/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * BSD LICENSE * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "sas.h" #include #include "remote_device.h" #include "remote_node_context.h" #include "isci.h" #include "request.h" #include "task.h" #include "host.h" /** * isci_task_refuse() - complete the request to the upper layer driver in * the case where an I/O needs to be completed back in the submit path. * @ihost: host on which the the request was queued * @task: request to complete * @response: response code for the completed task. * @status: status code for the completed task. * */ static void isci_task_refuse(struct isci_host *ihost, struct sas_task *task, enum service_response response, enum exec_status status) { enum isci_completion_selection disposition; disposition = isci_perform_normal_io_completion; disposition = isci_task_set_completion_status(task, response, status, disposition); /* Tasks aborted specifically by a call to the lldd_abort_task * function should not be completed to the host in the regular path. */ switch (disposition) { case isci_perform_normal_io_completion: /* Normal notification (task_done) */ dev_dbg(&ihost->pdev->dev, "%s: Normal - task = %p, response=%d, " "status=%d\n", __func__, task, response, status); task->lldd_task = NULL; isci_execpath_callback(ihost, task, task->task_done); break; case isci_perform_aborted_io_completion: /* No notification because this request is already in the * abort path. */ dev_dbg(&ihost->pdev->dev, "%s: Aborted - task = %p, response=%d, " "status=%d\n", __func__, task, response, status); break; case isci_perform_error_io_completion: /* Use sas_task_abort */ dev_dbg(&ihost->pdev->dev, "%s: Error - task = %p, response=%d, " "status=%d\n", __func__, task, response, status); isci_execpath_callback(ihost, task, sas_task_abort); break; default: dev_dbg(&ihost->pdev->dev, "%s: isci task notification default case!", __func__); sas_task_abort(task); break; } } #define for_each_sas_task(num, task) \ for (; num > 0; num--,\ task = list_entry(task->list.next, struct sas_task, list)) static inline int isci_device_io_ready(struct isci_remote_device *idev, struct sas_task *task) { return idev ? test_bit(IDEV_IO_READY, &idev->flags) || (test_bit(IDEV_IO_NCQERROR, &idev->flags) && isci_task_is_ncq_recovery(task)) : 0; } /** * isci_task_execute_task() - This function is one of the SAS Domain Template * functions. This function is called by libsas to send a task down to * hardware. * @task: This parameter specifies the SAS task to send. * @num: This parameter specifies the number of tasks to queue. * @gfp_flags: This parameter specifies the context of this call. * * status, zero indicates success. */ int isci_task_execute_task(struct sas_task *task, int num, gfp_t gfp_flags) { struct isci_host *ihost = dev_to_ihost(task->dev); struct isci_remote_device *idev; unsigned long flags; bool io_ready; u16 tag; dev_dbg(&ihost->pdev->dev, "%s: num=%d\n", __func__, num); for_each_sas_task(num, task) { enum sci_status status = SCI_FAILURE; spin_lock_irqsave(&ihost->scic_lock, flags); idev = isci_lookup_device(task->dev); io_ready = isci_device_io_ready(idev, task); tag = isci_alloc_tag(ihost); spin_unlock_irqrestore(&ihost->scic_lock, flags); dev_dbg(&ihost->pdev->dev, "task: %p, num: %d dev: %p idev: %p:%#lx cmd = %p\n", task, num, task->dev, idev, idev ? idev->flags : 0, task->uldd_task); if (!idev) { isci_task_refuse(ihost, task, SAS_TASK_UNDELIVERED, SAS_DEVICE_UNKNOWN); } else if (!io_ready || tag == SCI_CONTROLLER_INVALID_IO_TAG) { /* Indicate QUEUE_FULL so that the scsi midlayer * retries. */ isci_task_refuse(ihost, task, SAS_TASK_COMPLETE, SAS_QUEUE_FULL); } else { /* There is a device and it's ready for I/O. */ spin_lock_irqsave(&task->task_state_lock, flags); if (task->task_state_flags & SAS_TASK_STATE_ABORTED) { /* The I/O was aborted. */ spin_unlock_irqrestore(&task->task_state_lock, flags); isci_task_refuse(ihost, task, SAS_TASK_UNDELIVERED, SAM_STAT_TASK_ABORTED); } else { task->task_state_flags |= SAS_TASK_AT_INITIATOR; spin_unlock_irqrestore(&task->task_state_lock, flags); /* build and send the request. */ status = isci_request_execute(ihost, idev, task, tag); if (status != SCI_SUCCESS) { spin_lock_irqsave(&task->task_state_lock, flags); /* Did not really start this command. */ task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; spin_unlock_irqrestore(&task->task_state_lock, flags); /* Indicate QUEUE_FULL so that the scsi * midlayer retries. if the request * failed for remote device reasons, * it gets returned as * SAS_TASK_UNDELIVERED next time * through. */ isci_task_refuse(ihost, task, SAS_TASK_COMPLETE, SAS_QUEUE_FULL); } } } if (status != SCI_SUCCESS && tag != SCI_CONTROLLER_INVALID_IO_TAG) { spin_lock_irqsave(&ihost->scic_lock, flags); /* command never hit the device, so just free * the tci and skip the sequence increment */ isci_tci_free(ihost, ISCI_TAG_TCI(tag)); spin_unlock_irqrestore(&ihost->scic_lock, flags); } isci_put_device(idev); } return 0; } static enum sci_status isci_sata_management_task_request_build(struct isci_request *ireq) { struct isci_tmf *isci_tmf; enum sci_status status; if (tmf_task != ireq->ttype) return SCI_FAILURE; isci_tmf = isci_request_access_tmf(ireq); switch (isci_tmf->tmf_code) { case isci_tmf_sata_srst_high: case isci_tmf_sata_srst_low: { struct host_to_dev_fis *fis = &ireq->stp.cmd; memset(fis, 0, sizeof(*fis)); fis->fis_type = 0x27; fis->flags &= ~0x80; fis->flags &= 0xF0; if (isci_tmf->tmf_code == isci_tmf_sata_srst_high) fis->control |= ATA_SRST; else fis->control &= ~ATA_SRST; break; } /* other management commnd go here... */ default: return SCI_FAILURE; } /* core builds the protocol specific request * based on the h2d fis. */ status = sci_task_request_construct_sata(ireq); return status; } static struct isci_request *isci_task_request_build(struct isci_host *ihost, struct isci_remote_device *idev, u16 tag, struct isci_tmf *isci_tmf) { enum sci_status status = SCI_FAILURE; struct isci_request *ireq = NULL; struct domain_device *dev; dev_dbg(&ihost->pdev->dev, "%s: isci_tmf = %p\n", __func__, isci_tmf); dev = idev->domain_dev; /* do common allocation and init of request object. */ ireq = isci_tmf_request_from_tag(ihost, isci_tmf, tag); if (!ireq) return NULL; /* let the core do it's construct. */ status = sci_task_request_construct(ihost, idev, tag, ireq); if (status != SCI_SUCCESS) { dev_warn(&ihost->pdev->dev, "%s: sci_task_request_construct failed - " "status = 0x%x\n", __func__, status); return NULL; } /* XXX convert to get this from task->tproto like other drivers */ if (dev->dev_type == SAS_END_DEV) { isci_tmf->proto = SAS_PROTOCOL_SSP; status = sci_task_request_construct_ssp(ireq); if (status != SCI_SUCCESS) return NULL; } if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) { isci_tmf->proto = SAS_PROTOCOL_SATA; status = isci_sata_management_task_request_build(ireq); if (status != SCI_SUCCESS) return NULL; } return ireq; } static int isci_task_execute_tmf(struct isci_host *ihost, struct isci_remote_device *idev, struct isci_tmf *tmf, unsigned long timeout_ms) { DECLARE_COMPLETION_ONSTACK(completion); enum sci_task_status status = SCI_TASK_FAILURE; struct isci_request *ireq; int ret = TMF_RESP_FUNC_FAILED; unsigned long flags; unsigned long timeleft; u16 tag; spin_lock_irqsave(&ihost->scic_lock, flags); tag = isci_alloc_tag(ihost); spin_unlock_irqrestore(&ihost->scic_lock, flags); if (tag == SCI_CONTROLLER_INVALID_IO_TAG) return ret; /* sanity check, return TMF_RESP_FUNC_FAILED * if the device is not there and ready. */ if (!idev || (!test_bit(IDEV_IO_READY, &idev->flags) && !test_bit(IDEV_IO_NCQERROR, &idev->flags))) { dev_dbg(&ihost->pdev->dev, "%s: idev = %p not ready (%#lx)\n", __func__, idev, idev ? idev->flags : 0); goto err_tci; } else dev_dbg(&ihost->pdev->dev, "%s: idev = %p\n", __func__, idev); /* Assign the pointer to the TMF's completion kernel wait structure. */ tmf->complete = &completion; ireq = isci_task_request_build(ihost, idev, tag, tmf); if (!ireq) goto err_tci; spin_lock_irqsave(&ihost->scic_lock, flags); /* start the TMF io. */ status = sci_controller_start_task(ihost, idev, ireq); if (status != SCI_TASK_SUCCESS) { dev_dbg(&ihost->pdev->dev, "%s: start_io failed - status = 0x%x, request = %p\n", __func__, status, ireq); spin_unlock_irqrestore(&ihost->scic_lock, flags); goto err_tci; } if (tmf->cb_state_func != NULL) tmf->cb_state_func(isci_tmf_started, tmf, tmf->cb_data); isci_request_change_state(ireq, started); /* add the request to the remote device request list. */ list_add(&ireq->dev_node, &idev->reqs_in_process); spin_unlock_irqrestore(&ihost->scic_lock, flags); /* Wait for the TMF to complete, or a timeout. */ timeleft = wait_for_completion_timeout(&completion, msecs_to_jiffies(timeout_ms)); if (timeleft == 0) { spin_lock_irqsave(&ihost->scic_lock, flags); if (tmf->cb_state_func != NULL) tmf->cb_state_func(isci_tmf_timed_out, tmf, tmf->cb_data); sci_controller_terminate_request(ihost, idev, ireq); spin_unlock_irqrestore(&ihost->scic_lock, flags); wait_for_completion(tmf->complete); } isci_print_tmf(tmf); if (tmf->status == SCI_SUCCESS) ret = TMF_RESP_FUNC_COMPLETE; else if (tmf->status == SCI_FAILURE_IO_RESPONSE_VALID) { dev_dbg(&ihost->pdev->dev, "%s: tmf.status == " "SCI_FAILURE_IO_RESPONSE_VALID\n", __func__); ret = TMF_RESP_FUNC_COMPLETE; } /* Else - leave the default "failed" status alone. */ dev_dbg(&ihost->pdev->dev, "%s: completed request = %p\n", __func__, ireq); return ret; err_tci: spin_lock_irqsave(&ihost->scic_lock, flags); isci_tci_free(ihost, ISCI_TAG_TCI(tag)); spin_unlock_irqrestore(&ihost->scic_lock, flags); return ret; } static void isci_task_build_tmf(struct isci_tmf *tmf, enum isci_tmf_function_codes code, void (*tmf_sent_cb)(enum isci_tmf_cb_state, struct isci_tmf *, void *), void *cb_data) { memset(tmf, 0, sizeof(*tmf)); tmf->tmf_code = code; tmf->cb_state_func = tmf_sent_cb; tmf->cb_data = cb_data; } static void isci_task_build_abort_task_tmf(struct isci_tmf *tmf, enum isci_tmf_function_codes code, void (*tmf_sent_cb)(enum isci_tmf_cb_state, struct isci_tmf *, void *), struct isci_request *old_request) { isci_task_build_tmf(tmf, code, tmf_sent_cb, old_request); tmf->io_tag = old_request->io_tag; } /** * isci_task_validate_request_to_abort() - This function checks the given I/O * against the "started" state. If the request is still "started", it's * state is changed to aborted. NOTE: isci_host->scic_lock MUST BE HELD * BEFORE CALLING THIS FUNCTION. * @isci_request: This parameter specifies the request object to control. * @isci_host: This parameter specifies the ISCI host object * @isci_device: This is the device to which the request is pending. * @aborted_io_completion: This is a completion structure that will be added to * the request in case it is changed to aborting; this completion is * triggered when the request is