/* * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the BSD-type * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Network Appliance, Inc. nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * verbs.c * * Encapsulates the major functions managing: * o adapters * o endpoints * o connections * o buffer memory */ #include /* for Tavor hack below */ #include "xprt_rdma.h" /* * Globals/Macros */ #ifdef RPC_DEBUG # define RPCDBG_FACILITY RPCDBG_TRANS #endif /* * internal functions */ /* * handle replies in tasklet context, using a single, global list * rdma tasklet function -- just turn around and call the func * for all replies on the list */ static DEFINE_SPINLOCK(rpcrdma_tk_lock_g); static LIST_HEAD(rpcrdma_tasklets_g); static void rpcrdma_run_tasklet(unsigned long data) { struct rpcrdma_rep *rep; void (*func)(struct rpcrdma_rep *); unsigned long flags; data = data; spin_lock_irqsave(&rpcrdma_tk_lock_g, flags); while (!list_empty(&rpcrdma_tasklets_g)) { rep = list_entry(rpcrdma_tasklets_g.next, struct rpcrdma_rep, rr_list); list_del(&rep->rr_list); func = rep->rr_func; rep->rr_func = NULL; spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags); if (func) func(rep); else rpcrdma_recv_buffer_put(rep); spin_lock_irqsave(&rpcrdma_tk_lock_g, flags); } spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags); } static DECLARE_TASKLET(rpcrdma_tasklet_g, rpcrdma_run_tasklet, 0UL); static inline void rpcrdma_schedule_tasklet(struct rpcrdma_rep *rep) { unsigned long flags; spin_lock_irqsave(&rpcrdma_tk_lock_g, flags); list_add_tail(&rep->rr_list, &rpcrdma_tasklets_g); spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags); tasklet_schedule(&rpcrdma_tasklet_g); } static void rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context) { struct rpcrdma_ep *ep = context; dprintk("RPC: %s: QP error %X on device %s ep %p\n", __func__, event->event, event->device->name, context); if (ep->rep_connected == 1) { ep->rep_connected = -EIO; ep->rep_func(ep); wake_up_all(&ep->rep_connect_wait); } } static void rpcrdma_cq_async_error_upcall(struct ib_event *event, void *context) { struct rpcrdma_ep *ep = context; dprintk("RPC: %s: CQ error %X on device %s ep %p\n", __func__, event->event, event->device->name, context); if (ep->rep_connected == 1) { ep->rep_connected = -EIO; ep->rep_func(ep); wake_up_all(&ep->rep_connect_wait); } } static inline void rpcrdma_event_process(struct ib_wc *wc) { struct rpcrdma_rep *rep = (struct rpcrdma_rep *)(unsigned long) wc->wr_id; dprintk("RPC: %s: event rep %p status %X opcode %X length %u\n", __func__, rep, wc->status, wc->opcode, wc->byte_len); if (!rep) /* send or bind completion that we don't care about */ return; if (IB_WC_SUCCESS != wc->status) { dprintk("RPC: %s: %s WC status %X, connection lost\n", __func__, (wc->opcode & IB_WC_RECV) ? "recv" : "send", wc->status); rep->rr_len = ~0U; rpcrdma_schedule_tasklet(rep); return; } switch (wc->opcode) { case IB_WC_RECV: rep->rr_len = wc->byte_len; ib_dma_sync_single_for_cpu( rdmab_to_ia(rep->rr_buffer)->ri_id->device, rep->rr_iov.addr, rep->rr_len, DMA_FROM_DEVICE); /* Keep (only) the most recent credits, after check validity */ if (rep->rr_len >= 16) { struct rpcrdma_msg *p = (struct rpcrdma_msg *) rep->rr_base; unsigned int credits = ntohl(p->rm_credit); if (credits == 0) { dprintk("RPC: %s: server" " dropped credits to 0!\n", __func__); /* don't deadlock */ credits = 1; } else if (credits > rep->rr_buffer->rb_max_requests) { dprintk("RPC: %s: server" " over-crediting: %d (%d)\n", __func__, credits, rep->rr_buffer->rb_max_requests); credits = rep->rr_buffer->rb_max_requests; } atomic_set(&rep->rr_buffer->rb_credits, credits); } /* fall through */ case IB_WC_BIND_MW: rpcrdma_schedule_tasklet(rep); break; default: dprintk("RPC: %s: unexpected WC event %X\n", __func__, wc->opcode); break; } } static inline int rpcrdma_cq_poll(struct ib_cq *cq) { struct ib_wc wc; int rc; for (;;) { rc = ib_poll_cq(cq, 1, &wc); if (rc < 0) { dprintk("RPC: %s: ib_poll_cq failed %i\n", __func__, rc); return rc; } if (rc == 0) break; rpcrdma_event_process(&wc); } return 0; } /* * rpcrdma_cq_event_upcall * * This upcall handles recv, send, bind and unbind events. * It is reentrant but processes single events in order to maintain * ordering of receives to keep server credits. * * It is the responsibility of the scheduled tasklet to return * recv buffers to the pool. NOTE: this affects synchronization of * connection shutdown. That is, the structures required for * the completion of the reply handler must remain intact until * all memory has been reclaimed. * * Note that send events are suppressed and do not result in an upcall. */ static void rpcrdma_cq_event_upcall(struct ib_cq *cq, void *context) { int rc; rc = rpcrdma_cq_poll(cq); if (rc) return; rc = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); if (rc) { dprintk("RPC: %s: ib_req_notify_cq failed %i\n", __func__, rc); return; } rpcrdma_cq_poll(cq); } #ifdef RPC_DEBUG static const char * const conn[] = { "address resolved", "address error", "route resolved", "route error", "connect