/* * Copyright 2011 Paul Mackerras, IBM Corp. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. * * Authors: * Paul Mackerras * Alexander Graf * Kevin Wolf * * Description: KVM functions specific to running on Book 3S * processors in hypervisor mode (specifically POWER7 and later). * * This file is derived from arch/powerpc/kvm/book3s.c, * by Alexander Graf . * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #define EXIT_DEBUG */ /* #define EXIT_DEBUG_SIMPLE */ /* #define EXIT_DEBUG_INT */ /* Used to indicate that a guest page fault needs to be handled */ #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) /* Used as a "null" value for timebase values */ #define TB_NIL (~(u64)0) static void kvmppc_end_cede(struct kvm_vcpu *vcpu); static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); /* * We use the vcpu_load/put functions to measure stolen time. * Stolen time is counted as time when either the vcpu is able to * run as part of a virtual core, but the task running the vcore * is preempted or sleeping, or when the vcpu needs something done * in the kernel by the task running the vcpu, but that task is * preempted or sleeping. Those two things have to be counted * separately, since one of the vcpu tasks will take on the job * of running the core, and the other vcpu tasks in the vcore will * sleep waiting for it to do that, but that sleep shouldn't count * as stolen time. * * Hence we accumulate stolen time when the vcpu can run as part of * a vcore using vc->stolen_tb, and the stolen time when the vcpu * needs its task to do other things in the kernel (for example, * service a page fault) in busy_stolen. We don't accumulate * stolen time for a vcore when it is inactive, or for a vcpu * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of * a misnomer; it means that the vcpu task is not executing in * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in * the kernel. We don't have any way of dividing up that time * between time that the vcpu is genuinely stopped, time that * the task is actively working on behalf of the vcpu, and time * that the task is preempted, so we don't count any of it as * stolen. * * Updates to busy_stolen are protected by arch.tbacct_lock; * updates to vc->stolen_tb are protected by the arch.tbacct_lock * of the vcpu that has taken responsibility for running the vcore * (i.e. vc->runner). The stolen times are measured in units of * timebase ticks. (Note that the != TB_NIL checks below are * purely defensive; they should never fail.) */ void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct kvmppc_vcore *vc = vcpu->arch.vcore; spin_lock(&vcpu->arch.tbacct_lock); if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE && vc->preempt_tb != TB_NIL) { vc->stolen_tb += mftb() - vc->preempt_tb; vc->preempt_tb = TB_NIL; } if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && vcpu->arch.busy_preempt != TB_NIL) { vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; vcpu->arch.busy_preempt = TB_NIL; } spin_unlock(&vcpu->arch.tbacct_lock); } void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) { struct kvmppc_vcore *vc = vcpu->arch.vcore; spin_lock(&vcpu->arch.tbacct_lock); if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) vc->preempt_tb = mftb(); if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) vcpu->arch.busy_preempt = mftb(); spin_unlock(&vcpu->arch.tbacct_lock); } void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) { vcpu->arch.shregs.msr = msr; kvmppc_end_cede(vcpu); } void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) { vcpu->arch.pvr = pvr; } void kvmppc_dump_regs(struct kvm_vcpu *vcpu) { int r; pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); pr_err("pc = %.16lx msr = %.16llx trap = %x\n", vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); for (r = 0; r < 16; ++r) pr_err("r%2d = %.16lx r%d = %.16lx\n", r, kvmppc_get_gpr(vcpu, r), r+16, kvmppc_get_gpr(vcpu, r+16)); pr_err("ctr = %.16lx lr = %.16lx\n", vcpu->arch.ctr, vcpu->arch.lr); pr_err("srr0 = %.16llx srr1 = %.16llx\n", vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); pr_err("fault dar = %.16lx dsisr = %.8x\n", vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); for (r = 0; r < vcpu->arch.slb_max; ++r) pr_err(" ESID = %.16llx VSID = %.16llx\n", vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1, vcpu->arch.last_inst); } struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) { int r; struct kvm_vcpu *v, *ret = NULL; mutex_lock(&kvm->lock); kvm_for_each_vcpu(r, v, kvm) { if (v->vcpu_id == id) { ret = v; break; } } mutex_unlock(&kvm->lock); return ret; } static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) { vpa->shared_proc = 1; vpa->yield_count = 1; } static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, unsigned long addr, unsigned long len) { /* check address is cacheline aligned */ if (addr & (L1_CACHE_BYTES - 1)) return -EINVAL; spin_lock(&vcpu->arch.vpa_update_lock); if (v->next_gpa != addr || v->len != len) { v->next_gpa = addr; v->len = addr ? len : 0; v->update_pending = 1; } spin_unlock(&vcpu->arch.vpa_update_lock); return 0; } /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ struct reg_vpa { u32 dummy; union { u16 hword; u32 word; } length; }; static int vpa_is_registered(struct kvmppc_vpa *vpap) { if (vpap->update_pending) return vpap->next_gpa != 0; return vpap->pinned_addr != NULL; } static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long vcpuid, unsigned long vpa) { struct kvm *kvm = vcpu->kvm; unsigned long len, nb; void *va; struct kvm_vcpu *tvcpu; int err; int subfunc; struct kvmppc_vpa *vpap; tvcpu = kvmppc_find_vcpu(kvm, vcpuid); if (!tvcpu) return H_PARAMETER; subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || subfunc == H_VPA_REG_SLB) { /* Registering new area - address must be cache-line aligned */ if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) return H_PARAMETER; /* convert logical addr to kernel addr and read length */ va = kvmppc_pin_guest_page(kvm, vpa, &nb); if (va == NULL) return H_PARAMETER; if (subfunc == H_VPA_REG_VPA) len = ((struct reg_vpa *)va)->length.hword; else len = ((struct reg_vpa *)va)->length.word; kvmppc_unpin_guest_page(kvm, va, vpa, false); /* Check length */ if (len > nb || len < sizeof(struct reg_vpa)) return H_PARAMETER; } else { vpa = 0; len = 0; } err = H_PARAMETER; vpap = NULL; spin_lock(&tvcpu->arch.vpa_update_lock); switch (subfunc) { case H_VPA_REG_VPA: /* register VPA */ if (len < sizeof(struct lppaca)) break; vpap = &tvcpu->arch.vpa; err = 0; break; case H_VPA_REG_DTL: /* register DTL */ if (len < sizeof(struct dtl_entry)) break; len -= len % sizeof(struct dtl_entry); /* Check that they have previously registered a VPA */ err = H_RESOURCE; if (!vpa_is_registered(&tvcpu->arch.vpa)) break; vpap = &tvcpu->arch.dtl; err = 0; break; case H_VPA_REG_SLB: /* register SLB shadow buffer */ /* Check that they have previously registered a VPA */ err = H_RESOURCE; if (!vpa_is_registered(&tvcpu->arch.vpa)) break; vpap = &tvcpu->arch.slb_shadow; err = 0; break; case H_VPA_DEREG_VPA: /* deregister VPA */ /* Check they don't still have a DTL or SLB buf registered */ err = H_RESOURCE; if (vpa_is_registered(&tvcpu->arch.dtl) || vpa_is_registered(&tvcpu->arch.slb_shadow)) break; vpap = &tvcpu->arch.vpa; err = 0; break; case H_VPA_DEREG_DTL: /* deregister DTL */ vpap = &tvcpu->arch.dtl; err = 0; break; case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ vpap = &tvcpu->arch.slb_shadow; err = 0; break; } if (vpap) { vpap->next_gpa = vpa; vpap->len = len; vpap->update_pending = 1; } spin_unlock(&tvcpu->arch.vpa_update_lock); return err; } static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) { struct kvm *kvm = vcpu->kvm; void *va; unsigned long nb; unsigned long gpa; /* * We need to pin the page pointed to by vpap->next_gpa, * but we can't call kvmppc_pin_guest_page under the lock * as it does get_user_pages() and down_read(). So we * have to drop the lock, pin the page, then get the lock * again and check that a new area didn't get registered * in the meantime. */ for (;;) { gpa = vpap->next_gpa; spin_unlock(&vcpu->arch.vpa_update_lock); va = NULL; nb = 0; if (gpa) va = kvmppc_pin_guest_page(kvm, gpa, &nb); spin_lock(&vcpu->arch.vpa_update_lock); if (gpa == vpap->next_gpa) break; /* sigh... unpin that one and try again */ if (va) kvmppc_unpin_guest_page(kvm, va, gpa, false); } vpap->update_pending = 0; if (va && nb < vpap->len) { /* * If it's now too short, it must be that userspace * has changed the mappings underlying guest memory, * so unregister the region. */ kvmppc_unpin_guest_page(kvm, va, gpa, false); va = NULL; } if (vpap->pinned_addr) kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, vpap->dirty); vpap->gpa = gpa; vpap->pinned_addr = va; vpap->dirty = false; if (va) vpap->pinned_end = va + vpap->len; } static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.vpa.update_pending || vcpu->arch.slb_shadow.update_pending || vcpu->arch.dtl.update_pending)) return; spin_lock(&vcpu->arch.vpa_update_lock); if (vcpu->arch.vpa.update_pending) { kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); if (vcpu->arch.vpa.pinned_addr) init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); } if (vcpu->arch.dtl.update_pending) { kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; vcpu->arch.dtl_index = 0; } if (vcpu->arch.slb_shadow.update_pending) kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); spin_unlock(&vcpu->arch.vpa_update_lock); } /* * Return the accumulated stolen time for the vcore up until `now'. * The caller should hold the vcore lock. */ static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) { u64 p; /* * If we are the task running the vcore, then since we hold * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb * can't be updated, so we don't need the tbacct_lock. * If the vcore is inactive, it can't become active (since we * hold the vcore lock), so the vcpu load/put functions won't * update stolen_tb/preempt_tb, and we don't need tbacct_lock. */ if (vc->vcore_state != VCORE_INACTIVE && vc->runner->arch.run_task != current) { spin_lock(&vc->runner->arch.tbacct_lock); p = vc->stolen_tb; if (vc->preempt_tb != TB_NIL) p += now - vc->preempt_tb; spin_unlock(&vc->runner->arch.tbacct_lock); } else { p = vc->stolen_tb; } return p; } static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) { struct dtl_entry *dt; struct lppaca *vpa; unsigned long stolen; unsigned long core_stolen; u64 now; dt = vcpu->arch.dtl_ptr; vpa = vcpu->arch.vpa.pinned_addr; now = mftb(); core_stolen = vcore_stolen_time(vc, now); stolen = core_stolen - vcpu->arch.stolen_logged; vcpu->arch.stolen_logged = core_stolen; spin_lock(&vcpu->arch.tbacct_lock); stolen += vcpu->arch.busy_stolen; vcpu->arch.busy_stolen = 0; spin_unlock(&vcpu->arch.tbacct_lock); if (!dt || !vpa) return; memset(dt, 0, sizeof(struct dtl_entry)); dt->dispatch_reason = 7; dt->processor_id = vc->pcpu + vcpu->arch.ptid; dt->timebase = now; dt->enqueue_to_dispatch_time = stolen; dt->srr0 = kvmppc_get_pc(vcpu); dt->srr1 = vcpu->arch.shregs.msr; ++dt; if (dt == vcpu->arch.dtl.pinned_end) dt = vcpu->arch.dtl.pinned_addr; vcpu->arch.dtl_ptr = dt; /* order writing *dt vs. writing vpa->dtl_idx */ smp_wmb(); vpa->dtl_idx = ++vcpu->arch.dtl_index; vcpu->arch.dtl.dirty = true; } int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) { unsigned long req = kvmppc_get_gpr(vcpu, 3); unsigned long target, ret = H_SUCCESS; struct kvm_vcpu *tvcpu; int idx, rc; switch (req) { case H_ENTER: idx = srcu_read_lock(&vcpu->kvm->srcu); ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6), kvmppc_get_gpr(vcpu, 7)); srcu_read_unlock(&vcpu->kvm->srcu, idx); break; case H_CEDE: break; case H_PROD: target = kvmppc_get_gpr(vcpu, 4); tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); if (!tvcpu) { ret = H_PARAMETER; break; } tvcpu->arch.prodded = 1; smp_mb(); if (vcpu->arch.ceded) { if (waitqueue_active(&vcpu->wq)) { wake_up_interruptible(&vcpu->wq); vcpu->stat.halt_wakeup++; } } break; case H_CONFER: break; case H_REGISTER_VPA: ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); break; case H_RTAS: if (list_empty(&vcpu->kvm->arch.rtas_tokens)) return RESUME_HOST; rc = kvmppc_rtas_hcall(vcpu); if (rc == -ENOENT) return RESUME_HOST; else if (rc == 0) break; /* Send the error out to userspace via KVM_RUN */ return rc; case H_XIRR: case H_CPPR: case H_EOI: case H_IPI: if (kvmppc_xics_enabled(vcpu)) { ret = kvmppc_xics_hcall(vcpu, req); break; } /* fallthrough */ default: return RESUME_HOST; } kvmppc_set_gpr(vcpu, 3, ret); vcpu->arch.hcall_needed = 0; return RESUME_GUEST; } static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, struct task_struct *tsk) { int r = RESUME_HOST; vcpu->stat.sum_exits++; run->exit_reason = KVM_EXIT_UNKNOWN; run->ready_for_interrupt_injection = 1; switch (vcpu->arch.trap) { /* We're good on these - the host merely wanted to get our attention */ case BOOK3S_INTERRUPT_HV_DECREMENTER: vcpu->stat.dec_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_EXTERNAL: vcpu->stat.ext_intr_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_PERFMON: r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_MACHINE_CHECK: /* * Deliver a machine check interrupt to the guest. * We have to do this, even if the host has handled the * machine check, because machine checks use SRR0/1 and * the interrupt might have trashed guest state in them. */ kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_MACHINE_CHECK); r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_PROGRAM: { ulong flags; /* * Normally program interrupts are delivered directly * to the guest by the hardware, but we can get here * as a result of a hypervisor emulation interrupt * (e40) getting turned into a 700 by BML RTAS. */ flags = vcpu->arch.shregs.msr & 0x1f0000ull; kvmppc_core_queue_program(vcpu, flags); r = RESUME_GUEST; break; } case BOOK3S_INTERRUPT_SYSCALL: { /* hcall - punt to userspace */ int i; if (vcpu->arch.shregs.msr & MSR_PR) { /* sc 1 from userspace - reflect to guest syscall */ kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL); r = RESUME_GUEST; break; } run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); for (i = 0; i < 9; ++i) run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); run->exit_reason = KVM_EXIT_PAPR_HCALL; vcpu->arch.hcall_needed = 1; r = RESUME_HOST; break; } /* * We get these next two if the guest accesses a page which it thinks * it has mapped but which is not actually present, either because * it is for an emulated I/O device or because the corresonding * host page has been paged out. Any other HDSI/HISI interrupts * have been handled already. */ case BOOK3S_INTERRUPT_H_DATA_STORAGE: r = RESUME_PAGE_FAULT; break; case BOOK3S_INTERRUPT_H_INST_STORAGE: vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); vcpu->arch.fault_dsisr = 0; r = RESUME_PAGE_FAULT; break; /* * This occurs if the guest executes an illegal instruction. * We just generate a program interrupt to the guest, since * we don't emulate any guest instructions at this stage. */ case BOOK3S_INTERRUPT_H_EMUL_ASSIST: kvmppc_core_queue_program(vcpu, 0x80000); r = RESUME_GUEST; break; default: kvmppc_dump_regs(vcpu); printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", vcpu->arch.trap, kvmppc_get_pc(vcpu), vcpu->arch.shregs.msr); r = RESUME_HOST; BUG(); break; } return r; } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int i; sregs->pvr = vcpu->arch.pvr; memset(sregs, 0, sizeof(struct kvm_sregs)); for (i = 0; i < vcpu->arch.slb_max; i++) { sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; } return 0; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int i, j; kvmppc_set_pvr(vcpu, sregs->pvr); j = 0; for (i = 0; i < vcpu->arch.slb_nr; i++) { if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; ++j; } } vcpu->arch.slb_max = j; return 0; } int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; long int i; switch (id) { case KVM_REG_PPC_HIOR: *val = get_reg_val(id, 0); break; case KVM_REG_PPC_DABR: *val = get_reg_val(id, vcpu->arch.dabr); break; case KVM_REG_PPC_DSCR: *val = get_reg_val(id, vcpu->arch.dscr); break; case KVM_REG_PPC_PURR: *val = get_reg_val(id, vcpu->arch.purr); break; case KVM_REG_PPC_SPURR: *val = get_reg_val(id, vcpu->arch.spurr); break; case KVM_REG_PPC_AMR: *val = get_reg_val(id, vcpu->arch.amr); break; case KVM_REG_PPC_UAMOR: *val = get_reg_val(id, vcpu->arch.uamor); break; case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: i = id - KVM_REG_PPC_MMCR0; *val = get_reg_val(id, vcpu->arch.mmcr[i]); break; case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: i = id - KVM_REG_PPC_PMC1; *val = get_reg_val(id, vcpu->arch.pmc[i]); break; #ifdef CONFIG_VSX case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: if (cpu_has_feature(CPU_FTR_VSX)) { /* VSX => FP reg i is stored