fully completed. * * Either "started" on successful change of the task status to "aborted", or * "unallocated" if the task cannot be controlled. */ static enum isci_request_status isci_task_validate_request_to_abort( struct isci_request *isci_request, struct isci_host *isci_host, struct isci_remote_device *isci_device, struct completion *aborted_io_completion) { enum isci_request_status old_state = unallocated; /* Only abort the task if it's in the * device's request_in_process list */ if (isci_request && !list_empty(&isci_request->dev_node)) { old_state = isci_request_change_started_to_aborted( isci_request, aborted_io_completion); } return old_state; } /** * isci_request_cleanup_completed_loiterer() - This function will take care of * the final cleanup on any request which has been explicitly terminated. * @isci_host: This parameter specifies the ISCI host object * @isci_device: This is the device to which the request is pending. * @isci_request: This parameter specifies the terminated request object. * @task: This parameter is the libsas I/O request. */ static void isci_request_cleanup_completed_loiterer( struct isci_host *isci_host, struct isci_remote_device *isci_device, struct isci_request *isci_request, struct sas_task *task) { unsigned long flags; dev_dbg(&isci_host->pdev->dev, "%s: isci_device=%p, request=%p, task=%p\n", __func__, isci_device, isci_request, task); if (task != NULL) { spin_lock_irqsave(&task->task_state_lock, flags); task->lldd_task = NULL; task->task_state_flags &= ~SAS_TASK_NEED_DEV_RESET; isci_set_task_doneflags(task); /* If this task is not in the abort path, call task_done. */ if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) { spin_unlock_irqrestore(&task->task_state_lock, flags); task->task_done(task); } else spin_unlock_irqrestore(&task->task_state_lock, flags); } if (isci_request != NULL) { spin_lock_irqsave(&isci_host->scic_lock, flags); list_del_init(&isci_request->dev_node); spin_unlock_irqrestore(&isci_host->scic_lock, flags); } } /** * isci_terminate_request_core() - This function will terminate the given * request, and wait for it to complete. This function must only be called * from a thread that can wait. Note that the request is terminated and * completed (back to the host, if started there). * @ihost: This SCU. * @idev: The target. * @isci_request: The I/O request to be terminated. * */ static void isci_terminate_request_core(struct isci_host *ihost, struct isci_remote_device *idev, struct isci_request *isci_request) { enum sci_status status = SCI_SUCCESS; bool was_terminated = false; bool needs_cleanup_handling = false; enum isci_request_status request_status; unsigned long flags; unsigned long termination_completed = 1; struct completion *io_request_completion; struct sas_task *task; dev_dbg(&ihost->pdev->dev, "%s: device = %p; request = %p\n", __func__, idev, isci_request); spin_lock_irqsave(&ihost->scic_lock, flags); io_request_completion = isci_request->io_request_completion; task = (isci_request->ttype == io_task) ? isci_request_access_task(isci_request) : NULL; /* Note that we are not going to control * the target to abort the request. */ set_bit(IREQ_COMPLETE_IN_TARGET, &isci_request->flags); /* Make sure the request wasn't just sitting around signalling * device condition (if the request handle is NULL, then the * request completed but needed additional handling here). */ if (!test_bit(IREQ_TERMINATED, &isci_request->flags)) { was_terminated = true; needs_cleanup_handling = true; status = sci_controller_terminate_request(ihost, idev, isci_request); } spin_unlock_irqrestore(&ihost->scic_lock, flags); /* * The only time the request to terminate will * fail is when the io request is completed and * being aborted. */ if (status != SCI_SUCCESS) { dev_dbg(&ihost->pdev->dev, "%s: sci_controller_terminate_request" " returned = 0x%x\n", __func__, status); isci_request->io_request_completion = NULL; } else { if (was_terminated) { dev_dbg(&ihost->pdev->dev, "%s: before completion wait (%p/%p)\n", __func__, isci_request, io_request_completion); /* Wait here for the request to complete. */ #define TERMINATION_TIMEOUT_MSEC 500 termination_completed = wait_for_completion_timeout( io_request_completion, msecs_to_jiffies(TERMINATION_TIMEOUT_MSEC)); if (!termination_completed) { /* The request to terminate has timed out. */ spin_lock_irqsave(&ihost->scic_lock, flags); /* Check for state changes. */ if (!test_bit(IREQ_TERMINATED, &isci_request->flags)) { /* The best we can do is to have the * request die a silent death if it * ever really completes. * * Set the request state to "dead", * and clear the task pointer so that * an actual completion event callback * doesn't do anything. */ isci_request->status = dead; isci_request->io_request_completion = NULL; if (isci_request->ttype == io_task) { /* Break links with the * sas_task. */ isci_request->ttype_ptr.io_task_ptr = NULL; } } else termination_completed = 1; spin_unlock_irqrestore(&ihost->scic_lock, flags); if (!termination_completed) { dev_dbg(&ihost->pdev->dev, "%s: *** Timeout waiting for " "termination(%p/%p)\n", __func__, io_request_completion, isci_request); /* The request can no longer be referenced * safely since it may go away if the * termination every really does complete. */ isci_request = NULL; } } if (termination_completed) dev_dbg(&ihost->pdev->dev, "%s: after completion wait (%p/%p)\n", __func__, isci_request, io_request_completion); } if (termination_completed) { isci_request->io_request_completion = NULL; /* Peek at the status of the request. This will tell * us if there was special handling on the request such that it * needs to be detached and freed here. */ spin_lock_irqsave(&isci_request->state_lock, flags); request_status = isci_request->status; if ((isci_request->ttype == io_task) /* TMFs are in their own thread */ && ((request_status == aborted) || (request_status == aborting) || (request_status == terminating) || (request_status == completed) || (request_status == dead) ) ) { /* The completion routine won't free a request in * the aborted/aborting/etc. states, so we do * it here. */ needs_cleanup_handling = true; } spin_unlock_irqrestore(&isci_request->state_lock, flags); } if (needs_cleanup_handling) isci_request_cleanup_completed_loiterer( ihost, idev, isci_request, task); } } /** * isci_terminate_pending_requests() - This function will change the all of the * requests on the given device's state to "aborting", will terminate the * requests, and wait for them to complete. This function must only be * called from a thread that can wait. Note that the requests are all * terminated and completed (back to the host, if started there). * @isci_host: This parameter specifies SCU. * @idev: This parameter specifies the target. * */ void isci_terminate_pending_requests(struct isci_host *ihost, struct isci_remote_device *idev) { struct completion request_completion; enum isci_request_status old_state; unsigned long flags; LIST_HEAD(list); spin_lock_irqsave(&ihost->scic_lock, flags); list_splice_init(&idev->reqs_in_process, &list); /* assumes that isci_terminate_request_core deletes from the list */ while (!list_empty(&list)) { struct isci_request *ireq = list_entry(list.next, typeof(*ireq), dev_node); /* Change state to "terminating" if it is currently * "started". */ old_state = isci_request_change_started_to_newstate(ireq, &request_completion, terminating); switch (old_state) { case started: case completed: case aborting: break; default: /* termination in progress, or otherwise dispositioned. * We know the request was on 'list' so should be safe * to move it back to reqs_in_process */ list_move(&ireq->dev_node, &idev->reqs_in_process); ireq = NULL; break; } if (!ireq) continue; spin_unlock_irqrestore(&ihost->scic_lock, flags); init_completion(&request_completion); dev_dbg(&ihost->pdev->dev, "%s: idev=%p request=%p; task=%p old_state=%d\n", __func__, idev, ireq, ireq->ttype == io_task ? isci_request_access_task(ireq) : NULL, old_state); /* If the old_state is started: * This request was not already being aborted. If it had been, * then the aborting I/O (ie. the TMF request) would not be in * the aborting state, and thus would be terminated here. Note * that since the TMF completion's call to the kernel function * "complete()" does not happen until the pending I/O request * terminate fully completes, we do not have to implement a * special wait here for already aborting requests - the * termination of the TMF request will force the request * to finish it's already started terminate. * * If old_state == completed: * This request completed from the SCU hardware perspective * and now just needs cleaning up in terms of freeing the * request and potentially calling up to libsas. * * If old_state == aborting: * This request has already gone through a TMF timeout, but may * not have been terminated; needs cleaning up at least. */ isci_terminate_request_core(ihost, idev, ireq); spin_lock_irqsave(&ihost->scic_lock, flags); } spin_unlock_irqrestore(&ihost->scic_lock, flags); } /** * isci_task_send_lu_reset_sas() - This function is called by of the SAS Domain * Template functions. * @lun: This parameter specifies the lun to be reset. * * status, zero indicates success. */ static int isci_task_send_lu_reset_sas( struct isci_host *isci_host, struct isci_remote_device *isci_device, u8 *lun) { struct isci_tmf tmf; int ret = TMF_RESP_FUNC_FAILED; dev_dbg(&isci_host->pdev->dev, "%s: isci_host = %p, isci_device = %p\n", __func__, isci_host, isci_device); /* Send the LUN reset to the target. By the time the call returns, * the TMF has fully exected in the target (in which case the return * value is "TMF_RESP_FUNC_COMPLETE", or the request timed-out (or * was otherwise unable to be executed ("TMF_RESP_FUNC_FAILED"). */ isci_task_build_tmf(&tmf, isci_tmf_ssp_lun_reset, NULL, NULL); #define ISCI_LU_RESET_TIMEOUT_MS 2000 /* 2 second timeout. */ ret = isci_task_execute_tmf(isci_host, isci_device, &tmf, ISCI_LU_RESET_TIMEOUT_MS); if (ret == TMF_RESP_FUNC_COMPLETE) dev_dbg(&isci_host->pdev->dev, "%s: %p: TMF_LU_RESET passed\n", __func__, isci_device); else dev_dbg(&isci_host->pdev->dev, "%s: %p: TMF_LU_RESET failed (%x)\n", __func__, isci_device, ret); return ret; } static int isci_task_send_lu_reset_sata(struct isci_host *ihost, struct isci_remote_device *idev, u8 *lun) { int ret = TMF_RESP_FUNC_FAILED; struct isci_tmf tmf; /* Send the soft reset to the target */ #define ISCI_SRST_TIMEOUT_MS 25000 /* 25 second timeout. */ isci_task_build_tmf(&tmf, isci_tmf_sata_srst_high, NULL, NULL); ret = isci_task_execute_tmf(ihost, idev, &tmf, ISCI_SRST_TIMEOUT_MS); if (ret != TMF_RESP_FUNC_COMPLETE) { dev_dbg(&ihost->pdev->dev, "%s: Assert SRST failed (%p) = %x", __func__, idev, ret); /* Return the failure so that the LUN reset is escalated * to a target reset. */ } return ret; } /** * isci_task_lu_reset() - This function is