/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Ben Widawsky * Michel Thierry * Thomas Daniel * Oscar Mateo * */ /** * DOC: Logical Rings, Logical Ring Contexts and Execlists * * Motivation: * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". * These expanded contexts enable a number of new abilities, especially * "Execlists" (also implemented in this file). * * One of the main differences with the legacy HW contexts is that logical * ring contexts incorporate many more things to the context's state, like * PDPs or ringbuffer control registers: * * The reason why PDPs are included in the context is straightforward: as * PPGTTs (per-process GTTs) are actually per-context, having the PDPs * contained there mean you don't need to do a ppgtt->switch_mm yourself, * instead, the GPU will do it for you on the context switch. * * But, what about the ringbuffer control registers (head, tail, etc..)? * shouldn't we just need a set of those per engine command streamer? This is * where the name "Logical Rings" starts to make sense: by virtualizing the * rings, the engine cs shifts to a new "ring buffer" with every context * switch. When you want to submit a workload to the GPU you: A) choose your * context, B) find its appropriate virtualized ring, C) write commands to it * and then, finally, D) tell the GPU to switch to that context. * * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch * to a contexts is via a context execution list, ergo "Execlists". * * LRC implementation: * Regarding the creation of contexts, we have: * * - One global default context. * - One local default context for each opened fd. * - One local extra context for each context create ioctl call. * * Now that ringbuffers belong per-context (and not per-engine, like before) * and that contexts are uniquely tied to a given engine (and not reusable, * like before) we need: * * - One ringbuffer per-engine inside each context. * - One backing object per-engine inside each context. * * The global default context starts its life with these new objects fully * allocated and populated. The local default context for each opened fd is * more complex, because we don't know at creation time which engine is going * to use them. To handle this, we have implemented a deferred creation of LR * contexts: * * The local context starts its life as a hollow or blank holder, that only * gets populated for a given engine once we receive an execbuffer. If later * on we receive another execbuffer ioctl for the same context but a different * engine, we allocate/populate a new ringbuffer and context backing object and * so on. * * Finally, regarding local contexts created using the ioctl call: as they are * only allowed with the render ring, we can allocate & populate them right * away (no need to defer anything, at least for now). * * Execlists implementation: * Execlists are the new method by which, on gen8+ hardware, workloads are * submitted for execution (as opposed to the legacy, ringbuffer-based, method). * This method works as follows: * * When a request is committed, its commands (the BB start and any leading or * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer * for the appropriate context. The tail pointer in the hardware context is not * updated at this time, but instead, kept by the driver in the ringbuffer * structure. A structure representing this request is added to a request queue * for the appropriate engine: this structure contains a copy of the context's * tail after the request was written to the ring buffer and a pointer to the * context itself. * * If the engine's request queue was empty before the request was added, the * queue is processed immediately. Otherwise the queue will be processed during * a context switch interrupt. In any case, elements on the queue will get sent * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a * globally unique 20-bits submission ID. * * When execution of a request completes, the GPU updates the context status * buffer with a context complete event and generates a context switch interrupt. * During the interrupt handling, the driver examines the events in the buffer: * for each context complete event, if the announced ID matches that on the head * of the request queue, then that request is retired and removed from the queue. * * After processing, if any requests were retired and the queue is not empty * then a new execution list can be submitted. The two requests at the front of * the queue are next to be submitted but since a context may not occur twice in * an execution list, if subsequent requests have the same ID as the first then * the two requests must be combined. This is done simply by discarding requests * at the head of the queue until either only one requests is left (in which case * we use a NULL second context) or the first two requests have unique IDs. * * By always executing the first two requests in the queue the driver ensures * that the GPU is kept as busy as possible. In the case where a single context * completes but a second context is still executing, the request for this second * context will be at the head of the queue when we remove the first one. This * request will then be resubmitted along with a new request for a different context, * which will cause the hardware to continue executing the second request and queue * the new request (the GPU detects the condition of a context getting preempted * with the same context and optimizes the context switch flow by not doing * preemption, but just sampling the new tail pointer). * */ #include #include #include #include "i915_drv.h" #include "intel_mocs.h" #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE) #define RING_EXECLIST_QFULL (1 << 0x2) #define RING_EXECLIST1_VALID (1 << 0x3) #define RING_EXECLIST0_VALID (1 << 0x4) #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE) #define RING_EXECLIST1_ACTIVE (1 << 0x11) #define RING_EXECLIST0_ACTIVE (1 << 0x12) #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0) #define GEN8_CTX_STATUS_PREEMPTED (1 << 1) #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2) #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3) #define GEN8_CTX_STATUS_COMPLETE (1 << 4) #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15) #define CTX_LRI_HEADER_0 0x01 #define CTX_CONTEXT_CONTROL 0x02 #define CTX_RING_HEAD 0x04 #define CTX_RING_TAIL 0x06 #define CTX_RING_BUFFER_START 0x08 #define CTX_RING_BUFFER_CONTROL 0x0a #define CTX_BB_HEAD_U 0x0c #define CTX_BB_HEAD_L 0x0e #define CTX_BB_STATE 0x10 #define CTX_SECOND_BB_HEAD_U 0x12 #define CTX_SECOND_BB_HEAD_L 0x14 #define CTX_SECOND_BB_STATE 0x16 #define CTX_BB_PER_CTX_PTR 0x18 #define CTX_RCS_INDIRECT_CTX 0x1a #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c #define CTX_LRI_HEADER_1 0x21 #define CTX_CTX_TIMESTAMP 0x22 #define CTX_PDP3_UDW 0x24 #define CTX_PDP3_LDW 0x26 #define CTX_PDP2_UDW 0x28 #define CTX_PDP2_LDW 0x2a #define CTX_PDP1_UDW 0x2c #define CTX_PDP1_LDW 0x2e #define CTX_PDP0_UDW 0x30 #define CTX_PDP0_LDW 0x32 #define CTX_LRI_HEADER_2 0x41 #define CTX_R_PWR_CLK_STATE 0x42 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44 #define GEN8_CTX_VALID (1<<0) #define GEN8_CTX_FORCE_PD_RESTORE (1<<1) #define GEN8_CTX_FORCE_RESTORE (1<<2) #define GEN8_CTX_L3LLC_COHERENT (1<<5) #define GEN8_CTX_PRIVILEGE (1<<8) #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \ (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \ (reg_state)[(pos)+1] = (val); \ } while (0) #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \ const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \ reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \ reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \ } while (0) #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \ reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \ reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \ } while (0) enum { ADVANCED_CONTEXT = 0, LEGACY_32B_CONTEXT, ADVANCED_AD_CONTEXT, LEGACY_64B_CONTEXT }; #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\ LEGACY_64B_CONTEXT :\ LEGACY_32B_CONTEXT) enum { FAULT_AND_HANG = 0, FAULT_AND_HALT, /* Debug only */ FAULT_AND_STREAM, FAULT_AND_CONTINUE /* Unsupported */ }; #define GEN8_CTX_ID_SHIFT 32 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26 static int intel_lr_context_pin(struct intel_context *ctx, struct intel_engine_cs *engine); /** * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists * @dev: DRM device. * @enable_execlists: value of i915.enable_execlists module parameter. * * Only certain platforms support Execlists (the prerequisites being * support for Logical Ring Contexts and Aliasing PPGTT or better). * * Return: 1 if Execlists is supported and has to be enabled. */ int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists) { WARN_ON(i915.enable_ppgtt == -1); /* On platforms with execlist available, vGPU will only * support execlist mode, no ring buffer mode. */ if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev)) return 1; if (INTEL_INFO(dev)->gen >= 9) return 1; if (enable_execlists == 0) return 0; if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) && i915.use_mmio_flip >= 0) return 1; return 0; } static void logical_ring_init_platform_invariants(struct intel_engine_cs *engine) { struct drm_device *dev = engine->dev; if (IS_GEN8(dev) || IS_GEN9(dev)) engine->idle_lite_restore_wa = ~0; engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) || IS_BXT_REVID(dev, 0, BXT_REVID_A1)) && (engine->id == VCS || engine->id == VCS2); engine->ctx_desc_template = GEN8_CTX_VALID; engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT; if (IS_GEN8(dev)) engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT; engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE; /* TODO: WaDisableLiteRestore when we start using semaphore * signalling between Command Streamers */ /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */ /* WaEnableForceRestoreInCtxtDescForVCS:skl */ /* WaEnableForceRestoreInCtxtDescForVCS:bxt */ if (engine->disable_lite_restore_wa) engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; } /** * intel_lr_context_descriptor_update() - calculate & cache the descriptor * descriptor for a pinned context * * @ctx: Context to work on * @ring: Engine the descriptor will be used with * * The context descriptor encodes various attributes of a context, * including its GTT address and some flags. Because it's fairly * expensive to calculate, we'll just do it once and cache the result, * which remains valid until the context is unpinned. * * This is what a descriptor looks like, from LSB to MSB: * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template) * bits 12-31: LRCA, GTT address of (the HWSP of) this context * bits 32-51: ctx ID, a globally unique tag (the LRCA again!) * bits 52-63: reserved, may encode the engine ID (for GuC) */ static void intel_lr_context_descriptor_update(struct intel_context *ctx, struct intel_engine_cs *engine) { uint64_t lrca, desc; lrca = ctx->engine[engine->id].lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE; desc = engine->ctx_desc_template; /* bits 0-11 */ desc |= lrca; /* bits 12-31 */ desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */ ctx->engine[engine->id].lrc_desc = desc; } uint64_t intel_lr_context_descriptor(struct intel_context *ctx, struct intel_engine_cs *engine) { return ctx->engine[engine->id].lrc_desc; } /** * intel_execlists_ctx_id() - get the Execlists Context ID * @ctx: Context to get the ID for * @ring: Engine to get the ID for * * Do not confuse with ctx->id! Unfortunately we have a name overload * here: the old context ID we pass to userspace as a handler so that * they can refer to a context, and the new context ID we pass to the * ELSP so that the GPU can inform us of the context status via * interrupts. * * The context ID is a portion of the context descriptor, so we can * just extract the required part from the cached descriptor. * * Return: 20-bits globally unique context ID. */ u32 intel_execlists_ctx_id(struct intel_context *ctx, struct intel_engine_cs *engine) { return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT; } static void execlists_elsp_write(struct drm_i915_gem_request *rq0, struct drm_i915_gem_request *rq1) { struct intel_engine_cs *engine = rq0->engine; struct drm_device *dev = engine->dev; struct drm_i915_private *dev_priv = dev->dev_private; uint64_t desc[2]; if (rq1) { desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine); rq1->elsp_submitted++; } else { desc[1] = 0; } desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine); rq0->elsp_submitted++; /* You must always write both descriptors in the order below. */ I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1])); I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1])); I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0])); /* The context is automatically loaded after the following */ I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0])); /* ELSP is a wo register, use another nearby reg for posting */ POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine)); } static void execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state) { ASSIGN_CTX_PDP(ppgtt, reg_state, 3); ASSIGN_CTX_PDP(ppgtt, reg_state, 2); ASSIGN_CTX_PDP(ppgtt, reg_state, 1); ASSIGN_CTX_PDP(ppgtt, reg_state, 0); } static void execlists_update_context(struct drm_i915_gem_request *rq) { struct intel_engine_cs *engine = rq->engine; struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt; uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state; reg_state[CTX_RING_TAIL+1] = rq->tail; /* True 32b PPGTT with dynamic page allocation: update PDP * registers and point the unallocated PDPs to scratch page. * PML4 is allocated during ppgtt init, so this is not needed * in 48-bit mode. */ if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) execlists_update_context_pdps(ppgtt, reg_state); } static void execlists_submit_requests(struct drm_i915_gem_request *rq0, struct drm_i915_gem_request *rq1) { struct drm_i915_private *dev_priv = rq0->i915; unsigned int fw_domains = rq0->engine->fw_domains; execlists_update_context(rq0); if (rq1) execlists_update_context(rq1); spin_lock_irq(&dev_priv->uncore.lock); intel_uncore_forcewake_get__locked(dev_priv, fw_domains); execlists_elsp_write(rq0, rq1); intel_uncore_forcewake_put__locked(dev_priv, fw_domains); spin_unlock_irq(&dev_priv->uncore.lock); } static void execlists_context_unqueue(struct intel_engine_cs *engine) { struct drm_i915_gem_request *req0 = NULL, *req1 = NULL; struct drm_i915_gem_request *cursor, *tmp; assert_spin_locked(&engine->execlist_lock); /* * If irqs are not active generate a warning as batches that finish * without the irqs may get lost and a GPU Hang may occur. */ WARN_ON(!intel_irqs_enabled(engine->dev->dev_private)); /* Try to read in pairs */ list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue, execlist_link) { if (!req0) { req0 = cursor; } else if (req0->ctx == cursor->ctx) { /* Same ctx: ignore first request, as second request * will update tail past first request's workload */ cursor->elsp_submitted = req0->elsp_submitted; list_move_tail(&req0->execlist_link, &engine->execlist_retired_req_list); req0 = cursor; } else { req1 = cursor; WARN_ON(req1->elsp_submitted); break; } } if (unlikely(!req0)) return; if (req0->elsp_submitted & engine->idle_lite_restore_wa) { /* * WaIdleLiteRestore: make sure we never cause a lite restore * with HEAD==TAIL. * * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we * resubmit the request. See gen8_emit_request() for where we * prepare the padding after the end of the request. */ struct intel_ringbuffer *ringbuf; ringbuf = req0->ctx->engine[engine->id].ringbuf; req0->tail += 8; req0->tail &= ringbuf->size - 1; } execlists_submit_requests(req0, req1); } static unsigned int execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id) { struct drm_i915_gem_request *head_req; assert_spin_locked(&engine->execlist_lock); head_req = list_first_entry_or_null(&engine->execlist_queue, struct drm_i915_gem_request, execlist_link); if (!head_req) return 0; if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id)) return 0; WARN(head_req->elsp_submitted == 0, "Never submitted head request\n"); if (--head_req->elsp_submitted > 0) return 0; list_move_tail(&head_req->execlist_link, &engine->execlist_retired_req_list); return 1; } static u32 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer, u32 *context_id) { struct drm_i915_private *dev_priv = engine->dev->dev_private; u32 status; read_pointer %= GEN8_CSB_ENTRIES; status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer)); if (status & GEN8_CTX_STATUS_IDLE_ACTIVE) return 0; *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine, read_pointer)); return status; } /** * intel_lrc_irq_handler() - handle Context Switch interrupts * @engine: Engine Command Streamer to handle. * * Check the unread Context Status Buffers and manage the submission of new * contexts to the ELSP accordingly. */ static void intel_lrc_irq_handler(unsigned long data) { struct intel_engine_cs *engine = (struct intel_engine_cs *)data; struct drm_i915_private *dev_priv = engine->dev->dev_private; u32 status_pointer; unsigned int read_pointer, write_pointer; u32 csb[GEN8_CSB_ENTRIES][2]; unsigned int csb_read = 0, i; unsigned int submit_contexts = 0; intel_uncore_forcewake_get(dev_priv, engine->fw_domains); status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine)); read_pointer = engine->next_context_status_buffer; write_pointer = GEN8_CSB_WRITE_PTR(status_pointer); if (read_pointer > write_pointer) write_pointer += GEN8_CSB_ENTRIES; while (read_pointer < write_pointer) { if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES)) break; csb[csb_read][0] = get_context_status(engine, ++read_pointer, &csb[csb_read][1]); csb_read++; } engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES; /* Update the read pointer to the old write pointer. Manual ringbuffer * management ftw */ I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, engine->next_context_status_buffer << 8)); intel_uncore_forcewake_put(dev_priv, engine->fw_domains); spin_lock(&engine->execlist_lock); for (i = 0; i < csb_read; i++) { if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) { if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) { if (execlists_check_remove_request(engine, csb[i][1])) WARN(1, "Lite Restored request removed from queue\n"); } else WARN(1, "Preemption without Lite Restore\n"); } if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE | GEN8_CTX_STATUS_ELEMENT_SWITCH)) submit_contexts += execlists_check_remove_request(engine, csb[i][1]); } if (submit_contexts) { if (!engine->disable_lite_restore_wa || (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE)) execlists_context_unqueue(engine); } spin_unlock(&engine->execlist_lock); if (unlikely(submit_contexts > 2)) DRM_ERROR("More than two context complete events?