/* * xHCI host controller driver * * Copyright (C) 2008 Intel Corp. * * Author: Sarah Sharp * Some code borrowed from the Linux EHCI driver. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * Ring initialization rules: * 1. Each segment is initialized to zero, except for link TRBs. * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or * Consumer Cycle State (CCS), depending on ring function. * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. * * Ring behavior rules: * 1. A ring is empty if enqueue == dequeue. This means there will always be at * least one free TRB in the ring. This is useful if you want to turn that * into a link TRB and expand the ring. * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a * link TRB, then load the pointer with the address in the link TRB. If the * link TRB had its toggle bit set, you may need to update the ring cycle * state (see cycle bit rules). You may have to do this multiple times * until you reach a non-link TRB. * 3. A ring is full if enqueue++ (for the definition of increment above) * equals the dequeue pointer. * * Cycle bit rules: * 1. When a consumer increments a dequeue pointer and encounters a toggle bit * in a link TRB, it must toggle the ring cycle state. * 2. When a producer increments an enqueue pointer and encounters a toggle bit * in a link TRB, it must toggle the ring cycle state. * * Producer rules: * 1. Check if ring is full before you enqueue. * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. * Update enqueue pointer between each write (which may update the ring * cycle state). * 3. Notify consumer. If SW is producer, it rings the doorbell for command * and endpoint rings. If HC is the producer for the event ring, * and it generates an interrupt according to interrupt modulation rules. * * Consumer rules: * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, * the TRB is owned by the consumer. * 2. Update dequeue pointer (which may update the ring cycle state) and * continue processing TRBs until you reach a TRB which is not owned by you. * 3. Notify the producer. SW is the consumer for the event ring, and it * updates event ring dequeue pointer. HC is the consumer for the command and * endpoint rings; it generates events on the event ring for these. */ #include #include "xhci.h" /* * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA * address of the TRB. */ dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, union xhci_trb *trb) { unsigned long segment_offset; if (!seg || !trb || trb < seg->trbs) return 0; /* offset in TRBs */ segment_offset = trb - seg->trbs; if (segment_offset > TRBS_PER_SEGMENT) return 0; return seg->dma + (segment_offset * sizeof(*trb)); } /* Does this link TRB point to the first segment in a ring, * or was the previous TRB the last TRB on the last segment in the ERST? */ static inline bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, struct xhci_segment *seg, union xhci_trb *trb) { if (ring == xhci->event_ring) return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && (seg->next == xhci->event_ring->first_seg); else return trb->link.control & LINK_TOGGLE; } /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring * segment? I.e. would the updated event TRB pointer step off the end of the * event seg? */ static inline int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, struct xhci_segment *seg, union xhci_trb *trb) { if (ring == xhci->event_ring) return trb == &seg->trbs[TRBS_PER_SEGMENT]; else return (trb->link.control & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK); } /* Updates trb to point to the next TRB in the ring, and updates seg if the next * TRB is in a new segment. This does not skip over link TRBs, and it does not * effect the ring dequeue or enqueue pointers. */ static void next_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, struct xhci_segment **seg, union xhci_trb **trb) { if (last_trb(xhci, ring, *seg, *trb)) { *seg = (*seg)->next; *trb = ((*seg)->trbs); } else { *trb = (*trb)++; } } /* * See Cycle bit rules. SW is the consumer for the event ring only. * Don't make a ring full of link TRBs. That would be dumb and this would loop. */ static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer) { union xhci_trb *next = ++(ring->dequeue); unsigned long long addr; ring->deq_updates++; /* Update the dequeue pointer further if that was a link TRB or we're at * the end of an event ring segment (which doesn't have link TRBS) */ while (last_trb(xhci, ring, ring->deq_seg, next)) { if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) { ring->cycle_state = (ring->cycle_state ? 0 : 1); if (!in_interrupt()) xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", ring, (unsigned int) ring->cycle_state); } ring->deq_seg = ring->deq_seg->next; ring->dequeue = ring->deq_seg->trbs; next = ring->dequeue; } addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); if (ring == xhci->event_ring) xhci_dbg(xhci, "Event ring deq = 0x%llx (DMA)\n", addr); else if (ring == xhci->cmd_ring) xhci_dbg(xhci, "Command ring deq = 0x%llx (DMA)\n", addr); else xhci_dbg(xhci, "Ring deq = 0x%llx (DMA)\n", addr); } /* * See Cycle bit rules. SW is the consumer for the event ring only. * Don't make a ring full of link TRBs. That would be dumb and this would loop. * * If we've just enqueued a TRB that is in the middle of a TD (meaning the * chain bit is set), then set the chain bit in all the following link TRBs. * If we've enqueued the last TRB in a TD, make sure the following link TRBs * have their chain bit cleared (so that each Link TRB is a separate TD). * * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit * set, but other sections talk about dealing with the chain bit set. This was * fixed in the 0.96 specification errata, but we have to assume that all 0.95 * xHCI hardware can't handle the chain bit being cleared on a link TRB. */ static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer) { u32 chain; union xhci_trb *next; unsigned long long addr; chain = ring->enqueue->generic.field[3] & TRB_CHAIN; next = ++(ring->enqueue); ring->enq_updates++; /* Update the dequeue pointer further if that was a link TRB or we're at * the end of an event ring segment (which doesn't have link TRBS) */ while (last_trb(xhci, ring, ring->enq_seg, next)) { if (!consumer) { if (ring != xhci->event_ring) { /* If we're not dealing with 0.95 hardware, * carry over the chain bit of the previous TRB * (which may mean the chain bit is cleared). */ if (!xhci_link_trb_quirk(xhci)) { next->link.control &= ~TRB_CHAIN; next->link.control |= chain; } /* Give this link TRB to the hardware */ wmb(); if (next->link.control & TRB_CYCLE) next->link.control &= (u32) ~TRB_CYCLE; else next->link.control |= (u32) TRB_CYCLE; } /* Toggle the cycle bit after the last ring segment. */ if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { ring->cycle_state = (ring->cycle_state ? 0 : 1); if (!in_interrupt()) xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", ring, (unsigned int) ring->cycle_state); } } ring->enq_seg = ring->enq_seg->next; ring->enqueue = ring->enq_seg->trbs; next = ring->enqueue; } addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); if (ring == xhci->event_ring) xhci_dbg(xhci, "Event ring enq = 0x%llx (DMA)\n", addr); else if (ring == xhci->cmd_ring) xhci_dbg(xhci, "Command ring enq = 0x%llx (DMA)\n", addr); else xhci_dbg(xhci, "Ring enq = 0x%llx (DMA)\n", addr); } /* * Check to see if there's room to enqueue num_trbs on the ring. See rules * above. * FIXME: this would be simpler and faster if we just kept track of the number * of free TRBs in a ring. */ static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, unsigned int num_trbs) { int i; union xhci_trb *enq = ring->enqueue; struct xhci_segment *enq_seg = ring->enq_seg; /* Check if ring is empty */ if (enq == ring->dequeue) return 1; /* Make sure there's an extra empty TRB available */ for (i = 0; i <= num_trbs; ++i) { if (enq == ring->dequeue) return 0; enq++; while (last_trb(xhci, ring, enq_seg, enq)) { enq_seg = enq_seg->next; enq = enq_seg->trbs; } } return 1; } void xhci_set_hc_event_deq(struct xhci_hcd *xhci) { u64 temp; dma_addr_t deq; deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, xhci->event_ring->dequeue); if (deq == 0 && !in_interrupt()) xhci_warn(xhci, "WARN something wrong with SW event ring " "dequeue ptr.