request", "connect response", "connect error", "unreachable", "rejected", "established", "disconnected", "device removal" }; #endif static int rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event) { struct rpcrdma_xprt *xprt = id->context; struct rpcrdma_ia *ia = &xprt->rx_ia; struct rpcrdma_ep *ep = &xprt->rx_ep; struct sockaddr_in *addr = (struct sockaddr_in *) &ep->rep_remote_addr; struct ib_qp_attr attr; struct ib_qp_init_attr iattr; int connstate = 0; switch (event->event) { case RDMA_CM_EVENT_ADDR_RESOLVED: case RDMA_CM_EVENT_ROUTE_RESOLVED: complete(&ia->ri_done); break; case RDMA_CM_EVENT_ADDR_ERROR: ia->ri_async_rc = -EHOSTUNREACH; dprintk("RPC: %s: CM address resolution error, ep 0x%p\n", __func__, ep); complete(&ia->ri_done); break; case RDMA_CM_EVENT_ROUTE_ERROR: ia->ri_async_rc = -ENETUNREACH; dprintk("RPC: %s: CM route resolution error, ep 0x%p\n", __func__, ep); complete(&ia->ri_done); break; case RDMA_CM_EVENT_ESTABLISHED: connstate = 1; ib_query_qp(ia->ri_id->qp, &attr, IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC, &iattr); dprintk("RPC: %s: %d responder resources" " (%d initiator)\n", __func__, attr.max_dest_rd_atomic, attr.max_rd_atomic); goto connected; case RDMA_CM_EVENT_CONNECT_ERROR: connstate = -ENOTCONN; goto connected; case RDMA_CM_EVENT_UNREACHABLE: connstate = -ENETDOWN; goto connected; case RDMA_CM_EVENT_REJECTED: connstate = -ECONNREFUSED; goto connected; case RDMA_CM_EVENT_DISCONNECTED: connstate = -ECONNABORTED; goto connected; case RDMA_CM_EVENT_DEVICE_REMOVAL: connstate = -ENODEV; connected: dprintk("RPC: %s: %s: %u.%u.%u.%u:%u" " (ep 0x%p event 0x%x)\n", __func__, (event->event <= 11) ? conn[event->event] : "unknown connection error", NIPQUAD(addr->sin_addr.s_addr), ntohs(addr->sin_port), ep, event->event); atomic_set(&rpcx_to_rdmax(ep->rep_xprt)->rx_buf.rb_credits, 1); dprintk("RPC: %s: %sconnected\n", __func__, connstate > 0 ? "" : "dis"); ep->rep_connected = connstate; ep->rep_func(ep); wake_up_all(&ep->rep_connect_wait); break; default: ia->ri_async_rc = -EINVAL; dprintk("RPC: %s: unexpected CM event %X\n", __func__, event->event); complete(&ia->ri_done); break; } return 0; } static struct rdma_cm_id * rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia, struct sockaddr *addr) { struct rdma_cm_id *id; int rc; id = rdma_create_id(rpcrdma_conn_upcall, xprt, RDMA_PS_TCP); if (IS_ERR(id)) { rc = PTR_ERR(id); dprintk("RPC: %s: rdma_create_id() failed %i\n", __func__, rc); return id; } ia->ri_async_rc = 0; rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT); if (rc) { dprintk("RPC: %s: rdma_resolve_addr() failed %i\n", __func__, rc); goto out; } wait_for_completion(&ia->ri_done); rc = ia->ri_async_rc; if (rc) goto out; ia->ri_async_rc = 0; rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); if (rc) { dprintk("RPC: %s: rdma_resolve_route() failed %i\n", __func__, rc); goto out; } wait_for_completion(&ia->ri_done); rc = ia->ri_async_rc; if (rc) goto out; return id; out: rdma_destroy_id(id); return ERR_PTR(rc); } /* * Drain any cq, prior to teardown. */ static void rpcrdma_clean_cq(struct ib_cq *cq) { struct ib_wc wc; int count = 0; while (1 == ib_poll_cq(cq, 1, &wc)) ++count; if (count) dprintk("RPC: %s: flushed %d events (last 0x%x)\n", __func__, count, wc.opcode); } /* * Exported functions. */ /* * Open and initialize an Interface Adapter. * o initializes fields of struct rpcrdma_ia, including * interface and provider attributes and protection zone. */ int rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg) { int rc, mem_priv; struct ib_device_attr devattr; struct rpcrdma_ia *ia = &xprt->rx_ia; init_completion(&ia->ri_done); ia->ri_id = rpcrdma_create_id(xprt, ia, addr); if (IS_ERR(ia->ri_id)) { rc = PTR_ERR(ia->ri_id); goto out1; } ia->ri_pd = ib_alloc_pd(ia->ri_id->device); if (IS_ERR(ia->ri_pd)) { rc = PTR_ERR(ia->ri_pd); dprintk("RPC: %s: ib_alloc_pd() failed %i\n", __func__, rc); goto out2; } /* * Query the device to determine if the requested memory * registration strategy is supported. If it isn't, set the * strategy to a globally supported model. */ rc = ib_query_device(ia->ri_id->device, &devattr); if (rc) { dprintk("RPC: %s: ib_query_device failed %d\n", __func__, rc); goto out2; } if (devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) { ia->ri_have_dma_lkey = 1; ia->ri_dma_lkey = ia->ri_id->device->local_dma_lkey; } switch (memreg) { case RPCRDMA_MEMWINDOWS: case RPCRDMA_MEMWINDOWS_ASYNC: if (!