in arch.vsr[2*i] */ long int i = id - KVM_REG_PPC_FPR0; *val = get_reg_val(id, vcpu->arch.vsr[2 * i]); } else { /* let generic code handle it */ r = -EINVAL; } break; case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: if (cpu_has_feature(CPU_FTR_VSX)) { long int i = id - KVM_REG_PPC_VSR0; val->vsxval[0] = vcpu->arch.vsr[2 * i]; val->vsxval[1] = vcpu->arch.vsr[2 * i + 1]; } else { r = -ENXIO; } break; #endif /* CONFIG_VSX */ case KVM_REG_PPC_VPA_ADDR: spin_lock(&vcpu->arch.vpa_update_lock); *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); spin_unlock(&vcpu->arch.vpa_update_lock); break; case KVM_REG_PPC_VPA_SLB: spin_lock(&vcpu->arch.vpa_update_lock); val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; val->vpaval.length = vcpu->arch.slb_shadow.len; spin_unlock(&vcpu->arch.vpa_update_lock); break; case KVM_REG_PPC_VPA_DTL: spin_lock(&vcpu->arch.vpa_update_lock); val->vpaval.addr = vcpu->arch.dtl.next_gpa; val->vpaval.length = vcpu->arch.dtl.len; spin_unlock(&vcpu->arch.vpa_update_lock); break; default: r = -EINVAL; break; } return r; } int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; long int i; unsigned long addr, len; switch (id) { case KVM_REG_PPC_HIOR: /* Only allow this to be set to zero */ if (set_reg_val(id, *val)) r = -EINVAL; break; case KVM_REG_PPC_DABR: vcpu->arch.dabr = set_reg_val(id, *val); break; case KVM_REG_PPC_DSCR: vcpu->arch.dscr = set_reg_val(id, *val); break; case KVM_REG_PPC_PURR: vcpu->arch.purr = set_reg_val(id, *val); break; case KVM_REG_PPC_SPURR: vcpu->arch.spurr = set_reg_val(id, *val); break; case KVM_REG_PPC_AMR: vcpu->arch.amr = set_reg_val(id, *val); break; case KVM_REG_PPC_UAMOR: vcpu->arch.uamor = set_reg_val(id, *val); break; case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: i = id - KVM_REG_PPC_MMCR0; vcpu->arch.mmcr[i] = set_reg_val(id, *val); break; case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: i = id - KVM_REG_PPC_PMC1; vcpu->arch.pmc[i] = set_reg_val(id, *val); break; #ifdef CONFIG_VSX case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: if (cpu_has_feature(CPU_FTR_VSX)) { /* VSX => FP reg i is stored in arch.vsr[2*i] */ long int i = id - KVM_REG_PPC_FPR0; vcpu->arch.vsr[2 * i] = set_reg_val(id, *val); } else { /* let generic code handle it */ r = -EINVAL; } break; case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: if (cpu_has_feature(CPU_FTR_VSX)) { long int i = id - KVM_REG_PPC_VSR0; vcpu->arch.vsr[2 * i] = val->vsxval[0]; vcpu->arch.vsr[2 * i + 1] = val->vsxval[1]; } else { r = -ENXIO; } break; #endif /* CONFIG_VSX */ case KVM_REG_PPC_VPA_ADDR: addr = set_reg_val(id, *val); r = -EINVAL; if (!addr && (vcpu->arch.slb_shadow.next_gpa || vcpu->arch.dtl.next_gpa)) break; r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); break; case KVM_REG_PPC_VPA_SLB: addr = val->vpaval.addr; len = val->vpaval.length; r = -EINVAL; if (addr && !vcpu->arch.vpa.next_gpa) break; r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); break; case KVM_REG_PPC_VPA_DTL: addr = val->vpaval.addr; len = val->vpaval.length; r = -EINVAL; if (addr && (len < sizeof(struct dtl_entry) || !vcpu->arch.vpa.next_gpa)) break; len -= len % sizeof(struct dtl_entry); r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); break; default: r = -EINVAL; break; } return r; } int kvmppc_core_check_processor_compat(void) { if (cpu_has_feature(CPU_FTR_HVMODE)) return 0; return -EIO; } struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) { struct kvm_vcpu *vcpu; int err = -EINVAL; int core; struct kvmppc_vcore *vcore; core = id / threads_per_core; if (core >= KVM_MAX_VCORES) goto out; err = -ENOMEM; vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); if (!vcpu) goto out; err = kvm_vcpu_init(vcpu, kvm, id); if (err) goto free_vcpu; vcpu->arch.shared = &vcpu->arch.shregs; vcpu->arch.mmcr[0] = MMCR0_FC; vcpu->arch.ctrl = CTRL_RUNLATCH; /* default to host PVR, since we can't spoof it */ vcpu->arch.pvr = mfspr(SPRN_PVR); kvmppc_set_pvr(vcpu, vcpu->arch.pvr); spin_lock_init(&vcpu->arch.vpa_update_lock); spin_lock_init(&vcpu->arch.tbacct_lock); vcpu->arch.busy_preempt = TB_NIL; kvmppc_mmu_book3s_hv_init(vcpu); vcpu->arch.state = KVMPPC_VCPU_NOTREADY; init_waitqueue_head(&vcpu->arch.cpu_run); mutex_lock(&kvm->lock); vcore = kvm->arch.vcores[core]; if (!vcore) { vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); if (vcore) { INIT_LIST_HEAD(&vcore->runnable_threads); spin_lock_init(&vcore->lock); init_waitqueue_head(&vcore->wq); vcore->preempt_tb = TB_NIL; } kvm->arch.vcores[core] = vcore; kvm->arch.online_vcores++; } mutex_unlock(&kvm->lock); if (!vcore) goto free_vcpu; spin_lock(&vcore->lock); ++vcore->num_threads; spin_unlock(&vcore->lock); vcpu->arch.vcore = vcore; vcpu->arch.cpu_type = KVM_CPU_3S_64; kvmppc_sanity_check(vcpu); return vcpu; free_vcpu: kmem_cache_free(kvm_vcpu_cache, vcpu); out: return ERR_PTR(err); } static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) { if (vpa->pinned_addr) kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, vpa->dirty); } void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) { spin_lock(&vcpu->arch.vpa_update_lock); unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); spin_unlock(&vcpu->arch.vpa_update_lock); kvm_vcpu_uninit(vcpu); kmem_cache_free(kvm_vcpu_cache, vcpu); } static void kvmppc_set_timer(struct kvm_vcpu *vcpu) { unsigned long dec_nsec, now; now = get_tb(); if (now > vcpu->arch.dec_expires) { /* decrementer has already gone negative */ kvmppc_core_queue_dec(vcpu); kvmppc_core_prepare_to_enter(vcpu); return; } dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC / tb_ticks_per_sec; hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), HRTIMER_MODE_REL); vcpu->arch.timer_running = 1; } static void kvmppc_end_cede(struct kvm_vcpu *vcpu) { vcpu->arch.ceded = 0; if (vcpu->arch.timer_running) { hrtimer_try_to_cancel(&vcpu->arch.dec_timer); vcpu->arch.timer_running = 0; } } extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); extern void xics_wake_cpu(int cpu); static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, struct kvm_vcpu *vcpu) { u64 now; if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) return; spin_lock(&vcpu->arch.tbacct_lock); now = mftb(); vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - vcpu->arch.stolen_logged; vcpu->arch.busy_preempt = now; vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; spin_unlock(&vcpu->arch.tbacct_lock); --vc->n_runnable; list_del(&vcpu->arch.run_list); } static int kvmppc_grab_hwthread(int cpu) { struct paca_struct *tpaca; long timeout = 1000; tpaca = &paca[cpu]; /* Ensure the thread won't go into the kernel if it wakes */ tpaca->kvm_hstate.hwthread_req = 1; tpaca->kvm_hstate.kvm_vcpu = NULL; /* * If the thread is already executing in the kernel (e.g. handling * a stray interrupt), wait for it to get back to nap mode. * The smp_mb() is to ensure that our setting of hwthread_req * is visible before we look at hwthread_state, so if this * races with the code at system_reset_pSeries and the thread * misses our setting of hwthread_req, we are sure to see its * setting of hwthread_state, and vice versa. */ smp_mb(); while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { if (--timeout <= 0) { pr_err("KVM: couldn't grab cpu %d\n", cpu); return -EBUSY; } udelay(1); } return 0; } static void kvmppc_release_hwthread(int cpu) { struct paca_struct *tpaca; tpaca = &paca[cpu]; tpaca->kvm_hstate.hwthread_req = 0; tpaca->kvm_hstate.kvm_vcpu = NULL; } static void kvmppc_start_thread(struct kvm_vcpu *vcpu) { int cpu; struct paca_struct *tpaca; struct kvmppc_vcore *vc = vcpu->arch.vcore; if (vcpu->arch.timer_running) { hrtimer_try_to_cancel(&vcpu->arch.dec_timer); vcpu->arch.timer_running = 0; } cpu = vc->pcpu + vcpu->arch.ptid; tpaca = &paca[cpu]; tpaca->kvm_hstate.kvm_vcpu = vcpu; tpaca->kvm_hstate.kvm_vcore = vc; tpaca->kvm_hstate.napping = 0; vcpu->cpu = vc->pcpu; smp_wmb(); #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) if (vcpu->arch.ptid) { xics_wake_cpu(cpu); ++vc->n_woken; } #endif } static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) { int i; HMT_low(); i = 0; while (vc->nap_count < vc->n_woken) { if (++i >= 1000000) { pr_err("kvmppc_wait_for_nap timeout %d %d\n", vc->nap_count, vc->n_woken); break; } cpu_relax(); } HMT_medium(); } /* * Check that we are on thread 0 and that any other threads in * this core are off-line. Then grab the threads so they can't * enter the kernel. */ static int on_primary_thread(void) { int cpu = smp_processor_id(); int thr = cpu_thread_in_core(cpu); if (thr) return 0; while (++thr < threads_per_core) if (cpu_online(cpu + thr)) return 0; /* Grab all hw threads so they can't go into the kernel */ for (thr = 1; thr < threads_per_core; ++thr) { if (kvmppc_grab_hwthread(cpu + thr)) { /* Couldn't grab one; let the others go */ do { kvmppc_release_hwthread(cpu + thr); } while (--thr > 0); return 0; } } return 1; } /* * Run a set of guest threads on a physical core. * Called with vc->lock held. */ static void kvmppc_run_core(struct kvmppc_vcore *vc) { struct kvm_vcpu *vcpu, *vcpu0, *vnext; long ret; u64 now; int ptid, i, need_vpa_update; int srcu_idx; struct kvm_vcpu *vcpus_to_update[threads_per_core]; /* don't start if any threads have a signal pending */ need_vpa_update = 0; list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { if (signal_pending(vcpu->arch.run_task)) return; if (vcpu->arch.vpa.update_pending || vcpu->arch.slb_shadow.update_pending || vcpu->arch.dtl.update_pending) vcpus_to_update[need_vpa_update++] = vcpu; } /* * Initialize *vc, in particular vc->vcore_state, so we can * drop the vcore lock if necessary. */ vc->n_woken = 0; vc->nap_count = 0; vc->entry_exit_count = 0; vc->vcore_state = VCORE_STARTING; vc->in_guest = 0; vc->napping_threads = 0; /* * Updating any of the vpas requires calling kvmppc_pin_guest_page, * which can't be called with any spinlocks held. */ if (need_vpa_update) { spin_unlock(&vc->lock); for (i = 0; i < need_vpa_update; ++i) kvmppc_update_vpas(vcpus_to_update[i]); spin_lock(&vc->lock); } /* * Assign physical thread IDs, first to non-ceded vcpus * and then to ceded ones. */ ptid = 0; vcpu0 = NULL; list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { if (!vcpu->arch.ceded) { if (!ptid) vcpu0 = vcpu; vcpu->arch.ptid = ptid++; } } if (!vcpu0) goto out; /* nothing to run; should never happen */ list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) if (vcpu->arch.ceded) vcpu->arch.ptid = ptid++; /* * Make sure we are running on thread 0, and that * secondary threads are offline. */ if (threads_per_core > 1 && !on_primary_thread()) { list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) vcpu->arch.ret = -EBUSY; goto out; } vc->pcpu = smp_processor_id(); list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { kvmppc_start_thread(vcpu); kvmppc_create_dtl_entry(vcpu, vc); } vc->vcore_state = VCORE_RUNNING; preempt_disable(); spin_unlock(&vc->lock); kvm_guest_enter(); srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu); __kvmppc_vcore_entry(NULL, vcpu0); spin_lock(&vc->lock); /* disable sending of IPIs on virtual external irqs */ list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) vcpu->cpu = -1; /* wait for secondary