\n"); } static void execlists_context_queue(struct drm_i915_gem_request *request) { struct intel_engine_cs *engine = request->engine; struct drm_i915_gem_request *cursor; int num_elements = 0; if (request->ctx != request->i915->kernel_context) intel_lr_context_pin(request->ctx, engine); i915_gem_request_reference(request); spin_lock_bh(&engine->execlist_lock); list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) if (++num_elements > 2) break; if (num_elements > 2) { struct drm_i915_gem_request *tail_req; tail_req = list_last_entry(&engine->execlist_queue, struct drm_i915_gem_request, execlist_link); if (request->ctx == tail_req->ctx) { WARN(tail_req->elsp_submitted != 0, "More than 2 already-submitted reqs queued\n"); list_move_tail(&tail_req->execlist_link, &engine->execlist_retired_req_list); } } list_add_tail(&request->execlist_link, &engine->execlist_queue); if (num_elements == 0) execlists_context_unqueue(engine); spin_unlock_bh(&engine->execlist_lock); } static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; uint32_t flush_domains; int ret; flush_domains = 0; if (engine->gpu_caches_dirty) flush_domains = I915_GEM_GPU_DOMAINS; ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains); if (ret) return ret; engine->gpu_caches_dirty = false; return 0; } static int execlists_move_to_gpu(struct drm_i915_gem_request *req, struct list_head *vmas) { const unsigned other_rings = ~intel_engine_flag(req->engine); struct i915_vma *vma; uint32_t flush_domains = 0; bool flush_chipset = false; int ret; list_for_each_entry(vma, vmas, exec_list) { struct drm_i915_gem_object *obj = vma->obj; if (obj->active & other_rings) { ret = i915_gem_object_sync(obj, req->engine, &req); if (ret) return ret; } if (obj->base.write_domain & I915_GEM_DOMAIN_CPU) flush_chipset |= i915_gem_clflush_object(obj, false); flush_domains |= obj->base.write_domain; } if (flush_domains & I915_GEM_DOMAIN_GTT) wmb(); /* Unconditionally invalidate gpu caches and ensure that we do flush * any residual writes from the previous batch. */ return logical_ring_invalidate_all_caches(req); } int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request) { int ret = 0; request->ringbuf = request->ctx->engine[request->engine->id].ringbuf; if (i915.enable_guc_submission) { /* * Check that the GuC has space for the request before * going any further, as the i915_add_request() call * later on mustn't fail ... */ struct intel_guc *guc = &request->i915->guc; ret = i915_guc_wq_check_space(guc->execbuf_client); if (ret) return ret; } if (request->ctx != request->i915->kernel_context) ret = intel_lr_context_pin(request->ctx, request->engine); return ret; } static int logical_ring_wait_for_space(struct drm_i915_gem_request *req, int bytes) { struct intel_ringbuffer *ringbuf = req->ringbuf; struct intel_engine_cs *engine = req->engine; struct drm_i915_gem_request *target; unsigned space; int ret; if (intel_ring_space(ringbuf) >= bytes) return 0; /* The whole point of reserving space is to not wait! */ WARN_ON(ringbuf->reserved_in_use); list_for_each_entry(target, &engine->request_list, list) { /* * The request queue is per-engine, so can contain requests * from multiple ringbuffers. Here, we must ignore any that * aren't from the ringbuffer we're considering. */ if (target->ringbuf != ringbuf) continue; /* Would completion of this request free enough space? */ space = __intel_ring_space(target->postfix, ringbuf->tail, ringbuf->size); if (space >= bytes) break; } if (WARN_ON(&target->list == &engine->request_list)) return -ENOSPC; ret = i915_wait_request(target); if (ret) return ret; ringbuf->space = space; return 0; } /* * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload * @request: Request to advance the logical ringbuffer of. * * The tail is updated in our logical ringbuffer struct, not in the actual context. What * really happens during submission is that the context and current tail will be placed * on a queue waiting for the ELSP to be ready to accept a new context submission. At that * point, the tail *inside* the context is updated and the ELSP written to. */ static int intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request) { struct intel_ringbuffer *ringbuf = request->ringbuf; struct drm_i915_private *dev_priv = request->i915; struct intel_engine_cs *engine = request->engine; intel_logical_ring_advance(ringbuf); request->tail = ringbuf->tail; /* * Here we add two extra NOOPs as padding to avoid * lite restore of a context with HEAD==TAIL. * * Caller must reserve WA_TAIL_DWORDS for us! */ intel_logical_ring_emit(ringbuf, MI_NOOP); intel_logical_ring_emit(ringbuf, MI_NOOP); intel_logical_ring_advance(ringbuf); if (intel_engine_stopped(engine)) return 0; if (engine->last_context != request->ctx) { if (engine->last_context) intel_lr_context_unpin(engine->last_context, engine); if (request->ctx != request->i915->kernel_context) { intel_lr_context_pin(request->ctx, engine); engine->last_context = request->ctx; } else { engine->last_context = NULL; } } if (dev_priv->guc.execbuf_client) i915_guc_submit(dev_priv->guc.execbuf_client, request); else execlists_context_queue(request); return 0; } static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf) { uint32_t __iomem *virt; int rem = ringbuf->size - ringbuf->tail; virt = ringbuf->virtual_start + ringbuf->tail; rem /= 4; while (rem--) iowrite32(MI_NOOP, virt++); ringbuf->tail = 0; intel_ring_update_space(ringbuf); } static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes) { struct intel_ringbuffer *ringbuf = req->ringbuf; int remain_usable = ringbuf->effective_size - ringbuf->tail; int remain_actual = ringbuf->size - ringbuf->tail; int ret, total_bytes, wait_bytes = 0; bool need_wrap = false; if (ringbuf->reserved_in_use) total_bytes = bytes; else total_bytes = bytes + ringbuf->reserved_size; if (unlikely(bytes > remain_usable)) { /* * Not enough space for the basic request. So need to flush * out the remainder and then wait for base + reserved. */ wait_bytes = remain_actual + total_bytes; need_wrap = true; } else { if (unlikely(total_bytes > remain_usable)) { /* * The base request will fit but the reserved space * falls off the end. So don't need an immediate wrap * and only need to effectively wait for the reserved * size space from the start of ringbuffer. */ wait_bytes = remain_actual + ringbuf->reserved_size; } else if (total_bytes > ringbuf->space) { /* No wrapping required, just waiting. */ wait_bytes = total_bytes; } } if (wait_bytes) { ret = logical_ring_wait_for_space(req, wait_bytes); if (unlikely(ret)) return ret; if (need_wrap) __wrap_ring_buffer(ringbuf); } return 0; } /** * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands * * @req: The request to start some new work for * @num_dwords: number of DWORDs that we plan to write to the ringbuffer. * * The ringbuffer might not be ready to accept the commands right away (maybe it needs to * be wrapped, or wait a bit for the tail to be updated). This function takes care of that * and also preallocates a request (every workload submission is still mediated through * requests, same as it did with legacy ringbuffer submission). * * Return: non-zero if the ringbuffer is not ready to be written to. */ int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords) { struct drm_i915_private *dev_priv; int ret; WARN_ON(req == NULL); dev_priv = req->i915; ret = i915_gem_check_wedge(&dev_priv->gpu_error, dev_priv->mm.interruptible); if (ret) return ret; ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t)); if (ret) return ret; req->ringbuf->space -= num_dwords * sizeof(uint32_t); return 0; } int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request) { /* * The first call merely notes the reserve request and is common for * all back ends. The subsequent localised _begin() call actually * ensures that the reservation is available. Without the begin, if * the request creator immediately submitted the request without * adding any commands to it then there might not actually be * sufficient room for the submission commands. */ intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST); return intel_logical_ring_begin(request, 0); } /** * execlists_submission() - submit a batchbuffer for execution, Execlists style * @dev: DRM device. * @file: DRM file. * @ring: Engine Command Streamer to submit to. * @ctx: Context to employ for this submission. * @args: execbuffer call arguments. * @vmas: list of vmas. * @batch_obj: the batchbuffer to submit. * @exec_start: batchbuffer start virtual address pointer. * @dispatch_flags: translated execbuffer call flags. * * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts * away the submission details of the execbuffer ioctl call. * * Return: non-zero if the submission fails. */ int intel_execlists_submission(struct i915_execbuffer_params *params, struct drm_i915_gem_execbuffer2 *args, struct list_head *vmas) { struct drm_device *dev = params->dev; struct intel_engine_cs *engine = params->engine; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf; u64 exec_start; int