(devattr.device_cap_flags & IB_DEVICE_MEM_WINDOW)) { dprintk("RPC: %s: MEMWINDOWS registration " "specified but not supported by adapter, " "using slower RPCRDMA_REGISTER\n", __func__); memreg = RPCRDMA_REGISTER; } break; case RPCRDMA_MTHCAFMR: if (!ia->ri_id->device->alloc_fmr) { #if RPCRDMA_PERSISTENT_REGISTRATION dprintk("RPC: %s: MTHCAFMR registration " "specified but not supported by adapter, " "using riskier RPCRDMA_ALLPHYSICAL\n", __func__); memreg = RPCRDMA_ALLPHYSICAL; #else dprintk("RPC: %s: MTHCAFMR registration " "specified but not supported by adapter, " "using slower RPCRDMA_REGISTER\n", __func__); memreg = RPCRDMA_REGISTER; #endif } break; } /* * Optionally obtain an underlying physical identity mapping in * order to do a memory window-based bind. This base registration * is protected from remote access - that is enabled only by binding * for the specific bytes targeted during each RPC operation, and * revoked after the corresponding completion similar to a storage * adapter. */ switch (memreg) { case RPCRDMA_BOUNCEBUFFERS: case RPCRDMA_REGISTER: break; #if RPCRDMA_PERSISTENT_REGISTRATION case RPCRDMA_ALLPHYSICAL: mem_priv = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ; goto register_setup; #endif case RPCRDMA_MEMWINDOWS_ASYNC: case RPCRDMA_MEMWINDOWS: mem_priv = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_MW_BIND; goto register_setup; case RPCRDMA_MTHCAFMR: if (ia->ri_have_dma_lkey) break; mem_priv = IB_ACCESS_LOCAL_WRITE; register_setup: ia->ri_bind_mem = ib_get_dma_mr(ia->ri_pd, mem_priv); if (IS_ERR(ia->ri_bind_mem)) { printk(KERN_ALERT "%s: ib_get_dma_mr for " "phys register failed with %lX\n\t" "Will continue with degraded performance\n", __func__, PTR_ERR(ia->ri_bind_mem)); memreg = RPCRDMA_REGISTER; ia->ri_bind_mem = NULL; } break; default: printk(KERN_ERR "%s: invalid memory registration mode %d\n", __func__, memreg); rc = -EINVAL; goto out2; } dprintk("RPC: %s: memory registration strategy is %d\n", __func__, memreg); /* Else will do memory reg/dereg for each chunk */ ia->ri_memreg_strategy = memreg; return 0; out2: rdma_destroy_id(ia->ri_id); out1: return rc; } /* * Clean up/close an IA. * o if event handles and PD have been initialized, free them. * o close the IA */ void rpcrdma_ia_close(struct rpcrdma_ia *ia) { int rc; dprintk("RPC: %s: entering\n", __func__); if (ia->ri_bind_mem != NULL) { rc = ib_dereg_mr(ia->ri_bind_mem); dprintk("RPC: %s: ib_dereg_mr returned %i\n", __func__, rc); } if (ia->ri_id != NULL && !IS_ERR(ia->ri_id) && ia->ri_id->qp) rdma_destroy_qp(ia->ri_id); if (ia->ri_pd != NULL && !IS_ERR(ia->ri_pd)) { rc = ib_dealloc_pd(ia->ri_pd); dprintk("RPC: %s: ib_dealloc_pd returned %i\n", __func__, rc); } if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) rdma_destroy_id(ia->ri_id); } /* * Create unconnected endpoint. */ int rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia, struct rpcrdma_create_data_internal *cdata) { struct ib_device_attr devattr; int rc, err; rc = ib_query_device(ia->ri_id->device, &devattr); if (rc) { dprintk("RPC: %s: ib_query_device failed %d\n", __func__, rc); return rc; } /* check provider's send/recv wr limits */ if (cdata->max_requests > devattr.max_qp_wr) cdata->max_requests = devattr.max_qp_wr; ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall; ep->rep_attr.qp_context = ep; /* send_cq and recv_cq initialized below */ ep->rep_attr.srq = NULL; ep->rep_attr.cap.max_send_wr = cdata->max_requests; switch (ia->ri_memreg_strategy) { case RPCRDMA_MEMWINDOWS_ASYNC: case RPCRDMA_MEMWINDOWS: /* Add room for mw_binds+unbinds - overkill! */ ep->rep_attr.cap.max_send_wr++; ep->rep_attr.cap.max_send_wr *= (2 * RPCRDMA_MAX_SEGS); if (ep->rep_attr.cap.max_send_wr > devattr.max_qp_wr) return -EINVAL; break; default: break; } ep->rep_attr.cap.max_recv_wr = cdata->max_requests; ep->rep_attr.cap.max_send_sge = (cdata->padding ? 4 : 2); ep->rep_attr.cap.max_recv_sge = 1; ep->rep_attr.cap.max_inline_data = 0; ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR; ep->rep_attr.qp_type = IB_QPT_RC; ep->rep_attr.port_num = ~0; dprintk("RPC: %s: requested max: dtos: send %d recv %d; " "iovs: send %d recv %d\n", __func__, ep->rep_attr.cap.max_send_wr, ep->rep_attr.cap.max_recv_wr, ep->rep_attr.cap.max_send_sge, ep->rep_attr.cap.max_recv_sge); /* set trigger for requesting send completion */ ep->rep_cqinit = ep->rep_attr.cap.max_send_wr/2 /* - 1*/; switch (ia->ri_memreg_strategy) { case RPCRDMA_MEMWINDOWS_ASYNC: case RPCRDMA_MEMWINDOWS: ep->rep_cqinit -= RPCRDMA_MAX_SEGS; break; default: break; } if (ep->rep_cqinit <= 2) ep->rep_cqinit = 0; INIT_CQCOUNT(ep); ep->rep_ia = ia; init_waitqueue_head(&ep->rep_connect_wait); /* * Create a single cq for receive dto and mw_bind (only ever * care about unbind, really). Send completions are suppressed. * Use single threaded tasklet upcalls to maintain ordering. */ ep->rep_cq = ib_create_cq(ia->ri_id->device, rpcrdma_cq_event_upcall, rpcrdma_cq_async_error_upcall, NULL, ep->rep_attr.cap.max_recv_wr + ep->rep_attr.cap.max_send_wr + 1, 0); if (IS_ERR(ep->rep_cq)) { rc = PTR_ERR(ep->rep_cq); dprintk("RPC: %s: ib_create_cq failed: %i\n", __func__, rc); goto out1; } rc = ib_req_notify_cq(ep->rep_cq, IB_CQ_NEXT_COMP); if (rc) { dprintk("RPC: %s: ib_req_notify_cq failed: %i\n", __func__, rc); goto out2; } ep->rep_attr.send_cq = ep->rep_cq; ep->rep_attr.recv_cq = ep->rep_cq; /* Initialize cma parameters */ /* RPC/RDMA does not use private data */ ep->rep_remote_cma.private_data = NULL; ep->rep_remote_cma.private_data_len = 0; /* Client offers RDMA Read but does not initiate */ switch (ia->ri_memreg_strategy) { case RPCRDMA_BOUNCEBUFFERS: ep->rep_remote_cma.responder_resources = 0; break; case RPCRDMA_MTHCAFMR: case