/* * Copyright (c) 2015 Nicira, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include #include #include #include #include #include #include #include "datapath.h" #include "conntrack.h" #include "flow.h" #include "flow_netlink.h" struct ovs_ct_len_tbl { size_t maxlen; size_t minlen; }; /* Metadata mark for masked write to conntrack mark */ struct md_mark { u32 value; u32 mask; }; /* Metadata label for masked write to conntrack label. */ struct md_label { struct ovs_key_ct_label value; struct ovs_key_ct_label mask; }; /* Conntrack action context for execution. */ struct ovs_conntrack_info { struct nf_conntrack_zone zone; struct nf_conn *ct; u32 flags; u16 family; struct md_mark mark; struct md_label label; }; static u16 key_to_nfproto(const struct sw_flow_key *key) { switch (ntohs(key->eth.type)) { case ETH_P_IP: return NFPROTO_IPV4; case ETH_P_IPV6: return NFPROTO_IPV6; default: return NFPROTO_UNSPEC; } } /* Map SKB connection state into the values used by flow definition. */ static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) { u8 ct_state = OVS_CS_F_TRACKED; switch (ctinfo) { case IP_CT_ESTABLISHED_REPLY: case IP_CT_RELATED_REPLY: case IP_CT_NEW_REPLY: ct_state |= OVS_CS_F_REPLY_DIR; break; default: break; } switch (ctinfo) { case IP_CT_ESTABLISHED: case IP_CT_ESTABLISHED_REPLY: ct_state |= OVS_CS_F_ESTABLISHED; break; case IP_CT_RELATED: case IP_CT_RELATED_REPLY: ct_state |= OVS_CS_F_RELATED; break; case IP_CT_NEW: case IP_CT_NEW_REPLY: ct_state |= OVS_CS_F_NEW; break; default: break; } return ct_state; } static void ovs_ct_get_label(const struct nf_conn *ct, struct ovs_key_ct_label *label) { struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; if (cl) { size_t len = cl->words * sizeof(long); if (len > OVS_CT_LABEL_LEN) len = OVS_CT_LABEL_LEN; else if (len < OVS_CT_LABEL_LEN) memset(label, 0, OVS_CT_LABEL_LEN); memcpy(label, cl->bits, len); } else { memset(label, 0, OVS_CT_LABEL_LEN); } } static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, const struct nf_conntrack_zone *zone, const struct nf_conn *ct) { key->ct.state = state; key->ct.zone = zone->id; key->ct.mark = ct ? ct->mark : 0; ovs_ct_get_label(ct, &key->ct.label); } /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has * previously sent the packet to conntrack via the ct action. */ static void ovs_ct_update_key(const struct sk_buff *skb, struct sw_flow_key *key, bool post_ct) { const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; enum ip_conntrack_info ctinfo; struct nf_conn *ct; u8 state = 0; ct = nf_ct_get(skb, &ctinfo); if (ct) { state = ovs_ct_get_state(ctinfo); if (ct->master) state |= OVS_CS_F_RELATED; zone = nf_ct_zone(ct); } else if (post_ct) { state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; } __ovs_ct_update_key(key, state, zone, ct); } void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) { ovs_ct_update_key(skb, key, false); } int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb) { if (nla_put_u8(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state)) return -EMSGSIZE; if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone)) return -EMSGSIZE; if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark)) return -EMSGSIZE; if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABEL) && nla_put(skb, OVS_KEY_ATTR_CT_LABEL, sizeof(key->ct.label), &key->ct.label)) return -EMSGSIZE; return 0; } static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key, u32 ct_mark, u32 mask) { enum ip_conntrack_info ctinfo; struct nf_conn *ct; u32 new_mark; if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) return -ENOTSUPP; /* The connection could be invalid, in which case set_mark is no-op. */ ct = nf_ct_get(skb, &ctinfo); if (!ct) return 0; new_mark = ct_mark | (ct->mark & ~(mask)); if (ct->mark != new_mark) { ct->mark = new_mark; nf_conntrack_event_cache(IPCT_MARK, ct); key->ct.mark = new_mark; } return 0; } static int ovs_ct_set_label(struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_key_ct_label *label, const struct ovs_key_ct_label *mask) { enum ip_conntrack_info ctinfo; struct nf_conn_labels *cl; struct nf_conn *ct; int err; if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) return -ENOTSUPP; /* The connection could be invalid, in which case set_label is no-op.