instp_mode; u32 instp_mask; int ret; instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK; instp_mask = I915_EXEC_CONSTANTS_MASK; switch (instp_mode) { case I915_EXEC_CONSTANTS_REL_GENERAL: case I915_EXEC_CONSTANTS_ABSOLUTE: case I915_EXEC_CONSTANTS_REL_SURFACE: if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) { DRM_DEBUG("non-0 rel constants mode on non-RCS\n"); return -EINVAL; } if (instp_mode != dev_priv->relative_constants_mode) { if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) { DRM_DEBUG("rel surface constants mode invalid on gen5+\n"); return -EINVAL; } /* The HW changed the meaning on this bit on gen6 */ instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE; } break; default: DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode); return -EINVAL; } if (args->flags & I915_EXEC_GEN7_SOL_RESET) { DRM_DEBUG("sol reset is gen7 only\n"); return -EINVAL; } ret = execlists_move_to_gpu(params->request, vmas); if (ret) return ret; if (engine == &dev_priv->engine[RCS] && instp_mode != dev_priv->relative_constants_mode) { ret = intel_logical_ring_begin(params->request, 4); if (ret) return ret; intel_logical_ring_emit(ringbuf, MI_NOOP); intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1)); intel_logical_ring_emit_reg(ringbuf, INSTPM); intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode); intel_logical_ring_advance(ringbuf); dev_priv->relative_constants_mode = instp_mode; } exec_start = params->batch_obj_vm_offset + args->batch_start_offset; ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags); if (ret) return ret; trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags); i915_gem_execbuffer_move_to_active(vmas, params->request); i915_gem_execbuffer_retire_commands(params); return 0; } void intel_execlists_retire_requests(struct intel_engine_cs *engine) { struct drm_i915_gem_request *req, *tmp; struct list_head retired_list; WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex)); if (list_empty(&engine->execlist_retired_req_list)) return; INIT_LIST_HEAD(&retired_list); spin_lock_bh(&engine->execlist_lock); list_replace_init(&engine->execlist_retired_req_list, &retired_list); spin_unlock_bh(&engine->execlist_lock); list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) { struct intel_context *ctx = req->ctx; struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state; if (ctx_obj && (ctx != req->i915->kernel_context)) intel_lr_context_unpin(ctx, engine); list_del(&req->execlist_link); i915_gem_request_unreference(req); } } void intel_logical_ring_stop(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->dev->dev_private; int ret; if (!intel_engine_initialized(engine)) return; ret = intel_engine_idle(engine); if (ret && !i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n", engine->name, ret); /* TODO: Is this correct with Execlists enabled? */ I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING)); if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) { DRM_ERROR("%s :timed out trying to stop ring\n", engine->name); return; } I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING)); } int logical_ring_flush_all_caches(struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; int ret; if (!engine->gpu_caches_dirty) return 0; ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS); if (ret) return ret; engine->gpu_caches_dirty = false; return 0; } static int intel_lr_context_do_pin(struct intel_context *ctx, struct intel_engine_cs *engine) { struct drm_device *dev = engine->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state; struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf; void *vaddr; u32 *lrc_reg_state; int ret; WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex)); ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, PIN_OFFSET_BIAS | GUC_WOPCM_TOP); if (ret) return ret; vaddr = i915_gem_object_pin_map(ctx_obj); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); goto unpin_ctx_obj; } lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE; ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf); if (ret) goto unpin_map; ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj); intel_lr_context_descriptor_update(ctx, engine); lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start; ctx->engine[engine->id].lrc_reg_state = lrc_reg_state; ctx_obj->dirty = true; /* Invalidate GuC TLB. */ if (i915.enable_guc_submission) I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); return ret; unpin_map: i915_gem_object_unpin_map(ctx_obj); unpin_ctx_obj: i915_gem_object_ggtt_unpin(ctx_obj); return ret; } static int intel_lr_context_pin(struct intel_context *ctx, struct intel_engine_cs *engine) { int ret = 0; if (ctx->engine[engine->id].pin_count++ == 0) { ret = intel_lr_context_do_pin(ctx, engine); if (ret) goto reset_pin_count; i915_gem_context_reference(ctx); } return ret; reset_pin_count: ctx->engine[engine->id].pin_count = 0; return ret; } void intel_lr_context_unpin(struct intel_context *ctx, struct intel_engine_cs *engine) { struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state; WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex)); if (--ctx->engine[engine->id].pin_count == 0) { i915_gem_object_unpin_map(ctx_obj); intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf); i915_gem_object_ggtt_unpin(ctx_obj); ctx->engine[engine->id].lrc_vma = NULL; ctx->engine[engine->id].lrc_desc = 0; ctx->engine[engine->id].lrc_reg_state = NULL; i915_gem_context_unreference(ctx); } } static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req) { int ret, i; struct intel_engine_cs *engine = req->engine; struct intel_ringbuffer *ringbuf = req->ringbuf; struct drm_device *dev = engine->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct i915_workarounds *w = &dev_priv->workarounds; if (w->count == 0) return 0; engine->gpu_caches_dirty = true; ret = logical_ring_flush_all_caches(req); if (ret) return ret; ret = intel_logical_ring_begin(req, w->count * 2 + 2); if (ret) return ret; intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count)); for (i = 0; i < w->count; i++) { intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr); intel_logical_ring_emit(ringbuf, w->reg[i].value); } intel_logical_ring_emit(ringbuf, MI_NOOP); intel_logical_ring_advance(ringbuf); engine->gpu_caches_dirty = true; ret = logical_ring_flush_all_caches(req); if (ret) return ret; return 0; } #define wa_ctx_emit(batch, index, cmd) \ do { \ int __index = (index)++; \ if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \ return -ENOSPC; \ } \ batch[__index] = (cmd); \ } while (0) #define wa_ctx_emit_reg(batch, index, reg) \ wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg)) /* * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after * PIPE_CONTROL instruction. This is required for the flush to happen correctly * but there is a slight complication as this is applied in WA batch where the * values are only initialized once so we cannot take register value at the * beginning and reuse it further; hence we save its value to memory, upload a * constant value with bit21 set and then we restore it back with the saved value. * To simplify the WA, a constant value is formed by using the default value * of this register. This shouldn't be a problem because we are only modifying * it for a short period and this batch in non-premptible. We can ofcourse * use additional instructions that read the actual value of the register * at that time and set our bit of interest but it makes the WA complicated. * * This WA is also required for Gen9 so extracting as a function avoids * code duplication. */ static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, uint32_t *const batch, uint32_t index) { uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES); /* * WaDisableLSQCROPERFforOCL:skl * This WA is implemented in skl_init_clock_gating() but since * this batch updates GEN8_L3SQCREG4 with default value we need to * set this bit here to retain the WA during flush. */ if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0)) l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS; wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT)); wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4); wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1)); wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4); wa_ctx_emit(batch, index, l3sqc4_flush); wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6)); wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL | PIPE_CONTROL_DC_FLUSH_ENABLE)); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT)); wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4); wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256); wa_ctx_emit(batch, index, 0); return index; } static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx, uint32_t offset, uint32_t start_alignment) { return wa_ctx->offset = ALIGN(offset, start_alignment); } static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx, uint32_t offset, uint32_t size_alignment) { wa_ctx->size = offset - wa_ctx->offset; WARN(wa_ctx->size % size_alignment, "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n", wa_ctx->size, size_alignment); return 0; } /** * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA * * @ring: only applicable for RCS * @wa_ctx: structure representing wa_ctx * offset: specifies start of the batch, should be cache-aligned. This is updated * with the offset value received as input. * size: size of the batch in DWORDS but HW expects in terms of cachelines * @batch: page in which WA are loaded * @offset: This field specifies the start of the batch, it should be * cache-aligned otherwise it is adjusted accordingly. * Typically we only have one indirect_ctx and per_ctx batch buffer which are * initialized at the beginning and shared across all contexts but this field * helps us to have multiple batches at different offsets and select them based * on a criteria. At the moment this batch always start at the beginning of the page * and at this point we don't have multiple wa_ctx batch buffers. * * The number of WA applied are not known at the beginning; we use this field * to return the no of DWORDS written. * * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END * so it adds NOOPs as padding to make it cacheline aligned. * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together * makes a complete batch buffer. * * Return: non-zero if we exceed the PAGE_SIZE limit. */ static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine, struct i915_wa_ctx_bb *wa_ctx, uint32_t *const batch, uint32_t *offset) { uint32_t scratch_addr; uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); /* WaDisableCtxRestoreArbitration:bdw,chv */ wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE); /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ if (IS_BROADWELL(engine->dev)) { int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index); if (rc < 0) return rc; index = rc; } /* WaClearSlmSpaceAtContextSwitch:bdw,chv */ /* Actual scratch location is at 128 bytes offset */ scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES; wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6)); wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 | PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE)); wa_ctx_emit(batch, index, scratch_addr); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); /* Pad to end of cacheline */ while (index % CACHELINE_DWORDS) wa_ctx_emit(batch, index, MI_NOOP); /* * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because * execution depends on the length specified in terms of cache lines * in the register CTX_RCS_INDIRECT_CTX */ return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS); } /** * gen8_init_perctx_bb() - initialize per ctx batch with WA * * @ring: only applicable for RCS * @wa_ctx: structure representing wa_ctx * offset: specifies start of the batch, should be cache-aligned. * size: size of the batch in DWORDS but HW expects in terms of cachelines * @batch: page in which WA are loaded * @offset: This field specifies the start of this batch. * This batch is started immediately after indirect_ctx batch. Since we ensure * that indirect_ctx ends on a cacheline this batch is aligned automatically. * * The number of DWORDS written are returned using this field. * * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant. */ static int gen8_init_perctx_bb(struct intel_engine_cs *engine, struct i915_wa_ctx_bb *wa_ctx, uint32_t *const batch, uint32_t *offset) { uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); /* WaDisableCtxRestoreArbitration:bdw,chv */ wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE); wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END); return wa_ctx_end(wa_ctx, *offset = index, 1); } static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine, struct i915_wa_ctx_bb *wa_ctx, uint32_t *const batch, uint32_t *offset) { int ret; struct drm_device *dev = engine->dev; uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); /* WaDisableCtxRestoreArbitration:skl,bxt */ if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) || IS_BXT_REVID(dev, 0, BXT_REVID_A1)) wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE); /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */ ret = gen8_emit_flush_coherentl3_wa(engine, batch, index); if (ret < 0) return ret; index = ret; /* Pad to end of cacheline */ while (index % CACHELINE_DWORDS) wa_ctx_emit(batch, index, MI_NOOP); return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS); } static int gen9_init_perctx_bb(struct intel_engine_cs *engine, struct i915_wa_ctx_bb *wa_ctx, uint32_t *const batch, uint32_t *offset) { struct drm_device *dev = engine->dev; uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */ if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) || IS_BXT_REVID(dev, 0, BXT_REVID_A1)) { wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1)); wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0); wa_ctx_emit(batch, index, _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING)); wa_ctx_emit(batch, index, MI_NOOP); } /* WaClearTdlStateAckDirtyBits:bxt */ if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) { wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4)); wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK); wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS)); wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1); wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS)); wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2); wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS)); wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2); /* dummy write to CS, mask bits are 0 to ensure the register is not modified */ wa_ctx_emit(batch, index, 0x0); wa_ctx_emit(batch, index, MI_NOOP); } /* WaDisableCtxRestoreArbitration:skl,bxt */ if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) || IS_BXT_REVID(dev, 0, BXT_REVID_A1)) wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE); wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END); return wa_ctx_end(wa_ctx, *offset = index, 1); } static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size) { int ret; engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev, PAGE_ALIGN(size)); if (!engine->wa_ctx.obj) { DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n"); return -ENOMEM; } ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0); if (ret) { DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n", ret); drm_gem_object_unreference(&engine->wa_ctx.obj->base); return ret; } return 0; } static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine) { if (engine->wa_ctx.obj) { i915_gem_object_ggtt_unpin(engine->wa_ctx.obj); drm_gem_object_unreference(&engine->wa_ctx.obj->base); engine->wa_ctx.obj = NULL; } } static int intel_init_workaround_bb(struct intel_engine_cs *engine) { int ret; uint32_t *batch; uint32_t offset; struct page *page; struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; WARN_ON(engine->id != RCS); /* update this when WA for higher Gen are added */ if (INTEL_INFO(engine->dev)->gen > 9) { DRM_ERROR("WA batch buffer is not initialized for Gen%d\n", INTEL_INFO(engine->dev)->gen); return 0; } /* some WA perform writes to scratch page, ensure it is valid */ if (engine->scratch.obj == NULL) { DRM_ERROR("scratch page not allocated for %s\n", engine->name); return -EINVAL; } ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE); if (ret) { DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret); return ret; } page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0); batch = kmap_atomic(page); offset = 0; if (INTEL_INFO(engine->dev)->gen == 8) { ret = gen8_init_indirectctx_bb(engine, &wa_ctx->indirect_ctx, batch, &offset); if (ret) goto out; ret = gen8_init_perctx_bb(engine, &wa_ctx->per_ctx, batch, &offset); if (ret) goto out; } else if (INTEL_INFO(engine->dev)->gen == 9) { ret = gen9_init_indirectctx_bb(engine, &wa_ctx->indirect_ctx, batch, &offset); if (ret) goto out; ret = gen9_init_perctx_bb(engine, &wa_ctx->per_ctx, batch, &offset); if (ret) goto out; } out: kunmap_atomic(batch); if (ret) lrc_destroy_wa_ctx_obj(engine); return ret; } static void lrc_init_hws(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->dev->dev_private; I915_WRITE(RING_HWS_PGA(engine->mmio_base), (u32)engine->status_page.gfx_addr); POSTING_READ(RING_HWS_PGA(engine->mmio_base)); } static int gen8_init_common_ring(struct intel_engine_cs *engine) { struct drm_device *dev = engine->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned int next_context_status_buffer_hw; lrc_init_hws(engine); I915_WRITE_IMR(engine, ~(engine->irq_enable_mask | engine->irq_keep_mask)); I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff); I915_WRITE(RING_MODE_GEN7(engine), _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) | _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE)); POSTING_READ(RING_MODE_GEN7(engine)); /* * Instead of resetting the Context Status Buffer (CSB) read pointer to * zero, we need to read the write pointer from hardware and use its * value because "this register is power context save restored". * Effectively, these states have been observed: * * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) | * BDW | CSB regs not reset | CSB regs reset | * CHT | CSB regs not reset | CSB regs not reset | * SKL | ? | ? | * BXT | ? | ? | */ next_context_status_buffer_hw = GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine))); /* * When the CSB registers are reset (also after power-up / gpu reset), * CSB write pointer is set to all 1's, which is not valid, use '5' in * this special