/* * linux/mm/compaction.c * * Memory compaction for the reduction of external fragmentation. Note that * this heavily depends upon page migration to do all the real heavy * lifting * * Copyright IBM Corp. 2007-2010 Mel Gorman */ #include #include #include #include #include #include #include #include #include #include "internal.h" #ifdef CONFIG_COMPACTION static inline void count_compact_event(enum vm_event_item item) { count_vm_event(item); } static inline void count_compact_events(enum vm_event_item item, long delta) { count_vm_events(item, delta); } #else #define count_compact_event(item) do { } while (0) #define count_compact_events(item, delta) do { } while (0) #endif #if defined CONFIG_COMPACTION || defined CONFIG_CMA #define CREATE_TRACE_POINTS #include static unsigned long release_freepages(struct list_head *freelist) { struct page *page, *next; unsigned long count = 0; list_for_each_entry_safe(page, next, freelist, lru) { list_del(&page->lru); __free_page(page); count++; } return count; } static void map_pages(struct list_head *list) { struct page *page; list_for_each_entry(page, list, lru) { arch_alloc_page(page, 0); kernel_map_pages(page, 1, 1); } } static inline bool migrate_async_suitable(int migratetype) { return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; } #ifdef CONFIG_COMPACTION /* Returns true if the pageblock should be scanned for pages to isolate. */ static inline bool isolation_suitable(struct compact_control *cc, struct page *page) { if (cc->ignore_skip_hint) return true; return !get_pageblock_skip(page); } /* * This function is called to clear all cached information on pageblocks that * should be skipped for page isolation when the migrate and free page scanner * meet. */ static void __reset_isolation_suitable(struct zone *zone) { unsigned long start_pfn = zone->zone_start_pfn; unsigned long end_pfn = zone_end_pfn(zone); unsigned long pfn; zone->compact_cached_migrate_pfn = start_pfn; zone->compact_cached_free_pfn = end_pfn; zone->compact_blockskip_flush = false; /* Walk the zone and mark every pageblock as suitable for isolation */ for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { struct page *page; cond_resched(); if (!pfn_valid(pfn)) continue; page = pfn_to_page(pfn); if (zone != page_zone(page)) continue; clear_pageblock_skip(page); } } void reset_isolation_suitable(pg_data_t *pgdat) { int zoneid; for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { struct zone *zone = &pgdat->node_zones[zoneid]; if (!populated_zone(zone)) continue; /* Only flush if a full compaction finished recently */ if (zone->compact_blockskip_flush) __reset_isolation_suitable(zone); } } /* * If no pages were isolated then mark this pageblock to be skipped in the * future. The information is later cleared by __reset_isolation_suitable(). */ static void update_pageblock_skip(struct compact_control *cc, struct page *page, unsigned long nr_isolated, bool migrate_scanner) { struct zone *zone = cc->zone; if (cc->ignore_skip_hint) return; if (!page) return; if (!nr_isolated) { unsigned long pfn = page_to_pfn(page); set_pageblock_skip(page); /* Update where compaction should restart */ if (migrate_scanner) { if (!cc->finished_update_migrate && pfn > zone->compact_cached_migrate_pfn) zone->compact_cached_migrate_pfn = pfn; } else { if (!cc->finished_update_free && pfn < zone->compact_cached_free_pfn) zone->compact_cached_free_pfn = pfn; } } } #else static inline bool isolation_suitable(struct compact_control *cc, struct page *page) { return true; } static void update_pageblock_skip(struct compact_control *cc, struct page *page, unsigned long nr_isolated, bool migrate_scanner) { } #endif /* CONFIG_COMPACTION */ static inline bool should_release_lock(spinlock_t *lock) { return need_resched() || spin_is_contended(lock); } /* * Compaction requires the taking of some coarse locks that are potentially * very heavily contended. Check if the process needs to be scheduled or * if the lock is contended. For async compaction, back out in the event * if contention is severe. For sync compaction, schedule. * * Returns true if the lock is held. * Returns false if the lock is released and compaction should abort */ static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags, bool locked, struct compact_control *cc) { if (should_release_lock(lock)) { if (locked) { spin_unlock_irqrestore(lock, *flags); locked = false; } /* async aborts if taking too long or contended */ if (!cc->sync) { cc->contended = true; return false; } cond_resched(); } if (!locked) spin_lock_irqsave(lock, *flags); return