RPCRDMA_REGISTER: ep->rep_remote_cma.responder_resources = cdata->max_requests * (RPCRDMA_MAX_DATA_SEGS / 8); break; case RPCRDMA_MEMWINDOWS: case RPCRDMA_MEMWINDOWS_ASYNC: #if RPCRDMA_PERSISTENT_REGISTRATION case RPCRDMA_ALLPHYSICAL: #endif ep->rep_remote_cma.responder_resources = cdata->max_requests * (RPCRDMA_MAX_DATA_SEGS / 2); break; default: break; } if (ep->rep_remote_cma.responder_resources > devattr.max_qp_rd_atom) ep->rep_remote_cma.responder_resources = devattr.max_qp_rd_atom; ep->rep_remote_cma.initiator_depth = 0; ep->rep_remote_cma.retry_count = 7; ep->rep_remote_cma.flow_control = 0; ep->rep_remote_cma.rnr_retry_count = 0; return 0; out2: err = ib_destroy_cq(ep->rep_cq); if (err) dprintk("RPC: %s: ib_destroy_cq returned %i\n", __func__, err); out1: return rc; } /* * rpcrdma_ep_destroy * * Disconnect and destroy endpoint. After this, the only * valid operations on the ep are to free it (if dynamically * allocated) or re-create it. * * The caller's error handling must be sure to not leak the endpoint * if this function fails. */ int rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) { int rc; dprintk("RPC: %s: entering, connected is %d\n", __func__, ep->rep_connected); if (ia->ri_id->qp) { rc = rpcrdma_ep_disconnect(ep, ia); if (rc) dprintk("RPC: %s: rpcrdma_ep_disconnect" " returned %i\n", __func__, rc); } ep->rep_func = NULL; /* padding - could be done in rpcrdma_buffer_destroy... */ if (ep->rep_pad_mr) { rpcrdma_deregister_internal(ia, ep->rep_pad_mr, &ep->rep_pad); ep->rep_pad_mr = NULL; } if (ia->ri_id->qp) { rdma_destroy_qp(ia->ri_id); ia->ri_id->qp = NULL; } rpcrdma_clean_cq(ep->rep_cq); rc = ib_destroy_cq(ep->rep_cq); if (rc) dprintk("RPC: %s: ib_destroy_cq returned %i\n", __func__, rc); return rc; } /* * Connect unconnected endpoint. */ int rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) { struct rdma_cm_id *id; int rc = 0; int retry_count = 0; int reconnect = (ep->rep_connected != 0); if (reconnect) { struct rpcrdma_xprt *xprt; retry: rc = rpcrdma_ep_disconnect(ep, ia); if (rc && rc != -ENOTCONN) dprintk("RPC: %s: rpcrdma_ep_disconnect" " status %i\n", __func__, rc); rpcrdma_clean_cq(ep->rep_cq); xprt = container_of(ia, struct rpcrdma_xprt, rx_ia); id = rpcrdma_create_id(xprt, ia, (struct sockaddr *)&xprt->rx_data.addr); if (IS_ERR(id)) { rc = PTR_ERR(id); goto out; } /* TEMP TEMP TEMP - fail if new device: * Deregister/remarshal *all* requests! * Close and recreate adapter, pd, etc! * Re-determine all attributes still sane! * More stuff I haven't thought of! * Rrrgh! */ if (ia->ri_id->device != id->device) { printk("RPC: %s: can't reconnect on " "different device!\n", __func__); rdma_destroy_id(id); rc = -ENETDOWN; goto out; } /* END TEMP */ rdma_destroy_id(ia->ri_id); ia->ri_id = id; } rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); if (rc) { dprintk("RPC: %s: rdma_create_qp failed %i\n", __func__, rc); goto out; } /* XXX Tavor device performs badly with 2K MTU! */ if (strnicmp(ia->ri_id->device->dma_device->bus->name, "pci", 3) == 0) { struct pci_dev *pcid = to_pci_dev(ia->ri_id->device->dma_device); if (pcid->device == PCI_DEVICE_ID_MELLANOX_TAVOR && (pcid->vendor == PCI_VENDOR_ID_MELLANOX || pcid->vendor == PCI_VENDOR_ID_TOPSPIN)) { struct ib_qp_attr attr = { .path_mtu = IB_MTU_1024 }; rc = ib_modify_qp(ia->ri_id->qp, &attr, IB_QP_PATH_MTU); } } /* Theoretically a client initiator_depth > 0 is not needed, * but many peers fail to complete the connection unless they * == responder_resources! */ if (ep->rep_remote_cma.initiator_depth != ep->rep_remote_cma.responder_resources) ep->rep_remote_cma.initiator_depth = ep->rep_remote_cma.responder_resources; ep->rep_connected = 0; rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma); if (rc) { dprintk("RPC: %s: rdma_connect() failed with %i\n", __func__, rc); goto out; } if (reconnect) return 0; wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0); /* * Check state. A non-peer reject indicates no listener * (ECONNREFUSED), which may be a transient state. All * others indicate a transport condition which has already * undergone a best-effort. */ if (ep->rep_connected == -ECONNREFUSED && ++retry_count <= RDMA_CONNECT_RETRY_MAX) { dprintk("RPC: %s: non-peer_reject, retry\n", __func__); goto retry; } if (ep->rep_connected <= 0) { /* Sometimes, the only way to reliably connect to remote * CMs is to use same nonzero values for ORD and IRD. */ ep->rep_remote_cma.initiator_depth = ep->rep_remote_cma.responder_resources; if (ep->rep_remote_cma.initiator_depth == 0) ++ep->rep_remote_cma.initiator_depth; if (ep->rep_remote_cma.responder_resources == 0) ++ep->rep_remote_cma.responder_resources; if (retry_count++ == 0) goto retry; rc = ep->rep_connected; } else { dprintk("RPC: %s: connected\n", __func__); } out: if (rc) ep->rep_connected = rc; return rc; } /* * rpcrdma_ep_disconnect * * This is separate from destroy to facilitate the ability * to reconnect without recreating the endpoint. * * This call is not reentrant, and must not be made in parallel * on the same endpoint. */ int rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) { int