case, so the first element read is CSB[0]. */ if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK) next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1); engine->next_context_status_buffer = next_context_status_buffer_hw; DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name); intel_engine_init_hangcheck(engine); return 0; } static int gen8_init_render_ring(struct intel_engine_cs *engine) { struct drm_device *dev = engine->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; ret = gen8_init_common_ring(engine); if (ret) return ret; /* We need to disable the AsyncFlip performance optimisations in order * to use MI_WAIT_FOR_EVENT within the CS. It should already be * programmed to '1' on all products. * * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv */ I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE)); I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING)); return init_workarounds_ring(engine); } static int gen9_init_render_ring(struct intel_engine_cs *engine) { int ret; ret = gen8_init_common_ring(engine); if (ret) return ret; return init_workarounds_ring(engine); } static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req) { struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt; struct intel_engine_cs *engine = req->engine; struct intel_ringbuffer *ringbuf = req->ringbuf; const int num_lri_cmds = GEN8_LEGACY_PDPES * 2; int i, ret; ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2); if (ret) return ret; intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds)); for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) { const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(engine, i)); intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr)); intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(engine, i)); intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr)); } intel_logical_ring_emit(ringbuf, MI_NOOP); intel_logical_ring_advance(ringbuf); return 0; } static int gen8_emit_bb_start(struct drm_i915_gem_request *req, u64 offset, unsigned dispatch_flags) { struct intel_ringbuffer *ringbuf = req->ringbuf; bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE); int ret; /* Don't rely in hw updating PDPs, specially in lite-restore. * Ideally, we should set Force PD Restore in ctx descriptor, * but we can't. Force Restore would be a second option, but * it is unsafe in case of lite-restore (because the ctx is * not idle). PML4 is allocated during ppgtt init so this is * not needed in 48-bit.*/ if (req->ctx->ppgtt && (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) { if (!USES_FULL_48BIT_PPGTT(req->i915) && !intel_vgpu_active(req->i915->dev)) { ret = intel_logical_ring_emit_pdps(req); if (ret) return ret; } req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine); } ret = intel_logical_ring_begin(req, 4); if (ret) return ret; /* FIXME(BDW): Address space and security selectors. */ intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) | (dispatch_flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0)); intel_logical_ring_emit(ringbuf, lower_32_bits(offset)); intel_logical_ring_emit(ringbuf, upper_32_bits(offset)); intel_logical_ring_emit(ringbuf, MI_NOOP); intel_logical_ring_advance(ringbuf); return 0; } static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine) { struct drm_device *dev = engine->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned long flags; if (WARN_ON(!intel_irqs_enabled(dev_priv))) return false; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (engine->irq_refcount++ == 0) { I915_WRITE_IMR(engine, ~(engine->irq_enable_mask | engine->irq_keep_mask)); POSTING_READ(RING_IMR(engine->mmio_base)); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return true; } static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine) { struct drm_device *dev = engine->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned long flags; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (--engine->irq_refcount == 0) { I915_WRITE_IMR(engine, ~engine->irq_keep_mask); POSTING_READ(RING_IMR(engine->mmio_base)); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); } static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 invalidate_domains, u32 unused) { struct intel_ringbuffer *ringbuf = request->ringbuf; struct intel_engine_cs *engine = ringbuf->engine; struct drm_device *dev = engine->dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t cmd; int ret; ret = intel_logical_ring_begin(request, 4); if (ret) return ret; cmd = MI_FLUSH_DW + 1; /* We always require a command barrier so that subsequent * commands, such as breadcrumb interrupts, are strictly ordered * wrt the contents of the write cache being flushed to memory * (and thus being coherent from the CPU). */ cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; if (invalidate_domains & I915_GEM_GPU_DOMAINS) { cmd |= MI_INVALIDATE_TLB; if (engine == &dev_priv->engine[VCS]) cmd |= MI_INVALIDATE_BSD; } intel_logical_ring_emit(ringbuf, cmd); intel_logical_ring_emit(ringbuf, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT); intel_logical_ring_emit(ringbuf, 0); /* upper addr */ intel_logical_ring_emit(ringbuf, 0); /* value */ intel_logical_ring_advance(ringbuf); return 0; } static int gen8_emit_flush_render(struct drm_i915_gem_request *request, u32 invalidate_domains, u32 flush_domains) { struct intel_ringbuffer *ringbuf = request->ringbuf; struct intel_engine_cs *engine = ringbuf->engine; u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES; bool vf_flush_wa = false; u32 flags = 0; int ret; flags |= PIPE_CONTROL_CS_STALL; if (flush_domains) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; flags |= PIPE_CONTROL_FLUSH_ENABLE; } if (invalidate_domains) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; /* * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL * pipe control. */ if (IS_GEN9(engine->dev)) vf_flush_wa = true; } ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6); if (ret) return ret; if (vf_flush_wa) { intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6)); intel_logical_ring_emit(ringbuf, 0); intel_logical_ring_emit(ringbuf, 0); intel_logical_ring_emit(ringbuf, 0); intel_logical_ring_emit(ringbuf, 0); intel_logical_ring_emit(ringbuf, 0); } intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6)); intel_logical_ring_emit(ringbuf, flags); intel_logical_ring_emit(ringbuf, scratch_addr); intel_logical_ring_emit(ringbuf, 0); intel_logical_ring_emit(ringbuf, 0); intel_logical_ring_emit(ringbuf, 0); intel_logical_ring_advance(ringbuf); return 0; } static u32 gen8_get_seqno(struct intel_engine_cs *engine) { return intel_read_status_page(engine, I915_GEM_HWS_INDEX); } static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno) { intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno); } static void bxt_a_seqno_barrier(struct intel_engine_cs *engine) { /* * On BXT A steppings there is a HW coherency issue whereby the * MI_STORE_DATA_IMM storing the completed request's seqno * occasionally doesn't invalidate the CPU cache. Work around this by * clflushing the corresponding cacheline whenever the caller wants * the coherency to be guaranteed. Note that this cacheline is known * to be clean at this point, since we only write it in * bxt_a_set_seqno(), where we also do a clflush after the write. So * this clflush in practice becomes an invalidate operation. */ intel_flush_status_page(engine, I915_GEM_HWS_INDEX); } static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno) { intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno); /* See bxt_a_get_seqno() explaining the reason for the clflush. */ intel_flush_status_page(engine, I915_GEM_HWS_INDEX); } /* * Reserve space for 2 NOOPs at the end of each request to be * used as a workaround for not being allowed to do lite * restore with HEAD==TAIL (WaIdleLiteRestore). */ #define WA_TAIL_DWORDS 2 static inline u32 hws_seqno_address(struct intel_engine_cs *engine) { return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR; } static int gen8_emit_request(struct drm_i915_gem_request *request) { struct intel_ringbuffer *ringbuf = request->ringbuf; int ret; ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS); if (ret) return ret; /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */ BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5)); intel_logical_ring_emit(ringbuf, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW); intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT); intel_logical_ring_emit(ringbuf, 0); intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request)); intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT); intel_logical_ring_emit(ringbuf, MI_NOOP); return intel_logical_ring_advance_and_submit(request); } static int gen8_emit_request_render(struct drm_i915_gem_request *request) { struct intel_ringbuffer *ringbuf = request->ringbuf; int ret; ret = intel_logical_ring_begin(request, 8 + WA_TAIL_DWORDS); if (ret) return ret; /* We're using qword write, seqno should be aligned to 8 bytes. */ BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1); /* w/a for post sync ops following a GPGPU operation we * need a prior CS_STALL, which is emitted by the flush * following the batch. */ intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6)); intel_logical_ring_emit(ringbuf, (PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE)); intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine)); intel_logical_ring_emit(ringbuf, 0); intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request)); /* We're thrashing one dword of HWS. */ intel_logical_ring_emit(ringbuf, 0); intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT); intel_logical_ring_emit(ringbuf, MI_NOOP); return intel_logical_ring_advance_and_submit(request); } static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req) { struct render_state so; int ret; ret = i915_gem_render_state_prepare(req->engine, &so); if (ret) return ret; if (so.rodata == NULL) return 0; ret = req->engine->emit_bb_start(req, so.ggtt_offset, I915_DISPATCH_SECURE); if (ret) goto out; ret = req->engine->emit_bb_start(req, (so.ggtt_offset + so.aux_batch_offset), I915_DISPATCH_SECURE); if (ret) goto out; i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req); out: i915_gem_render_state_fini(&so); return ret; } static int gen8_init_rcs_context(struct drm_i915_gem_request *req) { int ret; ret = intel_logical_ring_workarounds_emit(req); if (ret) return ret; ret = intel_rcs_context_init_mocs(req); /* * Failing to program the MOCS is non-fatal.The system will not * run at peak performance. So generate an error and carry on. */ if (ret) DRM_ERROR("MOCS failed to program: expect performance issues.