/********************************************************************** * Author: Cavium, Inc. * * Contact: support@cavium.com * Please include "LiquidIO" in the subject. * * Copyright (c) 2003-2016 Cavium, Inc. * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, Version 2, as * published by the Free Software Foundation. * * This file is distributed in the hope that it will be useful, but * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or * NONINFRINGEMENT. See the GNU General Public License for more * details. **********************************************************************/ #include #include #include #include "liquidio_common.h" #include "octeon_droq.h" #include "octeon_iq.h" #include "response_manager.h" #include "octeon_device.h" #include "octeon_main.h" #include "octeon_network.h" #include "cn66xx_device.h" #include "cn23xx_pf_device.h" #include "cn23xx_vf_device.h" struct iq_post_status { int status; int index; }; static void check_db_timeout(struct work_struct *work); static void __check_db_timeout(struct octeon_device *oct, u64 iq_no); static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *); static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no) { struct octeon_instr_queue *iq = (struct octeon_instr_queue *)oct->instr_queue[iq_no]; return iq->iqcmd_64B; } #define IQ_INSTR_MODE_32B(oct, iq_no) (!IQ_INSTR_MODE_64B(oct, iq_no)) /* Define this to return the request status comaptible to old code */ /*#define OCTEON_USE_OLD_REQ_STATUS*/ /* Return 0 on success, 1 on failure */ int octeon_init_instr_queue(struct octeon_device *oct, union oct_txpciq txpciq, u32 num_descs) { struct octeon_instr_queue *iq; struct octeon_iq_config *conf = NULL; u32 iq_no = (u32)txpciq.s.q_no; u32 q_size; struct cavium_wq *db_wq; int numa_node = dev_to_node(&oct->pci_dev->dev); if (OCTEON_CN6XXX(oct)) conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn6xxx))); else if (OCTEON_CN23XX_PF(oct)) conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_pf))); else if (OCTEON_CN23XX_VF(oct)) conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_vf))); if (!conf) { dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n", oct->chip_id); return 1; } if (num_descs & (num_descs - 1)) { dev_err(&oct->pci_dev->dev, "Number of descriptors for instr queue %d not in power of 2.\n", iq_no); return 1; } q_size = (u32)conf->instr_type * num_descs; iq = oct->instr_queue[iq_no]; iq->oct_dev = oct; iq->base_addr = lio_dma_alloc(oct, q_size, &iq->base_addr_dma); if (!iq->base_addr) { dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n", iq_no); return 1; } iq->max_count = num_descs; /* Initialize a list to holds requests that have been posted to Octeon * but has yet to be fetched by octeon */ iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs), numa_node); if (!iq->request_list) iq->request_list = vmalloc(sizeof(*iq->request_list) * num_descs); if (!iq->request_list) { lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma); dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n", iq_no); return 1; } memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs); dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %llx count: %d\n", iq_no, iq->base_addr, iq->base_addr_dma, iq->max_count); iq->txpciq.u64 = txpciq.u64; iq->fill_threshold = (u32)conf->db_min; iq->fill_cnt = 0; iq->host_write_index = 0; iq->octeon_read_index = 0; iq->flush_index = 0; iq->last_db_time = 0; iq->do_auto_flush = 1; iq->db_timeout = (u32)conf->db_timeout; atomic_set(&iq->instr_pending, 0); /* Initialize the spinlock for this instruction queue */ spin_lock_init(&iq->lock); spin_lock_init(&iq->post_lock); spin_lock_init(&iq->iq_flush_running_lock); oct->io_qmask.iq |= BIT_ULL(iq_no); /* Set the 32B/64B mode for each input queue */ oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no); iq->iqcmd_64B = (conf->instr_type == 64); oct->fn_list.setup_iq_regs(oct, iq_no); oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db", WQ_MEM_RECLAIM, 0); if (!oct->check_db_wq[iq_no].wq) { vfree(iq->request_list); iq->request_list = NULL; lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma); dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n", iq_no); return 1; } db_wq = &oct->check_db_wq[iq_no]; INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout); db_wq->wk.ctxptr = oct; db_wq->wk.ctxul = iq_no; queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1)); return 0; } int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no) { u64 desc_size = 0, q_size; struct octeon_instr_queue *iq = oct->instr_queue[iq_no]; cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work); destroy_workqueue(oct->check_db_wq[iq_no].wq); if (OCTEON_CN6XXX(oct)) desc_size = CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn6xxx)); else if (OCTEON_CN23XX_PF(oct)) desc_size = CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_pf)); else if (OCTEON_CN23XX_VF(oct)) desc_size = CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_vf)); vfree(iq->request_list); if (iq->base_addr) { q_size = iq->max_count * desc_size; lio_dma_free(oct, (u32)q_size, iq->base_addr, iq->base_addr_dma); oct->io_qmask.iq &= ~(1ULL << iq_no); vfree(oct->instr_queue[iq_no]); oct->instr_queue[iq_no] = NULL; oct->num_iqs--; return 0; } return 1; } /* Return 0 on success, 1 on failure */ int octeon_setup_iq(struct octeon_device *oct, int ifidx, int q_index, union oct_txpciq txpciq, u32 num_descs, void *app_ctx) { u32 iq_no = (u32)txpciq.s.q_no; int numa_node = dev_to_node(&oct->pci_dev->dev); if (oct->instr_queue[iq_no]) { dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n", iq_no); oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64; oct->instr_queue[iq_no]->app_ctx = app_ctx; return 0; } oct->instr_queue[iq_no] = vmalloc_node(sizeof(struct octeon_instr_queue), numa_node); if (!oct->instr_queue[iq_no]) oct->instr_queue[iq_no] = vmalloc(sizeof(struct octeon_instr_queue)); if (!oct->instr_queue[iq_no]) return 1; memset(oct->instr_queue[iq_no], 0, sizeof(struct octeon_instr_queue)); oct->instr_queue[iq_no]->q_index = q_index; oct->instr_queue[iq_no]->app_ctx = app_ctx; oct->instr_queue[iq_no]->ifidx = ifidx; if (octeon_init_instr_queue(oct, txpciq, num_descs)) { vfree(oct->instr_queue[iq_no]); oct->instr_queue[iq_no] = NULL; return 1; } oct->num_iqs++; if (oct->fn_list.enable_io_queues(oct)) return 1; return 0; } int lio_wait_for_instr_fetch(struct octeon_device *oct) { int i, retry = 1000, pending, instr_cnt = 0; do { instr_cnt = 0; for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { if (!(oct->io_qmask.iq & BIT_ULL(i))) continue; pending = atomic_read(&oct->instr_queue[i]->instr_pending); if (pending) __check_db_timeout(oct, i); instr_cnt += pending; } if (instr_cnt == 0) break; schedule_timeout_uninterruptible(1); } while (retry-- && instr_cnt); return instr_cnt; } static inline void ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq) { if (atomic_read(&oct->status) == OCT_DEV_RUNNING) { writel(iq->fill_cnt, iq->doorbell_reg); /* make sure doorbell write goes through */ mmiowb(); iq->fill_cnt = 0; iq->last_db_time = jiffies; return; } } static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq, u8 *cmd) { u8 *iqptr, cmdsize; cmdsize = ((iq->iqcmd_64B) ? 64 : 32); iqptr = iq->base_addr + (cmdsize * iq->host_write_index); memcpy(iqptr, cmd, cmdsize); } static inline struct iq_post_status __post_command2(struct octeon_instr_queue *iq, u8 *cmd) { struct iq_post_status st; st.status = IQ_SEND_OK; /* This ensures that the read index does not wrap around to the same * position if queue gets full before Octeon could fetch any instr. */ if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) { st.status = IQ_SEND_FAILED; st.index = -1; return st; } if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2)) st.status = IQ_SEND_STOP; __copy_cmd_into_iq(iq, cmd); /* "index" is returned, host_write_index is modified. */ st.index = iq->host_write_index; iq->host_write_index = incr_index(iq->host_write_index, 