rc; rpcrdma_clean_cq(ep->rep_cq); rc = rdma_disconnect(ia->ri_id); if (!rc) { /* returns without wait if not connected */ wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 1); dprintk("RPC: %s: after wait, %sconnected\n", __func__, (ep->rep_connected == 1) ? "still " : "dis"); } else { dprintk("RPC: %s: rdma_disconnect %i\n", __func__, rc); ep->rep_connected = rc; } return rc; } /* * Initialize buffer memory */ int rpcrdma_buffer_create(struct rpcrdma_buffer *buf, struct rpcrdma_ep *ep, struct rpcrdma_ia *ia, struct rpcrdma_create_data_internal *cdata) { char *p; size_t len; int i, rc; struct rpcrdma_mw *r; buf->rb_max_requests = cdata->max_requests; spin_lock_init(&buf->rb_lock); atomic_set(&buf->rb_credits, 1); /* Need to allocate: * 1. arrays for send and recv pointers * 2. arrays of struct rpcrdma_req to fill in pointers * 3. array of struct rpcrdma_rep for replies * 4. padding, if any * 5. mw's or fmr's, if any * Send/recv buffers in req/rep need to be registered */ len = buf->rb_max_requests * (sizeof(struct rpcrdma_req *) + sizeof(struct rpcrdma_rep *)); len += cdata->padding; switch (ia->ri_memreg_strategy) { case RPCRDMA_MTHCAFMR: /* TBD we are perhaps overallocating here */ len += (buf->rb_max_requests + 1) * RPCRDMA_MAX_SEGS * sizeof(struct rpcrdma_mw); break; case RPCRDMA_MEMWINDOWS_ASYNC: case RPCRDMA_MEMWINDOWS: len += (buf->rb_max_requests + 1) * RPCRDMA_MAX_SEGS * sizeof(struct rpcrdma_mw); break; default: break; } /* allocate 1, 4 and 5 in one shot */ p = kzalloc(len, GFP_KERNEL); if (p == NULL) { dprintk("RPC: %s: req_t/rep_t/pad kzalloc(%zd) failed\n", __func__, len); rc = -ENOMEM; goto out; } buf->rb_pool = p; /* for freeing it later */ buf->rb_send_bufs = (struct rpcrdma_req **) p; p = (char *) &buf->rb_send_bufs[buf->rb_max_requests]; buf->rb_recv_bufs = (struct rpcrdma_rep **) p; p = (char *) &buf->rb_recv_bufs[buf->rb_max_requests]; /* * Register the zeroed pad buffer, if any. */ if (cdata->padding) { rc = rpcrdma_register_internal(ia, p, cdata->padding, &ep->rep_pad_mr, &ep->rep_pad); if (rc) goto out; } p += cdata->padding; /* * Allocate the fmr's, or mw's for mw_bind chunk registration. * We "cycle" the mw's in order to minimize rkey reuse, * and also reduce unbind-to-bind collision. */ INIT_LIST_HEAD(&buf->rb_mws); r = (struct rpcrdma_mw *)p; switch (ia->ri_memreg_strategy) { case RPCRDMA_MTHCAFMR: /* TBD we are perhaps overallocating here */ for (i = (buf->rb_max_requests+1) * RPCRDMA_MAX_SEGS; i; i--) { static struct ib_fmr_attr fa = { RPCRDMA_MAX_DATA_SEGS, 1, PAGE_SHIFT }; r->r.fmr = ib_alloc_fmr(ia->ri_pd, IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ, &fa); if (IS_ERR(r->r.fmr)) { rc = PTR_ERR(r->r.fmr); dprintk("RPC: %s: ib_alloc_fmr" " failed %i\n", __func__, rc); goto out; } list_add(&r->mw_list, &buf->rb_mws); ++r; } break; case RPCRDMA_MEMWINDOWS_ASYNC: case RPCRDMA_MEMWINDOWS: /* Allocate one extra request's worth, for full cycling */ for (i = (buf->rb_max_requests+1) * RPCRDMA_MAX_SEGS; i; i--) { r->r.mw = ib_alloc_mw(ia->ri_pd); if (IS_ERR(r->r.mw)) { rc = PTR_ERR(r->r.mw); dprintk("RPC: %s: ib_alloc_mw" " failed %i\n", __func__, rc); goto out; } list_add(&r->mw_list, &buf->rb_mws); ++r; } break; default: break; } /* * Allocate/init the request/reply buffers. Doing this * using kmalloc for now -- one for each buf. */ for (i = 0; i < buf->rb_max_requests; i++) { struct rpcrdma_req *req; struct rpcrdma_rep *rep; len = cdata->inline_wsize + sizeof(struct rpcrdma_req); /* RPC layer requests *double* size + 1K RPC_SLACK_SPACE! */ /* Typical ~2400b, so rounding up saves work later */ if (len < 4096) len = 4096; req = kmalloc(len, GFP_KERNEL); if (req == NULL) { dprintk("RPC: %s: request buffer %d alloc" " failed\n", __func__, i); rc = -ENOMEM; goto out; } memset(req, 0, sizeof(struct rpcrdma_req)); buf->rb_send_bufs[i] = req; buf->rb_send_bufs[i]->rl_buffer = buf; rc = rpcrdma_register_internal(ia, req->rl_base, len - offsetof(struct rpcrdma_req, rl_base), &buf->rb_send_bufs[i]->rl_handle, &buf->rb_send_bufs[i]->rl_iov); if (rc) goto out; buf->rb_send_bufs[i]->rl_size = len-sizeof(struct rpcrdma_req); len = cdata->inline_rsize + sizeof(struct rpcrdma_rep); rep = kmalloc(len, GFP_KERNEL); if (rep == NULL) { dprintk("RPC: %s: reply buffer %d alloc failed\n", __func__, i); rc = -ENOMEM; goto out; } memset(rep, 0, sizeof(struct rpcrdma_rep)); buf->rb_recv_bufs[i] = rep; buf->rb_recv_bufs[i]->rr_buffer = buf; init_waitqueue_head(&rep->rr_unbind); rc = rpcrdma_register_internal(ia, rep->rr_base, len - offsetof(struct rpcrdma_rep, rr_base), &buf->rb_recv_bufs[i]->rr_handle, &buf->rb_recv_bufs[i]->rr_iov); if (rc) goto out; } dprintk("RPC: %s: max_requests %d\n", __func__, buf->rb_max_requests); /* done */ return 0; out: rpcrdma_buffer_destroy(buf); return rc; } /* * Unregister and destroy buffer memory. Need to deal with * partial initialization, so it's callable from failed create. * Must be called before destroying endpoint, as registrations * reference it. */ void rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) { int