*/ ct = nf_ct_get(skb, &ctinfo); if (!ct) return 0; cl = nf_ct_labels_find(ct); if (!cl) { nf_ct_labels_ext_add(ct); cl = nf_ct_labels_find(ct); } if (!cl || cl->words * sizeof(long) < OVS_CT_LABEL_LEN) return -ENOSPC; err = nf_connlabels_replace(ct, (u32 *)label, (u32 *)mask, OVS_CT_LABEL_LEN / sizeof(u32)); if (err) return err; ovs_ct_get_label(ct, &key->ct.label); return 0; } static int handle_fragments(struct net *net, struct sw_flow_key *key, u16 zone, struct sk_buff *skb) { struct ovs_skb_cb ovs_cb = *OVS_CB(skb); if (key->eth.type == htons(ETH_P_IP)) { enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; int err; memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); err = ip_defrag(skb, user); if (err) return err; ovs_cb.mru = IPCB(skb)->frag_max_size; } else if (key->eth.type == htons(ETH_P_IPV6)) { #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; struct sk_buff *reasm; memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); reasm = nf_ct_frag6_gather(skb, user); if (!reasm) return -EINPROGRESS; if (skb == reasm) return -EINVAL; key->ip.proto = ipv6_hdr(reasm)->nexthdr; skb_morph(skb, reasm); consume_skb(reasm); ovs_cb.mru = IP6CB(skb)->frag_max_size; #else return -EPFNOSUPPORT; #endif } else { return -EPFNOSUPPORT; } key->ip.frag = OVS_FRAG_TYPE_NONE; skb_clear_hash(skb); skb->ignore_df = 1; *OVS_CB(skb) = ovs_cb; return 0; } static struct nf_conntrack_expect * ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, u16 proto, const struct sk_buff *skb) { struct nf_conntrack_tuple tuple; if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, &tuple)) return NULL; return __nf_ct_expect_find(net, zone, &tuple); } /* Determine whether skb->nfct is equal to the result of conntrack lookup. */ static bool skb_nfct_cached(const struct net *net, const struct sk_buff *skb, const struct ovs_conntrack_info *info) { enum ip_conntrack_info ctinfo; struct nf_conn *ct; ct = nf_ct_get(skb, &ctinfo); if (!ct) return false; if (!net_eq(net, read_pnet(&ct->ct_net))) return false; if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) return false; return true; } static int __ovs_ct_lookup(struct net *net, const struct sw_flow_key *key, const struct ovs_conntrack_info *info, struct sk_buff *skb) { /* If we are recirculating packets to match on conntrack fields and * committing with a separate conntrack action, then we don't need to * actually run the packet through conntrack twice unless it's for a * different zone. */ if (!skb_nfct_cached(net, skb, info)) { struct nf_conn *tmpl = info->ct; /* Associate skb with specified zone. */ if (tmpl) { if (skb->nfct) nf_conntrack_put(skb->nfct); nf_conntrack_get(&tmpl->ct_general); skb->nfct = &tmpl->ct_general; skb->nfctinfo = IP_CT_NEW; } if (nf_conntrack_in(net, info->family, NF_INET_PRE_ROUTING, skb) != NF_ACCEPT) return -ENOENT; } return 0; } /* Lookup connection and read fields into key. */ static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, const struct ovs_conntrack_info *info, struct sk_buff *skb) { struct nf_conntrack_expect *exp; exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); if (exp) { u8 state; state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; __ovs_ct_update_key(key, state, &info->zone, exp->master); } else { int err; err = __ovs_ct_lookup(net, key, info, skb); if (err) return err; ovs_ct_update_key(skb, key, true); } return 0; } /* Lookup connection and confirm if unconfirmed. */ static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, const struct ovs_conntrack_info *info, struct sk_buff *skb) { u8 state; int err; state = key->ct.state; if (key->ct.zone == info->zone.id && ((state & OVS_CS_F_TRACKED) && !(state & OVS_CS_F_NEW))) { /* Previous lookup has shown that this connection is already * tracked and committed. Skip committing. */ return 0; } err = __ovs_ct_lookup(net, key, info, skb); if (err) return err; if (nf_conntrack_confirm(skb) != NF_ACCEPT) return -EINVAL; ovs_ct_update_key(skb, key, true); return 0; } static bool label_nonzero(const struct ovs_key_ct_label *label) { size_t i; for (i = 0; i < sizeof(*label); i++) if (label->ct_label[i]) return true; return false; } int ovs_ct_execute(struct net *net, struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_conntrack_info *info) { int nh_ofs; int err; /* The conntrack module expects to be working at L3. */ nh_ofs = skb_network_offset(skb); skb_pull(skb, nh_ofs); if (key->ip.frag != OVS_FRAG_TYPE_NONE) { err = handle_fragments(net, key, info->zone.id, skb); if (err) return err; } if (info->flags & OVS_CT_F_COMMIT) err = ovs_ct_commit(net, key, info, skb); else err = ovs_ct_lookup(net, key, info, skb); if (err) goto err; if (info->mark.mask) { err = ovs_ct_set_mark(skb, key, info->mark.value, info->mark.mask); if (err) goto err; } if (label_nonzero(&info->label.mask)) err = ovs_ct_set_label(skb, key, &info->label.value, &info->label.mask); err: skb_push(skb, nh_ofs); return err; } static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { [OVS_CT_ATTR_FLAGS] = { .minlen = sizeof(u32), .maxlen = sizeof(u32) }, [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), .maxlen = sizeof(u16) }, [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), .maxlen = sizeof(struct md_mark) }, [OVS_CT_ATTR_LABEL] = { .minlen = sizeof(struct md_label), .maxlen = sizeof(struct md_label) }, }; static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, bool log) { struct nlattr *a; int rem; nla_for_each_nested(a, attr, rem) { int type = nla_type(a); int maxlen = ovs_ct_attr_lens[type].maxlen; int minlen = ovs_ct_attr_lens[type].minlen; if (type > OVS_CT_ATTR_MAX) { OVS_NLERR(log, "Unknown conntrack attr (type=%d, max=%d)", type, OVS_CT_ATTR_MAX); return -EINVAL; } if (nla_len(a) < minlen || nla_len(a) > maxlen) { OVS_NLERR(log, "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", type, nla_len(a), maxlen); return -EINVAL; } switch (type) { case OVS_CT_ATTR_FLAGS: info->flags = nla_get_u32(a); break; #ifdef CONFIG_NF_CONNTRACK_ZONES case OVS_CT_ATTR_ZONE: info->zone.id = nla_get_u16(a); break; #endif #ifdef CONFIG_NF_CONNTRACK_MARK case OVS_CT_ATTR_MARK: { struct md_mark *mark = nla_data(a); info->mark = *mark; break; } #endif #ifdef CONFIG_NF_CONNTRACK_LABELS case OVS_CT_ATTR_LABEL: { struct md_label *label = nla_data(a); info->label = *label; break; } #endif default: OVS_NLERR(log, "Unknown conntrack attr (%d)", type); return -EINVAL; } } if (rem > 0) { OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); return -EINVAL; } return 0; } bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) { if (attr == OVS_KEY_ATTR_CT_STATE) return true; if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && attr == OVS_KEY_ATTR_CT_ZONE) return true; if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && attr == OVS_KEY_ATTR_CT_MARK) return true; if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && attr == OVS_KEY_ATTR_CT_LABEL) { struct ovs_net *ovs_net = net_generic(net, ovs_net_id); return ovs_net->xt_label; } return false; } int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, bool log) { struct ovs_conntrack_info ct_info; u16 family; int err; family = key_to_nfproto(key); if (family == NFPROTO_UNSPEC) { OVS_NLERR(log, "ct family unspecified"); return -EINVAL; } memset(&ct_info, 0, sizeof(ct_info)); ct_info.family = family; nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, NF_CT_DEFAULT_ZONE_DIR, 0); err = parse_ct(attr, &ct_info, log); if (err) return err; /* Set up template for tracking connections in specific zones. */ ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); if (!ct_info.ct) { OVS_NLERR(log, "Failed to allocate conntrack template"); return -ENOMEM; } err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, sizeof(ct_info), log); if (err) goto err_free_ct; __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); nf_conntrack_get(&ct_info.ct->ct_general); return 0; err_free_ct: nf_conntrack_free(ct_info.ct); return err; } int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, struct sk_buff *skb) { struct nlattr *start; start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); if (!start) return -EMSGSIZE; if (nla_put_u32(skb, OVS_CT_ATTR_FLAGS, ct_info->flags)) return -EMSGSIZE; if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) return -EMSGSIZE; if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), &ct_info->mark)) return -EMSGSIZE; if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && nla_put(skb, OVS_CT_ATTR_LABEL, sizeof(ct_info->label), &ct_info->label)) return -EMSGSIZE; nla_nest_end(skb, start); return 0; } void ovs_ct_free_action(const struct nlattr *a) { struct ovs_conntrack_info *ct_info = nla_data(a); if (ct_info->ct) nf_ct_put(ct_info->ct); } void ovs_ct_init(struct net *net) { unsigned int n_bits = sizeof(struct ovs_key_ct_label) * BITS_PER_BYTE; struct ovs_net *ovs_net = net_generic(net, ovs_net_id); if (nf_connlabels_get(net, n_bits)) { ovs_net->xt_label = false; OVS_NLERR(true, "Failed to set connlabel length"); } else { ovs_net->xt_label = true; } } void ovs_ct_exit(struct net *net) { struct ovs_net *ovs_net = net_generic(net, ovs_net_id); if (ovs_net->xt_label) nf_connlabels_put(net); }