1, iq->max_count); iq->fill_cnt++; /* Flush the command into memory. We need to be sure the data is in * memory before indicating that the instruction is pending. */ wmb(); atomic_inc(&iq->instr_pending); return st; } int octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype, void (*fn)(void *)) { if (reqtype > REQTYPE_LAST) { dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n", __func__, reqtype); return -EINVAL; } reqtype_free_fn[oct->octeon_id][reqtype] = fn; return 0; } static inline void __add_to_request_list(struct octeon_instr_queue *iq, int idx, void *buf, int reqtype) { iq->request_list[idx].buf = buf; iq->request_list[idx].reqtype = reqtype; } /* Can only run in process context */ int lio_process_iq_request_list(struct octeon_device *oct, struct octeon_instr_queue *iq, u32 napi_budget) { int reqtype; void *buf; u32 old = iq->flush_index; u32 inst_count = 0; unsigned int pkts_compl = 0, bytes_compl = 0; struct octeon_soft_command *sc; struct octeon_instr_irh *irh; unsigned long flags; while (old != iq->octeon_read_index) { reqtype = iq->request_list[old].reqtype; buf = iq->request_list[old].buf; if (reqtype == REQTYPE_NONE) goto skip_this; octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl, &bytes_compl); switch (reqtype) { case REQTYPE_NORESP_NET: case REQTYPE_NORESP_NET_SG: case REQTYPE_RESP_NET_SG: reqtype_free_fn[oct->octeon_id][reqtype](buf); break; case REQTYPE_RESP_NET: case REQTYPE_SOFT_COMMAND: sc = buf; if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) irh = (struct octeon_instr_irh *) &sc->cmd.cmd3.irh; else irh = (struct octeon_instr_irh *) &sc->cmd.cmd2.irh; if (irh->rflag) { /* We're expecting a response from Octeon. * It's up to lio_process_ordered_list() to * process sc. Add sc to the ordered soft * command response list because we expect * a response from Octeon. */ spin_lock_irqsave (&oct->response_list [OCTEON_ORDERED_SC_LIST].lock, flags); atomic_inc(&oct->response_list [OCTEON_ORDERED_SC_LIST]. pending_req_count); list_add_tail(&sc->node, &oct->response_list [OCTEON_ORDERED_SC_LIST].head); spin_unlock_irqrestore (&oct->response_list [OCTEON_ORDERED_SC_LIST].lock, flags); } else { if (sc->callback) { /* This callback must not sleep */ sc->callback(oct, OCTEON_REQUEST_DONE, sc->callback_arg); } } break; default: dev_err(&oct->pci_dev->dev, "%s Unknown reqtype: %d buf: %p at idx %d\n", __func__, reqtype, buf, old); } iq->request_list[old].buf = NULL; iq->request_list[old].reqtype = 0; skip_this: inst_count++; old = incr_index(old, 1, iq->max_count); if ((napi_budget) && (inst_count >= napi_budget)) break; } if (bytes_compl) octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl, bytes_compl); iq->flush_index = old; return inst_count; } /* Can only be called from process context */ int octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq, u32 napi_budget) { u32 inst_processed = 0; u32 tot_inst_processed = 0; int tx_done = 1; if (!spin_trylock(&iq->iq_flush_running_lock)) return tx_done; spin_lock_bh(&iq->lock); iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq); do { /* Process any outstanding IQ packets. */ if (iq->flush_index == iq->octeon_read_index) break; if (napi_budget) inst_processed = lio_process_iq_request_list(oct, iq, napi_budget - tot_inst_processed); else inst_processed = lio_process_iq_request_list(oct, iq, 0); if (inst_processed) { atomic_sub(inst_processed, &iq->instr_pending); iq->stats.instr_processed += inst_processed; } tot_inst_processed += inst_processed; inst_processed = 0; } while (tot_inst_processed < napi_budget); if (napi_budget && (tot_inst_processed >= napi_budget)) tx_done = 0; iq->last_db_time = jiffies; spin_unlock_bh(&iq->lock); spin_unlock(&iq->iq_flush_running_lock); return tx_done; } /* Process instruction queue after timeout. * This routine gets called from a workqueue or when removing the module. */ static void __check_db_timeout(struct octeon_device *oct, u64 iq_no) { struct octeon_instr_queue *iq; u64 