rc, i; struct rpcrdma_ia *ia = rdmab_to_ia(buf); struct rpcrdma_mw *r; /* clean up in reverse order from create * 1. recv mr memory (mr free, then kfree) * 1a. bind mw memory * 2. send mr memory (mr free, then kfree) * 3. padding (if any) [moved to rpcrdma_ep_destroy] * 4. arrays */ dprintk("RPC: %s: entering\n", __func__); for (i = 0; i < buf->rb_max_requests; i++) { if (buf->rb_recv_bufs && buf->rb_recv_bufs[i]) { rpcrdma_deregister_internal(ia, buf->rb_recv_bufs[i]->rr_handle, &buf->rb_recv_bufs[i]->rr_iov); kfree(buf->rb_recv_bufs[i]); } if (buf->rb_send_bufs && buf->rb_send_bufs[i]) { while (!list_empty(&buf->rb_mws)) { r = list_entry(buf->rb_mws.next, struct rpcrdma_mw, mw_list); list_del(&r->mw_list); switch (ia->ri_memreg_strategy) { case RPCRDMA_MTHCAFMR: rc = ib_dealloc_fmr(r->r.fmr); if (rc) dprintk("RPC: %s:" " ib_dealloc_fmr" " failed %i\n", __func__, rc); break; case RPCRDMA_MEMWINDOWS_ASYNC: case RPCRDMA_MEMWINDOWS: rc = ib_dealloc_mw(r->r.mw); if (rc) dprintk("RPC: %s:" " ib_dealloc_mw" " failed %i\n", __func__, rc); break; default: break; } } rpcrdma_deregister_internal(ia, buf->rb_send_bufs[i]->rl_handle, &buf->rb_send_bufs[i]->rl_iov); kfree(buf->rb_send_bufs[i]); } } kfree(buf->rb_pool); } /* * Get a set of request/reply buffers. * * Reply buffer (if needed) is attached to send buffer upon return. * Rule: * rb_send_index and rb_recv_index MUST always be pointing to the * *next* available buffer (non-NULL). They are incremented after * removing buffers, and decremented *before* returning them. */ struct rpcrdma_req * rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) { struct rpcrdma_req *req; unsigned long flags; int i; struct rpcrdma_mw *r; spin_lock_irqsave(&buffers->rb_lock, flags); if (buffers->rb_send_index == buffers->rb_max_requests) { spin_unlock_irqrestore(&buffers->rb_lock, flags); dprintk("RPC: %s: out of request buffers\n", __func__); return ((struct rpcrdma_req *)NULL); } req = buffers->rb_send_bufs[buffers->rb_send_index]; if (buffers->rb_send_index < buffers->rb_recv_index) { dprintk("RPC: %s: %d extra receives outstanding (ok)\n", __func__, buffers->rb_recv_index - buffers->rb_send_index); req->rl_reply = NULL; } else { req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index]; buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL; } buffers->rb_send_bufs[buffers->rb_send_index++] = NULL; if (!list_empty(&buffers->rb_mws)) { i = RPCRDMA_MAX_SEGS - 1; do { r = list_entry(buffers->rb_mws.next, struct rpcrdma_mw, mw_list); list_del(&r->mw_list); req->rl_segments[i].mr_chunk.rl_mw = r; } while (--i >= 0); } spin_unlock_irqrestore(&buffers->rb_lock, flags); return req; } /* * Put request/reply buffers back into pool. * Pre-decrement counter/array index. */ void rpcrdma_buffer_put(struct rpcrdma_req *req) { struct rpcrdma_buffer *buffers = req->rl_buffer; struct rpcrdma_ia *ia = rdmab_to_ia(buffers); int i; unsigned long flags; BUG_ON(req->rl_nchunks != 0); spin_lock_irqsave(&buffers->rb_lock, flags); buffers->rb_send_bufs[--buffers->rb_send_index] = req; req->rl_niovs = 0; if (req->rl_reply) { buffers->rb_recv_bufs[--buffers->rb_recv_index] = req->rl_reply; init_waitqueue_head(&req->rl_reply->rr_unbind); req->rl_reply->rr_func = NULL; req->rl_reply = NULL; } switch (ia->ri_memreg_strategy) { case RPCRDMA_MTHCAFMR: case RPCRDMA_MEMWINDOWS_ASYNC: case RPCRDMA_MEMWINDOWS: /* * Cycle mw's back in reverse order, and "spin" them. * This delays and scrambles reuse as much as possible. */ i = 1; do { struct rpcrdma_mw **mw; mw = &req->rl_segments[i].mr_chunk.rl_mw; list_add_tail(&(*mw)->mw_list, &buffers->rb_mws); *mw = NULL; } while (++i < RPCRDMA_MAX_SEGS); list_add_tail(&req->rl_segments[0].mr_chunk.rl_mw->mw_list, &buffers->rb_mws); req->rl_segments[0].mr_chunk.rl_mw = NULL; break; default: break; } spin_unlock_irqrestore(&buffers->rb_lock, flags); } /* * Recover reply buffers from pool. * This happens when recovering from error conditions. * Post-increment counter/array index. */ void rpcrdma_recv_buffer_get(struct rpcrdma_req *req) { struct rpcrdma_buffer *buffers = req->rl_buffer; unsigned long flags; if (req->rl_iov.length == 0) /* special case xprt_rdma_allocate() */ buffers = ((struct rpcrdma_req *) buffers)->rl_buffer; spin_lock_irqsave(&buffers->rb_lock, flags); if (buffers->rb_recv_index < buffers->rb_max_requests) { req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index]; buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL; } spin_unlock_irqrestore(&buffers->rb_lock, flags); } /* * Put reply buffers back into pool when not attached to * request. This happens in error conditions, and when * aborting unbinds. Pre-decrement counter/array index. */ void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) { struct rpcrdma_buffer *buffers = rep->rr_buffer; unsigned long flags; rep->rr_func = NULL; spin_lock_irqsave(&buffers->rb_lock, flags); buffers->rb_recv_bufs[--buffers->rb_recv_index] = rep; spin_unlock_irqrestore(&buffers->rb_lock, flags); } /* * Wrappers for internal-use kmalloc memory registration, used by buffer code. */ int