_stripes) { if (grow_one_stripe(conf, hash)) conf->max_nr_stripes++; else break; hash = (hash + 1) % NR_STRIPE_HASH_LOCKS; } return 0; } EXPORT_SYMBOL(raid5_set_cache_size); static ssize_t raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) { struct r5conf *conf = mddev->private; unsigned long new; int err; if (len >= PAGE_SIZE) return -EINVAL; if (!conf) return -ENODEV; if (kstrtoul(page, 10, &new)) return -EINVAL; err = raid5_set_cache_size(mddev, new); if (err) return err; return len; } static struct md_sysfs_entry raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, raid5_show_stripe_cache_size, raid5_store_stripe_cache_size); static ssize_t raid5_show_preread_threshold(struct mddev *mddev, char *page) { struct r5conf *conf = mddev->private; if (conf) return sprintf(page, "%d\n", conf->bypass_threshold); else return 0; } static ssize_t raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) { struct r5conf *conf = mddev->private; unsigned long new; if (len >= PAGE_SIZE) return -EINVAL; if (!conf) return -ENODEV; if (kstrtoul(page, 10, &new)) return -EINVAL; if (new > conf->max_nr_stripes) return -EINVAL; conf->bypass_threshold = new; return len; } static struct md_sysfs_entry raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, S_IRUGO | S_IWUSR, raid5_show_preread_threshold, raid5_store_preread_threshold); static ssize_t stripe_cache_active_show(struct mddev *mddev, char *page) { struct r5conf *conf = mddev->private; if (conf) return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); else return 0; } static struct md_sysfs_entry raid5_stripecache_active = __ATTR_RO(stripe_cache_active); static ssize_t raid5_show_group_thread_cnt(struct mddev *mddev, char *page) { struct r5conf *conf = mddev->private; if (conf) return sprintf(page, "%d\n", conf->worker_cnt_per_group); else return 0; } static int alloc_thread_groups(struct r5conf *conf, int cnt); static ssize_t raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) { struct r5conf *conf = mddev->private; unsigned long new; int err; struct r5worker_group *old_groups; int old_group_cnt; if (len >= PAGE_SIZE) return -EINVAL; if (!conf) return -ENODEV; if (kstrtoul(page, 10, &new)) return -EINVAL; if (new == conf->worker_cnt_per_group) return len; mddev_suspend(mddev); old_groups = conf->worker_groups; old_group_cnt = conf->worker_cnt_per_group; conf->worker_groups = NULL; err = alloc_thread_groups(conf, new); if (err) { conf->worker_groups = old_groups; conf->worker_cnt_per_group = old_group_cnt; } else { if (old_groups) kfree(old_groups[0].workers); kfree(old_groups); } mddev_resume(mddev); if (err) return err; return len; } static struct md_sysfs_entry raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, raid5_show_group_thread_cnt, raid5_store_group_thread_cnt); static struct attribute *raid5_attrs[] = { &raid5_stripecache_size.attr, &raid5_stripecache_active.attr, &raid5_preread_bypass_threshold.attr, &raid5_group_thread_cnt.attr, NULL, }; static struct attribute_group raid5_attrs_group = { .name = NULL, .attrs = raid5_attrs, }; static int alloc_thread_groups(struct r5conf *conf, int cnt) { int i, j, k; ssize_t size; struct r5worker *workers; conf->worker_cnt_per_group = cnt; if (cnt == 0) { conf->worker_groups = NULL; return 0; } conf->group_cnt = num_possible_nodes(); size = sizeof(struct r5worker) * cnt; workers = kzalloc(size * conf->group_cnt, GFP_NOIO); conf->worker_groups = kzalloc(sizeof(struct r5worker_group) * conf->group_cnt, GFP_NOIO); if (!conf->worker_groups || !workers) { kfree(workers); kfree(conf->worker_groups); conf->worker_groups = NULL; return -ENOMEM; } for (i = 0; i < conf->group_cnt; i++) { struct r5worker_group *group; group = &conf->worker_groups[i]; INIT_LIST_HEAD(&group->handle_list); group->conf = conf; group->workers = workers + i * cnt; for (j = 0; j < cnt; j++) { struct r5worker *worker = group->workers + j; worker->group = group; INIT_WORK(&worker->work, raid5_do_work); for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) INIT_LIST_HEAD(worker->temp_inactive_list + k); } } return 0; } static void free_thread_groups(struct r5conf *conf) { if (conf->worker_groups) kfree(conf->worker_groups[0].workers); kfree(conf->worker_groups); conf->worker_groups = NULL; } static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) { struct r5conf *conf = mddev->private; if (!sectors) sectors = mddev->dev_sectors; if (!raid_disks) /* size is defined by the smallest of previous and new size */ raid_disks = min(conf->raid_disks, conf->previous_raid_disks); sectors &= ~((sector_t)mddev->chunk_sectors - 1); sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); return sectors * (raid_disks - conf->max_degraded); } static void raid5_free_percpu(struct r5conf *conf) { struct raid5_percpu *percpu; unsigned long cpu; if (!conf->percpu) return; get_online_cpus(); for_each_possible_cpu(cpu) { percpu = per_cpu_ptr(conf->percpu, cpu); safe_put_page(percpu->spare_page); kfree(percpu->scribble); } #ifdef CONFIG_HOTPLUG_CPU unregister_cpu_notifier(&conf->cpu_notify); #endif put_online_cpus(); free_percpu(conf->percpu); } static void free_conf(struct r5conf *conf) { free_thread_groups(conf); shrink_stripes(conf); raid5_free_percpu(conf); kfree(conf->disks); kfree(conf->stripe_hashtbl); kfree(conf); } #ifdef CONFIG_HOTPLUG_CPU static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, void *hcpu) { struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); long cpu = (long)hcpu; struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: if (conf->level == 6 && !percpu->spare_page) percpu->spare_page = alloc_page(GFP_KERNEL); if (!percpu->scribble) percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { safe_put_page(percpu->spare_page); kfree(percpu->scribble); pr_err("%s: failed memory allocation for cpu%ld\n", __func__, cpu); return notifier_from_errno(-ENOMEM); } break; case CPU_DEAD: case CPU_DEAD_FROZEN: safe_put_page(percpu->spare_page); kfree(percpu->scribble); percpu->spare_page = NULL; percpu->scribble = NULL; break; default: break; } return NOTIFY_OK; } #endif static int raid5_alloc_percpu(struct r5conf *conf) { unsigned long cpu; struct page *spare_page; struct raid5_percpu __percpu *allcpus; void *scribble; int err; allcpus = alloc_percpu(struct raid5_percpu); if (!allcpus) return -ENOMEM; conf->percpu = allcpus; get_online_cpus(); err = 0; for_each_present_cpu(cpu) { if (conf->level == 6) { spare_page = alloc_page(GFP_KERNEL); if (!spare_page) { err = -ENOMEM; break; } per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page; } scribble = kmalloc(conf->scribble_len, GFP_KERNEL); if (!scribble) { err = -ENOMEM; break; } per_cpu_ptr(conf->percpu, cpu)->scribble = scribble; } #ifdef CONFIG_HOTPLUG_CPU conf->cpu_notify.notifier_call = raid456_cpu_notify; conf->cpu_notify.priority = 0; if (err == 0) err = register_cpu_notifier(&conf->cpu_notify); #endif put_online_cpus(); return err; } static struct r5conf *setup_conf(struct mddev *mddev) { struct r5conf *conf; int raid_disk, memory, max_disks; struct md_rdev *rdev; struct disk_info *disk; char pers_name[6]; int i; if (mddev->new_level != 5 && mddev->new_level != 4 && mddev->new_level != 6) { printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", mdname(mddev), mddev->new_level); return ERR_PTR(-EIO); } if ((mddev->new_level == 5 && !algorithm_valid_raid5(mddev->new_layout)) || (mddev->new_level == 6 && !algorithm_valid_raid6(mddev->new_layout))) { printk(KERN_ERR "md/raid:%s: layout %d not supported\n", mdname(mddev), mddev->new_layout); return ERR_PTR(-EIO); } if (mddev->new_level == 6 && mddev->raid_disks < 4) { printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", mdname(mddev), mddev->raid_disks); return ERR_PTR(-EINVAL); } if (!mddev->new_chunk_sectors || (mddev->new_chunk_sectors << 9) % PAGE_SIZE || !is_power_of_2(mddev->new_chunk_sectors)) { printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", mdname(mddev), mddev->new_chunk_sectors << 9); return ERR_PTR(-EINVAL); } conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); if (conf == NULL) goto abort; /* Don't enable multi-threading by default*/ if (alloc_thread_groups(conf, 0)) goto abort; spin_lock_init(&conf->device_lock); seqcount_init(&conf->gen_lock); init_waitqueue_head(&conf->wait_for_stripe); init_waitqueue_head(&conf->wait_for_overlap); INIT_LIST_HEAD(&conf->handle_list); INIT_LIST_HEAD(&conf->hold_list); INIT_LIST_HEAD(&conf->delayed_list); INIT_LIST_HEAD(&conf->bitmap_list); init_llist_head(&conf->released_stripes); atomic_set(&conf->active_stripes, 0); atomic_set(&conf->preread_active_stripes, 0); atomic_set(&conf->active_aligned_reads, 0); conf->bypass_threshold = BYPASS_THRESHOLD; conf->recovery_disabled = mddev->recovery_disabled - 1; conf->raid_disks = mddev->raid_disks; if (mddev->reshape_position == MaxSector) conf->previous_raid_disks = mddev->raid_disks; else conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; max_disks = max(conf->raid_disks, conf->previous_raid_disks); conf->scribble_len = scribble_len(max_disks); conf->disks = kzalloc(max_disks * sizeof(struct disk_info), GFP_KERNEL); if (!conf->disks) goto abort; conf->mddev = mddev; if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) goto abort; /* We init hash_locks[0] separately to that it can be used * as the reference lock in the spin_lock_nest_lock() call * in lock_all_device_hash_locks_irq in order to convince * lockdep that we know what we are doing. */ spin_lock_init(conf->hash_locks); for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) spin_lock_init(conf->hash_locks + i); for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) INIT_LIST_HEAD(conf->inactive_list + i); for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) INIT_LIST_HEAD(conf->temp_inactive_list + i); conf->level = mddev->new_level; if (raid5_alloc_percpu(conf) != 0) goto abort; pr_debug("raid456: run(%s) called.\n", mdname(mddev)); rdev_for_each(rdev, mddev) { raid_disk = rdev->raid_disk; if (raid_disk >= max_disks || raid_disk < 0) continue; disk = conf->disks + raid_disk; if (test_bit(Replacement, &rdev->flags)) { if (disk->replacement) goto abort; disk->replacement = rdev; } else { if (disk->rdev) goto abort; disk->rdev = rdev; } if (test_bit(In_sync, &rdev->flags)) { char b[BDEVNAME_SIZE]; printk(KERN_INFO "md/raid:%s: device %s operational as raid" " disk %d\n", mdname(mddev), bdevname(rdev->bdev, b), raid_disk); } else if (rdev->saved_raid_disk != raid_disk) /* Cannot rely on bitmap to complete recovery */ conf->fullsync = 1; } conf->chunk_sectors = mddev->new_chunk_sectors; conf->level = mddev->new_level; if (conf->level == 6) conf->max_degraded = 2; else conf->max_degraded = 1; conf->algorithm = mddev->new_layout; conf->reshape_progress = mddev->reshape_position; if (conf->reshape_progress != MaxSector) { conf->prev_chunk_sectors = mddev->chunk_sectors; conf->prev_algo = mddev->layout; } memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); if (grow_stripes(conf, NR_STRIPES)) { printk(KERN_ERR "md/raid:%s: couldn't allocate %dkB for buffers\n", mdname(mddev), memory); goto abort; } else printk(KERN_INFO "md/raid:%s: allocated %dkB\n", mdname(mddev), memory); sprintf(pers_name, "raid%d", mddev->new_level); conf->thread = md_register_thread(raid5d, mddev, pers_name); if (!conf->thread) { printk(KERN_ERR "md/raid:%s: couldn't allocate thread.