/* * fs/kernfs/dir.c - kernfs directory implementation * * Copyright (c) 2001-3 Patrick Mochel * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007, 2013 Tejun Heo * * This file is released under the GPLv2. */ #include #include #include #include #include #include #include "kernfs-internal.h" DEFINE_MUTEX(sysfs_mutex); #define to_sysfs_dirent(X) rb_entry((X), struct sysfs_dirent, s_rb) /** * sysfs_name_hash * @name: Null terminated string to hash * @ns: Namespace tag to hash * * Returns 31 bit hash of ns + name (so it fits in an off_t ) */ static unsigned int sysfs_name_hash(const char *name, const void *ns) { unsigned long hash = init_name_hash(); unsigned int len = strlen(name); while (len--) hash = partial_name_hash(*name++, hash); hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31)); hash &= 0x7fffffffU; /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ if (hash < 1) hash += 2; if (hash >= INT_MAX) hash = INT_MAX - 1; return hash; } static int sysfs_name_compare(unsigned int hash, const char *name, const void *ns, const struct sysfs_dirent *sd) { if (hash != sd->s_hash) return hash - sd->s_hash; if (ns != sd->s_ns) return ns - sd->s_ns; return strcmp(name, sd->s_name); } static int sysfs_sd_compare(const struct sysfs_dirent *left, const struct sysfs_dirent *right) { return sysfs_name_compare(left->s_hash, left->s_name, left->s_ns, right); } /** * sysfs_link_sibling - link sysfs_dirent into sibling rbtree * @sd: sysfs_dirent of interest * * Link @sd into its sibling rbtree which starts from * sd->s_parent->s_dir.children. * * Locking: * mutex_lock(sysfs_mutex) * * RETURNS: * 0 on susccess -EEXIST on failure. */ static int sysfs_link_sibling(struct sysfs_dirent *sd) { struct rb_node **node = &sd->s_parent->s_dir.children.rb_node; struct rb_node *parent = NULL; if (sysfs_type(sd) == SYSFS_DIR) sd->s_parent->s_dir.subdirs++; while (*node) { struct sysfs_dirent *pos; int result; pos = to_sysfs_dirent(*node); parent = *node; result = sysfs_sd_compare(sd, pos); if (result < 0) node = &pos->s_rb.rb_left; else if (result > 0) node = &pos->s_rb.rb_right; else return -EEXIST; } /* add new node and rebalance the tree */ rb_link_node(&sd->s_rb, parent, node); rb_insert_color(&sd->s_rb, &sd->s_parent->s_dir.children); return 0; } /** * sysfs_unlink_sibling - unlink sysfs_dirent from sibling rbtree * @sd: sysfs_dirent of interest * * Unlink @sd from its sibling rbtree which starts from * sd->s_parent->s_dir.children. * * Locking: * mutex_lock(sysfs_mutex) */ static void sysfs_unlink_sibling(struct sysfs_dirent *sd) { if (sysfs_type(sd) == SYSFS_DIR) sd->s_parent->s_dir.subdirs--; rb_erase(&sd->s_rb, &sd->s_parent->s_dir.children); } /** * sysfs_get_active - get an active reference to sysfs_dirent * @sd: sysfs_dirent to get an active reference to * * Get an active reference of @sd. This function is noop if @sd * is NULL. * * RETURNS: * Pointer to @sd on success, NULL on failure. */ struct sysfs_dirent *sysfs_get_active(struct sysfs_dirent *sd) { if (unlikely(!sd)) return NULL; if (!atomic_inc_unless_negative(&sd->s_active)) return NULL; if (sd->s_flags & SYSFS_FLAG_LOCKDEP) rwsem_acquire_read(&sd->dep_map, 0, 1, _RET_IP_); return sd; } /** * sysfs_put_active - put an active reference to sysfs_dirent * @sd: sysfs_dirent to put an active reference to * * Put an active reference to @sd. This function is noop if @sd * is NULL. */ void sysfs_put_active(struct sysfs_dirent *sd) { int v; if (unlikely(!sd)) return; if (sd->s_flags & SYSFS_FLAG_LOCKDEP) rwsem_release(&sd->dep_map, 1, _RET_IP_); v = atomic_dec_return(&sd->s_active); if (likely(v != SD_DEACTIVATED_BIAS)) return; /* atomic_dec_return() is a mb(), we'll always see the updated * sd->u.completion. */ complete(sd->u.completion); } /** * sysfs_deactivate - deactivate sysfs_dirent * @sd: sysfs_dirent to deactivate * * Deny new active references and drain existing ones. */ static void sysfs_deactivate(struct sysfs_dirent *sd) { DECLARE_COMPLETION_ONSTACK(wait); int v; BUG_ON(!(sd->s_flags & SYSFS_FLAG_REMOVED)); if (!(sysfs_type(sd) & SYSFS_ACTIVE_REF)) return; sd->u.completion = (void *)&wait; rwsem_acquire(&sd->dep_map, 0, 0, _RET_IP_); /* atomic_add_return() is a mb(), put_active() will always see * the updated sd->u.completion. */ v = atomic_add_return(SD_DEACTIVATED_BIAS, &sd->s_active); if (v != SD_DEACTIVATED_BIAS) { lock_contended(&sd->dep_map, _RET_IP_); wait_for_completion(&wait); } lock_acquired(&sd->dep_map, _RET_IP_); rwsem_release(&sd->dep_map, 1, _RET_IP_); } /** * kernfs_get - get a reference count on a sysfs_dirent * @sd: the target sysfs_dirent */ void kernfs_get(struct sysfs_dirent *sd) { if (sd) { WARN_ON(!atomic_read(&sd->s_count)); atomic_inc(&sd->s_count); } } EXPORT_SYMBOL_GPL(kernfs_get); /** * kernfs_put - put a reference count on a sysfs_dirent * @sd: the target sysfs_dirent * * Put a reference count of @sd and destroy it if it reached zero. */ void kernfs_put(struct sysfs_dirent *sd) { struct sysfs_dirent *parent_sd; struct kernfs_root *root; if (!sd || !atomic_dec_and_test(&sd->s_count)) return; root = kernfs_root(sd); repeat: /* Moving/renaming is always done while holding reference. * sd->s_parent won't change beneath us. */ parent_sd = sd->s_parent; WARN(!(sd->s_flags & SYSFS_FLAG_REMOVED), "sysfs: free using entry: %s/%s\n", parent_sd ? parent_sd->s_name : "", sd->s_name); if (sysfs_type(sd) == SYSFS_KOBJ_LINK) kernfs_put(sd->s_symlink.target_sd); if (sysfs_type(sd) & SYSFS_COPY_NAME) kfree(sd->s_name); if (sd->s_iattr && sd->s_iattr->ia_secdata) security_release_secctx(sd->s_iattr->ia_secdata, sd->s_iattr->ia_secdata_len); kfree(sd->s_iattr); ida_simple_remove(&root->ino_ida, sd->s_ino); kmem_cache_free(sysfs_dir_cachep, sd); sd = parent_sd; if (sd) { if (atomic_dec_and_test(&sd->s_count)) goto repeat; } else { /* just released the root sd, free @root too */ ida_destroy(&root->ino_ida); kfree(root); } } EXPORT_SYMBOL_GPL(kernfs_put); static int sysfs_dentry_delete(const struct dentry *dentry) { struct sysfs_dirent *sd = dentry->d_fsdata; return !(sd && !(sd->s_flags & SYSFS_FLAG_REMOVED)); } static int sysfs_dentry_revalidate(struct dentry *dentry, unsigned int flags) { struct sysfs_dirent *sd; if (flags & LOOKUP_RCU) return -ECHILD; sd = dentry->d_fsdata; mutex_lock(&sysfs_mutex); /* The sysfs dirent has been deleted */ if (sd->s_flags & SYSFS_FLAG_REMOVED) goto out_bad; /* The sysfs dirent has been moved? */ if (dentry->d_parent->d_fsdata != sd->s_parent) goto out_bad; /* The sysfs dirent has been renamed */ if (strcmp(dentry->d_name.name, sd->s_name) != 0) goto out_bad; /* The sysfs dirent has been moved to a different namespace */ if (sd->s_parent && (sd->s_parent->s_flags & SYSFS_FLAG_NS) && sysfs_info(dentry->d_sb)->ns != sd->s_ns) goto out_bad; mutex_unlock(&sysfs_mutex); out_valid: return 1; out_bad: /* Remove the dentry from the dcache hashes. * If this is a deleted dentry we use d_drop instead of d_delete * so sysfs doesn't need to cope with negative dentries. * * If this is a dentry that has simply been renamed we * use d_drop to remove it from the dcache lookup on its * old parent. If this dentry persists later when a lookup * is performed at its new name the dentry will be readded * to the dcache hashes. */ mutex_unlock(&sysfs_mutex); /* If we have submounts we must allow the vfs caches * to lie about the state of the filesystem to prevent * leaks and other nasty things. */ if (check_submounts_and_drop(dentry) != 0) goto out_valid; return 0; } static void sysfs_dentry_release(struct dentry *dentry) { kernfs_put(dentry->d_fsdata); } const struct dentry_operations sysfs_dentry_ops = { .d_revalidate = sysfs_dentry_revalidate, .d_delete = sysfs_dentry_delete, .d_release = sysfs_dentry_release, }; struct sysfs_dirent *sysfs_new_dirent(struct kernfs_root *root, const char *name, umode_t mode, int type) { char *dup_name = NULL; struct sysfs_dirent *sd; int ret; if (type & SYSFS_COPY_NAME) { name = dup_name = kstrdup(name, GFP_KERNEL); if (!name) return NULL; } sd = kmem_cache_zalloc(sysfs_dir_cachep, GFP_KERNEL); if (!sd) goto err_out1; ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL); if (ret < 0) goto err_out2; sd->s_ino = ret; atomic_set(&sd->s_count, 1); atomic_set(&sd->s_active, 0); sd->s_name = name; sd->s_mode = mode; sd->s_flags = type | SYSFS_FLAG_REMOVED; return sd; err_out2: kmem_cache_free(sysfs_dir_cachep, sd); err_out1: kfree(dup_name); return NULL; } /** * sysfs_addrm_start - prepare for sysfs_dirent add/remove * @acxt: pointer to sysfs_addrm_cxt to be used * * This function is called when the caller is about to add or remove * sysfs_dirent. This function acquires sysfs_mutex. @acxt is used * to keep and pass context to other addrm functions. * * LOCKING: * Kernel thread context (may sleep). sysfs_mutex is locked on * return. */ void sysfs_addrm_start(struct sysfs_addrm_cxt *acxt) __acquires(sysfs_mutex) { memset(acxt, 0, sizeof(*acxt)); mutex_lock(&sysfs_mutex); } /** * sysfs_add_one - add sysfs_dirent to parent without warning * @acxt: addrm context to use * @sd: sysfs_dirent to be added * @parent_sd: the parent sysfs_dirent to add @sd to * * Get @parent_sd and set @sd->s_parent to it and increment nlink of * the parent inode if @sd is a directory and link into the children * list of the parent. * * This function should be called between calls to * sysfs_addrm_start() and sysfs_addrm_finish() and should be * passed the same @acxt as passed to sysfs_addrm_start(). * * LOCKING: * Determined by sysfs_addrm_start(). * * RETURNS: * 0 on success, -EEXIST if entry with the given name already * exists. */ int sysfs_add_one(struct sysfs_addrm_cxt *acxt, struct sysfs_dirent *sd, struct sysfs_dirent *parent_sd) { bool has_ns = parent_sd->s_flags & SYSFS_FLAG_NS; struct sysfs_inode_attrs *ps_iattr; int ret; if (has_ns != (bool)sd->s_ns) { WARN(1, KERN_WARNING "sysfs: ns %s in '%s' for '%s'\n", has_ns ? "required" : "invalid", parent_sd->s_name, sd->s_name); return -EINVAL; } if (sysfs_type(parent_sd) != SYSFS_DIR) return -EINVAL; sd->s_hash = sysfs_name_hash(sd->s_name, sd->s_ns); sd->s_parent = parent_sd; kernfs_get(parent_sd); ret = sysfs_link_sibling(sd); if (ret) return ret; /* Update timestamps on the parent */ ps_iattr = parent_sd->s_iattr; if (ps_iattr) { struct iattr *ps_iattrs = &ps_iattr->ia_iattr; ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME; } /* Mark the entry added into directory tree */ sd->s_flags &= ~SYSFS_FLAG_REMOVED; return 0; } /** * sysfs_remove_one - remove sysfs_dirent from parent * @acxt: addrm context to use * @sd: sysfs_dirent to be removed * * Mark @sd removed and drop nlink of parent inode if @sd is a * directory. @sd is unlinked from the children list. * * This function should be called between calls to * sysfs_addrm_start() and sysfs_addrm_finish() and should be * passed the same @acxt as passed to sysfs_addrm_start(). * * LOCKING: * Determined by sysfs_addrm_start(). */ static void sysfs_remove_one(struct sysfs_addrm_cxt *acxt, struct sysfs_dirent *sd) { struct sysfs_inode_attrs *ps_iattr; /* * Removal can be called multiple times on the same node. Only the * first invocation is effective and puts the base ref. */ if (sd->s_flags & SYSFS_FLAG_REMOVED) return; if (sd->s_parent) { sysfs_unlink_sibling(sd); /* Update timestamps on the parent */ ps_iattr = sd->s_parent->s_iattr; if (ps_iattr) { ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME; ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME; } } sd->s_flags |= SYSFS_FLAG_REMOVED; sd->u.removed_list = acxt->removed; acxt->removed = sd; } /** * sysfs_addrm_finish - finish up sysfs_dirent add/remove * @acxt: addrm context to finish up * * Finish up sysfs_dirent add/remove. Resources acquired by * sysfs_addrm_start() are released and removed sysfs_dirents are * cleaned up. * * LOCKING: * sysfs_mutex is released. */ void sysfs_addrm_finish(struct sysfs_addrm_cxt *acxt) __releases(sysfs_mutex) { /* release resources acquired by sysfs_addrm_start() */ mutex_unlock(&sysfs_mutex); /* kill removed sysfs_dirents */ while (acxt->removed) { struct sysfs_dirent *sd = acxt->removed; acxt->removed = sd->u.removed_list; sysfs_deactivate(sd); sysfs_unmap_bin_file(sd); kernfs_put(sd); } } /** * kernfs_find_ns - find sysfs_dirent with the given name * @parent: sysfs_dirent to search under * @name: name to look for * @ns: the namespace tag to use * * Look for sysfs_dirent with name @name under @parent. Returns pointer to * the found sysfs_dirent on success, %NULL on failure. */ static struct sysfs_dirent *kernfs_find_ns(struct sysfs_dirent *parent, const unsigned char *name, const void *ns) { struct rb_node *node = parent->s_dir.children.rb_node; bool has_ns = parent->s_flags & SYSFS_FLAG_NS; unsigned int hash; lockdep_assert_held(&sysfs_mutex); if (has_ns != (bool)ns) { WARN(1, KERN_WARNING "sysfs: ns %s in '%s' for '%s'\n", has_ns ? "required" : "invalid", parent->s_name, name); return NULL; } hash = sysfs_name_hash(name, ns); while (node) { struct sysfs_dirent *sd; int result; sd = to_sysfs_dirent(node); result = sysfs_name_compare(hash, name, ns, sd); if (result < 0) node = node->rb_left; else if (result > 0) node = node->rb_right; else return sd; } return NULL; } /** * kernfs_find_and_get_ns - find and get sysfs_dirent with the given name * @parent: sysfs_dirent to search under * @name: name to look for * @ns: the namespace tag to use * * Look for sysfs_dirent with name @name under @parent and get a reference * if found. This function may