rpcrdma_register_internal(struct rpcrdma_ia *ia, void *va, int len, struct ib_mr **mrp, struct ib_sge *iov) { struct ib_phys_buf ipb; struct ib_mr *mr; int rc; /* * All memory passed here was kmalloc'ed, therefore phys-contiguous. */ iov->addr = ib_dma_map_single(ia->ri_id->device, va, len, DMA_BIDIRECTIONAL); iov->length = len; if (ia->ri_have_dma_lkey) { *mrp = NULL; iov->lkey = ia->ri_dma_lkey; return 0; } else if (ia->ri_bind_mem != NULL) { *mrp = NULL; iov->lkey = ia->ri_bind_mem->lkey; return 0; } ipb.addr = iov->addr; ipb.size = iov->length; mr = ib_reg_phys_mr(ia->ri_pd, &ipb, 1, IB_ACCESS_LOCAL_WRITE, &iov->addr); dprintk("RPC: %s: phys convert: 0x%llx " "registered 0x%llx length %d\n", __func__, (unsigned long long)ipb.addr, (unsigned long long)iov->addr, len); if (IS_ERR(mr)) { *mrp = NULL; rc = PTR_ERR(mr); dprintk("RPC: %s: failed with %i\n", __func__, rc); } else { *mrp = mr; iov->lkey = mr->lkey; rc = 0; } return rc; } int rpcrdma_deregister_internal(struct rpcrdma_ia *ia, struct ib_mr *mr, struct ib_sge *iov) { int rc; ib_dma_unmap_single(ia->ri_id->device, iov->addr, iov->length, DMA_BIDIRECTIONAL); if (NULL == mr) return 0; rc = ib_dereg_mr(mr); if (rc) dprintk("RPC: %s: ib_dereg_mr failed %i\n", __func__, rc); return rc; } /* * Wrappers for chunk registration, shared by read/write chunk code. */ static void rpcrdma_map_one(struct rpcrdma_ia *ia, struct rpcrdma_mr_seg *seg, int writing) { seg->mr_dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE; seg->mr_dmalen = seg->mr_len; if (seg->mr_page) seg->mr_dma = ib_dma_map_page(ia->ri_id->device, seg->mr_page, offset_in_page(seg->mr_offset), seg->mr_dmalen, seg->mr_dir); else seg->mr_dma = ib_dma_map_single(ia->ri_id->device, seg->mr_offset, seg->mr_dmalen, seg->mr_dir); } static void rpcrdma_unmap_one(struct rpcrdma_ia *ia, struct rpcrdma_mr_seg *seg) { if (seg->mr_page) ib_dma_unmap_page(ia->ri_id->device, seg->mr_dma, seg->mr_dmalen, seg->mr_dir); else ib_dma_unmap_single(ia->ri_id->device, seg->mr_dma, seg->mr_dmalen, seg->mr_dir); } static int rpcrdma_register_fmr_external(struct rpcrdma_mr_seg *seg, int *nsegs, int writing, struct rpcrdma_ia *ia) { struct rpcrdma_mr_seg *seg1 = seg; u64 physaddrs[RPCRDMA_MAX_DATA_SEGS]; int len, pageoff, i, rc; pageoff = offset_in_page(seg1->mr_offset); seg1->mr_offset -= pageoff; /* start of page */ seg1->mr_len += pageoff; len = -pageoff; if (*nsegs > RPCRDMA_MAX_DATA_SEGS) *nsegs = RPCRDMA_MAX_DATA_SEGS; for (i = 0; i < *nsegs;) { rpcrdma_map_one(ia, seg, writing); physaddrs[i] = seg->mr_dma; len += seg->mr_len; ++seg; ++i; /* Check for holes */ if ((i < *nsegs && offset_in_page(seg->mr_offset)) || offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) break; } rc = ib_map_phys_fmr(seg1->mr_chunk.rl_mw->r.fmr, physaddrs, i, seg1->mr_dma); if (rc) { dprintk("RPC: %s: failed ib_map_phys_fmr " "%u@0x%llx+%i (%d)... status %i\n", __func__, len, (unsigned long long)seg1->mr_dma, pageoff, i, rc); while (i--) rpcrdma_unmap_one(ia, --seg); } else { seg1->mr_rkey = seg1->mr_chunk.rl_mw->r.fmr->rkey; seg1->mr_base = seg1->mr_dma + pageoff; seg1->mr_nsegs = i; seg1->mr_len = len; } *nsegs = i; return rc; } static int rpcrdma_deregister_fmr_external(struct rpcrdma_mr_seg *seg, struct rpcrdma_ia *ia) { struct rpcrdma_mr_seg *seg1 = seg; LIST_HEAD(l); int rc; list_add(&seg1->mr_chunk.rl_mw->r.fmr->list, &l); rc = ib_unmap_fmr(&l); while (seg1->mr_nsegs--) rpcrdma_unmap_one(ia, seg++); if (rc) dprintk("RPC: %s: failed ib_unmap_fmr," " status %i\n", __func__, rc); return rc; } static int rpcrdma_register_memwin_external(struct rpcrdma_mr_seg *seg, int *nsegs, int writing, struct rpcrdma_ia *ia, struct rpcrdma_xprt *r_xprt) { int mem_priv = (writing ? IB_ACCESS_REMOTE_WRITE : IB_ACCESS_REMOTE_READ); struct ib_mw_bind param; int rc; *nsegs = 1; rpcrdma_map_one(ia, seg, writing); param.mr = ia->ri_bind_mem; param.wr_id = 0ULL; /* no send cookie */ param.addr = seg->mr_dma; param.length = seg->mr_len; param.send_flags = 0; param.mw_access_flags = mem_priv; DECR_CQCOUNT(&r_xprt->rx_ep); rc = ib_bind_mw(ia->ri_id->qp, seg->mr_chunk.rl_mw->r.mw, ¶m); if (rc) { dprintk("RPC: %s: failed ib_bind_mw " "%u@0x%llx status %i\n", __func__, seg->mr_len, (unsigned long long)seg->mr_dma, rc); rpcrdma_unmap_one(ia, seg); } else { seg->mr_rkey = seg->mr_chunk.rl_mw->r.mw->rkey; seg->mr_base = param.addr; seg->mr_nsegs = 1; } return rc; } static int rpcrdma_deregister_memwin_external(struct rpcrdma_mr_seg *seg, struct rpcrdma_ia *ia, struct rpcrdma_xprt *r_xprt, void **r) { struct ib_mw_bind param; LIST_HEAD(l); int rc; BUG_ON(seg->mr_nsegs != 1); param.mr = ia->ri_bind_mem; param.addr = 0ULL; /* unbind */ param.length = 0; param.mw_access_flags = 0; if (*r) { param.wr_id = (u64) (unsigned long) *r; param.send_flags = IB_SEND_SIGNALED; INIT_CQCOUNT(&r_xprt->rx_ep); } else { param.wr_id = 0ULL; param.send_flags = 0; DECR_CQCOUNT(&r_xprt->rx_ep); } rc = ib_bind_mw(ia->ri_id->qp, seg->mr_chunk.rl_mw->r.mw, ¶m); rpcrdma_unmap_one(ia, seg); if (rc) dprintk("RPC: %s: failed ib_(un)bind_mw," " status %i\n", __func__, rc); else *r = NULL; /* will