\n"); /* Update HC event ring dequeue pointer */ temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); temp &= ERST_PTR_MASK; /* Don't clear the EHB bit (which is RW1C) because * there might be more events to service. */ temp &= ~ERST_EHB; xhci_dbg(xhci, "// Write event ring dequeue pointer, preserving EHB bit\n"); xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, &xhci->ir_set->erst_dequeue); } /* Ring the host controller doorbell after placing a command on the ring */ void xhci_ring_cmd_db(struct xhci_hcd *xhci) { u32 temp; xhci_dbg(xhci, "// Ding dong!\n"); temp = xhci_readl(xhci, &xhci->dba->doorbell[0]) & DB_MASK; xhci_writel(xhci, temp | DB_TARGET_HOST, &xhci->dba->doorbell[0]); /* Flush PCI posted writes */ xhci_readl(xhci, &xhci->dba->doorbell[0]); } static void ring_ep_doorbell(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index) { struct xhci_virt_ep *ep; unsigned int ep_state; u32 field; __u32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; ep = &xhci->devs[slot_id]->eps[ep_index]; ep_state = ep->ep_state; /* Don't ring the doorbell for this endpoint if there are pending * cancellations because the we don't want to interrupt processing. */ if (!(ep_state & EP_HALT_PENDING) && !(ep_state & SET_DEQ_PENDING) && !(ep_state & EP_HALTED)) { field = xhci_readl(xhci, db_addr) & DB_MASK; xhci_writel(xhci, field | EPI_TO_DB(ep_index), db_addr); /* Flush PCI posted writes - FIXME Matthew Wilcox says this * isn't time-critical and we shouldn't make the CPU wait for * the flush. */ xhci_readl(xhci, db_addr); } } /* * Find the segment that trb is in. Start searching in start_seg. * If we must move past a segment that has a link TRB with a toggle cycle state * bit set, then we will toggle the value pointed at by cycle_state. */ static struct xhci_segment *find_trb_seg( struct xhci_segment *start_seg, union xhci_trb *trb, int *cycle_state) { struct xhci_segment *cur_seg = start_seg; struct xhci_generic_trb *generic_trb; while (cur_seg->trbs > trb || &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; if (TRB_TYPE(generic_trb->field[3]) == TRB_LINK && (generic_trb->field[3] & LINK_TOGGLE)) *cycle_state = ~(*cycle_state) & 0x1; cur_seg = cur_seg->next; if (cur_seg == start_seg) /* Looped over the entire list. Oops! */ return 0; } return cur_seg; } /* * Move the xHC's endpoint ring dequeue pointer past cur_td. * Record the new state of the xHC's endpoint ring dequeue segment, * dequeue pointer, and new consumer cycle state in state. * Update our internal representation of the ring's dequeue pointer. * * We do this in three jumps: * - First we update our new ring state to be the same as when the xHC stopped. * - Then we traverse the ring to find the segment that contains * the last TRB in the TD. We toggle the xHC's new cycle state when we pass * any link TRBs with the toggle cycle bit set. * - Finally we move the dequeue state one TRB further, toggling the cycle bit * if we've moved it past a link TRB with the toggle cycle bit set. */ void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, struct xhci_td *cur_td, struct xhci_dequeue_state *state) { struct xhci_virt_device *dev = xhci->devs[slot_id]; struct xhci_ring *ep_ring = dev->eps[ep_index].ring; struct xhci_generic_trb *trb; struct xhci_ep_ctx *ep_ctx; dma_addr_t addr; state->new_cycle_state = 0; xhci_dbg(xhci, "Finding segment containing stopped TRB.\n"); state->new_deq_seg = find_trb_seg(cur_td->start_seg, dev->eps[ep_index].stopped_trb, &state->new_cycle_state); if (!state->new_deq_seg) BUG(); /* Dig out the cycle state saved by the xHC during the stop ep cmd */ xhci_dbg(xhci, "Finding endpoint context\n"); ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); state->new_cycle_state = 0x1 & ep_ctx->deq; state->new_deq_ptr = cur_td->last_trb; xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n"); state->new_deq_seg = find_trb_seg(state->new_deq_seg, state->new_deq_ptr, &state->new_cycle_state); if (!state->new_deq_seg) BUG(); trb = &state->new_deq_ptr->generic; if (TRB_TYPE(trb->field[3]) == TRB_LINK && (trb->field[3] & LINK_TOGGLE)) state->new_cycle_state = ~(state->new_cycle_state) & 0x1; next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); /* Don't update the ring cycle state for the producer (us). */ xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n", state->new_deq_seg); addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n", (unsigned long long) addr); xhci_dbg(xhci, "Setting dequeue pointer in internal ring state.\n"); ep_ring->dequeue = state->new_deq_ptr; ep_ring->deq_seg = state->new_deq_seg; } static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, struct xhci_td *cur_td) { struct xhci_segment *cur_seg; union xhci_trb *cur_trb; for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; true; next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { if ((cur_trb->generic.field[3] & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK)) { /* Unchain any chained Link TRBs, but * leave the pointers intact. */ cur_trb->generic.field[3] &= ~TRB_CHAIN; xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); xhci_dbg(xhci, "Address = %p (0x%llx dma); " "in seg %p (0x%llx dma)\n", cur_trb, (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), cur_seg, (unsigned long long)cur_seg->dma); } else { cur_trb->generic.field[0] = 0; cur_trb->generic.field[1] = 0; cur_trb->generic.field[2] = 0; /* Preserve only the cycle bit of this TRB */ cur_trb->generic.field[3] &= TRB_CYCLE; cur_trb->generic.field[3] |= TRB_TYPE(TRB_TR_NOOP); xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) " "in seg %p (0x%llx dma)\n", cur_trb, (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), cur_seg, (unsigned long long)cur_seg->dma); } if (cur_trb == cur_td->last_trb) break; } } static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index, struct xhci_segment *deq_seg, union xhci_trb *deq_ptr, u32 cycle_state); void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, struct xhci_dequeue_state *deq_state) { struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " "new deq ptr = %p (0x%llx dma), new cycle = %u\n", deq_state->new_deq_seg, (unsigned long long)deq_state->new_deq_seg->dma, deq_state->new_deq_ptr, (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), deq_state->new_cycle_state); queue_set_tr_deq(xhci, slot_id, ep_index, deq_state->new_deq_seg, deq_state->new_deq_ptr, (u32) deq_state->new_cycle_state); /* Stop the TD queueing code from ringing the doorbell until * this command completes. The HC won't set the dequeue pointer * if the ring is running, and ringing the doorbell starts the * ring running. */ ep->ep_state |= SET_DEQ_PENDING; } static inline void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, struct xhci_virt_ep *ep) { ep->ep_state &= ~EP_HALT_PENDING; /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the * timer is running on another CPU, we don't decrement stop_cmds_pending * (since we didn't successfully stop the watchdog timer). */ if (del_timer(&ep->stop_cmd_timer)) ep->stop_cmds_pending--; } /* Must be called with xhci->lock held in interrupt context */ static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, struct xhci_td *cur_td, int status, char *adjective) { struct usb_hcd *hcd = xhci_to_hcd(xhci); cur_td->urb->hcpriv = NULL; usb_hcd_unlink_urb_from_ep(hcd, cur_td->urb); xhci_dbg(xhci, "Giveback %s URB %p\n", adjective, cur_td->urb); spin_unlock(&xhci->lock); usb_hcd_giveback_urb(hcd, cur_td->urb, status); kfree(cur_td); spin_lock(&xhci->lock); xhci_dbg(xhci, "%s URB given back\n", adjective); } /* * When we get a command completion for a Stop Endpoint Command, we need to * unlink any cancelled TDs from the ring. There are two ways to do that: * * 1. If the HW was in the middle of processing the TD that needs to be * cancelled, then we must move the ring's dequeue pointer past the last TRB * in the TD with a Set Dequeue Pointer Command. * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain * bit cleared) so that the HW will