threads to finish writing their state to memory */ if (vc->nap_count < vc->n_woken) kvmppc_wait_for_nap(vc); for (i = 0; i < threads_per_core; ++i) kvmppc_release_hwthread(vc->pcpu + i); /* prevent other vcpu threads from doing kvmppc_start_thread() now */ vc->vcore_state = VCORE_EXITING; spin_unlock(&vc->lock); srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx); /* make sure updates to secondary vcpu structs are visible now */ smp_mb(); kvm_guest_exit(); preempt_enable(); kvm_resched(vcpu); spin_lock(&vc->lock); now = get_tb(); list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { /* cancel pending dec exception if dec is positive */ if (now < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu)) kvmppc_core_dequeue_dec(vcpu); ret = RESUME_GUEST; if (vcpu->arch.trap) ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu, vcpu->arch.run_task); vcpu->arch.ret = ret; vcpu->arch.trap = 0; if (vcpu->arch.ceded) { if (ret != RESUME_GUEST) kvmppc_end_cede(vcpu); else kvmppc_set_timer(vcpu); } } out: vc->vcore_state = VCORE_INACTIVE; list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, arch.run_list) { if (vcpu->arch.ret != RESUME_GUEST) { kvmppc_remove_runnable(vc, vcpu); wake_up(&vcpu->arch.cpu_run); } } } /* * Wait for some other vcpu thread to execute us, and * wake us up when we need to handle something in the host. */ static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) { DEFINE_WAIT(wait); prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) schedule(); finish_wait(&vcpu->arch.cpu_run, &wait); } /* * All the vcpus in this vcore are idle, so wait for a decrementer * or external interrupt to one of the vcpus. vc->lock is held. */ static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) { DEFINE_WAIT(wait); prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); vc->vcore_state = VCORE_SLEEPING; spin_unlock(&vc->lock); schedule(); finish_wait(&vc->wq, &wait); spin_lock(&vc->lock); vc->vcore_state = VCORE_INACTIVE; } static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) { int n_ceded; struct kvmppc_vcore *vc; struct kvm_vcpu *v, *vn; kvm_run->exit_reason = 0; vcpu->arch.ret = RESUME_GUEST; vcpu->arch.trap = 0; kvmppc_update_vpas(vcpu); /* * Synchronize with other threads in this virtual core */ vc = vcpu->arch.vcore; spin_lock(&vc->lock); vcpu->arch.ceded = 0; vcpu->arch.run_task = current; vcpu->arch.kvm_run = kvm_run; vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; vcpu->arch.busy_preempt = TB_NIL; list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); ++vc->n_runnable; /* * This happens the first time this is called for a vcpu. * If the vcore is already running, we may be able to start * this thread straight away and have it join in. */ if (!signal_pending(current)) { if (vc->vcore_state == VCORE_RUNNING && VCORE_EXIT_COUNT(vc) == 0) { vcpu->arch.ptid = vc->n_runnable - 1; kvmppc_create_dtl_entry(vcpu, vc); kvmppc_start_thread(vcpu); } else if (vc->vcore_state == VCORE_SLEEPING) { wake_up(&vc->wq); } } while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && !signal_pending(current)) { if (vc->vcore_state != VCORE_INACTIVE) { spin_unlock(&vc->lock); kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); spin_lock(&vc->lock); continue; } list_for_each_entry_safe(v, vn, &vc->runnable_threads, arch.run_list) { kvmppc_core_prepare_to_enter(v); if (signal_pending(v->arch.run_task)) { kvmppc_remove_runnable(vc, v); v->stat.signal_exits++; v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; v->arch.ret = -EINTR; wake_up(&v->arch.cpu_run); } } if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) break; vc->runner = vcpu; n_ceded = 0; list_for_each_entry(v, &vc->runnable_threads, arch.run_list) if (!v->arch.pending_exceptions) n_ceded += v->arch.ceded; if (n_ceded == vc->n_runnable) kvmppc_vcore_blocked(vc); else kvmppc_run_core(vc); vc->runner = NULL; } while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && (vc->vcore_state == VCORE_RUNNING || vc->vcore_state == VCORE_EXITING)) { spin_unlock(&vc->lock); kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); spin_lock(&vc->lock); } if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { kvmppc_remove_runnable(vc, vcpu); vcpu->stat.signal_exits++; kvm_run->exit_reason = KVM_EXIT_INTR; vcpu->arch.ret = -EINTR; } if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { /* Wake up some vcpu to run the core */ v = list_first_entry(&vc->runnable_threads, struct kvm_vcpu, arch.run_list); wake_up(&v->arch.cpu_run); } spin_unlock(&vc->lock); return vcpu->arch.ret; } int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) { int r; int srcu_idx; if (!vcpu->arch.sane) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return -EINVAL; } kvmppc_core_prepare_to_enter(vcpu); /* No need to go into the guest when all we'll do is come back out */ if (signal_pending(current)) { run->exit_reason = KVM_EXIT_INTR; return -EINTR; } atomic_inc(&vcpu->kvm->arch.vcpus_running); /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */ smp_mb(); /* On the first time here, set up HTAB and VRMA or RMA */ if (!vcpu->kvm->arch.rma_setup_done) { r = kvmppc_hv_setup_htab_rma(vcpu); if (r) goto out; } flush_fp_to_thread(current); flush_altivec_to_thread(current); flush_vsx_to_thread(current); vcpu->arch.wqp = &vcpu->arch.vcore->wq; vcpu->arch.pgdir = current->mm->pgd; vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; do { r = kvmppc_run_vcpu(run, vcpu); if (run->exit_reason == KVM_EXIT_PAPR_HCALL && !