sleep and returns pointer to the found * sysfs_dirent on success, %NULL on failure. */ struct sysfs_dirent *kernfs_find_and_get_ns(struct sysfs_dirent *parent, const char *name, const void *ns) { struct sysfs_dirent *sd; mutex_lock(&sysfs_mutex); sd = kernfs_find_ns(parent, name, ns); kernfs_get(sd); mutex_unlock(&sysfs_mutex); return sd; } EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); /** * kernfs_create_root - create a new kernfs hierarchy * @priv: opaque data associated with the new directory * * Returns the root of the new hierarchy on success, ERR_PTR() value on * failure. */ struct kernfs_root *kernfs_create_root(void *priv) { struct kernfs_root *root; struct sysfs_dirent *sd; root = kzalloc(sizeof(*root), GFP_KERNEL); if (!root) return ERR_PTR(-ENOMEM); ida_init(&root->ino_ida); sd = sysfs_new_dirent(root, "", S_IFDIR | S_IRUGO | S_IXUGO, SYSFS_DIR); if (!sd) { ida_destroy(&root->ino_ida); kfree(root); return ERR_PTR(-ENOMEM); } sd->s_flags &= ~SYSFS_FLAG_REMOVED; sd->priv = priv; sd->s_dir.root = root; root->sd = sd; return root; } /** * kernfs_destroy_root - destroy a kernfs hierarchy * @root: root of the hierarchy to destroy * * Destroy the hierarchy anchored at @root by removing all existing * directories and destroying @root. */ void kernfs_destroy_root(struct kernfs_root *root) { kernfs_remove(root->sd); /* will also free @root */ } /** * kernfs_create_dir_ns - create a directory * @parent: parent in which to create a new directory * @name: name of the new directory * @priv: opaque data associated with the new directory * @ns: optional namespace tag of the directory * * Returns the created node on success, ERR_PTR() value on failure. */ struct sysfs_dirent *kernfs_create_dir_ns(struct sysfs_dirent *parent, const char *name, void *priv, const void *ns) { umode_t mode = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO; struct sysfs_addrm_cxt acxt; struct sysfs_dirent *sd; int rc; /* allocate */ sd = sysfs_new_dirent(kernfs_root(parent), name, mode, SYSFS_DIR); if (!sd) return ERR_PTR(-ENOMEM); sd->s_dir.root = parent->s_dir.root; sd->s_ns = ns; sd->priv = priv; /* link in */ sysfs_addrm_start(&acxt); rc = sysfs_add_one(&acxt, sd, parent); sysfs_addrm_finish(&acxt); if (!rc) return sd; kernfs_put(sd); return ERR_PTR(rc); } static struct dentry *sysfs_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct dentry *ret = NULL; struct dentry *parent = dentry->d_parent; struct sysfs_dirent *parent_sd = parent->d_fsdata; struct sysfs_dirent *sd; struct inode *inode; const void *ns = NULL; mutex_lock(&sysfs_mutex); if (parent_sd->s_flags & SYSFS_FLAG_NS) ns = sysfs_info(dir->i_sb)->ns; sd = kernfs_find_ns(parent_sd, dentry->d_name.name, ns); /* no such entry */ if (!sd) { ret = ERR_PTR(-ENOENT); goto out_unlock; } kernfs_get(sd); dentry->d_fsdata = sd; /* attach dentry and inode */ inode = sysfs_get_inode(dir->i_sb, sd); if (!inode) { ret = ERR_PTR(-ENOMEM); goto out_unlock; } /* instantiate and hash dentry */ ret = d_materialise_unique(dentry, inode); out_unlock: mutex_unlock(&sysfs_mutex); return ret; } const struct inode_operations sysfs_dir_inode_operations = { .lookup = sysfs_lookup, .permission = sysfs_permission, .setattr = sysfs_setattr, .getattr = sysfs_getattr, .setxattr = sysfs_setxattr, }; static struct sysfs_dirent *sysfs_leftmost_descendant(struct sysfs_dirent *pos) { struct