skip over them. */ static void handle_stopped_endpoint(struct xhci_hcd *xhci, union xhci_trb *trb) { unsigned int slot_id; unsigned int ep_index; struct xhci_ring *ep_ring; struct xhci_virt_ep *ep; struct list_head *entry; struct xhci_td *cur_td = 0; struct xhci_td *last_unlinked_td; struct xhci_dequeue_state deq_state; memset(&deq_state, 0, sizeof(deq_state)); slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]); ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]); ep = &xhci->devs[slot_id]->eps[ep_index]; ep_ring = ep->ring; if (list_empty(&ep->cancelled_td_list)) { xhci_stop_watchdog_timer_in_irq(xhci, ep); ring_ep_doorbell(xhci, slot_id, ep_index); return; } /* Fix up the ep ring first, so HW stops executing cancelled TDs. * We have the xHCI lock, so nothing can modify this list until we drop * it. We're also in the event handler, so we can't get re-interrupted * if another Stop Endpoint command completes */ list_for_each(entry, &ep->cancelled_td_list) { cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n", cur_td->first_trb, (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb)); /* * If we stopped on the TD we need to cancel, then we have to * move the xHC endpoint ring dequeue pointer past this TD. */ if (cur_td == ep->stopped_td) xhci_find_new_dequeue_state(xhci, slot_id, ep_index, cur_td, &deq_state); else td_to_noop(xhci, ep_ring, cur_td); /* * The event handler won't see a completion for this TD anymore, * so remove it from the endpoint ring's TD list. Keep it in * the cancelled TD list for URB completion later. */ list_del(&cur_td->td_list); } last_unlinked_td = cur_td; xhci_stop_watchdog_timer_in_irq(xhci, ep); /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, &deq_state); xhci_ring_cmd_db(xhci); } else { /* Otherwise just ring the doorbell to restart the ring */ ring_ep_doorbell(xhci, slot_id, ep_index); } /* * Drop the lock and complete the URBs in the cancelled TD list. * New TDs to be cancelled might be added to the end of the list before * we can complete all the URBs for the TDs we already unlinked. * So stop when we've completed the URB for the last TD we unlinked. */ do { cur_td = list_entry(ep->cancelled_td_list.next, struct xhci_td, cancelled_td_list); list_del(&cur_td->cancelled_td_list); /* Clean up the cancelled URB */ /* Doesn't matter what we pass for status, since the core will * just overwrite it (because the URB has been unlinked). */ xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); /* Stop processing the cancelled list if the watchdog timer is * running. */ if (xhci->xhc_state & XHCI_STATE_DYING) return; } while (cur_td != last_unlinked_td); /* Return to the event handler with xhci->lock re-acquired */ } /* Watchdog timer function for when a stop endpoint command fails to complete. * In this case, we assume the host controller is broken or dying or dead. The * host may still be completing some other events, so we have to be careful to * let the event ring handler and the URB dequeueing/enqueueing functions know * through xhci->state. * * The timer may also fire if the host takes a very long time to respond to the * command, and the stop endpoint command completion handler cannot delete the * timer before the timer function is called. Another endpoint cancellation may * sneak in before the timer function can grab the lock, and that may queue * another stop endpoint command and add the timer back. So we cannot use a * simple flag to say whether there is a pending stop endpoint command for a * particular endpoint. * * Instead we use a combination of that flag and a counter for the number of * pending stop endpoint commands. If the timer is the tail end of the last * stop endpoint command, and the endpoint's command is still pending, we assume * the host is dying. */ void xhci_stop_endpoint_command_watchdog(unsigned long arg) { struct xhci_hcd *xhci; struct xhci_virt_ep *ep; struct xhci_virt_ep *temp_ep; struct xhci_ring *ring; struct xhci_td *cur_td; int ret, i, j; ep = (struct xhci_virt_ep *) arg; xhci = ep->xhci; spin_lock(&xhci->lock); ep->stop_cmds_pending--; if (xhci->xhc_state & XHCI_STATE_DYING) { xhci_dbg(xhci, "Stop EP timer ran, but another timer marked " "xHCI as DYING, exiting.\n"); spin_unlock(&xhci->lock); return; } if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { xhci_dbg(xhci, "Stop EP timer ran, but no command pending, " "exiting.\n"); spin_unlock(&xhci->lock); return; } xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); xhci_warn(xhci, "Assuming host is dying, halting host.\n"); /* Oops, HC is dead or dying or at least not responding to the stop * endpoint command. */ xhci->xhc_state |= XHCI_STATE_DYING; /* Disable interrupts from the host controller and start halting it */ xhci_quiesce(xhci); spin_unlock(&xhci->lock); ret = xhci_halt(xhci); spin_lock(&xhci->lock); if (ret < 0) { /* This is bad; the host is not responding to commands and it's * not allowing itself to be halted. At least interrupts are * disabled, so we can set HC_STATE_HALT and notify the * USB core. But if we call usb_hc_died(), it will attempt to * disconnect all device drivers under this host. Those * disconnect() methods will wait for all URBs to be unlinked, * so we must complete them. */ xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); xhci_warn(xhci, "Completing active URBs anyway.\n"); /* We could turn all TDs on the rings to no-ops. This won't * help if the host has cached part of the ring, and is slow if * we want to preserve the cycle bit. Skip it and hope the host * doesn't touch the memory. */ } for (i = 0; i < MAX_HC_SLOTS; i++) { if (!xhci->devs[i]) continue; for (j = 0; j < 31; j++) { temp_ep = &xhci->devs[i]->eps[j]; ring = temp_ep->ring; if (!ring) continue; xhci_dbg(xhci, "Killing URBs for slot ID %u, " "ep index %u\n", i, j); while (!list_empty(&ring->td_list)) { cur_td = list_first_entry(&ring->td_list, struct xhci_td, td_list); list_del(&cur_td->td_list); if (!list_empty(&cur_td->cancelled_td_list)) list_del(&cur_td->cancelled_td_list); xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN, "killed"); } while (!list_empty(&temp_ep->cancelled_td_list)) { cur_td = list_first_entry( &temp_ep->cancelled_td_list, struct xhci_td, cancelled_td_list); list_del(&cur_td->cancelled_td_list); xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN, "killed"); } } } spin_unlock(&xhci->lock); xhci_to_hcd(xhci)->state = HC_STATE_HALT; xhci_dbg(xhci, "Calling usb_hc_died()\n"); usb_hc_died(xhci_to_hcd(xhci)); xhci_dbg(xhci, "xHCI host controller is dead.\n"); } /* * When we get a completion for a Set Transfer Ring Dequeue Pointer command, * we need to clear the set deq pending flag in the endpoint ring state, so that * the TD queueing code can ring the doorbell again. We also need to ring the * endpoint doorbell to restart the ring, but only if there aren't more * cancellations pending. */ static void handle_set_deq_completion(struct xhci_hcd *xhci, struct xhci_event_cmd *event, union xhci_trb *trb) { unsigned int slot_id; unsigned int ep_index; struct xhci_ring *ep_ring; struct xhci_virt_device *dev; struct xhci_ep_ctx *ep_ctx; struct xhci_slot_ctx *slot_ctx; slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]); ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]); dev = xhci->devs[slot_id]; ep_ring = dev->eps[ep_index].ring; ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); if (GET_COMP_CODE(event->status) != COMP_SUCCESS) { unsigned int ep_state; unsigned int slot_state; switch (GET_COMP_CODE(event->status)) { case COMP_TRB_ERR: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " "of stream ID configuration\n"); break; case COMP_CTX_STATE: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " "to incorrect slot or ep state.\n"); ep_state = ep_ctx->ep_info; ep_state &= EP_STATE_MASK; slot_state = slot_ctx->dev_state; slot_state = GET_SLOT_STATE(slot_state); xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", slot_state, ep_state); break; case COMP_EBADSLT: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " "slot %u was not enabled.\n", slot_id); break; default: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " "completion code of %u.