one of the SAS Domain Template * functions. This is one of the Task Management functoins called by libsas, * to reset the given lun. Note the assumption that while this call is * executing, no I/O will be sent by the host to the device. * @lun: This parameter specifies the lun to be reset. * * status, zero indicates success. */ int isci_task_lu_reset(struct domain_device *domain_device, u8 *lun) { struct isci_host *isci_host = dev_to_ihost(domain_device); struct isci_remote_device *isci_device; unsigned long flags; int ret; spin_lock_irqsave(&isci_host->scic_lock, flags); isci_device = isci_lookup_device(domain_device); spin_unlock_irqrestore(&isci_host->scic_lock, flags); dev_dbg(&isci_host->pdev->dev, "%s: domain_device=%p, isci_host=%p; isci_device=%p\n", __func__, domain_device, isci_host, isci_device); if (isci_device) set_bit(IDEV_EH, &isci_device->flags); /* If there is a device reset pending on any request in the * device's list, fail this LUN reset request in order to * escalate to the device reset. */ if (!isci_device || isci_device_is_reset_pending(isci_host, isci_device)) { dev_dbg(&isci_host->pdev->dev, "%s: No dev (%p), or " "RESET PENDING: domain_device=%p\n", __func__, isci_device, domain_device); ret = TMF_RESP_FUNC_FAILED; goto out; } /* Send the task management part of the reset. */ if (sas_protocol_ata(domain_device->tproto)) { ret = isci_task_send_lu_reset_sata(isci_host, isci_device, lun); } else ret = isci_task_send_lu_reset_sas(isci_host, isci_device, lun); /* If the LUN reset worked, all the I/O can now be terminated. */ if (ret == TMF_RESP_FUNC_COMPLETE) /* Terminate all I/O now. */ isci_terminate_pending_requests(isci_host, isci_device); out: isci_put_device(isci_device); return ret; } /* int (*lldd_clear_nexus_port)(struct asd_sas_port *); */ int isci_task_clear_nexus_port(struct asd_sas_port *port) { return TMF_RESP_FUNC_FAILED; } int isci_task_clear_nexus_ha(struct sas_ha_struct *ha) { return TMF_RESP_FUNC_FAILED; } /* Task Management Functions. Must be called from process context. */ /** * isci_abort_task_process_cb() - This is a helper function for the abort task * TMF command. It manages the request state with respect to the successful * transmission / completion of the abort task request. * @cb_state: This parameter specifies when this function was called - after * the TMF request has been started and after it has timed-out. * @tmf: This parameter specifies the TMF in progress. * * */ static void isci_abort_task_process_cb( enum isci_tmf_cb_state cb_state, struct isci_tmf *tmf, void *cb_data) { struct isci_request *old_request; old_request = (struct isci_request *)cb_data; dev_dbg(&old_request->isci_host->pdev->dev, "%s: tmf=%p, old_request=%p\n", __func__, tmf, old_request); switch (cb_state) { case isci_tmf_started: /* The TMF has been started. Nothing to do here, since the * request state was already set to "aborted" by the abort * task function. */ if ((old_request->status != aborted) && (old_request->status != completed)) dev_dbg(&old_request->isci_host->pdev->dev, "%s: Bad request status (%d): tmf=%p, old_request=%p\n", __func__, old_request->status, tmf, old_request); break; case isci_tmf_timed_out: /* Set the task's state to "aborting", since the abort task * function thread set it to "aborted" (above) in anticipation * of the task management request working correctly. Since the * timeout has now fired, the TMF request failed. We set the * state such that the request completion will indicate the * device is no longer present. */ isci_request_change_state(old_request, aborting); break; default: dev_dbg(&old_request->isci_host->pdev->dev, "%s: Bad cb_state (%d): tmf=%p, old_request=%p\n", __func__, cb_state, tmf, old_request); break; } } /** * isci_task_abort_task() - This function is one of the SAS Domain Template * functions. This function is called by libsas to abort a specified task. * @task: This parameter specifies the SAS task to abort. * * status, zero indicates success. */ int isci_task_abort_task(struct sas_task *task) { struct isci_host *isci_host = dev_to_ihost(task->dev); DECLARE_COMPLETION_ONSTACK(aborted_io_completion); struct isci_request *old_request = NULL; enum isci_request_status old_state; struct isci_remote_device *isci_device = NULL; struct isci_tmf tmf; int ret = TMF_RESP_FUNC_FAILED; unsigned long flags; bool any_dev_reset = false; /* Get the isci_request reference from the task. Note that * this check does not depend on the pending request list * in the device, because tasks driving resets may land here * after completion in the core. */ spin_lock_irqsave(&isci_host->scic_lock, flags); spin_lock(&task->task_state_lock); old_request = task->lldd_task; /* If task is already done, the request isn't valid */ if (!(task->task_state_flags & SAS_TASK_STATE_DONE) && (task->task_state_flags & SAS_TASK_AT_INITIATOR) && old_request) isci_device = isci_lookup_device(task->dev); spin_unlock(&task->task_state_lock); spin_unlock_irqrestore(&isci_host->scic_lock, flags); dev_dbg(&isci_host->pdev->dev, "%s: task = %p\n", __func__, task); if (!isci_device || !old_request) goto out; set_bit(IDEV_EH, &isci_device->flags); /* This version of the driver will fail abort requests for * SATA/STP. Failing the abort request this way will cause the * SCSI error handler thread to escalate to LUN reset */ if (sas_protocol_ata(task->task_proto)) { dev_dbg(&isci_host->pdev->dev, " task %p is for a STP/SATA device;" " returning TMF_RESP_FUNC_FAILED\n" " to cause a LUN reset...