true; } static inline bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, struct compact_control *cc) { return compact_checklock_irqsave(lock, flags, false, cc); } /* Returns true if the page is within a block suitable for migration to */ static bool suitable_migration_target(struct page *page) { /* If the page is a large free page, then disallow migration */ if (PageBuddy(page) && page_order(page) >= pageblock_order) return false; /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ if (migrate_async_suitable(get_pageblock_migratetype(page))) return true; /* Otherwise skip the block */ return false; } /* * Isolate free pages onto a private freelist. If @strict is true, will abort * returning 0 on any invalid PFNs or non-free pages inside of the pageblock * (even though it may still end up isolating some pages). */ static unsigned long isolate_freepages_block(struct compact_control *cc, unsigned long blockpfn, unsigned long end_pfn, struct list_head *freelist, bool strict) { int nr_scanned = 0, total_isolated = 0; struct page *cursor, *valid_page = NULL; unsigned long flags; bool locked = false; bool checked_pageblock = false; cursor = pfn_to_page(blockpfn); /* Isolate free pages. */ for (; blockpfn < end_pfn; blockpfn++, cursor++) { int isolated, i; struct page *page = cursor; nr_scanned++; if (!pfn_valid_within(blockpfn)) goto isolate_fail; if (!valid_page) valid_page = page; if (!PageBuddy(page)) goto isolate_fail; /* * The zone lock must be held to isolate freepages. * Unfortunately this is a very coarse lock and can be * heavily contended if there are parallel allocations * or parallel compactions. For async compaction do not * spin on the lock and we acquire the lock as late as * possible. */ locked = compact_checklock_irqsave(&cc->zone->lock, &flags, locked, cc); if (!locked) break; /* Recheck this is a suitable migration target under lock */ if (!strict && !checked_pageblock) { /* * We need to check suitability of pageblock only once * and this isolate_freepages_block() is called with * pageblock range, so just check once is sufficient. */ checked_pageblock = true; if (!suitable_migration_target(page)) break; } /* Recheck this is a buddy page under lock */ if (!PageBuddy(page)) goto isolate_fail; /* Found a free page, break it into order-0 pages */ isolated = split_free_page(page); total_isolated += isolated; for (i = 0; i < isolated; i++) { list_add(&page->lru, freelist); page++; } /* If a page was split, advance to the end of it */ if (isolated) { blockpfn += isolated - 1; cursor += isolated - 1; continue; } isolate_fail: if (strict) break; else continue; } trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); /* * If strict isolation is requested by CMA then check that all the * pages requested were isolated. If there were any failures, 0 is * returned and CMA will fail. */ if (strict && blockpfn < end_pfn) total_isolated = 0; if (locked) spin_unlock_irqrestore(&cc->zone->lock, flags); /* Update the pageblock-skip if the whole pageblock was scanned */ if (blockpfn == end_pfn) update_pageblock_skip(cc, valid_page, total_isolated, false); count_compact_events(COMPACTFREE_SCANNED, nr_scanned); if (total_isolated) count_compact_events(COMPACTISOLATED, total_isolated); return total_isolated; } /** * isolate_freepages_range() - isolate free pages. * @start_pfn: The first PFN to start isolating. * @end_pfn: The one-past-last PFN. * * Non-free pages, invalid PFNs, or zone boundaries within the * [start_pfn, end_pfn) range are considered errors, cause function to * undo its actions and return zero. * * Otherwise, function returns one-past-the-last PFN of isolated page * (which may be greater then end_pfn if end fell in a middle of * a free page). */ unsigned long isolate_freepages_range(struct compact_control *cc, unsigned long start_pfn, unsigned long end_pfn) { unsigned long isolated, pfn, block_end_pfn; LIST_HEAD(freelist); for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn))) break; /* * On subsequent iterations ALIGN() is actually not needed, * but we keep it that we not to complicate the code. */ block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); block_end_pfn = min(block_end_pfn, end_pfn); isolated = isolate_freepages_block(cc, pfn, block_end_pfn, &freelist, true); /* * In strict mode, isolate_freepages_block() returns 0 if * there are any holes in the block (ie. invalid PFNs or * non-free pages). */ if (!isolated) break; /* * If we managed to isolate pages, it is always (1 << n) * * pageblock_nr_pages for some non-negative n. (Max