\n", mdname(mddev)); goto abort; } return conf; abort: if (conf) { free_conf(conf); return ERR_PTR(-EIO); } else return ERR_PTR(-ENOMEM); } static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) { switch (algo) { case ALGORITHM_PARITY_0: if (raid_disk < max_degraded) return 1; break; case ALGORITHM_PARITY_N: if (raid_disk >= raid_disks - max_degraded) return 1; break; case ALGORITHM_PARITY_0_6: if (raid_disk == 0 || raid_disk == raid_disks - 1) return 1; break; case ALGORITHM_LEFT_ASYMMETRIC_6: case ALGORITHM_RIGHT_ASYMMETRIC_6: case ALGORITHM_LEFT_SYMMETRIC_6: case ALGORITHM_RIGHT_SYMMETRIC_6: if (raid_disk == raid_disks - 1) return 1; } return 0; } static int run(struct mddev *mddev) { struct r5conf *conf; int working_disks = 0; int dirty_parity_disks = 0; struct md_rdev *rdev; sector_t reshape_offset = 0; int i; long long min_offset_diff = 0; int first = 1; if (mddev->recovery_cp != MaxSector) printk(KERN_NOTICE "md/raid:%s: not clean" " -- starting background reconstruction\n", mdname(mddev)); rdev_for_each(rdev, mddev) { long long diff; if (rdev->raid_disk < 0) continue; diff = (rdev->new_data_offset - rdev->data_offset); if (first) { min_offset_diff = diff; first = 0; } else if (mddev->reshape_backwards && diff < min_offset_diff) min_offset_diff = diff; else if (!mddev->reshape_backwards && diff > min_offset_diff) min_offset_diff = diff; } if (mddev->reshape_position != MaxSector) { /* Check that we can continue the reshape. * Difficulties arise if the stripe we would write to * next is at or after the stripe we would read from next. * For a reshape that changes the number of devices, this * is only possible for a very short time, and mdadm makes * sure that time appears to have past before assembling * the array. So we fail if that time hasn't passed. * For a reshape that keeps the number of devices the same * mdadm must be monitoring the reshape can keeping the * critical areas read-only and backed up. It will start * the array in read-only mode, so we check for that. */ sector_t here_new, here_old; int old_disks; int max_degraded = (mddev->level == 6 ? 2 : 1); if (mddev->new_level != mddev->level) { printk(KERN_ERR "md/raid:%s: unsupported reshape " "required - aborting.\n", mdname(mddev)); return -EINVAL; } old_disks = mddev->raid_disks - mddev->delta_disks; /* reshape_position must be on a new-stripe boundary, and one * further up in new geometry must map after here in old * geometry. */ here_new = mddev->reshape_position; if (sector_div(here_new, mddev->new_chunk_sectors * (mddev->raid_disks - max_degraded))) { printk(KERN_ERR "md/raid:%s: reshape_position not " "on a stripe boundary\n", mdname(mddev)); return -EINVAL; } reshape_offset = here_new * mddev->new_chunk_sectors; /* here_new is the stripe we will write to */ here_old = mddev->reshape_position; sector_div(here_old, mddev->chunk_sectors * (old_disks-max_degraded)); /* here_old is the first stripe that we might need to read * from */ if (mddev->delta_disks == 0) { if ((here_new * mddev->new_chunk_sectors != here_old * mddev->chunk_sectors)) { printk(KERN_ERR "md/raid:%s: reshape position is" " confused - aborting\n", mdname(mddev)); return -EINVAL; } /* We cannot be sure it is safe to start an in-place * reshape. It is only safe if user-space is monitoring * and taking constant backups. * mdadm always starts a situation like this in * readonly mode so it can take control before * allowing any writes. So just check for that. */ if (abs(min_offset_diff) >= mddev->chunk_sectors && abs(min_offset_diff) >= mddev->new_chunk_sectors) /* not really in-place - so OK */; else if (mddev->ro == 0) { printk(KERN_ERR "md/raid:%s: in-place reshape " "must be started in read-only mode " "- aborting\n", mdname(mddev)); return -EINVAL; } } else if (mddev->reshape_backwards ? (here_new * mddev->new_chunk_sectors + min_offset_diff <= here_old * mddev->chunk_sectors) : (here_new * mddev->new_chunk_sectors >= here_old * mddev->chunk_sectors + (-min_offset_diff))) { /* Reading from the same stripe as writing to - bad */ printk(KERN_ERR "md/raid:%s: reshape_position too early for " "auto-recovery - aborting.\n", mdname(mddev)); return -EINVAL; } printk(KERN_INFO "md/raid:%s: reshape will continue\n", mdname(mddev)); /* OK, we should be able to continue; */ } else { BUG_ON(mddev->level != mddev->new_level); BUG_ON(mddev->layout != mddev->new_layout); BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); BUG_ON(mddev->delta_disks != 0); } if (mddev->private == NULL) conf = setup_conf(mddev); else conf = mddev->private; if (IS_ERR(conf)) return PTR_ERR(conf); conf->min_offset_diff = min_offset_diff; mddev->thread = conf->thread; conf->thread = NULL; mddev->private = conf; for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; i++) { rdev = conf->disks[i].rdev; if (!rdev && conf->disks[i].replacement) { /* The replacement is all we have yet */ rdev = conf->disks[i].replacement; conf->disks[i].replacement = NULL; clear_bit(Replacement, &rdev->flags); conf->disks[i].rdev = rdev; } if (!rdev) continue; if (conf->disks[i].replacement && conf->reshape_progress != MaxSector) { /* replacements and reshape simply do not mix. */ printk(KERN_ERR "md: cannot handle concurrent " "replacement and reshape.