\n", task); goto out; } dev_dbg(&isci_host->pdev->dev, "%s: old_request == %p\n", __func__, old_request); any_dev_reset = isci_device_is_reset_pending(isci_host,isci_device); spin_lock_irqsave(&task->task_state_lock, flags); any_dev_reset = any_dev_reset || (task->task_state_flags & SAS_TASK_NEED_DEV_RESET); /* If the extraction of the request reference from the task * failed, then the request has been completed (or if there is a * pending reset then this abort request function must be failed * in order to escalate to the target reset). */ if ((old_request == NULL) || any_dev_reset) { /* If the device reset task flag is set, fail the task * management request. Otherwise, the original request * has completed. */ if (any_dev_reset) { /* Turn off the task's DONE to make sure this * task is escalated to a target reset. */ task->task_state_flags &= ~SAS_TASK_STATE_DONE; /* Make the reset happen as soon as possible. */ task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; spin_unlock_irqrestore(&task->task_state_lock, flags); /* Fail the task management request in order to * escalate to the target reset. */ ret = TMF_RESP_FUNC_FAILED; dev_dbg(&isci_host->pdev->dev, "%s: Failing task abort in order to " "escalate to target reset because\n" "SAS_TASK_NEED_DEV_RESET is set for " "task %p on dev %p\n", __func__, task, isci_device); } else { /* The request has already completed and there * is nothing to do here other than to set the task * done bit, and indicate that the task abort function * was sucessful. */ isci_set_task_doneflags(task); spin_unlock_irqrestore(&task->task_state_lock, flags); ret = TMF_RESP_FUNC_COMPLETE; dev_dbg(&isci_host->pdev->dev, "%s: abort task not needed for %p\n", __func__, task); } goto out; } else spin_unlock_irqrestore(&task->task_state_lock, flags); spin_lock_irqsave(&isci_host->scic_lock, flags); /* Check the request status and change to "aborted" if currently * "starting"; if true then set the I/O kernel completion * struct that will be triggered when the request completes. */ old_state = isci_task_validate_request_to_abort( old_request, isci_host, isci_device, &aborted_io_completion); if ((old_state != started) && (old_state != completed) && (old_state != aborting)) { spin_unlock_irqrestore(&isci_host->scic_lock, flags); /* The request was already being handled by someone else (because * they got to set the state away from started). */ dev_dbg(&isci_host->pdev->dev, "%s: device = %p; old_request %p already being aborted\n", __func__, isci_device, old_request); ret = TMF_RESP_FUNC_COMPLETE; goto out; } if (task->task_proto == SAS_PROTOCOL_SMP || test_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags)) { spin_unlock_irqrestore(&isci_host->scic_lock, flags); dev_dbg(&isci_host->pdev->dev, "%s: SMP request (%d)" " or complete_in_target (%d), thus no TMF\n", __func__, (task->task_proto == SAS_PROTOCOL_SMP), test_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags)); /* Set the state on the task. */ isci_task_all_done(task); ret = TMF_RESP_FUNC_COMPLETE; /* Stopping and SMP devices are not sent a TMF, and are not * reset, but the outstanding I/O request is terminated below. */ } else { /* Fill in the tmf stucture */ isci_task_build_abort_task_tmf(&tmf, isci_tmf_ssp_task_abort, isci_abort_task_process_cb, old_request); spin_unlock_irqrestore(&isci_host->scic_lock, flags); #define ISCI_ABORT_TASK_TIMEOUT_MS 500 /* half second timeout. */ ret = isci_task_execute_tmf(isci_host, isci_device, &tmf, ISCI_ABORT_TASK_TIMEOUT_MS); if (ret != TMF_RESP_FUNC_COMPLETE) dev_dbg(&isci_host->pdev->dev, "%s: isci_task_send_tmf failed\n", __func__); } if (ret == TMF_RESP_FUNC_COMPLETE) { set_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags); /* Clean up the request on our side, and wait for the aborted * I/O to complete. */ isci_terminate_request_core(isci_host, isci_device, old_request); } /* Make sure we do not leave a reference to aborted_io_completion */ old_request->io_request_completion = NULL; out: isci_put_device(isci_device); return ret; } /** * isci_task_abort_task_set() - This function is one of the SAS Domain Template * functions. This is one of the Task Management functoins called by libsas, * to abort all task for the given lun. * @d_device: This parameter specifies the domain device associated with this * request. * @lun: This parameter specifies the lun associated with this request. * * status, zero indicates success. */ int isci_task_abort_task_set( struct domain_device *d_device, u8 *lun) { return TMF_RESP_FUNC_FAILED; } /** * isci_task_clear_aca() - This function is one of the SAS Domain Template * functions. This is one of the Task Management functoins called by libsas. * @d_device: This parameter specifies the domain device associated with this * request. * @lun: This parameter specifies the lun associated with this request. * * status, zero indicates success. */ int isci_task_clear_aca( struct domain_device *d_device, u8 *lun) { return TMF_RESP_FUNC_FAILED; } /** * isci_task_clear_task_set() - This function is one of the SAS Domain Template * functions. This is one of the Task Management functoins called by libsas. * @d_device: This parameter specifies the domain device associated with this * request. * @lun: This parameter specifies the lun associated with this request. * * status, zero indicates success. */ int isci_task_clear_task_set( struct