\n", GET_COMP_CODE(event->status)); break; } /* OK what do we do now? The endpoint state is hosed, and we * should never get to this point if the synchronization between * queueing, and endpoint state are correct. This might happen * if the device gets disconnected after we've finished * cancelling URBs, which might not be an error... */ } else { xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n", ep_ctx->deq); } dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; ring_ep_doorbell(xhci, slot_id, ep_index); } static void handle_reset_ep_completion(struct xhci_hcd *xhci, struct xhci_event_cmd *event, union xhci_trb *trb) { int slot_id; unsigned int ep_index; struct xhci_ring *ep_ring; slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]); ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]); ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; /* This command will only fail if the endpoint wasn't halted, * but we don't care. */ xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n", (unsigned int) GET_COMP_CODE(event->status)); /* HW with the reset endpoint quirk needs to have a configure endpoint * command complete before the endpoint can be used. Queue that here * because the HW can't handle two commands being queued in a row. */ if (xhci->quirks & XHCI_RESET_EP_QUIRK) { xhci_dbg(xhci, "Queueing configure endpoint command\n"); xhci_queue_configure_endpoint(xhci, xhci->devs[slot_id]->in_ctx->dma, slot_id, false); xhci_ring_cmd_db(xhci); } else { /* Clear our internal halted state and restart the ring */ xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; ring_ep_doorbell(xhci, slot_id, ep_index); } } /* Check to see if a command in the device's command queue matches this one. * Signal the completion or free the command, and return 1. Return 0 if the * completed command isn't at the head of the command list. */ static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct xhci_event_cmd *event) { struct xhci_command *command; if (list_empty(&virt_dev->cmd_list)) return 0; command = list_entry(virt_dev->cmd_list.next, struct xhci_command, cmd_list); if (xhci->cmd_ring->dequeue != command->command_trb) return 0; command->status = GET_COMP_CODE(event->status); list_del(&command->cmd_list); if (command->completion) complete(command->completion); else xhci_free_command(xhci, command); return 1; } static void handle_cmd_completion(struct xhci_hcd *xhci, struct xhci_event_cmd *event) { int slot_id = TRB_TO_SLOT_ID(event->flags); u64 cmd_dma; dma_addr_t cmd_dequeue_dma; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_virt_device *virt_dev; unsigned int ep_index; struct xhci_ring *ep_ring; unsigned int ep_state; cmd_dma = event->cmd_trb; cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue); /* Is the command ring deq ptr out of sync with the deq seg ptr? */ if (cmd_dequeue_dma == 0) { xhci->error_bitmask |= 1 << 4; return; } /* Does the DMA address match our internal dequeue pointer address? */ if (cmd_dma != (u64) cmd_dequeue_dma) { xhci->error_bitmask |= 1 << 5; return; } switch (xhci->cmd_ring->dequeue->generic.field[3] & TRB_TYPE_BITMASK) { case TRB_TYPE(TRB_ENABLE_SLOT): if (GET_COMP_CODE(event->status) == COMP_SUCCESS) xhci->slot_id = slot_id; else xhci->slot_id = 0; complete(&xhci->addr_dev); break; case TRB_TYPE(TRB_DISABLE_SLOT): if (xhci->devs[slot_id]) xhci_free_virt_device(xhci, slot_id); break; case TRB_TYPE(TRB_CONFIG_EP): virt_dev = xhci->devs[slot_id]; if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) break; /* * Configure endpoint commands can come from the USB core * configuration or alt setting changes, or because the HW * needed an extra configure endpoint command after a reset * endpoint command. In the latter case, the xHCI driver is * not waiting on the configure endpoint command. */ ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); /* Input ctx add_flags are the endpoint index plus one */ ep_index = xhci_last_valid_endpoint(ctrl_ctx->add_flags) - 1; ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; if (!ep_ring) { /* This must have been an initial configure endpoint */ xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status); complete(&xhci->devs[slot_id]->cmd_completion); break; } ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; xhci_dbg(xhci, "Completed config ep cmd - last ep index = %d, " "state = %d\n", ep_index, ep_state); if (xhci->quirks & XHCI_RESET_EP_QUIRK && ep_state & EP_HALTED) { /* Clear our internal halted state and restart ring */ xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; ring_ep_doorbell(xhci, slot_id, ep_index); } else { xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status); complete(&xhci->devs[slot_id]->cmd_completion); } break; case TRB_TYPE(TRB_EVAL_CONTEXT): virt_dev = xhci->devs[slot_id]; if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) break; xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status); complete(&xhci->devs[slot_id]->cmd_completion); break; case TRB_TYPE(TRB_ADDR_DEV): xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status); complete(&xhci->addr_dev); break; case TRB_TYPE(TRB_STOP_RING): handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue); break; case TRB_TYPE(TRB_SET_DEQ): handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); break; case TRB_TYPE(TRB_CMD_NOOP): ++xhci->noops_handled; break; case TRB_TYPE(TRB_RESET_EP): handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); break; default: /* Skip over unknown commands on the event ring */ xhci->error_bitmask |= 1 << 6; break; } inc_deq(xhci, xhci->cmd_ring, false); } static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) { u32 port_id; /* Port status change events always have a successful completion code */ if (GET_COMP_CODE(event->generic.field[2]) != COMP_SUCCESS) { xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); xhci->error_bitmask |= 1 << 8; } /* FIXME: core doesn't care about all port link state changes yet */ port_id = GET_PORT_ID(event->generic.field[0]); xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); /* Update event ring dequeue pointer before dropping the lock */ inc_deq(xhci, xhci->event_ring, true); xhci_set_hc_event_deq(xhci); spin_unlock(&xhci->lock); /* Pass this up to the core */ usb_hcd_poll_rh_status(xhci_to_hcd(xhci)); spin_lock(&xhci->lock); } /* * This TD is defined by the TRBs starting at start_trb in start_seg and ending * at end_trb, which may be in another segment. If the suspect DMA address is a * TRB in this TD, this function returns that TRB's segment. Otherwise it * returns 0. */ struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, union xhci_trb *start_trb, union xhci_trb *end_trb, dma_addr_t suspect_dma) { dma_addr_t start_dma; dma_addr_t end_seg_dma; dma_addr_t end_trb_dma; struct xhci_segment *cur_seg; start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); cur_seg = start_seg; do { if (start_dma == 0) return 0; /* We may get an event for a Link TRB in the middle of a TD */ end_seg_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); /* If the end TRB isn't in this segment, this is set to 0 */ end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); if (end_trb_dma > 0) { /* The end TRB is in this segment, so suspect should be here */ if (start_dma <= end_trb_dma) { if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) return cur_seg; } else { /* Case for one segment with * a TD wrapped around to the top */ if ((suspect_dma >= start_dma && suspect_dma <= end_seg_dma) || (suspect_dma >= cur_seg->dma && suspect_dma <= end_trb_dma)) return cur_seg; } return 0; } else { /* Might still be somewhere in this segment */ if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) return cur_seg; } cur_seg = cur_seg->next; start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); } while (cur_seg != start_seg); return 0; } static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, struct xhci_td *td, union xhci_trb *event_trb) { struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; ep->ep_state |= EP_HALTED; ep->stopped_td = td; ep->stopped_trb = event_trb; xhci_queue_reset_ep(xhci, slot_id, ep_index); xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); xhci_ring_cmd_db(xhci); } /* Check