order * page may span two pageblocks). */ } /* split_free_page does not map the pages */ map_pages(&freelist); if (pfn < end_pfn) { /* Loop terminated early, cleanup. */ release_freepages(&freelist); return 0; } /* We don't use freelists for anything. */ return pfn; } /* Update the number of anon and file isolated pages in the zone */ static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc) { struct page *page; unsigned int count[2] = { 0, }; list_for_each_entry(page, &cc->migratepages, lru) count[!!page_is_file_cache(page)]++; /* If locked we can use the interrupt unsafe versions */ if (locked) { __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); } else { mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); } } /* Similar to reclaim, but different enough that they don't share logic */ static bool too_many_isolated(struct zone *zone) { unsigned long active, inactive, isolated; inactive = zone_page_state(zone, NR_INACTIVE_FILE) + zone_page_state(zone, NR_INACTIVE_ANON); active = zone_page_state(zone, NR_ACTIVE_FILE) + zone_page_state(zone, NR_ACTIVE_ANON); isolated = zone_page_state(zone, NR_ISOLATED_FILE) + zone_page_state(zone, NR_ISOLATED_ANON); return isolated > (inactive + active) / 2; } /** * isolate_migratepages_range() - isolate all migrate-able pages in range. * @zone: Zone pages are in. * @cc: Compaction control structure. * @low_pfn: The first PFN of the range. * @end_pfn: The one-past-the-last PFN of the range. * @unevictable: true if it allows to isolate unevictable pages * * Isolate all pages that can be migrated from the range specified by * [low_pfn, end_pfn). Returns zero if there is a fatal signal * pending), otherwise PFN of the first page that was not scanned * (which may be both less, equal to or more then end_pfn). * * Assumes that cc->migratepages is empty and cc->nr_migratepages is * zero. * * Apart from cc->migratepages and cc->nr_migratetypes this function * does not modify any cc's fields, in particular it does not modify * (or read for that matter) cc->migrate_pfn. */ unsigned long isolate_migratepages_range(struct zone *zone, struct compact_control *cc, unsigned long low_pfn, unsigned long end_pfn, bool unevictable) { unsigned long last_pageblock_nr = 0, pageblock_nr; unsigned long nr_scanned = 0, nr_isolated = 0; struct list_head *migratelist = &cc->migratepages; isolate_mode_t mode = 0; struct lruvec *lruvec; unsigned long flags; bool locked = false; struct page *page = NULL, *valid_page = NULL; bool skipped_async_unsuitable = false; /* * Ensure that there are not too many pages isolated from the LRU * list by either parallel reclaimers or compaction. If there are, * delay for some time until fewer pages are isolated */ while (unlikely(too_many_isolated(zone))) { /* async migration should just abort */ if (!cc->sync) return 0; congestion_wait(BLK_RW_ASYNC, HZ/10); if (fatal_signal_pending(current)) return 0; } /* Time to isolate some pages for migration */ cond_resched(); for (; low_pfn < end_pfn; low_pfn++) { /* give a chance to irqs before checking need_resched() */ if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) { if (should_release_lock(&zone->lru_lock)) { spin_unlock_irqrestore(&zone->lru_lock, flags); locked = false; } } /* * migrate_pfn does not necessarily start aligned to a * pageblock. Ensure that pfn_valid is called when moving * into a new MAX_ORDER_NR_PAGES range in case of large * memory holes within the zone */ if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { if (!pfn_valid(low_pfn)) { low_pfn += MAX_ORDER_NR_PAGES - 1; continue; } } if (!pfn_valid_within(low_pfn)) continue; nr_scanned++; /* * Get the page and ensure the page is within the same zone. * See the comment in isolate_freepages about overlapping * nodes. It is deliberate that the new zone lock is not taken * as memory compaction should not move pages between nodes. */ page = pfn_to_page(low_pfn); if (page_zone(page) != zone) continue; if (!valid_page) valid_page = page; /* If isolation recently failed, do not retry */ pageblock_nr = low_pfn >> pageblock_order; if (last_pageblock_nr != pageblock_nr) { int mt; last_pageblock_nr = pageblock_nr; if (!isolation_suitable(cc, page)) goto next_pageblock; /* * For async migration, also only scan in MOVABLE * blocks. Async migration is optimistic to see if * the minimum amount of work satisfies the allocation */ mt = get_pageblock_migratetype(page); if (!cc->sync && !migrate_async_suitable(mt)) { cc->finished_update_migrate = true; skipped_async_unsuitable = true; goto next_pageblock; } } /* * Skip if