/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * A small micro-assembler. It is intentionally kept simple, does only * support a subset of instructions, and does not try to hide pipeline * effects like branch delay slots. * * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer * Copyright (C) 2005, 2007 Maciej W. Rozycki * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved. */ #include #include #include #include #include #define UASM_ISA _UASM_ISA_MICROMIPS #include #define RS_MASK 0x1f #define RS_SH 16 #define RT_MASK 0x1f #define RT_SH 21 #define SCIMM_MASK 0x3ff #define SCIMM_SH 16 /* This macro sets the non-variable bits of an instruction. */ #define M(a, b, c, d, e, f) \ ((a) << OP_SH \ | (b) << RT_SH \ | (c) << RS_SH \ | (d) << RD_SH \ | (e) << RE_SH \ | (f) << FUNC_SH) /* Define these when we are not the ISA the kernel is being compiled with. */ #ifndef CONFIG_CPU_MICROMIPS #define MM_uasm_i_b(buf, off) ISAOPC(_beq)(buf, 0, 0, off) #define MM_uasm_i_beqz(buf, rs, off) ISAOPC(_beq)(buf, rs, 0, off) #define MM_uasm_i_beqzl(buf, rs, off) ISAOPC(_beql)(buf, rs, 0, off) #define MM_uasm_i_bnez(buf, rs, off) ISAOPC(_bne)(buf, rs, 0, off) #endif #include "uasm.c" static struct insn insn_table_MM[] = { { insn_addu, M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD }, { insn_addiu, M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM }, { insn_and, M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD }, { insn_andi, M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM }, { insn_beq, M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, { insn_beql, 0, 0 }, { insn_bgez, M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM }, { insn_bgezl, 0, 0 }, { insn_bltz, M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM }, { insn_bltzl, 0, 0 }, { insn_bne, M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM }, { insn_cache, M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM }, { insn_daddu, 0, 0 }, { insn_daddiu, 0, 0 }, { insn_dmfc0, 0, 0 }, { insn_dmtc0, 0, 0 }, { insn_dsll, 0, 0 }, { insn_dsll32, 0, 0 }, { insn_dsra, 0, 0 }, { insn_dsrl, 0, 0 }, { insn_dsrl32, 0, 0 }, { insn_drotr, 0, 0 }, { insn_drotr32, 0, 0 }, { insn_dsubu, 0, 0 }, { insn_eret, M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0 }, { insn_ins, M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE }, { insn_ext, M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE }, { insn_j, M(mm_j32_op, 0, 0, 0, 0, 0), JIMM }, { insn_jal, M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM }, { insn_jr, M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS }, { insn_ld, 0, 0 }, { insn_ll, M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM }, { insn_lld, 0, 0 }, { insn_lui, M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM }, { insn_lw, M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM }, { insn_mfc0, M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD }, { insn_mtc0, M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD }, { insn_or, M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD }, { insn_ori, M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM }, { insn_pref, M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM }, { insn_rfe, 0, 0 }, { insn_sc, M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM }, { insn_scd, 0, 0 }, { insn_sd, 0, 0 }, { insn_sll, M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD }, { insn_sllv, M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD }, { insn_sra, M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD }, { insn_srl, M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD }, { insn_rotr, M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD }, { insn_subu, M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD }, { insn_sw, M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM }, { insn_sync, M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS }, { insn_tlbp, M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0 }, { insn_tlbr, M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0 }, { insn_tlbwi, M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0 }, { insn_tlbwr, M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0 }, { insn_wait, M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM }, { insn_xor, M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD }, { insn_xori, M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM }, { insn_dins, 0, 0 }, { insn_dinsm, 0, 0 }, { insn_syscall, M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM}, { insn_bbit0, 0, 0 }, { insn_bbit1, 0, 0 }, { insn_lwx, 0, 0 }, { insn_ldx, 0, 0 }, { insn_invalid, 0, 0 } }; #undef M static inline u32 build_bimm(s32 arg) { WARN(arg > 0xffff || arg < -0x10000, KERN_WARNING "Micro-assembler field overflow\n"); WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n"); return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 1) & 0x7fff); } static inline u32 build_jimm(u32 arg) { WARN(arg & ~((JIMM_MASK << 2) | 1), KERN_WARNING "Micro-assembler field overflow\n"); return (arg >> 1) & JIMM_MASK; } /* * The order of opcode arguments is implicitly left to right, * starting with RS and ending with FUNC or IMM. */ static void build_insn(u32 **buf, enum opcode opc, ...) { struct insn *ip = NULL; unsigned int i; va_list ap; u32 op; for (i = 0; insn_table_MM[i].opcode != insn_invalid; i++) if (insn_table_MM[i].opcode == opc) { ip = &insn_table_MM[i]; break; } if (!ip || (opc == insn_daddiu && r4k_daddiu_bug())) panic("Unsupported Micro-assembler instruction %d", opc); op = ip->match; va_start(ap, opc); if (ip->fields & RS) { if (opc == insn_mfc0 || opc == insn_mtc0) op |= build_rt(va_arg(ap, u32)); else op |= build_rs(va_arg(ap, u32)); } if (ip->fields & RT) { if (opc == insn_mfc0 || opc == insn_mtc0) op |= build_rs(va_arg(ap, u32)); else op |= build_rt(va_arg(ap, u32)); } if (ip->fields & RD) op |= build_rd(va_arg(ap, u32)); if (ip->fields & RE) op |= build_re(va_arg(ap, u32)); if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32)); if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32)); if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32)); if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32)); if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32)); if (ip->fields & SET) op |= build_set(va_arg(ap, u32)); if (ip->fields & SCIMM) op |= build_scimm(va_arg(ap, u32)); va_end(ap); #ifdef CONFIG_CPU_LITTLE_ENDIAN **buf = ((op & 0xffff) << 16) | (op >> 16); #else **buf = op; #endif (*buf)++; } static inline void __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab) { long laddr = (long)lab->addr; long raddr = (long)rel->addr; switch (rel->type) { case R_MIPS_PC16: #ifdef CONFIG_CPU_LITTLE_ENDIAN *rel->addr |= (build_bimm(laddr - (raddr + 4)) << 16); #else *rel->addr |= build_bimm(laddr - (raddr + 4)); #endif break; default: panic("Unsupported Micro-assembler relocation %d", rel->type); } }