upcall on completion */ return rc; } static int rpcrdma_register_default_external(struct rpcrdma_mr_seg *seg, int *nsegs, int writing, struct rpcrdma_ia *ia) { int mem_priv = (writing ? IB_ACCESS_REMOTE_WRITE : IB_ACCESS_REMOTE_READ); struct rpcrdma_mr_seg *seg1 = seg; struct ib_phys_buf ipb[RPCRDMA_MAX_DATA_SEGS]; int len, i, rc = 0; if (*nsegs > RPCRDMA_MAX_DATA_SEGS) *nsegs = RPCRDMA_MAX_DATA_SEGS; for (len = 0, i = 0; i < *nsegs;) { rpcrdma_map_one(ia, seg, writing); ipb[i].addr = seg->mr_dma; ipb[i].size = seg->mr_len; len += seg->mr_len; ++seg; ++i; /* Check for holes */ if ((i < *nsegs && offset_in_page(seg->mr_offset)) || offset_in_page((seg-1)->mr_offset+(seg-1)->mr_len)) break; } seg1->mr_base = seg1->mr_dma; seg1->mr_chunk.rl_mr = ib_reg_phys_mr(ia->ri_pd, ipb, i, mem_priv, &seg1->mr_base); if (IS_ERR(seg1->mr_chunk.rl_mr)) { rc = PTR_ERR(seg1->mr_chunk.rl_mr); dprintk("RPC: %s: failed ib_reg_phys_mr " "%u@0x%llx (%d)... status %i\n", __func__, len, (unsigned long long)seg1->mr_dma, i, rc); while (i--) rpcrdma_unmap_one(ia, --seg); } else { seg1->mr_rkey = seg1->mr_chunk.rl_mr->rkey; seg1->mr_nsegs = i; seg1->mr_len = len; } *nsegs = i; return rc; } static int rpcrdma_deregister_default_external(struct rpcrdma_mr_seg *seg, struct rpcrdma_ia *ia) { struct rpcrdma_mr_seg *seg1 = seg; int rc; rc = ib_dereg_mr(seg1->mr_chunk.rl_mr); seg1->mr_chunk.rl_mr = NULL; while (seg1->mr_nsegs--) rpcrdma_unmap_one(ia, seg++); if (rc) dprintk("RPC: %s: failed ib_dereg_mr," " status %i\n", __func__, rc); return rc; } int rpcrdma_register_external(struct rpcrdma_mr_seg *seg, int nsegs, int writing, struct rpcrdma_xprt *r_xprt) { struct rpcrdma_ia *ia = &r_xprt->rx_ia; int rc = 0; switch (ia->ri_memreg_strategy) { #if RPCRDMA_PERSISTENT_REGISTRATION case RPCRDMA_ALLPHYSICAL: rpcrdma_map_one(ia, seg, writing); seg->mr_rkey = ia->ri_bind_mem->rkey; seg->mr_base = seg->mr_dma; seg->mr_nsegs = 1; nsegs = 1; break; #endif /* Registration using fmr memory registration */ case RPCRDMA_MTHCAFMR: rc = rpcrdma_register_fmr_external(seg, &nsegs, writing, ia); break; /* Registration using memory windows */ case RPCRDMA_MEMWINDOWS_ASYNC: case RPCRDMA_MEMWINDOWS: rc = rpcrdma_register_memwin_external(seg, &nsegs, writing, ia, r_xprt); break; /* Default registration each time */ default: rc = rpcrdma_register_default_external(seg, &nsegs, writing, ia); break; } if (rc) return -1; return nsegs; } int rpcrdma_deregister_external(struct rpcrdma_mr_seg *seg, struct rpcrdma_xprt *r_xprt, void *r) { struct rpcrdma_ia *ia = &r_xprt->rx_ia; int nsegs = seg->mr_nsegs, rc; switch (ia->ri_memreg_strategy) { #if RPCRDMA_PERSISTENT_REGISTRATION case RPCRDMA_ALLPHYSICAL: BUG_ON(nsegs != 1); rpcrdma_unmap_one(ia, seg); rc = 0; break; #endif case RPCRDMA_MTHCAFMR: rc = rpcrdma_deregister_fmr_external(seg, ia); break; case RPCRDMA_MEMWINDOWS_ASYNC: case RPCRDMA_MEMWINDOWS: rc = rpcrdma_deregister_memwin_external(seg, ia, r_xprt, &r); break; default: rc = rpcrdma_deregister_default_external(seg, ia); break; } if (r) { struct rpcrdma_rep *rep = r; void (*func)(struct rpcrdma_rep *) = rep->rr_func; rep->rr_func = NULL; func(rep); /* dereg done, callback now */ } return nsegs; } /* * Prepost any receive buffer, then post send. * * Receive buffer is donated to hardware, reclaimed upon recv completion. */ int rpcrdma_ep_post(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep, struct rpcrdma_req *req) { struct ib_send_wr send_wr, *send_wr_fail; struct rpcrdma_rep *rep = req->rl_reply; int rc; if (rep) { rc = rpcrdma_ep_post_recv(ia, ep, rep); if (rc) goto out; req->rl_reply = NULL; } send_wr.next = NULL; send_wr.wr_id = 0ULL; /* no send cookie */ send_wr.sg_list = req->rl_send_iov; send_wr.num_sge = req->rl_niovs; send_wr.opcode = IB_WR_SEND; if (send_wr.num_sge == 4) /* no need to sync any pad (constant) */ ib_dma_sync_single_for_device(ia->ri_id->device, req->rl_send_iov[3].addr, req->rl_send_iov[3].length, DMA_TO_DEVICE); ib_dma_sync_single_for_device(ia->ri_id->device, req->rl_send_iov[1].addr, req->rl_send_iov[1].length, DMA_TO_DEVICE); ib_dma_sync_single_for_device(ia->ri_id->device, req->rl_send_iov[0].addr, req->rl_send_iov[0].length, DMA_TO_DEVICE); if (DECR_CQCOUNT(ep) > 0) send_wr.send_flags = 0; else { /* Provider must take a send completion every now and then */ INIT_CQCOUNT(ep); send_wr.send_flags = IB_SEND_SIGNALED; } rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail); if (rc) dprintk("RPC: %s: ib_post_send returned %i\n", __func__, rc); out: return rc; } /* * (Re)post a receive buffer. */ int rpcrdma_ep_post_recv(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep, struct rpcrdma_rep *rep) { struct ib_recv_wr recv_wr, *recv_wr_fail; int rc; recv_wr.next = NULL; recv_wr.wr_id = (u64) (unsigned long) rep; recv_wr.sg_list = &rep->rr_iov; recv_wr.num_sge = 1; ib_dma_sync_single_for_cpu(ia->ri_id->device, rep->rr_iov.addr, rep->rr_iov.length, DMA_BIDIRECTIONAL); DECR_CQCOUNT(ep); rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail); if (rc) dprintk("RPC: %s: ib_post_recv returned %i\n", __func__, rc); return rc; }