free. page_order cannot be used without zone->lock * as nothing prevents parallel allocations or buddy merging. */ if (PageBuddy(page)) continue; /* * Check may be lockless but that's ok as we recheck later. * It's possible to migrate LRU pages and balloon pages * Skip any other type of page */ if (!PageLRU(page)) { if (unlikely(balloon_page_movable(page))) { if (locked && balloon_page_isolate(page)) { /* Successfully isolated */ cc->finished_update_migrate = true; list_add(&page->lru, migratelist); cc->nr_migratepages++; nr_isolated++; goto check_compact_cluster; } } continue; } /* * PageLRU is set. lru_lock normally excludes isolation * splitting and collapsing (collapsing has already happened * if PageLRU is set) but the lock is not necessarily taken * here and it is wasteful to take it just to check transhuge. * Check TransHuge without lock and skip the whole pageblock if * it's either a transhuge or hugetlbfs page, as calling * compound_order() without preventing THP from splitting the * page underneath us may return surprising results. */ if (PageTransHuge(page)) { if (!locked) goto next_pageblock; low_pfn += (1 << compound_order(page)) - 1; continue; } /* * Migration will fail if an anonymous page is pinned in memory, * so avoid taking lru_lock and isolating it unnecessarily in an * admittedly racy check. */ if (!page_mapping(page) && page_count(page) > page_mapcount(page)) continue; /* Check if it is ok to still hold the lock */ locked = compact_checklock_irqsave(&zone->lru_lock, &flags, locked, cc); if (!locked || fatal_signal_pending(current)) break; /* Recheck PageLRU and PageTransHuge under lock */ if (!PageLRU(page)) continue; if (PageTransHuge(page)) { low_pfn += (1 << compound_order(page)) - 1; continue; } if (!cc->sync) mode |= ISOLATE_ASYNC_MIGRATE; if (unevictable) mode |= ISOLATE_UNEVICTABLE; lruvec = mem_cgroup_page_lruvec(page, zone); /* Try isolate the page */ if (__isolate_lru_page(page, mode) != 0) continue; VM_BUG_ON_PAGE(PageTransCompound(page), page); /* Successfully isolated */ cc->finished_update_migrate = true; del_page_from_lru_list(page, lruvec, page_lru(page)); list_add(&page->lru, migratelist); cc->nr_migratepages++; nr_isolated++; check_compact_cluster: /* Avoid isolating too much */ if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { ++low_pfn; break; } continue; next_pageblock: low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1; } acct_isolated(zone, locked, cc); if (locked) spin_unlock_irqrestore(&zone->lru_lock, flags); /* * Update the pageblock-skip information and cached scanner pfn, * if the whole pageblock was scanned without isolating any page. * This is not done when pageblock was skipped due to being unsuitable * for async compaction, so that eventual sync compaction can try. */ if (low_pfn == end_pfn && !skipped_async_unsuitable) update_pageblock_skip(cc, valid_page, nr_isolated, true); trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); if (nr_isolated) count_compact_events(COMPACTISOLATED, nr_isolated); return low_pfn; } #endif /* CONFIG_COMPACTION || CONFIG_CMA */ #ifdef CONFIG_COMPACTION /* * Based on information in the current compact_control, find blocks * suitable for isolating free pages from and then isolate them. */ static void isolate_freepages(struct zone *zone, struct compact_control *cc) { struct page *page; unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn; int nr_freepages = cc->nr_freepages; struct list_head *freelist = &cc->freepages; /* * Initialise the free scanner. The starting point is where we last * scanned from (or the end of the zone if starting). The low point * is the end of the pageblock the migration scanner is using. */ pfn = cc->free_pfn; low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages); /* * Take care that if the migration scanner is at the end of the zone * that the free scanner does not accidentally move to the next zone * in the next isolation cycle. */ high_pfn = min(low_pfn, pfn); z_end_pfn = zone_end_pfn(zone); /* * Isolate free pages until enough are available to migrate the * pages on cc->migratepages. We stop searching if the migrate * and free page scanners meet or enough free pages are isolated. */ for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages; pfn -= pageblock_nr_pages) { unsigned long isolated; /* * This can iterate a massively long zone without finding any * suitable migration targets, so periodically check if we need * to schedule. */ cond_resched(); if (!pfn_valid(pfn)) continue; /* * Check for overlapping nodes/zones. It's possible on some * configurations to have a setup like * node0 node1 node0 * i.e. it's possible that all pages within a zones range of * pages do not belong to a single zone. */ page = pfn_to_page(pfn); if (page_zone(page) != zone) continue; /* Check the block is suitable for migration */ if (!suitable_migration_target(page)) continue; /* If isolation recently failed, do not retry */ if (!isolation_suitable(cc, page)) continue; /* Found a block suitable for isolating free pages from */ isolated = 0; /* * As pfn may not start aligned, pfn+pageblock_nr_page * may cross a MAX_ORDER_NR_PAGES boundary and miss * a pfn_valid check. Ensure isolate_freepages_block() * only scans within a pageblock */ end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); end_pfn = min(end_pfn, z_end_pfn); isolated = isolate_freepages_block(cc, pfn, end_pfn, freelist, false); nr_freepages += isolated; /* * Record the highest PFN we isolated pages from. When next * looking for free pages, the search will restart here as * page migration may have returned some pages to the allocator */ if (isolated) { cc->finished_update_free = true; high_pfn = max(high_pfn, pfn); } } /* split_free_page does not map the pages */ map_pages(freelist); /* * If we crossed the migrate scanner, we want to keep it that way * so that compact_finished() may detect this */ if (pfn < low_pfn) cc->free_pfn = max(pfn, zone->zone_start_pfn); else cc->free_pfn = high_pfn; cc->nr_freepages = nr_freepages; } /* * This is a migrate-callback that "allocates" freepages by taking pages * from the isolated freelists in the block we are migrating to. */ static struct page *compaction_alloc(struct page *migratepage, unsigned long data, int **result) { struct compact_control *cc = (struct compact_control *)data; struct page *freepage; /* Isolate free pages if necessary */ if (list_empty(&cc->freepages)) { isolate_freepages(cc->zone, cc); if (list_empty(&cc->freepages)) return NULL; } freepage = list_entry(cc->freepages.next, struct page, lru); list_del(&freepage->lru); cc->nr_freepages--; return freepage; } /* * We cannot control nr_migratepages and nr_freepages fully when migration is * running as migrate_pages() has no knowledge of compact_control. When * migration is complete, we count the number of pages on the lists by hand. */ static void update_nr_listpages(struct compact_control *cc) { int nr_migratepages = 0; int nr_freepages = 0; struct page *page; list_for_each_entry(page, &cc->migratepages, lru) nr_migratepages++; list_for_each_entry(page, &cc->freepages, lru) nr_freepages++; cc->nr_migratepages = nr_migratepages; cc->nr_freepages = nr_freepages; } /* possible outcome of isolate_migratepages */ typedef enum { ISOLATE_ABORT, /* Abort compaction now */ ISOLATE_NONE, /* No pages isolated, continue scanning */ ISOLATE_SUCCESS, /* Pages isolated, migrate */ } isolate_migrate_t; /* * Isolate all pages that can be migrated from the block pointed to by * the migrate scanner within compact_control. */ static isolate_migrate_t isolate_migratepages(struct zone *zone, struct compact_control *cc) { unsigned long low_pfn, end_pfn; /* Do not scan outside zone boundaries */ low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); /* Only scan within a pageblock boundary */ end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); /* Do not cross the free scanner or scan within a memory hole */ if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { cc->migrate_pfn = end_pfn; return ISOLATE_NONE; } /* Perform the isolation */ low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false); if (!low_pfn || cc->contended) return ISOLATE_ABORT; cc->migrate_pfn = low_pfn; return ISOLATE_SUCCESS; } static int compact_finished(struct zone *zone, struct compact_control *cc) { unsigned int order; unsigned long watermark; if (fatal_signal_pending(current)) return COMPACT_PARTIAL; /* Compaction run completes if the migrate and free scanner meet */ if (cc->free_pfn <= cc->migrate_pfn) { /* Let the next compaction start anew. */ zone->compact_cached_migrate_pfn = zone->zone_start_pfn; zone->compact_cached_free_pfn = zone_end_pfn(zone); /* * Mark that the PG_migrate_skip information should be cleared * by kswapd when it goes to sleep. kswapd does not set the * flag itself as the decision to be clear should be directly * based on an allocation request. */ if (!current_is_kswapd()) zone->compact_blockskip_flush = true; return COMPACT_COMPLETE; } /* * order == -1 is expected when compacting via * /proc/sys/vm/compact_memory */ if (cc->order == -1) return COMPACT_CONTINUE; /* Compaction