#define pr_fmt(fmt) "efi: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #define EFI_MIN_RESERVE 5120 #define EFI_DUMMY_GUID \ EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9) static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 }; static bool efi_no_storage_paranoia; /* * Some firmware implementations refuse to boot if there's insufficient * space in the variable store. The implementation of garbage collection * in some FW versions causes stale (deleted) variables to take up space * longer than intended and space is only freed once the store becomes * almost completely full. * * Enabling this option disables the space checks in * efi_query_variable_store() and forces garbage collection. * * Only enable this option if deleting EFI variables does not free up * space in your variable store, e.g. if despite deleting variables * you're unable to create new ones. */ static int __init setup_storage_paranoia(char *arg) { efi_no_storage_paranoia = true; return 0; } early_param("efi_no_storage_paranoia", setup_storage_paranoia); /* * Deleting the dummy variable which kicks off garbage collection */ void efi_delete_dummy_variable(void) { efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL); } /* * In the nonblocking case we do not attempt to perform garbage * collection if we do not have enough free space. Rather, we do the * bare minimum check and give up immediately if the available space * is below EFI_MIN_RESERVE. * * This function is intended to be small and simple because it is * invoked from crash handler paths. */ static efi_status_t query_variable_store_nonblocking(u32 attributes, unsigned long size) { efi_status_t status; u64 storage_size, remaining_size, max_size; status = efi.query_variable_info_nonblocking(attributes, &storage_size, &remaining_size, &max_size); if (status != EFI_SUCCESS) return status; if (remaining_size - size < EFI_MIN_RESERVE) return EFI_OUT_OF_RESOURCES; return EFI_SUCCESS; } /* * Some firmware implementations refuse to boot if there's insufficient space * in the variable store. Ensure that we never use more than a safe limit. * * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable * store. */ efi_status_t efi_query_variable_store(u32 attributes, unsigned long size, bool nonblocking) { efi_status_t status; u64 storage_size, remaining_size, max_size; if (!(attributes & EFI_VARIABLE_NON_VOLATILE)) return 0; if (nonblocking) return query_variable_store_nonblocking(attributes, size); status = efi.query_variable_info(attributes, &storage_size, &remaining_size, &max_size); if (status != EFI_SUCCESS) return status; /* * We account for that by refusing the write if permitting it would * reduce the available space to under 5KB. This figure was provided by * Samsung, so should be safe. */ if ((remaining_size - size < EFI_MIN_RESERVE) && !efi_no_storage_paranoia) { /* * Triggering garbage collection may require that the firmware * generate a real EFI_OUT_OF_RESOURCES error. We can force * that by attempting to use more space than is available. */ unsigned long dummy_size = remaining_size + 1024; void *dummy = kzalloc(dummy_size, GFP_ATOMIC); if (!dummy) return EFI_OUT_OF_RESOURCES; status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS, dummy_size, dummy); if (status == EFI_SUCCESS) { /* * This should have failed, so if it didn't make sure * that we delete it... */ efi_delete_dummy_variable(); } kfree(dummy); /* * The runtime code may now have triggered a garbage collection * run, so check the variable info again */ status = efi.query_variable_info(attributes, &storage_size, &remaining_size, &max_size); if (status != EFI_SUCCESS) return status; /* * There still isn't enough room, so return an error */ if (remaining_size - size < EFI_MIN_RESERVE) return EFI_OUT_OF_RESOURCES; } return EFI_SUCCESS; } EXPORT_SYMBOL_GPL(efi_query_variable_store); /* * Helper function for efi_reserve_boot_services() to figure out if we * can free regions in efi_free_boot_services(). * * Use this function to ensure we do not free regions owned by somebody * else. We must only reserve (and then free) regions: * * - Not within any part of the kernel * - Not the BIOS reserved area (E820_RESERVED, E820_NVS, etc) */ static bool can_free_region(u64 start, u64 size) { if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end)) return false; if (!e820_all_mapped(start, start+size, E820_RAM)) return false; return true; } /* * The UEFI specification makes it clear that the operating system is free to do * whatever it wants with boot services code after ExitBootServices() has been * called. Ignoring this recommendation a significant bunch of EFI implementations * continue calling into boot services code (SetVirtualAddressMap). In order to * work around such buggy implementations we reserve boot services region during * EFI init and make sure it stays executable. Then, after SetVirtualAddressMap(), it * is discarded. */ void __init