if an error has halted the endpoint ring. The class driver will * cleanup the halt for a non-default control endpoint if we indicate a stall. * However, a babble and other errors also halt the endpoint ring, and the class * driver won't clear the halt in that case, so we need to issue a Set Transfer * Ring Dequeue Pointer command manually. */ static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, struct xhci_ep_ctx *ep_ctx, unsigned int trb_comp_code) { /* TRB completion codes that may require a manual halt cleanup */ if (trb_comp_code == COMP_TX_ERR || trb_comp_code == COMP_BABBLE || trb_comp_code == COMP_SPLIT_ERR) /* The 0.96 spec says a babbling control endpoint * is not halted. The 0.96 spec says it is. Some HW * claims to be 0.95 compliant, but it halts the control * endpoint anyway. Check if a babble halted the * endpoint. */ if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_HALTED) return 1; return 0; } /* * If this function returns an error condition, it means it got a Transfer * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. * At this point, the host controller is probably hosed and should be reset. */ static int handle_tx_event(struct xhci_hcd *xhci, struct xhci_transfer_event *event) { struct xhci_virt_device *xdev; struct xhci_virt_ep *ep; struct xhci_ring *ep_ring; unsigned int slot_id; int ep_index; struct xhci_td *td = 0; dma_addr_t event_dma; struct xhci_segment *event_seg; union xhci_trb *event_trb; struct urb *urb = 0; int status = -EINPROGRESS; struct xhci_ep_ctx *ep_ctx; u32 trb_comp_code; xhci_dbg(xhci, "In %s\n", __func__); slot_id = TRB_TO_SLOT_ID(event->flags); xdev = xhci->devs[slot_id]; if (!xdev) { xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); return -ENODEV; } /* Endpoint ID is 1 based, our index is zero based */ ep_index = TRB_TO_EP_ID(event->flags) - 1; xhci_dbg(xhci, "%s - ep index = %d\n", __func__, ep_index); ep = &xdev->eps[ep_index]; ep_ring = ep->ring; ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); if (!ep_ring || (ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED) { xhci_err(xhci, "ERROR Transfer event pointed to disabled endpoint\n"); return -ENODEV; } event_dma = event->buffer; /* This TRB should be in the TD at the head of this ring's TD list */ xhci_dbg(xhci, "%s - checking for list empty\n", __func__); if (list_empty(&ep_ring->td_list)) { xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", TRB_TO_SLOT_ID(event->flags), ep_index); xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", (unsigned int) (event->flags & TRB_TYPE_BITMASK)>>10); xhci_print_trb_offsets(xhci, (union xhci_trb *) event); urb = NULL; goto cleanup; } xhci_dbg(xhci, "%s - getting list entry\n", __func__); td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); /* Is this a TRB in the currently executing TD? */ xhci_dbg(xhci, "%s - looking for TD\n", __func__); event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, td->last_trb, event_dma); xhci_dbg(xhci, "%s - found event_seg = %p\n", __func__, event_seg); if (!event_seg) { /* HC is busted, give up! */ xhci_err(xhci, "ERROR Transfer event TRB DMA ptr not part of current TD\n"); return -ESHUTDOWN; } event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / sizeof(*event_trb)]; xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", (unsigned int) (event->flags & TRB_TYPE_BITMASK)>>10); xhci_dbg(xhci, "Offset 0x00 (buffer lo) = 0x%x\n", lower_32_bits(event->buffer)); xhci_dbg(xhci, "Offset 0x04 (buffer hi) = 0x%x\n", upper_32_bits(event->buffer)); xhci_dbg(xhci, "Offset 0x08 (transfer length) = 0x%x\n", (unsigned int) event->transfer_len); xhci_dbg(xhci, "Offset 0x0C (flags) = 0x%x\n", (unsigned int) event->flags); /* Look for common error cases */ trb_comp_code = GET_COMP_CODE(event->transfer_len); switch (trb_comp_code) { /* Skip codes that require special handling depending on * transfer type */ case COMP_SUCCESS: case COMP_SHORT_TX: break; case COMP_STOP: xhci_dbg(xhci, "Stopped on Transfer TRB\n"); break; case COMP_STOP_INVAL: xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); break; case COMP_STALL: xhci_warn(xhci, "WARN: Stalled endpoint\n"); ep->ep_state |= EP_HALTED; status = -EPIPE; break; case COMP_TRB_ERR: xhci_warn(xhci, "WARN: TRB error on endpoint\n"); status = -EILSEQ; break; case COMP_SPLIT_ERR: case COMP_TX_ERR: xhci_warn(xhci, "WARN: transfer error on endpoint\n"); status = -EPROTO; break; case COMP_BABBLE: xhci_warn(xhci, "WARN: babble error on endpoint\n"); status = -EOVERFLOW; break; case COMP_DB_ERR: xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); status = -ENOSR; break; default: if (trb_comp_code >= 224 && trb_comp_code <= 255) { /* Vendor defined "informational" completion code, * treat as not-an-error. */ xhci_dbg(xhci, "Vendor defined info completion code %u\n", trb_comp_code); xhci_dbg(xhci, "Treating code as success.\n"); status = 0; break; } xhci_warn(xhci, "ERROR Unknown event condition, HC probably busted\n"); urb = NULL; goto cleanup; } /* Now update the urb's actual_length and give back to the core */ /* Was this a control transfer? */ if (usb_endpoint_xfer_control(&td->urb->ep->desc)) { xhci_debug_trb(xhci, xhci->event_ring->dequeue); switch (trb_comp_code) { case COMP_SUCCESS: if (event_trb == ep_ring->dequeue) { xhci_warn(xhci, "WARN: Success on ctrl setup TRB without IOC set??\n"); status = -ESHUTDOWN; } else if (event_trb != td->last_trb) { xhci_warn(xhci, "WARN: Success on ctrl data TRB without IOC set??\n"); status = -ESHUTDOWN; } else { xhci_dbg(xhci, "Successful control transfer!\n"); status = 0; } break; case COMP_SHORT_TX: xhci_warn(xhci, "WARN: short transfer on control ep\n"); if (td->urb->transfer_flags & URB_SHORT_NOT_OK) status = -EREMOTEIO; else status = 0; break; default: if (!xhci_requires_manual_halt_cleanup(xhci, ep_ctx, trb_comp_code)) break; xhci_dbg(xhci, "TRB error code %u, " "halted endpoint index = %u\n", trb_comp_code, ep_index); /* else fall through */ case COMP_STALL: /* Did we transfer part of the data (middle) phase? */ if (event_trb != ep_ring->dequeue && event_trb != td->last_trb) td->urb->actual_length = td->urb->transfer_buffer_length - TRB_LEN(event->transfer_len); else td->urb->actual_length = 0; xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, td, event_trb); goto td_cleanup; } /* * Did we transfer any data, despite the errors that might have * happened? I.e. did we get past the setup stage? */ if (event_trb != ep_ring->dequeue) { /* The event was for the status stage */ if (event_trb == td->last_trb) { if (td->urb->actual_length != 0) { /* Don't overwrite a previously set error code */ if ((status == -EINPROGRESS || status == 0) && (td->urb->transfer_flags & URB_SHORT_NOT_OK)) /* Did we already see a short data stage? */ status = -EREMOTEIO; } else { td->urb->actual_length = td->urb->transfer_buffer_length; } } else { /* Maybe the event was for the data stage? */ if (trb_comp_code != COMP_STOP_INVAL) { /* We didn't stop on a link TRB in the middle */ td->urb->actual_length = td->urb->transfer_buffer_length - TRB_LEN(event->transfer_len); xhci_dbg(xhci, "Waiting for status stage event\n"); urb = NULL; goto cleanup; } } } } else { switch (trb_comp_code) { case COMP_SUCCESS: /* Double check that the HW transferred everything. */ if (event_trb != td->last_trb) { xhci_warn(xhci, "WARN Successful completion " "on short TX\n"); if (td->urb->transfer_flags & URB_SHORT_NOT_OK) status = -EREMOTEIO; else status = 0; } else { if (usb_endpoint_xfer_bulk(&td->urb->ep->desc)) xhci_dbg(xhci, "Successful bulk " "transfer!\n"); else xhci_dbg(xhci, "Successful interrupt " "transfer!