sysfs_dirent *last; while (true) { struct rb_node *rbn; last = pos; if (sysfs_type(pos) != SYSFS_DIR) break; rbn = rb_first(&pos->s_dir.children); if (!rbn) break; pos = to_sysfs_dirent(rbn); } return last; } /** * sysfs_next_descendant_post - find the next descendant for post-order walk * @pos: the current position (%NULL to initiate traversal) * @root: sysfs_dirent whose descendants to walk * * Find the next descendant to visit for post-order traversal of @root's * descendants. @root is included in the iteration and the last node to be * visited. */ static struct sysfs_dirent *sysfs_next_descendant_post(struct sysfs_dirent *pos, struct sysfs_dirent *root) { struct rb_node *rbn; lockdep_assert_held(&sysfs_mutex); /* if first iteration, visit leftmost descendant which may be root */ if (!pos) return sysfs_leftmost_descendant(root); /* if we visited @root, we're done */ if (pos == root) return NULL; /* if there's an unvisited sibling, visit its leftmost descendant */ rbn = rb_next(&pos->s_rb); if (rbn) return sysfs_leftmost_descendant(to_sysfs_dirent(rbn)); /* no sibling left, visit parent */ return pos->s_parent; } static void __kernfs_remove(struct sysfs_addrm_cxt *acxt, struct sysfs_dirent *sd) { struct sysfs_dirent *pos, *next; if (!sd) return; pr_debug("sysfs %s: removing\n", sd->s_name); next = NULL; do { pos = next; next = sysfs_next_descendant_post(pos, sd); if (pos) sysfs_remove_one(acxt, pos); } while (next); } /** * kernfs_remove - remove a sysfs_dirent recursively * @sd: the sysfs_dirent to remove * * Remove @sd along with all its subdirectories and files. */ void kernfs_remove(struct sysfs_dirent *sd) { struct sysfs_addrm_cxt acxt; sysfs_addrm_start(&acxt); __kernfs_remove(&acxt, sd); sysfs_addrm_finish(&acxt); } /** * kernfs_remove_by_name_ns - find a sysfs_dirent by name and remove it * @dir_sd: parent of the target * @name: name of the sysfs_dirent to remove * @ns: namespace tag of the sysfs_dirent to remove * * Look for the sysfs_dirent with @name and @ns under @dir_sd and remove * it. Returns 0 on success, -ENOENT if such entry doesn't exist. */ int kernfs_remove_by_name_ns(struct sysfs_dirent *dir_sd, const char *name, const void *ns) { struct sysfs_addrm_cxt acxt; struct sysfs_dirent *sd; if (!dir_sd) { WARN(1, KERN_WARNING "sysfs: can not remove '%s', no directory\n", name); return -ENOENT; } sysfs_addrm_start(&acxt); sd = kernfs_find_ns(dir_sd, name, ns); if (sd) __kernfs_remove(&acxt, sd); sysfs_addrm_finish(&acxt); if (sd) return 0; else return -ENOENT; } /** * kernfs_rename_ns - move and rename a kernfs_node * @sd: target node * @new_parent: new parent to put @sd under * @new_name: new name * @new_ns: new namespace tag */ int kernfs_rename_ns(struct sysfs_dirent *sd, struct sysfs_dirent *new_parent, const char *new_name, const void *new_ns) { int error; mutex_lock(&sysfs_mutex); error = 0; if ((sd->s_parent == new_parent) && (sd->s_ns == new_ns) && (strcmp(sd->s_name, new_name) == 0)) goto out; /* nothing to rename */ error = -EEXIST; if (kernfs_find_ns(new_parent, new_name, new_ns)) goto out; /* rename sysfs_dirent */ if (strcmp(sd->s_name, new_name) != 0) { error = -ENOMEM; new_name = kstrdup(new_name, GFP_KERNEL); if (!new_name) goto out; kfree(sd->s_name); sd->s_name = new_name; } /* * Move to the appropriate place in the appropriate directories rbtree. */ sysfs_unlink_sibling(sd); kernfs_get(new_parent); kernfs_put(sd->s_parent); sd->s_ns = new_ns; sd->s_hash = sysfs_name_hash(sd->s_name, sd->s_ns); sd->s_parent = new_parent; sysfs_link_sibling(sd); error = 0; out: mutex_unlock(&sysfs_mutex); return error; } /** * kernfs_enable_ns - enable namespace under a directory * @sd: directory of interest, should be empty * * This is to be called right after @sd is created to enable namespace * under it. All children of @sd must have non-NULL namespace tags and * only the ones which match the super_block's tag will be visible. */ void kernfs_enable_ns(struct sysfs_dirent *sd) { WARN_ON_ONCE(sysfs_type(sd) != SYSFS_DIR); WARN_ON_ONCE(!RB_EMPTY_ROOT(&sd->s_dir.children)); sd->s_flags |= SYSFS_FLAG_NS; } /* Relationship between s_mode and the DT_xxx types */ static inline unsigned char dt_type(struct sysfs_dirent *sd) { return (sd->s_mode >> 12) & 15; } static int sysfs_dir_release(struct inode *inode, struct file *filp) { kernfs_put(filp->private_data); return 0; } static struct sysfs_dirent *sysfs_dir_pos(const void *ns, struct sysfs_dirent *parent_sd, loff_t hash, struct sysfs_dirent *pos) { if (pos) { int valid = !(pos->s_flags & SYSFS_FLAG_REMOVED) && pos->s_parent == parent_sd && hash == pos->s_hash; kernfs_put(pos); if (!valid) pos = NULL; } if (!pos && (hash > 1) && (hash < INT_MAX)) { struct rb_node *node = parent_sd->s_dir.children.rb_node; while (node) { pos = to_sysfs_dirent(node); if (hash < pos->s_hash) node = node->rb_left; else if (hash > pos->s_hash) node = node->rb_right; else break; } } /* Skip over entries in the wrong namespace */ while (pos && pos->s_ns != ns) { struct rb_node *node = rb_next(&pos->s_rb); if (!node) pos = NULL; else pos = to_sysfs_dirent(node); } return pos; } static struct sysfs_dirent *sysfs_dir_next_pos(const void *ns, struct sysfs_dirent *parent_sd, ino_t ino, struct sysfs_dirent *pos) { pos = sysfs_dir_pos(ns, parent_sd, ino, pos); if (pos) do { struct rb_node *node = rb_next(&pos->s_rb); if (!node) pos = NULL; else pos = to_sysfs_dirent(node); } while (pos && pos->s_ns != ns); return pos; } static int sysfs_readdir(struct file *file, struct dir_context *ctx) { struct dentry *dentry = file->f_path.dentry; struct sysfs_dirent *parent_sd = dentry->d_fsdata; struct sysfs_dirent *pos = file->private_data; const void *ns = NULL; if (!dir_emit_dots(file, ctx)) return 0; mutex_lock(&sysfs_mutex); if (parent_sd->s_flags & SYSFS_FLAG_NS) ns = sysfs_info(dentry->d_sb)->ns; for (pos = sysfs_dir_pos(ns, parent_sd, ctx->pos, pos); pos; pos = sysfs_dir_next_pos(ns, parent_sd, ctx->pos, pos)) { const char *name = pos->s_name; unsigned int type = dt_type(pos); int len = strlen(name); ino_t ino = pos->s_ino; ctx->pos = pos->s_hash; file->private_data = pos; kernfs_get(pos); mutex_unlock(&sysfs_mutex); if (!dir_emit(ctx, name, len, ino, type)) return 0; mutex_lock(&sysfs_mutex); } mutex_unlock(&sysfs_mutex); file->private_data = NULL; ctx->pos = INT_MAX; return 0; } static loff_t sysfs_dir_llseek(struct file *file, loff_t offset, int whence) { struct inode *inode = file_inode(file); loff_t ret; mutex_lock(&inode->i_mutex); ret = generic_file_llseek(file, offset, whence); mutex_unlock(&inode->i_mutex); return ret; } const struct file_operations sysfs_dir_operations = { .read = generic_read_dir, .iterate = sysfs_readdir, .release = sysfs_dir_release, .llseek = sysfs_dir_llseek, };