\n"); return intel_lr_context_render_state_init(req); } /** * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer * * @ring: Engine Command Streamer. * */ void intel_logical_ring_cleanup(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv; if (!intel_engine_initialized(engine)) return; /* * Tasklet cannot be active at this point due intel_mark_active/idle * so this is just for documentation. */ if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state))) tasklet_kill(&engine->irq_tasklet); dev_priv = engine->dev->dev_private; if (engine->buffer) { intel_logical_ring_stop(engine); WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0); } if (engine->cleanup) engine->cleanup(engine); i915_cmd_parser_fini_ring(engine); i915_gem_batch_pool_fini(&engine->batch_pool); if (engine->status_page.obj) { i915_gem_object_unpin_map(engine->status_page.obj); engine->status_page.obj = NULL; } engine->idle_lite_restore_wa = 0; engine->disable_lite_restore_wa = false; engine->ctx_desc_template = 0; lrc_destroy_wa_ctx_obj(engine); engine->dev = NULL; } static void logical_ring_default_vfuncs(struct drm_device *dev, struct intel_engine_cs *engine) { /* Default vfuncs which can be overriden by each engine. */ engine->init_hw = gen8_init_common_ring; engine->emit_request = gen8_emit_request; engine->emit_flush = gen8_emit_flush; engine->irq_get = gen8_logical_ring_get_irq; engine->irq_put = gen8_logical_ring_put_irq; engine->emit_bb_start = gen8_emit_bb_start; engine->get_seqno = gen8_get_seqno; engine->set_seqno = gen8_set_seqno; if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) { engine->irq_seqno_barrier = bxt_a_seqno_barrier; engine->set_seqno = bxt_a_set_seqno; } } static inline void logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift) { engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift; engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift; } static int lrc_setup_hws(struct intel_engine_cs *engine, struct drm_i915_gem_object *dctx_obj) { void *hws; /* The HWSP is part of the default context object in LRC mode. */ engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) + LRC_PPHWSP_PN * PAGE_SIZE; hws = i915_gem_object_pin_map(dctx_obj); if (IS_ERR(hws)) return PTR_ERR(hws); engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE; engine->status_page.obj = dctx_obj; return 0; } static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_context *dctx = dev_priv->kernel_context; enum forcewake_domains fw_domains; int ret; /* Intentionally left blank. */ engine->buffer = NULL; engine->dev = dev; INIT_LIST_HEAD(&engine->active_list); INIT_LIST_HEAD(&engine->request_list); i915_gem_batch_pool_init(dev, &engine->batch_pool); init_waitqueue_head(&engine->irq_queue); INIT_LIST_HEAD(&engine->buffers); INIT_LIST_HEAD(&engine->execlist_queue); INIT_LIST_HEAD(&engine->execlist_retired_req_list); spin_lock_init(&engine->execlist_lock); tasklet_init(&engine->irq_tasklet, intel_lrc_irq_handler, (unsigned long)engine); logical_ring_init_platform_invariants(engine); fw_domains = intel_uncore_forcewake_for_reg(dev_priv, RING_ELSP(engine), FW_REG_WRITE); fw_domains |= intel_uncore_forcewake_for_reg(dev_priv, RING_CONTEXT_STATUS_PTR(engine), FW_REG_READ | FW_REG_WRITE); fw_domains |= intel_uncore_forcewake_for_reg(dev_priv, RING_CONTEXT_STATUS_BUF_BASE(engine), FW_REG_READ); engine->fw_domains = fw_domains; ret = i915_cmd_parser_init_ring(engine); if (ret) goto error; ret = intel_lr_context_deferred_alloc(dctx, engine); if (ret) goto error; /* As this is the default context, always pin it */ ret = intel_lr_context_do_pin(dctx, engine); if (ret) { DRM_ERROR( "Failed to pin and map ringbuffer %s: %d\n", engine->name, ret); goto error; } /* And setup the hardware status page. */ ret = lrc_setup_hws(engine, dctx->engine[engine->id].state); if (ret) { DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret); goto error; } return 0; error: intel_logical_ring_cleanup(engine); return ret; } static int logical_render_ring_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine = &dev_priv->engine[RCS]; int ret; engine->name = "render ring"; engine->id = RCS; engine->exec_id = I915_EXEC_RENDER; engine->guc_id = GUC_RENDER_ENGINE; engine->mmio_base = RENDER_RING_BASE; logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT); if (HAS_L3_DPF(dev)) engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT; logical_ring_default_vfuncs(dev, engine); /* Override some for render ring. */ if (INTEL_INFO(dev)->gen >= 9) engine->init_hw = gen9_init_render_ring; else engine->init_hw = gen8_init_render_ring; engine->init_context = gen8_init_rcs_context; engine->cleanup = intel_fini_pipe_control; engine->emit_flush = gen8_emit_flush_render; engine->emit_request = gen8_emit_request_render; engine->dev = dev; ret = intel_init_pipe_control(engine); if (ret) return ret; ret = intel_init_workaround_bb(engine); if (ret) { /* * We continue even if we fail to initialize WA batch * because we only expect rare glitches but nothing * critical to prevent us from using GPU */ DRM_ERROR("WA batch buffer initialization failed: %d\n", ret); } ret = logical_ring_init(dev, engine); if (ret) { lrc_destroy_wa_ctx_obj(engine); } return ret; } static int logical_bsd_ring_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine = &dev_priv->engine[VCS]; engine->name = "bsd ring"; engine->id = VCS; engine->exec_id = I915_EXEC_BSD; engine->guc_id = GUC_VIDEO_ENGINE; engine->mmio_base = GEN6_BSD_RING_BASE; logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT); logical_ring_default_vfuncs(dev, engine); return logical_ring_init(dev, engine); } static int logical_bsd2_ring_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine = &dev_priv->engine[VCS2]; engine->name = "bsd2 ring"; engine->id = VCS2; engine->exec_id = I915_EXEC_BSD; engine->guc_id = GUC_VIDEO_ENGINE2; engine->mmio_base = GEN8_BSD2_RING_BASE; logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT); logical_ring_default_vfuncs(dev, engine); return logical_ring_init(dev, engine); } static int logical_blt_ring_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine = &dev_priv->engine[BCS]; engine->name = "blitter ring"; engine->id = BCS; engine->exec_id = I915_EXEC_BLT; engine->guc_id = GUC_BLITTER_ENGINE; engine->mmio_base = BLT_RING_BASE; logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT); logical_ring_default_vfuncs(dev, engine); return logical_ring_init(dev, engine); } static int logical_vebox_ring_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine = &dev_priv->engine[VECS]; engine->name = "video enhancement ring"; engine->id = VECS; engine->exec_id = I915_EXEC_VEBOX; engine->guc_id = GUC_VIDEOENHANCE_ENGINE; engine->mmio_base = VEBOX_RING_BASE; logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT); logical_ring_default_vfuncs(dev, engine); return logical_ring_init(dev, engine); } /** * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers * @dev: DRM device. * * This function inits the engines for an Execlists submission style (the equivalent in the * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for * those engines that are present in the hardware. * * Return: non-zero if the initialization failed. */ int intel_logical_rings_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int ret; ret = logical_render_ring_init(dev); if (ret) return ret; if (HAS_BSD(dev)) { ret = logical_bsd_ring_init(dev); if (ret) goto cleanup_render_ring; } if (HAS_BLT(dev)) { ret = logical_blt_ring_init(dev); if (ret) goto cleanup_bsd_ring; } if (HAS_VEBOX(dev)) { ret = logical_vebox_ring_init(dev); if (ret) goto cleanup_blt_ring; } if (HAS_BSD2(dev)) { ret = logical_bsd2_ring_init(dev); if (ret) goto cleanup_vebox_ring; } return 0; cleanup_vebox_ring: intel_logical_ring_cleanup(&dev_priv->engine[VECS]); cleanup_blt_ring: intel_logical_ring_cleanup(&dev_priv->engine[BCS]); cleanup_bsd_ring: intel_logical_ring_cleanup(&dev_priv->engine[VCS]); cleanup_render_ring: intel_logical_ring_cleanup(&dev_priv->engine[RCS]); return ret; } static u32 make_rpcs(struct drm_device *dev) { u32 rpcs = 0; /* * No explicit RPCS request is needed to ensure full * slice/subslice/EU enablement prior to Gen9. */ if (INTEL_INFO(dev)->gen < 9) return 0; /* * Starting in Gen9, render power gating can leave * slice/subslice/EU in a partially enabled state. We * must make an explicit request through RPCS for full * enablement. */ if (INTEL_INFO(dev)->has_slice_pg) { rpcs |= GEN8_RPCS_S_CNT_ENABLE; rpcs |= INTEL_INFO(dev)->slice_total << GEN8_RPCS_S_CNT_SHIFT; rpcs |= GEN8_RPCS_ENABLE; } if (INTEL_INFO(dev)->has_subslice_pg) { rpcs |= GEN8_RPCS_SS_CNT_ENABLE; rpcs |= INTEL_INFO(dev)->subslice_per_slice << GEN8_RPCS_SS_CNT_SHIFT; rpcs |= GEN8_RPCS_ENABLE; } if (INTEL_INFO(dev)->has_eu_pg) { rpcs |= INTEL_INFO(dev)->eu_per_subslice << GEN8_RPCS_EU_MIN_SHIFT; rpcs |= INTEL_INFO(dev)->eu_per_subslice << GEN8_RPCS_EU_MAX_SHIFT; rpcs |= GEN8_RPCS_ENABLE; } return rpcs; } static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine) { u32 indirect_ctx_offset; switch (INTEL_INFO(engine->dev)->gen) { default: MISSING_CASE(INTEL_INFO(engine->dev)->gen); /* fall through */ case 9: indirect_ctx_offset = GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; break; case 8: indirect_ctx_offset = GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; break; } return indirect_ctx_offset; } static int populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj, struct intel_engine_cs *engine, struct intel_ringbuffer *ringbuf) { struct drm_device *dev = engine->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct i915_hw_ppgtt *ppgtt = ctx->ppgtt; void *vaddr; u32 *reg_state; int ret; if (!ppgtt) ppgtt = dev_priv->mm.aliasing_ppgtt; ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true); if (ret) { DRM_DEBUG_DRIVER("Could not set to CPU domain\n"); return ret; } vaddr = i915_gem_object_pin_map(ctx_obj); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret); return ret; } ctx_obj->dirty = true; /* The second page of the context object contains some fields which must * be set up prior to the first execution. */ reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE; /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM * commands followed by (reg, value) pairs. The values we are setting here are * only for the first context restore: on a subsequent save, the GPU will * recreate this batchbuffer with new values (including all the missing * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */ reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED; ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine), _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH | CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | (HAS_RESOURCE_STREAMER(dev) ? CTX_CTRL_RS_CTX_ENABLE : 0))); ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base), 0); /* Ring buffer start address is not known until the buffer is pinned. * It is written to the context image in execlists_update_context() */ ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(engine->mmio_base), ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID); ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(engine->mmio_base), RING_BB_PPGTT); ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(engine->mmio_base), 0); if (engine->id == RCS) { ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0); if (engine->wa_ctx.obj) { struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj); reg_state[CTX_RCS_INDIRECT_CTX+1] = (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) | (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS); reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = intel_lr_indirect_ctx_offset(engine) << 6; reg_state[CTX_BB_PER_CTX_PTR+1] = (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) | 0x01; } } reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED; ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(engine->mmio_base), 0); /* PDP values well be assigned later if needed */ ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0); if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) { /* 64b PPGTT (48bit canonical) * PDP0_DESCRIPTOR contains the base address to PML4 and * other PDP Descriptors are ignored. */ ASSIGN_CTX_PML4(ppgtt, reg_state); } else { /* 32b PPGTT * PDP*_DESCRIPTOR contains the base address of space supported. * With dynamic page allocation, PDPs may not be allocated at * this point. Point the unallocated PDPs to the scratch page */ execlists_update_context_pdps(ppgtt, reg_state); } if (engine->id == RCS) { reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1); ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, make_rpcs(dev)); } i915_gem_object_unpin_map(ctx_obj); return 0; } /** * intel_lr_context_free() - free the LRC specific bits of a context * @ctx: the LR context to free. * * The real context freeing is done in i915_gem_context_free: this only * takes care of the bits that are LRC related: the per-engine backing * objects and the logical ringbuffer. */ void intel_lr_context_free(struct intel_context *ctx) { int i; for (i = I915_NUM_ENGINES; --i >= 0; ) { struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf; struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state; if (!ctx_obj) continue; if (ctx == ctx->i915->kernel_context) { intel_unpin_ringbuffer_obj(ringbuf); i915_gem_object_ggtt_unpin(ctx_obj); i915_gem_object_unpin_map(ctx_obj); } WARN_ON(ctx->engine[i].pin_count); intel_ringbuffer_free(ringbuf); drm_gem_object_unreference(&ctx_obj->base); } } /** * intel_lr_context_size() - return the size of the context for an engine * @ring: which engine to find the context size for * * Each engine may require a different amount of space for a context image, * so when allocating (or copying) an image, this function can be used to * find the right size for the specific engine. * * Return: size (in bytes) of an engine-specific context image * * Note: this size includes the HWSP, which is part of the context image * in LRC mode, but does not include the "shared data page" used with * GuC submission. The caller should account for this if using the GuC. */ uint32_t intel_lr_context_size(struct intel_engine_cs *engine) { int ret = 0; WARN_ON(INTEL_INFO(engine->dev)->gen < 8); switch (engine->id) { case RCS: if (INTEL_INFO(engine->dev)->gen >= 9) ret = GEN9_LR_CONTEXT_RENDER_SIZE; else ret = GEN8_LR_CONTEXT_RENDER_SIZE; break; case VCS: case BCS: case VECS: case VCS2: ret = GEN8_LR_CONTEXT_OTHER_SIZE; break; } return ret; } /** * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context * @ctx: LR context to create. * @ring: engine to be used with the context. * * This function can be called more than once, with different engines, if we plan * to use the context with them. The context backing objects and the ringbuffers * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why * the creation is a deferred call: it's better to make sure first that we need to use * a given ring with the context. * * Return: non-zero on error. */ int intel_lr_context_deferred_alloc(struct intel_context *ctx, struct intel_engine_cs *engine) { struct drm_device *dev = engine->dev; struct drm_i915_gem_object *ctx_obj; uint32_t context_size; struct intel_ringbuffer *ringbuf; int ret; WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL); WARN_ON(ctx->engine[engine->id].state); context_size = round_up(intel_lr_context_size(engine), 4096); /* One extra page as the sharing data between driver and GuC */ context_size += PAGE_SIZE * LRC_PPHWSP_PN; ctx_obj = i915_gem_alloc_object(dev, context_size); if (!ctx_obj) { DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n"); return -ENOMEM; } ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE); if (IS_ERR(ringbuf)) { ret = PTR_ERR(ringbuf); goto error_deref_obj; } ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf); if (ret) { DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret); goto error_ringbuf; } ctx->engine[engine->id].ringbuf = ringbuf; ctx->engine[engine->id].state = ctx_obj; if (ctx != ctx->i915->kernel_context && engine->init_context) { struct drm_i915_gem_request *req; req = i915_gem_request_alloc(engine, ctx); if (IS_ERR(req)) { ret = PTR_ERR(req); DRM_ERROR("ring create req: %d\n", ret); goto error_ringbuf; } ret = engine->init_context(req); if (ret) { DRM_ERROR("ring init context: %d\n", ret); i915_gem_request_cancel(req); goto error_ringbuf; } i915_add_request_no_flush(req); } return 0; error_ringbuf: intel_ringbuffer_free(ringbuf); error_deref_obj: drm_gem_object_unreference(&ctx_obj->base); ctx->engine[engine->id].ringbuf = NULL; ctx->engine[engine->id].state = NULL; return ret; } void intel_lr_context_reset(struct drm_i915_private *dev_priv, struct intel_context *ctx) { struct intel_engine_cs *engine; for_each_engine(engine, dev_priv) { struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state; struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf; void *vaddr; uint32_t *reg_state; if (!ctx_obj) continue; vaddr = i915_gem_object_pin_map(ctx_obj); if (WARN_ON(IS_ERR(vaddr))) continue; reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE; ctx_obj->dirty = true; reg_state[CTX_RING_HEAD+1] = 0; reg_state[CTX_RING_TAIL+1] = 0; i915_gem_object_unpin_map(ctx_obj); ringbuf->head = 0; ringbuf->tail = 0; } }