(vcpu->arch.shregs.msr & MSR_PR)) { r = kvmppc_pseries_do_hcall(vcpu); kvmppc_core_prepare_to_enter(vcpu); } else if (r == RESUME_PAGE_FAULT) { srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); r = kvmppc_book3s_hv_page_fault(run, vcpu, vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); } } while (r == RESUME_GUEST); out: vcpu->arch.state = KVMPPC_VCPU_NOTREADY; atomic_dec(&vcpu->kvm->arch.vcpus_running); return r; } /* Work out RMLS (real mode limit selector) field value for a given RMA size. Assumes POWER7 or PPC970. */ static inline int lpcr_rmls(unsigned long rma_size) { switch (rma_size) { case 32ul << 20: /* 32 MB */ if (cpu_has_feature(CPU_FTR_ARCH_206)) return 8; /* only supported on POWER7 */ return -1; case 64ul << 20: /* 64 MB */ return 3; case 128ul << 20: /* 128 MB */ return 7; case 256ul << 20: /* 256 MB */ return 4; case 1ul << 30: /* 1 GB */ return 2; case 16ul << 30: /* 16 GB */ return 1; case 256ul << 30: /* 256 GB */ return 0; default: return -1; } } static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { struct kvmppc_linear_info *ri = vma->vm_file->private_data; struct page *page; if (vmf->pgoff >= ri->npages) return VM_FAULT_SIGBUS; page = pfn_to_page(ri->base_pfn + vmf->pgoff); get_page(page); vmf->page = page; return 0; } static const struct vm_operations_struct kvm_rma_vm_ops = { .fault = kvm_rma_fault, }; static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) { vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; vma->vm_ops = &kvm_rma_vm_ops; return 0; } static int kvm_rma_release(struct inode *inode, struct file *filp) { struct kvmppc_linear_info *ri = filp->private_data; kvm_release_rma(ri); return 0; } static struct file_operations kvm_rma_fops = { .mmap = kvm_rma_mmap, .release = kvm_rma_release, }; long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret) { struct kvmppc_linear_info *ri; long fd; ri = kvm_alloc_rma(); if (!ri) return -ENOMEM; fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR); if (fd < 0) kvm_release_rma(ri); ret->rma_size = ri->npages << PAGE_SHIFT; return fd; } static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, int linux_psize) { struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; if (!def->shift) return; (*sps)->page_shift = def->shift; (*sps)->slb_enc = def->sllp; (*sps)->enc[0].page_shift = def->shift; (*sps)->enc[0].pte_enc = def->penc; (*sps)++; } int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info) { struct kvm_ppc_one_seg_page_size *sps; info->flags = KVM_PPC_PAGE_SIZES_REAL; if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) info->flags |= KVM_PPC_1T_SEGMENTS; info->slb_size = mmu_slb_size; /* We only support these sizes for now, and no muti-size segments */ sps = &info->sps[0]; kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); return 0; } /* * Get (and clear) the dirty memory log for a memory slot. */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { struct kvm_memory_slot *memslot; int r; unsigned long n; mutex_lock(&kvm->slots_lock); r = -EINVAL; if (log->slot >= KVM_USER_MEM_SLOTS) goto out; memslot = id_to_memslot(kvm->memslots, log->slot); r = -ENOENT; if (!memslot->dirty_bitmap) goto out; n = kvm_dirty_bitmap_bytes(memslot); memset(memslot->dirty_bitmap, 0, n); r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); if (r) goto out; r = -EFAULT; if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) goto out; r = 0; out: mutex_unlock(&kvm->slots_lock); return r; } static void unpin_slot(struct kvm_memory_slot *memslot) { unsigned long *physp; unsigned long j, npages, pfn; struct page *page; physp = memslot->arch.slot_phys; npages = memslot->npages; if (!physp) return; for (j = 0; j < npages; j++) { if (!(physp[j] & KVMPPC_GOT_PAGE)) continue; pfn = physp[j] >> PAGE_SHIFT; page = pfn_to_page(pfn); SetPageDirty(page); put_page(page); } } void kvmppc_core_free_memslot(struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { if (!dont || free->arch.rmap != dont->arch.rmap) { vfree(free->arch.rmap); free->arch.rmap = NULL; } if (!dont || free->arch.slot_phys != dont->arch.slot_phys) { unpin_slot(free); vfree(free->arch.slot_phys); free->arch.slot_phys = NULL; } } int kvmppc_core_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) { slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); if (!slot->arch.rmap) return -ENOMEM; slot->arch.slot_phys = NULL; return 0; } int kvmppc_core_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, struct kvm_userspace_memory_region *mem) { unsigned long *phys; /* Allocate a slot_phys array if needed */ phys = memslot->arch.slot_phys; if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) { phys = vzalloc(memslot->npages * sizeof(unsigned long)); if (!phys) return -ENOMEM; memslot->arch.slot_phys = phys; } return 0; } void kvmppc_core_commit_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old) { unsigned long npages = mem->memory_size >> PAGE_SHIFT; struct kvm_memory_slot *memslot; if (npages && old->npages) { /* * If modifying a memslot, reset all the rmap dirty bits. * If this is a new memslot, we don't need to do anything * since the rmap array starts out as all zeroes, * i.e. no pages are dirty. */ memslot = id_to_memslot(kvm->memslots, mem->slot); kvmppc_hv_get_dirty_log(kvm, memslot, NULL); } } static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) { int err = 0; struct kvm *kvm = vcpu->kvm; struct kvmppc_linear_info *ri = NULL; unsigned long hva; struct kvm_memory_slot *memslot; struct vm_area_struct *vma; unsigned long lpcr, senc; unsigned long psize, porder; unsigned long rma_size; unsigned long rmls; unsigned long *physp; unsigned long i, npages; int srcu_idx; mutex_lock(&kvm->lock); if (kvm->arch.rma_setup_done) goto out; /* another vcpu