domain_device *d_device, u8 *lun) { return TMF_RESP_FUNC_FAILED; } /** * isci_task_query_task() - This function is implemented to cause libsas to * correctly escalate the failed abort to a LUN or target reset (this is * because sas_scsi_find_task libsas function does not correctly interpret * all return codes from the abort task call). When TMF_RESP_FUNC_SUCC is * returned, libsas turns this into a LUN reset; when FUNC_FAILED is * returned, libsas will turn this into a target reset * @task: This parameter specifies the sas task being queried. * @lun: This parameter specifies the lun associated with this request. * * status, zero indicates success. */ int isci_task_query_task( struct sas_task *task) { /* See if there is a pending device reset for this device. */ if (task->task_state_flags & SAS_TASK_NEED_DEV_RESET) return TMF_RESP_FUNC_FAILED; else return TMF_RESP_FUNC_SUCC; } /* * isci_task_request_complete() - This function is called by the sci core when * an task request completes. * @ihost: This parameter specifies the ISCI host object * @ireq: This parameter is the completed isci_request object. * @completion_status: This parameter specifies the completion status from the * sci core. * * none. */ void isci_task_request_complete(struct isci_host *ihost, struct isci_request *ireq, enum sci_task_status completion_status) { struct isci_tmf *tmf = isci_request_access_tmf(ireq); struct completion *tmf_complete; dev_dbg(&ihost->pdev->dev, "%s: request = %p, status=%d\n", __func__, ireq, completion_status); isci_request_change_state(ireq, completed); tmf->status = completion_status; set_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags); if (tmf->proto == SAS_PROTOCOL_SSP) { memcpy(&tmf->resp.resp_iu, &ireq->ssp.rsp, SSP_RESP_IU_MAX_SIZE); } else if (tmf->proto == SAS_PROTOCOL_SATA) { memcpy(&tmf->resp.d2h_fis, &ireq->stp.rsp, sizeof(struct dev_to_host_fis)); } /* PRINT_TMF( ((struct isci_tmf *)request->task)); */ tmf_complete = tmf->complete; sci_controller_complete_io(ihost, ireq->target_device, ireq); /* set the 'terminated' flag handle to make sure it cannot be terminated * or completed again. */ set_bit(IREQ_TERMINATED, &ireq->flags); isci_request_change_state(ireq, unallocated); list_del_init(&ireq->dev_node); /* The task management part completes last. */ complete(tmf_complete); } static void isci_smp_task_timedout(unsigned long _task) { struct sas_task *task = (void *) _task; unsigned long flags; spin_lock_irqsave(&task->task_state_lock, flags); if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) task->task_state_flags |= SAS_TASK_STATE_ABORTED; spin_unlock_irqrestore(&task->task_state_lock, flags); complete(&task->completion); } static void isci_smp_task_done(struct sas_task *task) { if (!del_timer(&task->timer)) return; complete(&task->completion); } static struct sas_task *isci_alloc_task(void) { struct sas_task *task = kzalloc(sizeof(*task), GFP_KERNEL); if (task) { INIT_LIST_HEAD(&task->list); spin_lock_init(&task->task_state_lock); task->task_state_flags = SAS_TASK_STATE_PENDING; init_timer(&task->timer); init_completion(&task->completion); } return task; } static void isci_free_task(struct isci_host *ihost, struct sas_task *task) { if (task) { BUG_ON(!list_empty(&task->list)); kfree(task); } } static int isci_smp_execute_task(struct isci_host *ihost, struct domain_device *dev, void *req, int req_size, void *resp, int resp_size) { int res, retry; struct sas_task *task = NULL; for (retry = 0; retry < 3; retry++) { task = isci_alloc_task(); if (!task) return -ENOMEM; task->dev = dev; task->task_proto = dev->tproto; sg_init_one(&task->smp_task.smp_req, req, req_size); sg_init_one(&task->smp_task.smp_resp, resp, resp_size); task->task_done = isci_smp_task_done; task->timer.data = (unsigned long) task; task->timer.function = isci_smp_task_timedout; task->timer.expires = jiffies + 10*HZ; add_timer(&task->timer); res = isci_task_execute_task(task, 1, GFP_KERNEL); if (res) { del_timer(&task->timer); dev_dbg(&ihost->pdev->dev, "%s: executing SMP task failed:%d\n", __func__, res); goto ex_err; } wait_for_completion(&task->completion); res = -ECOMM; if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { dev_dbg(&ihost->pdev->dev, "%s: smp task timed out or aborted\n", __func__); isci_task_abort_task(task); if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { dev_dbg(&ihost->pdev->dev, "%s: SMP task aborted and not done\n", __func__); goto ex_err; } } if (task->task_status.resp == SAS_TASK_COMPLETE && task->task_status.stat == SAM_STAT_GOOD) { res = 0; break; } if (task->task_status.resp == SAS_TASK_COMPLETE && task->task_status.stat == SAS_DATA_UNDERRUN) { /* no error, but return the number of bytes of * underrun */ res = task->task_status.residual; break; } if (task->task_status.resp == SAS_TASK_COMPLETE && task->task_status.stat == SAS_DATA_OVERRUN) { res = -EMSGSIZE; break; } else { dev_dbg(&ihost->pdev->dev, "%s: task to dev %016llx response: 0x%x " "status 0x%x\n", __func__, SAS_ADDR(dev->sas_addr), task->task_status.resp, task->task_status.stat); isci_free_task(ihost, task); task = NULL; } } ex_err: BUG_ON(retry == 3 && task != NULL); isci_free_task(ihost, task); return res; } #define DISCOVER_REQ_SIZE 16 #define DISCOVER_RESP_SIZE 56 int isci_smp_get_phy_attached_dev_type(struct isci_host *ihost, struct domain_device *dev, int phy_id, int *adt) { struct smp_resp *disc_resp; u8 *disc_req; int res; disc_resp = kzalloc(DISCOVER_RESP_SIZE, GFP_KERNEL); if (!disc_resp) return -ENOMEM; disc_req = kzalloc(DISCOVER_REQ_SIZE, GFP_KERNEL); if (disc_req) { disc_req[0] = SMP_REQUEST; disc_req[1] = SMP_DISCOVER; disc_req[9] = phy_id; } else { kfree(disc_resp); return -ENOMEM; } res = isci_smp_execute_task(ihost, dev, disc_req, DISCOVER_REQ_SIZE, disc_resp, DISCOVER_RESP_SIZE); if (!res) { if (disc_resp->result != SMP_RESP_FUNC_ACC) res = disc_resp->result; else *adt = disc_resp->disc.attached_dev_type; } kfree(disc_req); kfree(disc_resp); return res; } static void isci_wait_for_smp_phy_reset(struct isci_remote_device *idev, int phy_num) { struct domain_device *dev = idev->domain_dev; struct isci_port *iport = idev->isci_port; struct isci_host *ihost = iport->isci_host; int res, iteration = 0, attached_device_type; #define STP_WAIT_MSECS 25000 unsigned long tmo = msecs_to_jiffies(STP_WAIT_MSECS); unsigned long deadline = jiffies + tmo; enum { SMP_PHYWAIT_PHYDOWN, SMP_PHYWAIT_PHYUP, SMP_PHYWAIT_DONE } phy_state = SMP_PHYWAIT_PHYDOWN; /* While there is time, wait for the phy to go away and come back */ while (time_is_after_jiffies(deadline) && phy_state != SMP_PHYWAIT_DONE) { int event = atomic_read(&iport->event); ++iteration; tmo = wait_event_timeout(ihost->eventq, event != atomic_read(&iport->event) || !test_bit(IPORT_BCN_BLOCKED, &iport->flags), tmo); /* link down, stop polling */ if (!test_bit(IPORT_BCN_BLOCKED, &iport->flags)) break; dev_dbg(&ihost->pdev->dev, "%s: iport %p, iteration %d," " phase %d: time_remaining %lu, bcns = %d\n", __func__, iport, iteration, phy_state, tmo, test_bit(IPORT_BCN_PENDING, &iport->flags)); res = isci_smp_get_phy_attached_dev_type(ihost, dev, phy_num, &attached_device_type); tmo = deadline - jiffies; if (res) { dev_dbg(&ihost->pdev->dev, "%s: iteration %d, phase %d:" " SMP error=%d, time_remaining=%lu\n", __func__, iteration, phy_state, res, tmo); break; } dev_dbg(&ihost->pdev->dev, "%s: iport %p, iteration %d," " phase %d: time_remaining %lu, bcns = %d, " "attdevtype = %x\n", __func__, iport, iteration, phy_state, tmo, test_bit(IPORT_BCN_PENDING, &iport->flags), attached_device_type); switch (phy_state) { case SMP_PHYWAIT_PHYDOWN: /* Has the device gone away? */ if (!attached_device_type) phy_state = SMP_PHYWAIT_PHYUP; break; case SMP_PHYWAIT_PHYUP: /* Has the device come back? */ if (attached_device_type) phy_state = SMP_PHYWAIT_DONE; break; case SMP_PHYWAIT_DONE: break; } } dev_dbg(&ihost->pdev->dev, "%s: done\n", __func__); } static int isci_reset_device(struct isci_host *ihost, struct isci_remote_device *idev) { struct sas_phy *phy = sas_find_local_phy(idev->domain_dev); struct isci_port *iport = idev->isci_port; enum sci_status status; unsigned long flags; int rc; dev_dbg(&ihost->pdev->dev, "%s: idev %p\n", __func__, idev); spin_lock_irqsave(&ihost->scic_lock, flags); status = sci_remote_device_reset(idev); if (status != SCI_SUCCESS) { spin_unlock_irqrestore(&ihost->scic_lock, flags); dev_dbg(&ihost->pdev->dev, "%s: sci_remote_device_reset(%p) returned %d!\n", __func__, idev, status); return TMF_RESP_FUNC_FAILED; } spin_unlock_irqrestore(&ihost->scic_lock, flags); /* Make sure all pending requests are able to be fully terminated. */ isci_device_clear_reset_pending(ihost, idev); /* If this is a device on an expander, disable BCN processing. */ if (!scsi_is_sas_phy_local(phy)) set_bit(IPORT_BCN_BLOCKED, &iport->flags); rc = sas_phy_reset(phy, true); /* Terminate in-progress I/O now. */ isci_remote_device_nuke_requests(ihost, idev); /* Since all pending TCs have been cleaned, resume the RNC. */ spin_lock_irqsave(&ihost->scic_lock, flags); status = sci_remote_device_reset_complete(idev); spin_unlock_irqrestore(&ihost->scic_lock, flags); /* If this is a device on an expander, bring the phy back up. */ if (!scsi_is_sas_phy_local(phy)) { /* A phy reset will cause the device to go away then reappear. * Since libsas will take action on incoming BCNs (eg. remove * a device going through an SMP phy-control driven reset), * we need to wait until the phy comes back up before letting * discovery proceed in libsas. */ isci_wait_for_smp_phy_reset(idev, phy->number); spin_lock_irqsave(&ihost->scic_lock, flags); isci_port_bcn_enable(ihost, idev->isci_port); spin_unlock_irqrestore(&ihost->scic_lock, flags); } if (status != SCI_SUCCESS) { dev_dbg(&ihost->pdev->dev, "%s: sci_remote_device_reset_complete(%p) " "returned %d!\n", __func__, idev, status); } dev_dbg(&ihost->pdev->dev, "%s: idev %p complete.\n", __func__, idev); return rc; } int isci_task_I_T_nexus_reset(struct domain_device *dev) { struct isci_host *ihost = dev_to_ihost(dev); struct isci_remote_device *idev; unsigned long flags; int ret; spin_lock_irqsave(&ihost->scic_lock, flags); idev = isci_lookup_device(dev); spin_unlock_irqrestore(&ihost->scic_lock, flags); if (!idev || !test_bit(IDEV_EH, &idev->flags)) { ret = TMF_RESP_FUNC_COMPLETE; goto out; } ret = isci_reset_device(ihost, idev); out: isci_put_device(idev); return ret; } int isci_bus_reset_handler(struct scsi_cmnd *cmd) { struct domain_device *dev = sdev_to_domain_dev(cmd->device); struct isci_host *ihost = dev_to_ihost(dev); struct isci_remote_device *idev; unsigned long flags; int ret; spin_lock_irqsave(&ihost->scic_lock, flags); idev = isci_lookup_device(dev); spin_unlock_irqrestore(&ihost->scic_lock, flags); if (!idev) { ret = TMF_RESP_FUNC_COMPLETE; goto out; } ret = isci_reset_device(ihost, idev); out: isci_put_device(idev); return ret; }