efi_reserve_boot_services(void) { efi_memory_desc_t *md; for_each_efi_memory_desc(md) { u64 start = md->phys_addr; u64 size = md->num_pages << EFI_PAGE_SHIFT; bool already_reserved; if (md->type != EFI_BOOT_SERVICES_CODE && md->type != EFI_BOOT_SERVICES_DATA) continue; already_reserved = memblock_is_region_reserved(start, size); /* * Because the following memblock_reserve() is paired * with free_bootmem_late() for this region in * efi_free_boot_services(), we must be extremely * careful not to reserve, and subsequently free, * critical regions of memory (like the kernel image) or * those regions that somebody else has already * reserved. * * A good example of a critical region that must not be * freed is page zero (first 4Kb of memory), which may * contain boot services code/data but is marked * E820_RESERVED by trim_bios_range(). */ if (!already_reserved) { memblock_reserve(start, size); /* * If we are the first to reserve the region, no * one else cares about it. We own it and can * free it later. */ if (can_free_region(start, size)) continue; } /* * We don't own the region. We must not free it. * * Setting this bit for a boot services region really * doesn't make sense as far as the firmware is * concerned, but it does provide us with a way to tag * those regions that must not be paired with * free_bootmem_late(). */ md->attribute |= EFI_MEMORY_RUNTIME; } } void __init efi_free_boot_services(void) { efi_memory_desc_t *md; for_each_efi_memory_desc(md) { unsigned long long start = md->phys_addr; unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; size_t rm_size; if (md->type != EFI_BOOT_SERVICES_CODE && md->type != EFI_BOOT_SERVICES_DATA) continue; /* Do not free, someone else owns it: */ if (md->attribute & EFI_MEMORY_RUNTIME) continue; /* * Nasty quirk: if all sub-1MB memory is used for boot * services, we can get here without having allocated the * real mode trampoline. It's too late to hand boot services * memory back to the memblock allocator, so instead * try to manually allocate the trampoline if needed. * * I've seen this on a Dell XPS 13 9350 with firmware * 1.4.4 with SGX enabled booting Linux via Fedora 24's * grub2-efi on a hard disk. (And no, I don't know why * this happened, but Linux should still try to boot rather * panicing early.) */ rm_size = real_mode_size_needed(); if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) { set_real_mode_mem(start, rm_size); start += rm_size; size -= rm_size; } free_bootmem_late(start, size); } } /* * A number of config table entries get remapped to virtual addresses * after entering EFI virtual mode. However, the kexec kernel requires * their physical addresses therefore we pass them via setup_data and * correct those entries to their respective physical addresses here. * * Currently only handles smbios which is necessary for some firmware * implementation. */ int __init efi_reuse_config(u64 tables, int nr_tables) { int i, sz, ret = 0; void *p, *tablep; struct efi_setup_data *data; if (!efi_setup) return 0; if (!efi_enabled(EFI_64BIT)) return 0; data = early_memremap(efi_setup, sizeof(*data)); if (!data) { ret = -ENOMEM; goto out; } if (!data->smbios) goto out_memremap; sz = sizeof(efi_config_table_64_t); p = tablep = early_memremap(tables, nr_tables * sz); if (!p) { pr_err("Could not map Configuration table!\n"); ret = -ENOMEM; goto out_memremap; } for (i = 0; i < efi.systab->nr_tables; i++) { efi_guid_t guid; guid = ((efi_config_table_64_t *)p)->guid; if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) ((efi_config_table_64_t *)p)->table = data->smbios; p += sz; } early_memunmap(tablep, nr_tables * sz); out_memremap: early_memunmap(data, sizeof(*data)); out: return ret; } static const struct dmi_system_id sgi_uv1_dmi[] = { { NULL, "SGI UV1", { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"), DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"), DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"), } }, { } /* NULL entry stops DMI scanning */ }; void __init efi_apply_memmap_quirks(void) { /* * Once setup is done earlier, unmap the EFI memory map on mismatched * firmware/kernel architectures since there is no support for runtime * services. */ if (!efi_runtime_supported()) { pr_info("Setup done, disabling due to 32/64-bit mismatch\n"); efi_memmap_unmap(); } /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */ if (dmi_check_system(sgi_uv1_dmi)) set_bit(EFI_OLD_MEMMAP, &efi.flags); } /* * For most modern platforms the preferred method of powering off is via * ACPI. However, there are some that are known to require the use of * EFI runtime services and for which ACPI does not work at all. * * Using EFI is a last resort, to be used only if no other option * exists. */ bool efi_reboot_required(void) { if (!acpi_gbl_reduced_hardware) return false; efi_reboot_quirk_mode = EFI_RESET_WARM; return true; } bool efi_poweroff_required(void) { return acpi_gbl_reduced_hardware || acpi_no_s5; }