\n"); status = 0; } break; case COMP_SHORT_TX: if (td->urb->transfer_flags & URB_SHORT_NOT_OK) status = -EREMOTEIO; else status = 0; break; default: /* Others already handled above */ break; } dev_dbg(&td->urb->dev->dev, "ep %#x - asked for %d bytes, " "%d bytes untransferred\n", td->urb->ep->desc.bEndpointAddress, td->urb->transfer_buffer_length, TRB_LEN(event->transfer_len)); /* Fast path - was this the last TRB in the TD for this URB? */ if (event_trb == td->last_trb) { if (TRB_LEN(event->transfer_len) != 0) { td->urb->actual_length = td->urb->transfer_buffer_length - TRB_LEN(event->transfer_len); if (td->urb->transfer_buffer_length < td->urb->actual_length) { xhci_warn(xhci, "HC gave bad length " "of %d bytes left\n", TRB_LEN(event->transfer_len)); td->urb->actual_length = 0; if (td->urb->transfer_flags & URB_SHORT_NOT_OK) status = -EREMOTEIO; else status = 0; } /* Don't overwrite a previously set error code */ if (status == -EINPROGRESS) { if (td->urb->transfer_flags & URB_SHORT_NOT_OK) status = -EREMOTEIO; else status = 0; } } else { td->urb->actual_length = td->urb->transfer_buffer_length; /* Ignore a short packet completion if the * untransferred length was zero. */ if (status == -EREMOTEIO) status = 0; } } else { /* Slow path - walk the list, starting from the dequeue * pointer, to get the actual length transferred. */ union xhci_trb *cur_trb; struct xhci_segment *cur_seg; td->urb->actual_length = 0; for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; cur_trb != event_trb; next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { if (TRB_TYPE(cur_trb->generic.field[3]) != TRB_TR_NOOP && TRB_TYPE(cur_trb->generic.field[3]) != TRB_LINK) td->urb->actual_length += TRB_LEN(cur_trb->generic.field[2]); } /* If the ring didn't stop on a Link or No-op TRB, add * in the actual bytes transferred from the Normal TRB */ if (trb_comp_code != COMP_STOP_INVAL) td->urb->actual_length += TRB_LEN(cur_trb->generic.field[2]) - TRB_LEN(event->transfer_len); } } if (trb_comp_code == COMP_STOP_INVAL || trb_comp_code == COMP_STOP) { /* The Endpoint Stop Command completion will take care of any * stopped TDs. A stopped TD may be restarted, so don't update * the ring dequeue pointer or take this TD off any lists yet. */ ep->stopped_td = td; ep->stopped_trb = event_trb; } else { if (trb_comp_code == COMP_STALL) { /* The transfer is completed from the driver's * perspective, but we need to issue a set dequeue * command for this stalled endpoint to move the dequeue * pointer past the TD. We can't do that here because * the halt condition must be cleared first. Let the * USB class driver clear the stall later. */ ep->stopped_td = td; ep->stopped_trb = event_trb; } else if (xhci_requires_manual_halt_cleanup(xhci, ep_ctx, trb_comp_code)) { /* Other types of errors halt the endpoint, but the * class driver doesn't call usb_reset_endpoint() unless * the error is -EPIPE. Clear the halted status in the * xHCI hardware manually. */ xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, td, event_trb); } else { /* Update ring dequeue pointer */ while (ep_ring->dequeue != td->last_trb) inc_deq(xhci, ep_ring, false); inc_deq(xhci, ep_ring, false); } td_cleanup: /* Clean up the endpoint's TD list */ urb = td->urb; /* Do one last check of the actual transfer length. * If the host controller said we transferred more data than * the buffer length, urb->actual_length will be a very big * number (since it's unsigned). Play it safe and say we didn't * transfer anything. */ if (urb->actual_length > urb->transfer_buffer_length) { xhci_warn(xhci, "URB transfer length is wrong, " "xHC issue? req. len = %u, " "act. len = %u\n", urb->transfer_buffer_length, urb->actual_length); urb->actual_length = 0; if (td->urb->transfer_flags & URB_SHORT_NOT_OK) status = -EREMOTEIO; else status = 0; } list_del(&td->td_list); /* Was this TD slated to be cancelled but completed anyway? */ if (!list_empty(&td->cancelled_td_list)) list_del(&td->cancelled_td_list); /* Leave the TD around for the reset endpoint function to use * (but only if it's not a control endpoint, since we already * queued the Set TR dequeue pointer command for stalled * control endpoints). */ if (usb_endpoint_xfer_control(&urb->ep->desc) || (trb_comp_code != COMP_STALL && trb_comp_code != COMP_BABBLE)) { kfree(td); } urb->hcpriv = NULL; } cleanup: inc_deq(xhci, xhci->event_ring, true); xhci_set_hc_event_deq(xhci); /* FIXME for multi-TD URBs (who have buffers bigger than 64MB) */ if (urb) { usb_hcd_unlink_urb_from_ep(xhci_to_hcd(xhci), urb); xhci_dbg(xhci, "Giveback URB %p, len = %d, status = %d\n", urb, urb->actual_length, status); spin_unlock(&xhci->lock); usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, status); spin_lock(&xhci->lock); } return 0; } /* * This function handles all OS-owned events on the event ring. It may drop * xhci->lock between event processing (e.g. to pass up port status changes). */ void xhci_handle_event(struct xhci_hcd *xhci) { union xhci_trb *event; int update_ptrs = 1; int ret; xhci_dbg(xhci, "In %s\n", __func__); if (!xhci->event_ring || !xhci->event_ring->dequeue) { xhci->error_bitmask |= 1 << 1; return; } event = xhci->event_ring->dequeue; /* Does the HC or OS own the TRB? */ if ((event->event_cmd.flags & TRB_CYCLE) != xhci->event_ring->cycle_state) { xhci->error_bitmask |= 1 << 2; return; } xhci_dbg(xhci, "%s - OS owns TRB\n", __func__); /* FIXME: Handle more event types. */ switch ((event->event_cmd.flags & TRB_TYPE_BITMASK)) { case TRB_TYPE(TRB_COMPLETION): xhci_dbg(xhci, "%s - calling handle_cmd_completion\n", __func__); handle_cmd_completion(xhci, &event->event_cmd); xhci_dbg(xhci, "%s - returned from handle_cmd_completion\n", __func__); break; case TRB_TYPE(TRB_PORT_STATUS): xhci_dbg(xhci, "%s - calling handle_port_status\n", __func__); handle_port_status(xhci, event); xhci_dbg(xhci, "%s - returned from handle_port_status\n", __func__); update_ptrs = 0; break; case TRB_TYPE(TRB_TRANSFER): xhci_dbg(xhci, "%s - calling handle_tx_event\n", __func__); ret = handle_tx_event(xhci, &event->trans_event); xhci_dbg(xhci, "%s - returned from handle_tx_event\n", __func__); if (ret < 0) xhci->error_bitmask |= 1 << 9; else update_ptrs = 0; break; default: xhci->error_bitmask |= 1 << 3; } /* Any of the above functions may drop and re-acquire the lock, so check * to make sure a watchdog timer didn't mark the host as non-responsive. */ if (xhci->xhc_state & XHCI_STATE_DYING) { xhci_dbg(xhci, "xHCI host dying, returning from " "event handler.\n"); return; } if (update_ptrs) { /* Update SW and HC event ring dequeue pointer */ inc_deq(xhci, xhci->event_ring, true); xhci_set_hc_event_deq(xhci); } /* Are there more items on the event ring? */ xhci_handle_event(xhci); } /**** Endpoint Ring Operations ****/ /* * Generic function for queueing a TRB on a ring. * The caller must have checked to make sure there's room on the ring. */ static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer, u32 field1, u32 field2, u32 field3, u32 field4) { struct xhci_generic_trb *trb; trb = &ring->enqueue->generic; trb->field[0] = field1; trb->field[1] = field2; trb->field[2] = field3; trb->field[3] = field4; inc_enq(xhci, ring, consumer); } /* * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. * FIXME allocate segments if the ring is full. */ static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) { /* Make sure the endpoint has been added to xHC schedule */ xhci_dbg(xhci, "Endpoint state = 0x%x\n", ep_state); switch (ep_state) { case EP_STATE_DISABLED: /* * USB core changed config/interfaces without notifying us, * or hardware is reporting the wrong state. */ xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); return -ENOENT; case EP_STATE_ERROR: xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); /* FIXME event handling code for error needs to clear it */ /* XXX not sure if this should be -ENOENT or not */ return -EINVAL; case EP_STATE_HALTED: xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); case EP_STATE_STOPPED: case EP_STATE_RUNNING: break; default: xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); /* * FIXME issue Configure Endpoint command to try to get the HC * back into a known state. */ return -EINVAL; } if (!room_on_ring(xhci, ep_ring, num_trbs)) { /* FIXME allocate more room */ xhci_err(xhci, "ERROR no room on ep ring\n"); return -ENOMEM; } return 0; } static int prepare_transfer(struct xhci_hcd *xhci, struct xhci_virt_device *xdev, unsigned int ep_index, unsigned int num_trbs, struct urb *urb, struct xhci_td **td, gfp_t mem_flags) { int ret; struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); ret = prepare_ring(xhci, xdev->eps[ep_index].ring, ep_ctx->ep_info & EP_STATE_MASK, num_trbs, mem_flags); if (ret) return ret; *td = kzalloc(sizeof(struct xhci_td), mem_flags); if (!