run is not finished if the watermark is not met */ watermark = low_wmark_pages(zone); watermark += (1 << cc->order); if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) return COMPACT_CONTINUE; /* Direct compactor: Is a suitable page free? */ for (order = cc->order; order < MAX_ORDER; order++) { struct free_area *area = &zone->free_area[order]; /* Job done if page is free of the right migratetype */ if (!list_empty(&area->free_list[cc->migratetype])) return COMPACT_PARTIAL; /* Job done if allocation would set block type */ if (cc->order >= pageblock_order && area->nr_free) return COMPACT_PARTIAL; } return COMPACT_CONTINUE; } /* * compaction_suitable: Is this suitable to run compaction on this zone now? * Returns * COMPACT_SKIPPED - If there are too few free pages for compaction * COMPACT_PARTIAL - If the allocation would succeed without compaction * COMPACT_CONTINUE - If compaction should run now */ unsigned long compaction_suitable(struct zone *zone, int order) { int fragindex; unsigned long watermark; /* * order == -1 is expected when compacting via * /proc/sys/vm/compact_memory */ if (order == -1) return COMPACT_CONTINUE; /* * Watermarks for order-0 must be met for compaction. Note the 2UL. * This is because during migration, copies of pages need to be * allocated and for a short time, the footprint is higher */ watermark = low_wmark_pages(zone) + (2UL << order); if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) return COMPACT_SKIPPED; /* * fragmentation index determines if allocation failures are due to * low memory or external fragmentation * * index of -1000 implies allocations might succeed depending on * watermarks * index towards 0 implies failure is due to lack of memory * index towards 1000 implies failure is due to fragmentation * * Only compact if a failure would be due to fragmentation. */ fragindex = fragmentation_index(zone, order); if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) return COMPACT_SKIPPED; if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 0, 0)) return COMPACT_PARTIAL; return COMPACT_CONTINUE; } static int compact_zone(struct zone *zone, struct compact_control *cc) { int ret; unsigned long start_pfn = zone->zone_start_pfn; unsigned long end_pfn = zone_end_pfn(zone); ret = compaction_suitable(zone, cc->order); switch (ret) { case COMPACT_PARTIAL: case COMPACT_SKIPPED: /* Compaction is likely to fail */ return ret; case COMPACT_CONTINUE: /* Fall through to compaction */ ; } /* * Clear pageblock skip if there were failures recently and compaction * is about to be retried after being deferred. kswapd does not do * this reset as it'll reset the cached information when going to sleep. */ if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) __reset_isolation_suitable(zone); /* * Setup to move all movable pages to the end of the zone. Used cached * information on where the scanners should start but check that it * is initialised by ensuring the values are within zone boundaries. */ cc->migrate_pfn = zone->compact_cached_migrate_pfn; cc->free_pfn = zone->compact_cached_free_pfn; if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); zone->compact_cached_free_pfn = cc->free_pfn; } if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { cc->migrate_pfn = start_pfn; zone->compact_cached_migrate_pfn = cc->migrate_pfn; } trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn); migrate_prep_local(); while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { unsigned long nr_migrate, nr_remaining; int err; switch (isolate_migratepages(zone, cc)) { case ISOLATE_ABORT: ret = COMPACT_PARTIAL; putback_movable_pages(&cc->migratepages); cc->nr_migratepages = 0; goto out; case ISOLATE_NONE: continue; case ISOLATE_SUCCESS: ; } nr_migrate = cc->nr_migratepages; err = migrate_pages(&cc->migratepages, compaction_alloc, (unsigned long)cc, cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC, MR_COMPACTION); update_nr_listpages(cc); nr_remaining = cc->nr_migratepages; trace_mm_compaction_migratepages(nr_migrate - nr_remaining, nr_remaining); /* Release isolated pages not migrated */ if (err) { putback_movable_pages(&cc->migratepages); cc->nr_migratepages = 0; /* * migrate_pages() may return -ENOMEM when scanners meet * and we want compact_finished() to detect it */ if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) { ret = COMPACT_PARTIAL; goto out; } } } out: /* Release free pages and check accounting */ cc->nr_freepages -= release_freepages(&cc->freepages); VM_BUG_ON(cc->nr_freepages != 0); trace_mm_compaction_end(ret); return