next_time; if (!oct) return; iq = oct->instr_queue[iq_no]; if (!iq) return; /* return immediately, if no work pending */ if (!atomic_read(&iq->instr_pending)) return; /* If jiffies - last_db_time < db_timeout do nothing */ next_time = iq->last_db_time + iq->db_timeout; if (!time_after(jiffies, (unsigned long)next_time)) return; iq->last_db_time = jiffies; /* Flush the instruction queue */ octeon_flush_iq(oct, iq, 0); lio_enable_irq(NULL, iq); } /* Called by the Poll thread at regular intervals to check the instruction * queue for commands to be posted and for commands that were fetched by Octeon. */ static void check_db_timeout(struct work_struct *work) { struct cavium_wk *wk = (struct cavium_wk *)work; struct octeon_device *oct = (struct octeon_device *)wk->ctxptr; u64 iq_no = wk->ctxul; struct cavium_wq *db_wq = &oct->check_db_wq[iq_no]; u32 delay = 10; __check_db_timeout(oct, iq_no); queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay)); } int octeon_send_command(struct octeon_device *oct, u32 iq_no, u32 force_db, void *cmd, void *buf, u32 datasize, u32 reqtype) { struct iq_post_status st; struct octeon_instr_queue *iq = oct->instr_queue[iq_no]; /* Get the lock and prevent other tasks and tx interrupt handler from * running. */ spin_lock_bh(&iq->post_lock); st = __post_command2(iq, cmd); if (st.status != IQ_SEND_FAILED) { octeon_report_sent_bytes_to_bql(buf, reqtype); __add_to_request_list(iq, st.index, buf, reqtype); INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize); INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1); if (force_db) ring_doorbell(oct, iq); } else { INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1); } spin_unlock_bh(&iq->post_lock); /* This is only done here to expedite packets being flushed * for cases where there are no IQ completion interrupts. */ return st.status; } void octeon_prepare_soft_command(struct octeon_device *oct, struct octeon_soft_command *sc, u8 opcode, u8 subcode, u32 irh_ossp, u64 ossp0, u64 ossp1) { struct octeon_config *oct_cfg; struct octeon_instr_ih2 *ih2; struct octeon_instr_ih3 *ih3; struct octeon_instr_pki_ih3 *pki_ih3; struct octeon_instr_irh *irh; struct octeon_instr_rdp *rdp; WARN_ON(opcode > 15); WARN_ON(subcode > 127); oct_cfg = octeon_get_conf(oct); if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) { ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3; ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind; pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3; pki_ih3->w = 1; pki_ih3->raw = 1; pki_ih3->utag = 1; pki_ih3->uqpg = oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg; pki_ih3->utt = 1; pki_ih3->tag = LIO_CONTROL; pki_ih3->tagtype = ATOMIC_TAG; pki_ih3->qpg = oct->instr_queue[sc->iq_no]->txpciq.s.qpg; pki_ih3->pm = 0x7; pki_ih3->sl = 8; if (sc->datasize) ih3->dlengsz = sc->datasize; irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh; irh->opcode = opcode; irh->subcode = subcode; /* opcode/subcode specific parameters (ossp) */ irh->ossp = irh_ossp; sc->cmd.cmd3.ossp[0] = ossp0; sc->cmd.cmd3.ossp[1] = ossp1; if (sc->rdatasize) { rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp; rdp->pcie_port = oct->pcie_port; rdp->rlen = sc->rdatasize; irh->rflag = 1; /*PKI IH3*/ /* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */ ih3->fsz = LIO_SOFTCMDRESP_IH3; } else { irh->rflag = 0; /*PKI IH3*/ /* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */ ih3->fsz = LIO_PCICMD_O3; } } else { ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2; ih2->tagtype = ATOMIC_TAG; ih2->tag = LIO_CONTROL; ih2->raw = 1; ih2->grp = CFG_GET_CTRL_Q_GRP(oct_cfg); if (sc->datasize) { ih2->dlengsz = sc->datasize; ih2->rs = 1; } irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh; irh->opcode = opcode; irh->subcode = subcode; /* opcode/subcode specific parameters (ossp) */ irh->ossp = irh_ossp; sc->cmd.cmd2.ossp[0] = ossp0; sc->cmd.cmd2.ossp[1] = ossp1; if (sc->rdatasize) { rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp; rdp->pcie_port = oct->pcie_port; rdp->rlen = sc->rdatasize; irh->rflag = 1; /* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */ ih2->fsz = LIO_SOFTCMDRESP_IH2; } else { irh->rflag = 0; /* irh + ossp[0] + ossp[1] = 24 bytes */ ih2->fsz = LIO_PCICMD_O2; } } } int octeon_send_soft_command(struct octeon_device *oct, struct octeon_soft_command *sc) { struct octeon_instr_ih2 *ih2; struct octeon_instr_ih3 *ih3; struct octeon_instr_irh *irh; u32 len; if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) { ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3; if (ih3->dlengsz) { WARN_ON(!sc->dmadptr); sc->cmd.cmd3.dptr = sc->dmadptr; } irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh; if (irh->rflag) { WARN_ON(!sc->dmarptr); WARN_ON(!sc->status_word); *sc->status_word = COMPLETION_WORD_INIT; sc->cmd.cmd3.rptr = sc->dmarptr; } len = (u32)ih3->dlengsz; } else { ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2; if (ih2->dlengsz) { WARN_ON(!sc->dmadptr); sc->cmd.cmd2.dptr = sc->dmadptr; } irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh; if (irh->rflag) { WARN_ON(!sc->dmarptr); WARN_ON(!sc->status_word); *sc->status_word = COMPLETION_WORD_INIT; sc->cmd.cmd2.rptr = sc->dmarptr; } len = (u32)ih2->dlengsz; } if (sc->wait_time) sc->timeout = jiffies + sc->wait_time; return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc, len, REQTYPE_SOFT_COMMAND)); } int octeon_setup_sc_buffer_pool(struct octeon_device *oct) { int i; u64 dma_addr; struct octeon_soft_command *sc; INIT_LIST_HEAD(&oct->sc_buf_pool.head); spin_lock_init(&oct->sc_buf_pool.lock); atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0); for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) { sc = (struct octeon_soft_command *) lio_dma_alloc(oct, SOFT_COMMAND_BUFFER_SIZE, (dma_addr_t *)&dma_addr); if (!sc) { octeon_free_sc_buffer_pool(oct); return 1; } sc->dma_addr = dma_addr; sc->size = SOFT_COMMAND_BUFFER_SIZE; list_add_tail(&sc->node, &oct->sc_buf_pool.head); } return 0; } int octeon_free_sc_buffer_pool(struct octeon_device *oct) { struct list_head *tmp, *tmp2; struct octeon_soft_command *sc; spin_lock_bh(&oct->sc_buf_pool.lock); list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) { list_del(tmp); sc = (struct octeon_soft_command *)tmp; lio_dma_free(oct, sc->size, sc, sc->dma_addr); } INIT_LIST_HEAD(&oct->sc_buf_pool.head); spin_unlock_bh(&oct->sc_buf_pool.lock); return 0; } struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct, u32 datasize, u32 rdatasize, u32 ctxsize) { u64 dma_addr; u32 size; u32 offset = sizeof(struct octeon_soft_command); struct octeon_soft_command *sc = NULL; struct list_head *tmp; WARN_ON((offset + datasize + rdatasize + ctxsize) > SOFT_COMMAND_BUFFER_SIZE); spin_lock_bh(&oct->sc_buf_pool.lock); if (list_empty(&oct->sc_buf_pool.head)) { spin_unlock_bh(&oct->sc_buf_pool.lock); return NULL; } list_for_each(tmp, &oct->sc_buf_pool.head) break; list_del(tmp); atomic_inc(&oct->sc_buf_pool.alloc_buf_count); spin_unlock_bh(&oct->sc_buf_pool.lock); sc = (struct octeon_soft_command *)tmp; dma_addr = sc->dma_addr; size = sc->size; memset(sc, 0, sc->size); sc->dma_addr = dma_addr; sc->size = size; if (ctxsize) { sc->ctxptr = (u8 *)sc + offset; sc->ctxsize = ctxsize; } /* Start data at 128 byte boundary */ offset = (offset + ctxsize + 127) & 0xffffff80; if (datasize) { sc->virtdptr = (u8 *)sc + offset; sc->dmadptr = dma_addr + offset; sc->datasize = datasize; } /* Start rdata at 128 byte boundary */ offset = (offset + datasize + 127) & 0xffffff80; if (rdatasize) { WARN_ON(rdatasize < 16); sc->virtrptr = (u8 *)sc + offset; sc->dmarptr = dma_addr + offset; sc->rdatasize = rdatasize; sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8); } return sc; } void octeon_free_soft_command(struct octeon_device *oct, struct octeon_soft_command *sc) { spin_lock_bh(&oct->sc_buf_pool.lock); list_add_tail(&sc->node, &oct->sc_buf_pool.head); atomic_dec(&oct->sc_buf_pool.alloc_buf_count); spin_unlock_bh(&oct->sc_buf_pool.lock); }