\n"); goto abort; } if (test_bit(In_sync, &rdev->flags)) { working_disks++; continue; } /* This disc is not fully in-sync. However if it * just stored parity (beyond the recovery_offset), * when we don't need to be concerned about the * array being dirty. * When reshape goes 'backwards', we never have * partially completed devices, so we only need * to worry about reshape going forwards. */ /* Hack because v0.91 doesn't store recovery_offset properly. */ if (mddev->major_version == 0 && mddev->minor_version > 90) rdev->recovery_offset = reshape_offset; if (rdev->recovery_offset < reshape_offset) { /* We need to check old and new layout */ if (!only_parity(rdev->raid_disk, conf->algorithm, conf->raid_disks, conf->max_degraded)) continue; } if (!only_parity(rdev->raid_disk, conf->prev_algo, conf->previous_raid_disks, conf->max_degraded)) continue; dirty_parity_disks++; } /* * 0 for a fully functional array, 1 or 2 for a degraded array. */ mddev->degraded = calc_degraded(conf); if (has_failed(conf)) { printk(KERN_ERR "md/raid:%s: not enough operational devices" " (%d/%d failed)\n", mdname(mddev), mddev->degraded, conf->raid_disks); goto abort; } /* device size must be a multiple of chunk size */ mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); mddev->resync_max_sectors = mddev->dev_sectors; if (mddev->degraded > dirty_parity_disks && mddev->recovery_cp != MaxSector) { if (mddev->ok_start_degraded) printk(KERN_WARNING "md/raid:%s: starting dirty degraded array" " - data corruption possible.\n", mdname(mddev)); else { printk(KERN_ERR "md/raid:%s: cannot start dirty degraded array.\n", mdname(mddev)); goto abort; } } if (mddev->degraded == 0) printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" " devices, algorithm %d\n", mdname(mddev), conf->level, mddev->raid_disks-mddev->degraded, mddev->raid_disks, mddev->new_layout); else printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" " out of %d devices, algorithm %d\n", mdname(mddev), conf->level, mddev->raid_disks - mddev->degraded, mddev->raid_disks, mddev->new_layout); print_raid5_conf(conf); if (conf->reshape_progress != MaxSector) { conf->reshape_safe = conf->reshape_progress; atomic_set(&conf->reshape_stripes, 0); clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); mddev->sync_thread = md_register_thread(md_do_sync, mddev, "reshape"); } /* Ok, everything is just fine now */ if (mddev->to_remove == &raid5_attrs_group) mddev->to_remove = NULL; else if (mddev->kobj.sd && sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) printk(KERN_WARNING "raid5: failed to create sysfs attributes for %s\n", mdname(mddev)); md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); if (mddev->queue) { int chunk_size; bool discard_supported = true; /* read-ahead size must cover two whole stripes, which * is 2 * (datadisks) * chunksize where 'n' is the * number of raid devices */ int data_disks = conf->previous_raid_disks - conf->max_degraded; int stripe = data_disks * ((mddev->chunk_sectors << 9) / PAGE_SIZE); if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) mddev->queue->backing_dev_info.ra_pages = 2 * stripe; blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); mddev->queue->backing_dev_info.congested_data = mddev; mddev->queue->backing_dev_info.congested_fn = raid5_congested; chunk_size = mddev->chunk_sectors << 9; blk_queue_io_min(mddev->queue, chunk_size); blk_queue_io_opt(mddev->queue, chunk_size * (conf->raid_disks - conf->max_degraded)); /* * We can only discard a whole stripe. It doesn't make sense to * discard data disk but write parity disk */ stripe = stripe * PAGE_SIZE; /* Round up to power of 2, as discard handling * currently assumes that */ while ((stripe-1) & stripe) stripe = (stripe | (stripe-1)) + 1; mddev->queue->limits.discard_alignment = stripe; mddev->queue->limits.discard_granularity = stripe; /* * unaligned part of discard request will be ignored, so can't * guarantee discard_zerors_data */ mddev->queue->limits.discard_zeroes_data = 0; blk_queue_max_write_same_sectors(mddev->queue, 0); rdev_for_each(rdev, mddev) { disk_stack_limits(mddev->gendisk, rdev->bdev, rdev->data_offset << 9); disk_stack_limits(mddev->gendisk, rdev->bdev, rdev->new_data_offset << 9); /* * discard_zeroes_data is required, otherwise data * could be lost. Consider a scenario: discard a stripe * (the stripe could be inconsistent if * discard_zeroes_data is 0); write one disk of the * stripe (the stripe could be inconsistent again * depending on which disks are used to calculate * parity); the disk is broken; The stripe data of this * disk is lost. */ if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || !bdev_get_queue(rdev->bdev)-> limits.discard_zeroes_data) discard_supported = false; } if (discard_supported && mddev->queue->limits.max_discard_sectors >= stripe && mddev->queue->limits.discard_granularity >= stripe) queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); else queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); } return 0; abort: md_unregister_thread(&mddev->thread); print_raid5_conf(conf); free_conf(conf); mddev->private = NULL; printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); return -EIO; } static int stop(struct mddev *mddev) { struct r5conf *conf = mddev->private; md_unregister_thread(&mddev->thread); if (mddev->queue) mddev->queue->backing_dev_info.congested_fn = NULL; free_conf(conf); mddev->private = NULL; mddev->to_remove = &raid5_attrs_group; return 0; } static void status(struct seq_file *seq, struct mddev *mddev) { struct r5conf *conf = mddev->private; int i; seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_sectors / 2, mddev->layout); seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); for (i = 0; i < conf->raid_disks; i++) seq_printf (seq, "%s", conf->disks[i].rdev && test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); seq_printf (seq, "]"); } static void print_raid5_conf (struct r5conf *conf) { int i; struct disk_info *tmp; printk(KERN_DEBUG "RAID conf printout:\n"); if (!conf) { printk("(conf==NULL)\n"); return; } printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, conf->raid_disks, conf->raid_disks - conf->mddev->degraded); for (i = 0; i < conf->raid_disks; i++) { char b[BDEVNAME_SIZE]; tmp = conf->disks + i; if (tmp->rdev) printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", i, !test_bit(Faulty, &tmp->rdev->flags), bdevname(tmp->rdev->bdev, b)); } } static int raid5_spare_active(struct mddev *mddev) { int i; struct r5conf *conf = mddev->private; struct disk_info *tmp; int count = 0; unsigned long flags; for (i = 0; i < conf->raid_disks; i++) { tmp = conf->disks + i; if (tmp->replacement && tmp->replacement->recovery_offset == MaxSector && !test_bit(Faulty, &tmp->replacement->flags) && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { /* Replacement has just become active. */ if (!tmp->rdev || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) count++; if (tmp->rdev) { /* Replaced device not technically faulty, * but we need to be sure it gets removed * and never re-added. */ set_bit(Faulty, &tmp->rdev->flags); sysfs_notify_dirent_safe( tmp->rdev->sysfs_state); } sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); } else if (tmp->rdev && tmp->rdev->recovery_offset == MaxSector && !test_bit(Faulty, &tmp->rdev->flags) && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { count++; sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); } } spin_lock_irqsave(&conf->device_lock, flags); mddev->degraded = calc_degraded(conf); spin_unlock_irqrestore(&conf->device_lock, flags); print_raid5_conf(conf); return count; } static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) { struct r5conf *conf = mddev->private; int err = 0; int number = rdev->raid_disk; struct md_rdev **rdevp; struct disk_info *p = conf->disks + number; print_raid5_conf(conf); if (rdev == p->rdev) rdevp = &p->rdev; else if (rdev == p->replacement) rdevp = &p->replacement; else return 0; if (number >= conf->raid_disks && conf->reshape_progress == MaxSector) clear_bit(In_sync, &rdev->flags); if (test_bit(In_sync, &rdev->flags) || atomic_read(&rdev->nr_pending)) { err = -EBUSY; goto abort; } /* Only remove non-faulty devices if recovery * isn't possible. */ if (!test_bit(Faulty, &rdev->flags) && mddev->recovery_disabled != conf->recovery_disabled && !has_failed(conf) && (!p->replacement || p->replacement == rdev) && number < conf->raid_disks) { err = -EBUSY; goto abort; } *rdevp = NULL; synchronize_rcu(); if (atomic_read(&rdev->nr_pending)) { /* lost the race, try later */ err = -EBUSY; *rdevp = rdev; } else if (p->replacement) { /* We must have just cleared 'rdev' */ p->rdev = p->replacement; clear_bit(Replacement, &p->replacement->flags); smp_mb(); /* Make sure other CPUs may see both as identical * but will never see neither - if they are careful */ p->replacement = NULL; clear_bit(WantReplacement, &rdev->flags); } else /* We might have just removed the Replacement as faulty- * clear the bit just in case */ clear_bit(WantReplacement, &rdev->flags); abort: print_raid5_conf(conf); return err; } static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) { struct r5conf *conf = mddev->private; int err = -EEXIST; int disk; struct disk_info *p; int first = 0; int last = conf->raid_disks - 1; if (mddev->recovery_disabled == conf->recovery_disabled) return -EBUSY; if (rdev->saved_raid_disk < 0 && has_failed(conf)) /* no point adding a device */ return -EINVAL; if (rdev->raid_disk >= 0) first = last = rdev->raid_disk; /* * find the disk ... but prefer rdev->saved_raid_disk * if possible. */ if (rdev->saved_raid_disk >= 0 && rdev->saved_raid_disk >= first && conf->disks[rdev->saved_raid_disk].rdev == NULL) first = rdev->saved_raid_disk; for (disk = first; disk <= last; disk++) { p = conf->disks + disk; if (p->rdev == NULL) { clear_bit(In_sync, &rdev->flags); rdev->raid_disk = disk; err = 0; if (rdev->saved_raid_disk != disk) conf->fullsync = 1; rcu_assign_pointer(p->rdev, rdev); goto out; } } for (disk = first; disk <= last; disk++) { p = conf->disks + disk; if (test_bit(WantReplacement, &p->rdev->flags) && p->replacement == NULL) { clear_bit(In_sync, &rdev->flags); set_bit(Replacement, &rdev->flags); rdev->raid_disk = disk; err = 0; conf->fullsync = 1; rcu_assign_pointer(p->replacement, rdev); break; } } out: print_raid5_conf(conf); return err; } static int raid5_resize(struct mddev *mddev, sector_t sectors) { /* no resync is happening, and there is enough space * on all devices, so we can resize. * We need to make sure resync covers any new space. * If the array is shrinking we should possibly wait until * any io in the removed space completes, but it hardly seems * worth it. */ sector_t newsize; sectors &= ~((sector_t)mddev->chunk_sectors - 1); newsize = raid5_size(mddev, sectors, mddev->raid_disks); if (mddev->external_size && mddev->array_sectors > newsize) return -EINVAL; if (mddev->bitmap) { int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); if (ret) return ret; } md_set_array_sectors(mddev, newsize); set_capacity(mddev->gendisk, mddev->array_sectors); revalidate_disk(mddev->gendisk); if (sectors > mddev->dev_sectors && mddev->recovery_cp > mddev->dev_sectors) { mddev->recovery_cp = mddev->dev_sectors; set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); } mddev->dev_sectors = sectors; mddev->resync_max_sectors = sectors; return 0; } static int check_stripe_cache(struct mddev *mddev) { /* Can only proceed if there are plenty of stripe_heads. * We need a minimum of one full stripe,, and for sensible progress * it is best to have about 4 times that. * If we require 4 times, then the default 256 4K stripe_heads will * allow for chunk sizes up to 256K, which is probably OK. * If the chunk size is greater, user-space should request more * stripe_heads first. */ struct r5conf *conf = mddev->private; if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 > conf->max_nr_stripes || ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 > conf->max_nr_stripes) { printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", mdname(mddev), ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) / STRIPE_SIZE)*4); return 0; } return 1; } static int check_reshape(struct mddev *mddev) { struct r5conf *conf = mddev->private; if (mddev->delta_disks == 0 && mddev->new_layout == mddev->layout && mddev->new_chunk_sectors == mddev->chunk_sectors) return 0; /* nothing to do */ if (has_failed(conf)) return -EINVAL; if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { /* We might be able to shrink, but the devices must * be made bigger first. * For raid6, 4 is the minimum size. * Otherwise 2 is the minimum */ int min = 2; if (mddev->level == 6) min = 4; if (mddev->raid_disks + mddev->delta_disks < min) return -EINVAL; } if (!check_stripe_cache(mddev)) return -ENOSPC; return resize_stripes(conf, (conf->previous_raid_disks + mddev->delta_disks)); } static int raid5_start_reshape(struct mddev *mddev) { struct r5conf *conf = mddev->private; struct md_rdev *rdev; int spares = 0; unsigned long flags; if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) return -EBUSY; if (!check_stripe_cache(mddev)) return -ENOSPC; if (has_failed(conf)) return -EINVAL; rdev_for_each(rdev, mddev) { if (!test_bit(In_sync, &rdev->flags) && !test_bit(Faulty, &rdev->flags)) spares++; } if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) /* Not enough devices even to make a degraded array * of that size */ return -EINVAL; /* Refuse to reduce size of the array. Any reductions in * array size must be through explicit setting of array_size * attribute. */ if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) < mddev->array_sectors) { printk(KERN_ERR "md/raid:%s: array size must be reduced " "before number of disks\n", mdname(mddev)); return -EINVAL; } atomic_set(&conf->reshape_stripes, 0); spin_lock_irq(&conf->device_lock); write_seqcount_begin(&conf->gen_lock); conf->previous_raid_disks = conf->raid_disks; conf->raid_disks += mddev->delta_disks; conf->prev_chunk_sectors = conf->chunk_sectors; conf->chunk_sectors = mddev->new_chunk_sectors; conf->prev_algo = conf->algorithm; conf->algorithm = mddev->new_layout; conf->generation++; /* Code that selects data_offset needs to see the generation update * if reshape_progress has been set - so a memory barrier needed. */ smp_mb(); if (mddev->reshape_backwards) conf->reshape_progress = raid5_size(mddev, 0, 0); else conf->reshape_progress = 0; conf->reshape_safe = conf->reshape_progress; write_seqcount_end(&conf->gen_lock); spin_unlock_irq(&conf->device_lock); /* Now make sure any requests that proceeded on the assumption * the reshape wasn't running - like Discard or Read - have * completed. */ mddev_suspend(mddev); mddev_resume(mddev); /* Add some new drives, as many as will fit. * We know there are enough to make the newly sized array work. * Don't add devices if we are reducing the number of * devices in the array. This is because it is not possible * to correctly record the "partially reconstructed" state of * such devices during the reshape and confusion could result. */ if (mddev->delta_disks >= 0) { rdev_for_each(rdev, mddev) if (rdev->raid_disk < 0 && !test_bit(Faulty, &rdev->flags)) { if (raid5_add_disk(mddev, rdev) == 0) { if (rdev->raid_disk >= conf->previous_raid_disks) set_bit(In_sync, &rdev->flags); else rdev->recovery_offset = 0; if (sysfs_link_rdev(mddev, rdev)) /* Failure here is OK */; } } else if (rdev->raid_disk >= conf->previous_raid_disks && !test_bit(Faulty, &rdev->flags)) { /* This is a spare that was manually added */ set_bit(In_sync, &rdev->flags); } /* When a reshape changes the number of devices, * ->degraded is measured against the larger of the * pre and post number of devices. */ spin_lock_irqsave(&conf->device_lock, flags); mddev->degraded = calc_degraded(conf); spin_unlock_irqrestore(&conf->device_lock, flags); } mddev->raid_disks = conf->raid_disks; mddev->reshape_position = conf->reshape_progress; set_bit(MD_CHANGE_DEVS, &mddev->flags); clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); mddev->sync_thread = md_register_thread(md_do_sync, mddev, "reshape"); if (!mddev->sync_thread) { mddev->recovery = 0; spin_lock_irq(&conf->device_lock); write_seqcount_begin(&conf->gen_lock); mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; mddev->new_chunk_sectors = conf->chunk_sectors = conf->prev_chunk_sectors; mddev->new_layout = conf->algorithm = conf->prev_algo; rdev_for_each(rdev, mddev) rdev->new_data_offset = rdev->data_offset; smp_wmb(); conf->generation --; conf->reshape_progress = MaxSector; mddev->reshape_position = MaxSector; write_seqcount_end(&conf->gen_lock); spin_unlock_irq(&conf->device_lock); return -EAGAIN; } conf->reshape_checkpoint = jiffies; md_wakeup_thread(mddev->sync_thread); md_new_event(mddev); return 0; } /* This is called from the reshape thread and should make any * changes needed in 'conf' */ static void end_reshape(struct r5conf *conf) { if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { struct md_rdev *rdev; spin_lock_irq(&conf->device_lock); conf->previous_raid_disks = conf->raid_disks; rdev_for_each(rdev, conf->mddev) rdev->data_offset = rdev->new_data_offset; smp_wmb(); conf->reshape_progress = MaxSector; spin_unlock_irq(&conf->device_lock); wake_up(&conf->wait_for_overlap); /* read-ahead size must cover two whole stripes, which is * 2 * (datadisks) * chunksize where 'n' is the number of raid devices */ if (conf->mddev->queue) { int data_disks = conf->raid_disks - conf->max_degraded; int stripe = data_disks * ((conf->chunk_sectors << 9) / PAGE_SIZE); if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; } } } /* This is called from the raid5d thread with mddev_lock held. * It makes config changes to the device. */ static void raid5_finish_reshape(struct mddev *mddev) { struct r5conf *conf = mddev->private; if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { if (mddev->delta_disks > 0) { md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); set_capacity(mddev->gendisk, mddev->array_sectors); revalidate_disk(mddev->gendisk); } else { int d; spin_lock_irq(&conf->device_lock); mddev->degraded = calc_degraded(conf); spin_unlock_irq(&conf->device_lock); for (d = conf->raid_disks ; d < conf->raid_disks - mddev->delta_disks; d++) { struct md_rdev *rdev = conf->disks[d].rdev; if (rdev) clear_bit(In_sync, &rdev->flags); rdev = conf->disks[d].replacement; if (rdev) clear_bit(In_sync, &rdev->flags); } } mddev->layout = conf->algorithm; mddev->chunk_sectors = conf->chunk_sectors; mddev->reshape_position = MaxSector; mddev->delta_disks = 0; mddev->reshape_backwards = 0; } } static void raid5_quiesce(struct mddev *mddev, int state) { struct r5conf *conf = mddev->private; switch(state) { case 2: /* resume for a suspend */ wake_up(&conf->wait_for_overlap); break; case 1: /* stop all writes */ lock_all_device_hash_locks_irq(conf); /* '2' tells resync/reshape to pause so that all * active stripes can drain */ conf->quiesce = 2; wait_event_cmd(conf->wait_for_stripe, atomic_read(&conf->active_stripes) == 0 && atomic_read(&conf->active_aligned_reads) == 0, unlock_all_device_hash_locks_irq(conf), lock_all_device_hash_locks_irq(conf)); conf->quiesce = 1; unlock_all_device_hash_locks_irq(conf); /* allow reshape to continue */ wake_up(&conf->wait_for_overlap); break; case 0: /* re-enable writes */ lock_all_device_hash_locks_irq(conf); conf->quiesce = 0; wake_up(&conf->wait_for_stripe); wake_up(&conf->wait_for_overlap); unlock_all_device_hash_locks_irq(conf); break; } } static void *raid45_takeover_raid0(struct mddev *mddev, int level) { struct r0conf *raid0_conf = mddev->private; sector_t sectors; /* for raid0 takeover only one zone is supported */ if (raid0_conf->nr_strip_zones > 1) { printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", mdname(mddev)); return ERR_PTR(-EINVAL); } sectors = raid0_conf->strip_zone[0].zone_end; sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); mddev->dev_sectors = sectors; mddev->new_level = level; mddev->new_layout = ALGORITHM_PARITY_N; mddev->new_chunk_sectors = mddev->chunk_sectors; mddev->raid_disks += 1; mddev->delta_disks = 1; /* make sure it will be not marked as dirty */ mddev->recovery_cp = MaxSector; return setup_conf(mddev); } static void *raid5_takeover_raid1(struct mddev *mddev) { int chunksect; if (mddev->raid_disks != 2 || mddev->degraded > 1) return ERR_PTR(-EINVAL); /* Should check if there are write-behind devices? */ chunksect = 64*2; /* 64K by default */ /* The array must be an exact multiple of chunksize */ while (chunksect && (mddev->array_sectors & (chunksect-1))) chunksect >>= 1; if ((chunksect<<9) < STRIPE_SIZE) /* array size does not allow a suitable chunk size */ return ERR_PTR(-EINVAL); mddev->new_level = 5; mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; mddev->new_chunk_sectors = chunksect; return setup_conf(mddev); } static void *raid5_takeover_raid6(struct mddev *mddev) { int new_layout; switch (mddev->layout) { case ALGORITHM_LEFT_ASYMMETRIC_6: new_layout = ALGORITHM_LEFT_ASYMMETRIC; break; case ALGORITHM_RIGHT_ASYMMETRIC_6: new_layout = ALGORITHM_RIGHT_ASYMMETRIC; break; case ALGORITHM_LEFT_SYMMETRIC_6: new_layout = ALGORITHM_LEFT_SYMMETRIC; break; case ALGORITHM_RIGHT_SYMMETRIC_6: new_layout = ALGORITHM_RIGHT_SYMMETRIC; break; case ALGORITHM_PARITY_0_6: new_layout = ALGORITHM_PARITY_0; break; case ALGORITHM_PARITY_N: new_layout = ALGORITHM_PARITY_N; break; default: return ERR_PTR(-EINVAL); } mddev->new_level = 5; mddev->new_layout = new_layout; mddev->delta_disks = -1; mddev->raid_disks -= 1; return setup_conf(mddev); } static int raid5_check_reshape(struct mddev *mddev) { /* For a 2-drive array, the layout and chunk size can be changed * immediately as not restriping is needed. * For larger arrays we record the new value - after validation * to be used by a reshape pass. */ struct r5conf *conf = mddev->private; int new_chunk = mddev->new_chunk_sectors; if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) return -EINVAL; if (new_chunk > 0) { if (!is_power_of_2(new_chunk)) return -EINVAL; if (new_chunk < (PAGE_SIZE>>9)) return -EINVAL; if (mddev->array_sectors & (new_chunk-1)) /* not factor of array size */ return -EINVAL; } /* They look valid */ if (mddev->raid_disks == 2) { /* can make the change immediately */ if (mddev->new_layout >= 0) { conf->algorithm = mddev->new_layout; mddev->layout = mddev->new_layout; } if (new_chunk > 0) { conf->chunk_sectors = new_chunk ; mddev->chunk_sectors = new_chunk; } set_bit(MD_CHANGE_DEVS, &mddev->flags); md_wakeup_thread(mddev->thread); } return check_reshape(mddev); } static int raid6_check_reshape(struct mddev *mddev) { int new_chunk = mddev->new_chunk_sectors; if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) return -EINVAL; if (new_chunk > 0) { if (!is_power_of_2(new_chunk)) return -EINVAL; if (new_chunk < (PAGE_SIZE >> 9)) return -EINVAL; if (mddev->array_sectors & (new_chunk-1)) /* not factor of array size */ return -EINVAL; } /* They look valid */ return check_reshape(mddev); } static void *raid5_takeover(struct mddev *mddev) { /* raid5 can take over: * raid0 - if there is only one strip zone - make it a raid4 layout * raid1 - if there are two drives. We need to know the chunk size * raid4 - trivial - just use a raid4 layout. * raid6 - Providing it is a *_6 layout */ if (mddev->level == 0) return raid45_takeover_raid0(mddev, 5); if (mddev->level == 1) return raid5_takeover_raid1(mddev); if (mddev->level == 4) { mddev->new_layout = ALGORITHM_PARITY_N; mddev->new_level = 5; return setup_conf(mddev); } if (mddev->level == 6) return raid5_takeover_raid6(mddev); return ERR_PTR(-EINVAL); } static void *raid4_takeover(struct mddev *mddev) { /* raid4 can take over: * raid0 - if there is only one strip zone * raid5 - if layout is right */ if (mddev->level == 0) return raid45_takeover_raid0(mddev, 4); if (mddev->level == 5 && mddev->layout == ALGORITHM_PARITY_N) { mddev->new_layout = 0; mddev->new_level = 4; return setup_conf(mddev); } return ERR_PTR(-EINVAL); } static struct md_personality raid5_personality; static void *raid6_takeover(struct mddev *mddev) { /* Currently can only take over a raid5. We map the * personality to an equivalent raid6 personality * with the Q block at the end. */ int new_layout; if (mddev->pers != &raid5_personality) return ERR_PTR(-EINVAL); if (mddev->degraded > 1) return ERR_PTR(-EINVAL); if (mddev->raid_disks > 253) return ERR_PTR(-EINVAL); if (mddev->raid_disks < 3) return ERR_PTR(-EINVAL); switch (mddev->layout) { case ALGORITHM_LEFT_ASYMMETRIC: new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; break; case ALGORITHM_RIGHT_ASYMMETRIC: new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; break; case ALGORITHM_LEFT_SYMMETRIC: new_layout = ALGORITHM_LEFT_SYMMETRIC_6; break; case ALGORITHM_RIGHT_SYMMETRIC: new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; break; case ALGORITHM_PARITY_0: new_layout = ALGORITHM_PARITY_0_6; break; case ALGORITHM_PARITY_N: new_layout = ALGORITHM_PARITY_N; break; default: return ERR_PTR(-EINVAL); } mddev->new_level = 6; mddev->new_layout = new_layout; mddev->delta_disks = 1; mddev->raid_disks += 1; return setup_conf(mddev); } static struct md_personality raid6_personality = { .name = "raid6", .level = 6, .owner = THIS_MODULE, .make_request = make_request, .run = run, .stop = stop, .status = status, .error_handler = error, .hot_add_disk = raid5_add_disk, .hot_remove_disk= raid5_remove_disk, .spare_active = raid5_spare_active, .sync_request = sync_request, .resize = raid5_resize, .size = raid5_size, .check_reshape = raid6_check_reshape, .start_reshape = raid5_start_reshape, .finish_reshape = raid5_finish_reshape, .quiesce = raid5_quiesce, .takeover = raid6_takeover, }; static struct md_personality raid5_personality = { .name = "raid5", .level = 5, .owner = THIS_MODULE, .make_request = make_request, .run = run, .stop = stop, .status = status, .error_handler = error, .hot_add_disk = raid5_add_disk, .hot_remove_disk= raid5_remove_disk, .spare_active = raid5_spare_active, .sync_request = sync_request, .resize = raid5_resize, .size = raid5_size, .check_reshape = raid5_check_reshape, .start_reshape = raid5_start_reshape, .finish_reshape = raid5_finish_reshape, .quiesce = raid5_quiesce, .takeover = raid5_takeover, }; static struct md_personality raid4_personality = { .name = "raid4", .level = 4, .owner = THIS_MODULE, .make_request = make_request, .run = run, .stop = stop, .status = status, .error_handler = error, .hot_add_disk = raid5_add_disk, .hot_remove_disk= raid5_remove_disk, .spare_active = raid5_spare_active, .sync_request = sync_request, .resize = raid5_resize, .size = raid5_size, .check_reshape = raid5_check_reshape, .start_reshape = raid5_start_reshape, .finish_reshape = raid5_finish_reshape, .quiesce = raid5_quiesce, .takeover = raid4_takeover, }; static int __init raid5_init(void) { raid5_wq = alloc_workqueue("raid5wq", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); if (!raid5_wq) return -ENOMEM; register_md_personality(&raid6_personality); register_md_personality(&raid5_personality); register_md_personality(&raid4_personality); return 0; } static void raid5_exit(void) { unregister_md_personality(&raid6_personality); unregister_md_personality(&raid5_personality); unregister_md_personality(&raid4_personality); destroy_workqueue(raid5_wq); } module_init(raid5_init); module_exit(raid5_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); MODULE_ALIAS("md-personality-4"); /* RAID5 */ MODULE_ALIAS("md-raid5"); MODULE_ALIAS("md-raid4"); MODULE_ALIAS("md-level-5"); MODULE_ALIAS("md-level-4"); MODULE_ALIAS("md-personality-8"); /* RAID6 */ MODULE_ALIAS("md-raid6"); MODULE_ALIAS("md-level-6"); /* This used to be two separate modules, they were: */ MODULE_ALIAS("raid5"); MODULE_ALIAS("raid6");