ret; } static unsigned long compact_zone_order(struct zone *zone, int order, gfp_t gfp_mask, bool sync, bool *contended) { unsigned long ret; struct compact_control cc = { .nr_freepages = 0, .nr_migratepages = 0, .order = order, .migratetype = allocflags_to_migratetype(gfp_mask), .zone = zone, .sync = sync, }; INIT_LIST_HEAD(&cc.freepages); INIT_LIST_HEAD(&cc.migratepages); ret = compact_zone(zone, &cc); VM_BUG_ON(!list_empty(&cc.freepages)); VM_BUG_ON(!list_empty(&cc.migratepages)); *contended = cc.contended; return ret; } int sysctl_extfrag_threshold = 500; /** * try_to_compact_pages - Direct compact to satisfy a high-order allocation * @zonelist: The zonelist used for the current allocation * @order: The order of the current allocation * @gfp_mask: The GFP mask of the current allocation * @nodemask: The allowed nodes to allocate from * @sync: Whether migration is synchronous or not * @contended: Return value that is true if compaction was aborted due to lock contention * @page: Optionally capture a free page of the requested order during compaction * * This is the main entry point for direct page compaction. */ unsigned long try_to_compact_pages(struct zonelist *zonelist, int order, gfp_t gfp_mask, nodemask_t *nodemask, bool sync, bool *contended) { enum zone_type high_zoneidx = gfp_zone(gfp_mask); int may_enter_fs = gfp_mask & __GFP_FS; int may_perform_io = gfp_mask & __GFP_IO; struct zoneref *z; struct zone *zone; int rc = COMPACT_SKIPPED; int alloc_flags = 0; /* Check if the GFP flags allow compaction */ if (!order || !may_enter_fs || !may_perform_io) return rc; count_compact_event(COMPACTSTALL); #ifdef CONFIG_CMA if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) alloc_flags |= ALLOC_CMA; #endif /* Compact each zone in the list */ for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, nodemask) { int status; status = compact_zone_order(zone, order, gfp_mask, sync, contended); rc = max(status, rc); /* If a normal allocation would succeed, stop compacting */ if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, alloc_flags)) break; } return rc; } /* Compact all zones within a node */ static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) { int zoneid; struct zone *zone; for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { zone = &pgdat->node_zones[zoneid]; if (!populated_zone(zone)) continue; cc->nr_freepages = 0; cc->nr_migratepages = 0; cc->zone = zone; INIT_LIST_HEAD(&cc->freepages); INIT_LIST_HEAD(&cc->migratepages); if (cc->order == -1 || !compaction_deferred(zone, cc->order)) compact_zone(zone, cc); if (cc->order > 0) { if (zone_watermark_ok(zone, cc->order, low_wmark_pages(zone), 0, 0)) compaction_defer_reset(zone, cc->order, false); /* Currently async compaction is never deferred. */ else if (cc->sync) defer_compaction(zone, cc->order); } VM_BUG_ON(!list_empty(&cc->freepages)); VM_BUG_ON(!list_empty(&cc->migratepages)); } } void compact_pgdat(pg_data_t *pgdat, int order) { struct compact_control cc = { .order = order, .sync = false, }; if (!order) return; __compact_pgdat(pgdat, &cc); } static void compact_node(int nid) { struct compact_control cc = { .order = -1, .sync = true, .ignore_skip_hint = true, }; __compact_pgdat(NODE_DATA(nid), &cc); } /* Compact all nodes in the system */ static void compact_nodes(void) { int nid; /* Flush pending updates to the LRU lists */ lru_add_drain_all(); for_each_online_node(nid) compact_node(nid); } /* The written value is actually unused, all memory is compacted */ int sysctl_compact_memory; /* This is the entry point for compacting all nodes via /proc/sys/vm */ int sysctl_compaction_handler(struct ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { if (write) compact_nodes(); return 0; } int sysctl_extfrag_handler(struct ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { proc_dointvec_minmax(table, write, buffer, length, ppos); return 0; } #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) static ssize_t sysfs_compact_node(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nid = dev->id; if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { /* Flush pending updates to the LRU lists */ lru_add_drain_all(); compact_node(nid); } return count; } static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); int compaction_register_node(struct node *node) { return device_create_file(&node->dev, &dev_attr_compact); } void compaction_unregister_node(struct node *node) { return device_remove_file(&node->dev, &dev_attr_compact); } #endif /* CONFIG_SYSFS && CONFIG_NUMA */ #endif /* CONFIG_COMPACTION */