beat us to it */ /* Allocate hashed page table (if not done already) and reset it */ if (!kvm->arch.hpt_virt) { err = kvmppc_alloc_hpt(kvm, NULL); if (err) { pr_err("KVM: Couldn't alloc HPT\n"); goto out; } } /* Look up the memslot for guest physical address 0 */ srcu_idx = srcu_read_lock(&kvm->srcu); memslot = gfn_to_memslot(kvm, 0); /* We must have some memory at 0 by now */ err = -EINVAL; if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) goto out_srcu; /* Look up the VMA for the start of this memory slot */ hva = memslot->userspace_addr; down_read(¤t->mm->mmap_sem); vma = find_vma(current->mm, hva); if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) goto up_out; psize = vma_kernel_pagesize(vma); porder = __ilog2(psize); /* Is this one of our preallocated RMAs? */ if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops && hva == vma->vm_start) ri = vma->vm_file->private_data; up_read(¤t->mm->mmap_sem); if (!ri) { /* On POWER7, use VRMA; on PPC970, give up */ err = -EPERM; if (cpu_has_feature(CPU_FTR_ARCH_201)) { pr_err("KVM: CPU requires an RMO\n"); goto out_srcu; } /* We can handle 4k, 64k or 16M pages in the VRMA */ err = -EINVAL; if (!(psize == 0x1000 || psize == 0x10000 || psize == 0x1000000)) goto out_srcu; /* Update VRMASD field in the LPCR */ senc = slb_pgsize_encoding(psize); kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | (VRMA_VSID << SLB_VSID_SHIFT_1T); lpcr = kvm->arch.lpcr & ~LPCR_VRMASD; lpcr |= senc << (LPCR_VRMASD_SH - 4); kvm->arch.lpcr = lpcr; /* Create HPTEs in the hash page table for the VRMA */ kvmppc_map_vrma(vcpu, memslot, porder); } else { /* Set up to use an RMO region */ rma_size = ri->npages; if (rma_size > memslot->npages) rma_size = memslot->npages; rma_size <<= PAGE_SHIFT; rmls = lpcr_rmls(rma_size); err = -EINVAL; if (rmls < 0) { pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size); goto out_srcu; } atomic_inc(&ri->use_count); kvm->arch.rma = ri; /* Update LPCR and RMOR */ lpcr = kvm->arch.lpcr; if (cpu_has_feature(CPU_FTR_ARCH_201)) { /* PPC970; insert RMLS value (split field) in HID4 */ lpcr &= ~((1ul << HID4_RMLS0_SH) | (3ul << HID4_RMLS2_SH)); lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) | ((rmls & 3) << HID4_RMLS2_SH); /* RMOR is also in HID4 */ lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) << HID4_RMOR_SH; } else { /* POWER7 */ lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L); lpcr |= rmls << LPCR_RMLS_SH; kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT; } kvm->arch.lpcr = lpcr; pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n", ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); /* Initialize phys addrs of pages in RMO */ npages = ri->npages; porder = __ilog2(npages); physp = memslot->arch.slot_phys; if (physp) { if (npages > memslot->npages) npages = memslot->npages; spin_lock(&kvm->arch.slot_phys_lock); for (i = 0; i < npages; ++i) physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder; spin_unlock(&kvm->arch.slot_phys_lock); } } /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */ smp_wmb(); kvm->arch.rma_setup_done = 1; err = 0; out_srcu: srcu_read_unlock(&kvm->srcu, srcu_idx); out: mutex_unlock(&kvm->lock); return err; up_out: up_read(¤t->mm->mmap_sem); goto out; } int kvmppc_core_init_vm(struct kvm *kvm) { unsigned long lpcr, lpid; /* Allocate the guest's logical partition ID */ lpid = kvmppc_alloc_lpid(); if (lpid < 0) return -ENOMEM; kvm->arch.lpid = lpid; /* * Since we don't flush the TLB when tearing down a VM, * and this lpid might have previously been used, * make sure we flush on each core before running the new VM. */ cpumask_setall(&kvm->arch.need_tlb_flush); INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables); INIT_LIST_HEAD(&kvm->arch.rtas_tokens); kvm->arch.rma = NULL; kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); if (cpu_has_feature(CPU_FTR_ARCH_201)) { /* PPC970; HID4 is effectively the LPCR */ kvm->arch.host_lpid = 0; kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | ((lpid & 0xf) << HID4_LPID5_SH); } else { /* POWER7; init LPCR for virtual RMA mode */ kvm->arch.host_lpid = mfspr(SPRN_LPID); kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); lpcr &= LPCR_PECE | LPCR_LPES; lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | LPCR_VPM0 | LPCR_VPM1; kvm->arch.vrma_slb_v = SLB_VSID_B_1T | (VRMA_VSID << SLB_VSID_SHIFT_1T); } kvm->arch.lpcr = lpcr; kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); spin_lock_init(&kvm->arch.slot_phys_lock); /* * Don't allow secondary CPU threads to come online * while any KVM VMs exist. */ inhibit_secondary_onlining(); return 0; } void kvmppc_core_destroy_vm(struct kvm *kvm) { uninhibit_secondary_onlining(); if (kvm->arch.rma) { kvm_release_rma(kvm->arch.rma); kvm->arch.rma = NULL; } kvmppc_rtas_tokens_free(kvm); kvmppc_free_hpt(kvm); WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); } /* These are stubs for now */ void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) { } /* We don't need to emulate any privileged instructions or dcbz */ int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned int inst, int *advance) { return EMULATE_FAIL; } int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val) { return EMULATE_FAIL; } int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val) { return EMULATE_FAIL; } static int kvmppc_book3s_hv_init(void) { int r; r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); if (r) return r; r = kvmppc_mmu_hv_init(); return r; } static void kvmppc_book3s_hv_exit(void) { kvm_exit(); } module_init(kvmppc_book3s_hv_init); module_exit(kvmppc_book3s_hv_exit);