*td) return -ENOMEM; INIT_LIST_HEAD(&(*td)->td_list); INIT_LIST_HEAD(&(*td)->cancelled_td_list); ret = usb_hcd_link_urb_to_ep(xhci_to_hcd(xhci), urb); if (unlikely(ret)) { kfree(*td); return ret; } (*td)->urb = urb; urb->hcpriv = (void *) (*td); /* Add this TD to the tail of the endpoint ring's TD list */ list_add_tail(&(*td)->td_list, &xdev->eps[ep_index].ring->td_list); (*td)->start_seg = xdev->eps[ep_index].ring->enq_seg; (*td)->first_trb = xdev->eps[ep_index].ring->enqueue; return 0; } static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) { int num_sgs, num_trbs, running_total, temp, i; struct scatterlist *sg; sg = NULL; num_sgs = urb->num_sgs; temp = urb->transfer_buffer_length; xhci_dbg(xhci, "count sg list trbs: \n"); num_trbs = 0; for_each_sg(urb->sg->sg, sg, num_sgs, i) { unsigned int previous_total_trbs = num_trbs; unsigned int len = sg_dma_len(sg); /* Scatter gather list entries may cross 64KB boundaries */ running_total = TRB_MAX_BUFF_SIZE - (sg_dma_address(sg) & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); if (running_total != 0) num_trbs++; /* How many more 64KB chunks to transfer, how many more TRBs? */ while (running_total < sg_dma_len(sg)) { num_trbs++; running_total += TRB_MAX_BUFF_SIZE; } xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n", i, (unsigned long long)sg_dma_address(sg), len, len, num_trbs - previous_total_trbs); len = min_t(int, len, temp); temp -= len; if (temp == 0) break; } xhci_dbg(xhci, "\n"); if (!in_interrupt()) dev_dbg(&urb->dev->dev, "ep %#x - urb len = %d, sglist used, num_trbs = %d\n", urb->ep->desc.bEndpointAddress, urb->transfer_buffer_length, num_trbs); return num_trbs; } static void check_trb_math(struct urb *urb, int num_trbs, int running_total) { if (num_trbs != 0) dev_dbg(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " "TRBs, %d left\n", __func__, urb->ep->desc.bEndpointAddress, num_trbs); if (running_total != urb->transfer_buffer_length) dev_dbg(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " "queued %#x (%d), asked for %#x (%d)\n", __func__, urb->ep->desc.bEndpointAddress, running_total, running_total, urb->transfer_buffer_length, urb->transfer_buffer_length); } static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index, int start_cycle, struct xhci_generic_trb *start_trb, struct xhci_td *td) { /* * Pass all the TRBs to the hardware at once and make sure this write * isn't reordered. */ wmb(); start_trb->field[3] |= start_cycle; ring_ep_doorbell(xhci, slot_id, ep_index); } /* * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD * (comprised of sg list entries) can take several service intervals to * transmit. */ int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); int xhci_interval; int ep_interval; xhci_interval = EP_INTERVAL_TO_UFRAMES(ep_ctx->ep_info); ep_interval = urb->interval; /* Convert to microframes */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) ep_interval *= 8; /* FIXME change this to a warning and a suggestion to use the new API * to set the polling interval (once the API is added). */ if (xhci_interval != ep_interval) { if (!printk_ratelimit()) dev_dbg(&urb->dev->dev, "Driver uses different interval" " (%d microframe%s) than xHCI " "(%d microframe%s)\n", ep_interval, ep_interval == 1 ? "" : "s", xhci_interval, xhci_interval == 1 ? "" : "s"); urb->interval = xhci_interval; /* Convert back to frames for LS/FS devices */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) urb->interval /= 8; } return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); } /* * The TD size is the number of bytes remaining in the TD (including this TRB), * right shifted by 10. * It must fit in bits 21:17, so it can't be bigger than 31. */ static u32 xhci_td_remainder(unsigned int remainder) { u32 max = (1 << (21 - 17 + 1)) - 1; if ((remainder >> 10) >= max) return max << 17; else return (remainder >> 10) << 17; } static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; unsigned int num_trbs; struct xhci_td *td; struct scatterlist *sg; int num_sgs; int trb_buff_len, this_sg_len, running_total; bool first_trb; u64 addr; struct xhci_generic_trb *start_trb; int start_cycle; ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; num_trbs = count_sg_trbs_needed(xhci, urb); num_sgs = urb->num_sgs; trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, num_trbs, urb, &td, mem_flags); if (trb_buff_len < 0) return trb_buff_len; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; running_total = 0; /* * How much data is in the first TRB? * * There are three forces at work for TRB buffer pointers and lengths: * 1. We don't want to walk off the end of this sg-list entry buffer. * 2. The transfer length that the driver requested may be smaller than * the amount of memory allocated for this scatter-gather list. * 3. TRBs buffers can't cross 64KB boundaries. */ sg = urb->sg->sg; addr = (u64) sg_dma_address(sg); this_sg_len = sg_dma_len(sg); trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); trb_buff_len = min_t(int, trb_buff_len, this_sg_len); if (trb_buff_len > urb->transfer_buffer_length) trb_buff_len = urb->transfer_buffer_length; xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n", trb_buff_len); first_trb = true; /* Queue the first TRB, even if it's zero-length */ do { u32 field = 0; u32 length_field = 0; u32 remainder = 0; /* Don't change the cycle bit of the first TRB until later */ if (first_trb) first_trb = false; else field |= ep_ring->cycle_state; /* Chain all the TRBs together; clear the chain bit in the last * TRB to indicate it's the last TRB in the chain. */ if (num_trbs > 1) { field |= TRB_CHAIN; } else { /* FIXME - add check for ZERO_PACKET flag before this */ td->last_trb = ep_ring->enqueue; field |= TRB_IOC; } xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), " "64KB boundary at %#x, end dma = %#x\n", (unsigned int) addr, trb_buff_len, trb_buff_len, (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), (unsigned int) addr + trb_buff_len); if (TRB_MAX_BUFF_SIZE - (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)) < trb_buff_len) { xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), (unsigned int) addr + trb_buff_len); } remainder = xhci_td_remainder(urb->transfer_buffer_length - running_total) ; length_field = TRB_LEN(trb_buff_len) | remainder | TRB_INTR_TARGET(0); queue_trb(xhci, ep_ring, false, lower_32_bits(addr), upper_32_bits(addr), length_field, /* We always want to know if the TRB was short, * or we won't get an event when it completes. * (Unless we use event data TRBs, which are a * waste of space and HC resources.) */ field | TRB_ISP | TRB_TYPE(TRB_NORMAL)); --num_trbs; running_total += trb_buff_len; /* Calculate length for next transfer -- * Are we done queueing all the TRBs for this sg entry? */ this_sg_len -= trb_buff_len; if (this_sg_len == 0) { --num_sgs; if (num_sgs == 0) break; sg = sg_next(sg); addr = (u64) sg_dma_address(sg); this_sg_len = sg_dma_len(sg); } else { addr += trb_buff_len; } trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); trb_buff_len = min_t(int, trb_buff_len, this_sg_len); if (running_total + trb_buff_len > urb->transfer_buffer_length) trb_buff_len = urb->transfer_buffer_length - running_total; } while (running_total < urb->transfer_buffer_length); check_trb_math(urb, num_trbs, running_total); giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td); return 0; } /* This is very similar to what ehci-q.c qtd_fill() does */ int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; struct xhci_td *td; int num_trbs; struct xhci_generic_trb *start_trb; bool first_trb; int start_cycle; u32 field, length_field; int running_total, trb_buff_len, ret; u64 addr; if (urb->sg) return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; num_trbs = 0; /* How much data is (potentially) left before the 64KB boundary? */ running_total = TRB_MAX_BUFF_SIZE - (urb->transfer_dma & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); /* If there's some data on this 64KB chunk, or we have to send a * zero-length transfer, we need at least one TRB */ if (running_total != 0 || urb->transfer_buffer_length == 0) num_trbs++; /* How many more 64KB chunks to transfer, how many more TRBs? */ while (running_total < urb->transfer_buffer_length) { num_trbs++; running_total += TRB_MAX_BUFF_SIZE; } /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ if (!in_interrupt()) dev_dbg(&urb->dev->dev, "ep %#x - urb len = %#x (%d), addr = %#llx, num_trbs = %d\n", urb->ep->desc.bEndpointAddress, urb->transfer_buffer_length, urb->transfer_buffer_length, (unsigned long long)urb->transfer_dma, num_trbs); ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, num_trbs, urb, &td, mem_flags); if (ret < 0) return ret; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; running_total = 0; /* How much data is in the first TRB? */ addr = (u64) urb->transfer_dma; trb_buff_len = TRB_MAX_BUFF_SIZE - (urb->transfer_dma & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); if (urb->transfer_buffer_length < trb_buff_len) trb_buff_len = urb->transfer_buffer_length; first_trb = true; /* Queue the first TRB, even if it's zero-length */ do { u32 remainder = 0; field = 0; /* Don't change the cycle bit of the first TRB until later */ if (first_trb) first_trb = false; else field |= ep_ring->cycle_state; /* Chain all the TRBs together; clear the chain bit in the last * TRB to indicate it's the last TRB in the chain. */ if (num_trbs > 1) { field |= TRB_CHAIN; } else { /* FIXME - add check for ZERO_PACKET flag before this */ td->last_trb = ep_ring->enqueue; field |= TRB_IOC; } remainder = xhci_td_remainder(urb->transfer_buffer_length - running_total); length_field = TRB_LEN(trb_buff_len) | remainder | TRB_INTR_TARGET(0); queue_trb(xhci, ep_ring, false, lower_32_bits(addr), upper_32_bits(addr), length_field, /* We always want to know if the TRB was short, * or we won't get an event when it completes. * (Unless we use event data TRBs, which are a * waste of space and HC resources.) */ field | TRB_ISP | TRB_TYPE(TRB_NORMAL)); --num_trbs; running_total += trb_buff_len; /* Calculate length for next transfer */ addr += trb_buff_len; trb_buff_len = urb->transfer_buffer_length - running_total; if (trb_buff_len > TRB_MAX_BUFF_SIZE) trb_buff_len = TRB_MAX_BUFF_SIZE; } while (running_total < urb->transfer_buffer_length); check_trb_math(urb, num_trbs, running_total); giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td); return 0; } /* Caller must have locked xhci->lock */ int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; int num_trbs; int ret; struct usb_ctrlrequest *setup; struct xhci_generic_trb *start_trb; int start_cycle; u32 field, length_field; struct xhci_td *td; ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; /* * Need to copy setup packet into setup TRB, so we can't use the setup * DMA address. */ if (!urb->setup_packet) return -EINVAL; if (!in_interrupt()) xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n", slot_id, ep_index); /* 1 TRB for setup, 1 for status */ num_trbs = 2; /* * Don't need to check if we need additional event data and normal TRBs, * since data in control transfers will never get bigger than 16MB * XXX: can we get a buffer that crosses 64KB boundaries? */ if (urb->transfer_buffer_length > 0) num_trbs++; ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, num_trbs, urb, &td, mem_flags); if (ret < 0) return ret; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; /* Queue setup TRB - see section 6.4.1.2.1 */ /* FIXME better way to translate setup_packet into two u32 fields? */ setup = (struct usb_ctrlrequest *) urb->setup_packet; queue_trb(xhci, ep_ring, false, /* FIXME endianness is probably going to bite my ass here. */ setup->bRequestType | setup->bRequest << 8 | setup->wValue << 16, setup->wIndex | setup->wLength << 16, TRB_LEN(8) | TRB_INTR_TARGET(0), /* Immediate data in pointer */ TRB_IDT | TRB_TYPE(TRB_SETUP)); /* If there's data, queue data TRBs */ field = 0; length_field = TRB_LEN(urb->transfer_buffer_length) | xhci_td_remainder(urb->transfer_buffer_length) | TRB_INTR_TARGET(0); if (urb->transfer_buffer_length > 0) { if (setup->bRequestType & USB_DIR_IN) field |= TRB_DIR_IN; queue_trb(xhci, ep_ring, false, lower_32_bits(urb->transfer_dma), upper_32_bits(urb->transfer_dma), length_field, /* Event on short tx */ field | TRB_ISP | TRB_TYPE(TRB_DATA) | ep_ring->cycle_state); } /* Save the DMA address of the last TRB in the TD */ td->last_trb = ep_ring->enqueue; /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ /* If the device sent data, the status stage is an OUT transfer */ if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) field = 0; else field = TRB_DIR_IN; queue_trb(xhci, ep_ring, false, 0, 0, TRB_INTR_TARGET(0), /* Event on completion */ field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td); return 0; } /**** Command Ring Operations ****/ /* Generic function for queueing a command TRB on the command ring. * Check to make sure there's room on the command ring for one command TRB. * Also check that there's room reserved for commands that must not fail. * If this is a command that must not fail, meaning command_must_succeed = TRUE, * then only check for the number of reserved spots. * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB * because the command event handler may want to resubmit a failed command. */ static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, u32 field3, u32 field4, bool command_must_succeed) { int reserved_trbs = xhci->cmd_ring_reserved_trbs; if (!command_must_succeed) reserved_trbs++; if (!room_on_ring(xhci, xhci->cmd_ring, reserved_trbs)) { if (!in_interrupt()) xhci_err(xhci, "ERR: No room for command on command ring\n"); if (command_must_succeed) xhci_err(xhci, "ERR: Reserved TRB counting for " "unfailable commands failed.\n"); return -ENOMEM; } queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, field4 | xhci->cmd_ring->cycle_state); return 0; } /* Queue a no-op command on the command ring */ static int queue_cmd_noop(struct xhci_hcd *xhci) { return queue_command(xhci, 0, 0, 0, TRB_TYPE(TRB_CMD_NOOP), false); } /* * Place a no-op command on the command ring to test the command and * event ring. */ void *xhci_setup_one_noop(struct xhci_hcd *xhci) { if (queue_cmd_noop(xhci) < 0) return NULL; xhci->noops_submitted++; return xhci_ring_cmd_db; } /* Queue a slot enable or disable request on the command ring */ int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) { return queue_command(xhci, 0, 0, 0, TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); } /* Queue an address device command TRB */ int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, u32 slot_id) { return queue_command(xhci, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), false); } /* Queue a configure endpoint command TRB */ int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) { return queue_command(xhci, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), command_must_succeed); } /* Queue an evaluate context command TRB */ int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, u32 slot_id) { return queue_command(xhci, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), false); } int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index) { u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); u32 type = TRB_TYPE(TRB_STOP_RING); return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, false); } /* Set Transfer Ring Dequeue Pointer command. * This should not be used for endpoints that have streams enabled. */ static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index, struct xhci_segment *deq_seg, union xhci_trb *deq_ptr, u32 cycle_state) { dma_addr_t addr; u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); u32 type = TRB_TYPE(TRB_SET_DEQ); addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); if (addr == 0) { xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", deq_seg, deq_ptr); return 0; } return queue_command(xhci, lower_32_bits(addr) | cycle_state, upper_32_bits(addr), 0, trb_slot_id | trb_ep_index | type, false); } int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index) { u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); u32 type = TRB_TYPE(TRB_RESET_EP); return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, false); }