/* * Copyright (c) 2012-2016 Synaptics Incorporated * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. */ #include #include #include #include #include "rmi_driver.h" #define RMI_F30_QUERY_SIZE 2 /* Defs for Query 0 */ #define RMI_F30_EXTENDED_PATTERNS 0x01 #define RMI_F30_HAS_MAPPABLE_BUTTONS BIT(1) #define RMI_F30_HAS_LED BIT(2) #define RMI_F30_HAS_GPIO BIT(3) #define RMI_F30_HAS_HAPTIC BIT(4) #define RMI_F30_HAS_GPIO_DRV_CTL BIT(5) #define RMI_F30_HAS_MECH_MOUSE_BTNS BIT(6) /* Defs for Query 1 */ #define RMI_F30_GPIO_LED_COUNT 0x1F /* Defs for Control Registers */ #define RMI_F30_CTRL_1_GPIO_DEBOUNCE 0x01 #define RMI_F30_CTRL_1_HALT BIT(4) #define RMI_F30_CTRL_1_HALTED BIT(5) #define RMI_F30_CTRL_10_NUM_MECH_MOUSE_BTNS 0x03 #define RMI_F30_CTRL_MAX_REGS 32 #define RMI_F30_CTRL_MAX_BYTES DIV_ROUND_UP(RMI_F30_CTRL_MAX_REGS, 8) #define RMI_F30_CTRL_MAX_REG_BLOCKS 11 #define RMI_F30_CTRL_REGS_MAX_SIZE (RMI_F30_CTRL_MAX_BYTES \ + 1 \ + RMI_F30_CTRL_MAX_BYTES \ + RMI_F30_CTRL_MAX_BYTES \ + RMI_F30_CTRL_MAX_BYTES \ + 6 \ + RMI_F30_CTRL_MAX_REGS \ + RMI_F30_CTRL_MAX_REGS \ + RMI_F30_CTRL_MAX_BYTES \ + 1 \ + 1) struct rmi_f30_ctrl_data { int address; int length; u8 *regs; }; struct f30_data { /* Query Data */ bool has_extended_pattern; bool has_mappable_buttons; bool has_led; bool has_gpio; bool has_haptic; bool has_gpio_driver_control; bool has_mech_mouse_btns; u8 gpioled_count; u8 register_count; /* Control Register Data */ struct rmi_f30_ctrl_data ctrl[RMI_F30_CTRL_MAX_REG_BLOCKS]; u8 ctrl_regs[RMI_F30_CTRL_REGS_MAX_SIZE]; u32 ctrl_regs_size; u8 data_regs[RMI_F30_CTRL_MAX_BYTES]; u16 *gpioled_key_map; struct input_dev *input; }; static int rmi_f30_read_control_parameters(struct rmi_function *fn, struct f30_data *f30) { int error; error = rmi_read_block(fn->rmi_dev, fn->fd.control_base_addr, f30->ctrl_regs, f30->ctrl_regs_size); if (error) { dev_err(&fn->dev, "%s: Could not read control registers at 0x%x: %d\n", __func__, fn->fd.control_base_addr, error); return error; } return 0; } static void rmi_f30_report_button(struct rmi_function *fn, struct f30_data *f30, unsigned int button) { unsigned int reg_num = button >> 3; unsigned int bit_num = button & 0x07; bool key_down = !(f30->data_regs[reg_num] & BIT(bit_num)); rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: call input report key (0x%04x) value (0x%02x)", __func__, f30->gpioled_key_map[button], key_down); input_report_key(f30->input, f30->gpioled_key_map[button], key_down); } static int rmi_f30_attention(struct rmi_function *fn, unsigned long *irq_bits) { struct f30_data *f30 = dev_get_drvdata(&fn->dev); struct rmi_driver_data *drvdata = dev_get_drvdata(&fn->rmi_dev->dev); int error; int i; /* Read the gpi led data. */ if (drvdata->attn_data.data) { if (drvdata->attn_data.size < f30->register_count) { dev_warn(&fn->dev, "F30 interrupted, but data is missing\n"); return 0; } memcpy(f30->data_regs, drvdata->attn_data.data, f30->register_count); drvdata->attn_data.data += f30->register_count; drvdata->attn_data.size -= f30->register_count; } else { error = rmi_read_block(fn->rmi_dev, fn->fd.data_base_addr, f30->data_regs, f30->register_count); if (error) { dev_err(&fn->dev, "%s: Failed to read F30 data registers: %d\n", __func__, error); return error; } } if (f30->has_gpio) for (i = 0; i < f30->gpioled_count; i++) if (f30->gpioled_key_map[i] != KEY_RESERVED) rmi_f30_report_button(fn, f30, i); return 0; } static int rmi_f30_config(struct rmi_function *fn) { struct f30_data *f30 = dev_get_drvdata(&fn->dev); struct rmi_driver *drv = fn->rmi_dev->driver; const struct rmi_device_platform_data *pdata = rmi_get_platform_data(fn->rmi_dev); int error; if (pdata->f30_data.disable) { drv->clear_irq_bits(fn->rmi_dev, fn->irq_mask); } else { /* Write Control Register values back to device */ error = rmi_write_block(fn->rmi_dev, fn->fd.control_base_addr, f30->ctrl_regs, f30->ctrl_regs_size); if (error) { dev_err(&fn->dev, "%s: Could not write control registers at 0x%x: %d\n", __func__, fn->fd.control_base_addr, error); return error; } drv->set_irq_bits(fn->rmi_dev, fn->irq_mask); } return 0; } static void rmi_f30_set_ctrl_data(struct rmi_f30_ctrl_data *ctrl, int *ctrl_addr, int len, u8 **reg) { ctrl->address = *ctrl_addr; ctrl->length = len; ctrl->regs = *reg; *ctrl_addr += len; *reg += len; } static bool rmi_f30_is_valid_button(int button, struct rmi_f30_ctrl_data *ctrl) { int byte_position = button >> 3; int bit_position = button & 0x07; /* * ctrl2 -> dir == 0 -> input mode * ctrl3 -> data == 1 -> actual button */ return !(ctrl[2].regs[byte_position] & BIT(bit_position)) && (ctrl[3].regs[byte_position] & BIT(bit_position)); } static int rmi_f30_map_gpios(struct rmi_function *fn, struct f30_data *f30) { const struct rmi_device_platform_data *pdata = rmi_get_platform_data(fn->rmi_dev); struct input_dev *input = f30->input; unsigned int button = BTN_LEFT; int i; f30->gpioled_key_map = devm_kcalloc(&fn->dev, f30->gpioled_count, sizeof(f30->gpioled_key_map[0]), GFP_KERNEL); if (!f30->gpioled_key_map) { dev_err(&fn->dev, "Failed to allocate gpioled map memory.\n"); return -ENOMEM; } for (i = 0; i < f30->gpioled_count; i++) { if (rmi_f30_is_valid_button(i, f30->ctrl)) { f30->gpioled_key_map[i] = button; input_set_capability(input, EV_KEY, button++); /* * buttonpad might be given by * f30->has_mech_mouse_btns, but I am * not sure, so use only the pdata info */ if (pdata->f30_data.buttonpad) { __set_bit(INPUT_PROP_BUTTONPAD, input->propbit); break; } } } input->keycode = f30->gpioled_key_map; input->keycodesize = sizeof(f30->gpioled_key_map[0]); input->keycodemax = f30->gpioled_count; return 0; } static int rmi_f30_initialize(struct rmi_function *fn, struct f30_data *f30) { u8 *ctrl_reg = f30->ctrl_regs; int control_address = fn->fd.control_base_addr; u8 buf[RMI_F30_QUERY_SIZE]; int error; error = rmi_read_block(fn->rmi_dev, fn->fd.query_base_addr, buf, RMI_F30_QUERY_SIZE); if (error) { dev_err(&fn->dev, "Failed to read query register\n"); return error; } f30->has_extended_pattern = buf[0] & RMI_F30_EXTENDED_PATTERNS; f30->has_mappable_buttons = buf[0] & RMI_F30_HAS_MAPPABLE_BUTTONS; f30->has_led = buf[0] & RMI_F30_HAS_LED; f30->has_gpio = buf[0] & RMI_F30_HAS_GPIO; f30->has_haptic = buf[0] & RMI_F30_HAS_HAPTIC; f30->has_gpio_driver_control = buf[0] & RMI_F30_HAS_GPIO_DRV_CTL; f30->has_mech_mouse_btns = buf[0] & RMI_F30_HAS_MECH_MOUSE_BTNS; f30->gpioled_count = buf[1] & RMI_F30_GPIO_LED_COUNT; f30->register_count = DIV_ROUND_UP(f30->gpioled_count, 8); if (f30->has_gpio && f30->has_led) rmi_f30_set_ctrl_data(&f30->ctrl[0], &control_address, f30->register_count, &ctrl_reg); rmi_f30_set_ctrl_data(&f30->ctrl[1], &control_address, sizeof(u8), &ctrl_reg); if (f30->has_gpio) { rmi_f30_set_ctrl_data(&f30->ctrl[2], &control_address, f30->register_count, &ctrl_reg); rmi_f30_set_ctrl_data(&f30->ctrl[3], &control_address, f30->register_count, &ctrl_reg); } if (f30->has_led) { rmi_f30_set_ctrl_data(&f30->ctrl[4], &control_address, f30->register_count, &ctrl_reg); rmi_f30_set_ctrl_data(&f30->ctrl[5], &control_address, f30->has_extended_pattern ? 6 : 2, &ctrl_reg); } if (f30->has_led || f30->has_gpio_driver_control) { /* control 6 uses a byte per gpio/led */ rmi_f30_set_ctrl_data(&f30->ctrl[6], &control_address, f30->gpioled_count, &ctrl_reg); } if (f30->has_mappable_buttons) { /* control 7 uses a byte per gpio/led */ rmi_f30_set_ctrl_data(&f30->ctrl[7], &control_address, f30->gpioled_count, &ctrl_reg); } if (f30->has_haptic) { rmi_f30_set_ctrl_data(&f30->ctrl[8], &control_address, f30->register_count, &ctrl_reg); rmi_f30_set_ctrl_data(&f30->ctrl[9], &control_address, sizeof(u8), &ctrl_reg); } if (f30->has_mech_mouse_btns) rmi_f30_set_ctrl_data(&f30->ctrl[10], &control_address, sizeof(u8), &ctrl_reg); f30->ctrl_regs_size = ctrl_reg - f30->ctrl_regs ?: RMI_F30_CTRL_REGS_MAX_SIZE; error = rmi_f30_read_control_parameters(fn, f30); if (error) { dev_err(&fn->dev, "Failed to initialize F30 control params: %d\n", error); return error; } if (f30->has_gpio) { error = rmi_f30_map_gpios(fn, f30); if (error) return error; } return 0; } static int rmi_f30_probe(struct rmi_function *fn) { struct rmi_device *rmi_dev = fn->rmi_dev; const struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); struct rmi_driver_data *drv_data = dev_get_drvdata(&rmi_dev->dev); struct f30_data *f30; int error; if (pdata->f30_data.disable) return 0; if (!drv_data->input) { dev_info(&fn->dev, "F30: no input device found, ignoring\n"); return -ENXIO; } f30 = devm_kzalloc(&fn->dev, sizeof(*f30), GFP_KERNEL); if (!f30) return -ENOMEM; f30->input = drv_data->input; error = rmi_f30_initialize(fn, f30); if (error) return error; dev_set_drvdata(&fn->dev, f30); return 0; } struct rmi_function_handler rmi_f30_handler = { .driver = { .name = "rmi4_f30", }, .func = 0x30, .probe = rmi_f30_probe, .config = rmi_f30_config, .attention = rmi_f30_attention, };