/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_DMA_MAPPING_H #define _LINUX_DMA_MAPPING_H #include #include #include #include #include #include #include #include #include /** * List of possible attributes associated with a DMA mapping. The semantics * of each attribute should be defined in Documentation/DMA-attributes.txt. * * DMA_ATTR_WRITE_BARRIER: DMA to a memory region with this attribute * forces all pending DMA writes to complete. */ #define DMA_ATTR_WRITE_BARRIER (1UL << 0) /* * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping * may be weakly ordered, that is that reads and writes may pass each other. */ #define DMA_ATTR_WEAK_ORDERING (1UL << 1) /* * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be * buffered to improve performance. */ #define DMA_ATTR_WRITE_COMBINE (1UL << 2) /* * DMA_ATTR_NON_CONSISTENT: Lets the platform to choose to return either * consistent or non-consistent memory as it sees fit. */ #define DMA_ATTR_NON_CONSISTENT (1UL << 3) /* * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel * virtual mapping for the allocated buffer. */ #define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4) /* * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of * the CPU cache for the given buffer assuming that it has been already * transferred to 'device' domain. */ #define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5) /* * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer * in physical memory. */ #define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6) /* * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem * that it's probably not worth the time to try to allocate memory to in a way * that gives better TLB efficiency. */ #define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7) /* * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress * allocation failure reports (similarly to __GFP_NOWARN). */ #define DMA_ATTR_NO_WARN (1UL << 8) /* * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully * accessible at an elevated privilege level (and ideally inaccessible or * at least read-only at lesser-privileged levels). */ #define DMA_ATTR_PRIVILEGED (1UL << 9) /* * A dma_addr_t can hold any valid DMA or bus address for the platform. * It can be given to a device to use as a DMA source or target. A CPU cannot * reference a dma_addr_t directly because there may be translation between * its physical address space and the bus address space. */ struct dma_map_ops { void* (*alloc)(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); void (*free)(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, unsigned long attrs); int (*mmap)(struct device *, struct vm_area_struct *, void *, dma_addr_t, size_t, unsigned long attrs); int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *, dma_addr_t, size_t, unsigned long attrs); dma_addr_t (*map_page)(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs); void (*unmap_page)(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir, unsigned long attrs); /* * map_sg returns 0 on error and a value > 0 on success. * It should never return a value < 0. */ int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs); void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs); dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr, size_t size, enum dma_data_direction dir, unsigned long attrs); void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir, unsigned long attrs); void (*sync_single_for_cpu)(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir); void (*sync_single_for_device)(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir); void (*sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir); void (*sync_sg_for_device)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir); void (*cache_sync)(struct device *dev, void *vaddr, size_t size, enum dma_data_direction direction); int (*mapping_error)(struct device *dev, dma_addr_t dma_addr); int (*dma_supported)(struct device *dev, u64 mask); #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK u64 (*get_required_mask)(struct device *dev); #endif }; extern const struct dma_map_ops dma_direct_ops; extern const struct dma_map_ops dma_virt_ops; #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) #define DMA_MASK_NONE 0x0ULL static inline int valid_dma_direction(int dma_direction) { return ((dma_direction == DMA_BIDIRECTIONAL) || (dma_direction == DMA_TO_DEVICE) || (dma_direction == DMA_FROM_DEVICE)); } static inline int is_device_dma_capable(struct device *dev) { return dev->dma_mask != NULL && *dev->dma_mask != DMA_MASK_NONE; } #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT /* * These three functions are only for dma allocator. * Don't use them in device drivers. */ int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size, dma_addr_t *dma_handle, void **ret); int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr); int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, size_t size, int *ret); void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle); int dma_release_from_global_coherent(int order, void *vaddr); int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr, size_t size, int *ret); #else #define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0) #define dma_release_from_dev_coherent(dev, order, vaddr) (0) #define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0) static inline void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle) { return NULL; } static inline int dma_release_from_global_coherent(int order, void *vaddr) { return 0; } static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr, size_t size, int *ret) { return 0; } #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ #ifdef CONFIG_HAS_DMA #include static inline const struct dma_map_ops *get_dma_ops(struct device *dev) { if (dev && dev->dma_ops) return dev->dma_ops; return get_arch_dma_ops(dev ? dev->bus : NULL); } static inline void set_dma_ops(struct device *dev, const struct dma_map_ops *dma_ops) { dev->dma_ops = dma_ops; } #else /* * Define the dma api to allow compilation of dma dependent code. * Code that depends on the dma-mapping API needs to set 'depends on HAS_DMA' * in its Kconfig, unless it already depends on || COMPILE_TEST, * where guarantuees the availability of the dma-mapping API. */ static inline const struct dma_map_ops *get_dma_ops(struct device *dev) { return NULL; } #endif static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr, size_t size, enum dma_data_direction dir, unsigned long attrs) { const struct dma_map_ops *ops = get_dma_ops(dev); dma_addr_t addr; BUG_ON(!valid_dma_direction(dir)); addr = ops->map_page(dev, virt_to_page(ptr), offset_in_page(ptr), size, dir, attrs); debug_dma_map_page(dev, virt_to_page(ptr), offset_in_page(ptr), size, dir, addr, true); return addr; } static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops->unmap_page) ops->unmap_page(dev, addr, size, dir, attrs); debug_dma_unmap_page(dev, addr, size, dir, true); } /* * dma_maps_sg_attrs returns 0 on error and > 0 on success. * It should never return a value < 0. */ static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { const struct dma_map_ops *ops = get_dma_ops(dev); int ents; BUG_ON(!valid_dma_direction(dir)); ents = ops->map_sg(dev, sg, nents, dir, attrs); BUG_ON(ents < 0); debug_dma_map_sg(dev, sg, nents, ents, dir); return ents; } static inline void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); debug_dma_unmap_sg(dev, sg, nents, dir); if (ops->unmap_sg) ops->unmap_sg(dev, sg, nents, dir, attrs); } static inline dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, size_t offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { const struct dma_map_ops *ops = get_dma_ops(dev); dma_addr_t addr; BUG_ON(!valid_dma_direction(dir)); addr = ops->map_page(dev, page, offset, size, dir, attrs); debug_dma_map_page(dev, page, offset, size, dir, addr, false); return addr; } static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops->unmap_page) ops->unmap_page(dev, addr, size, dir, attrs); debug_dma_unmap_page(dev, addr, size, dir, false); } static inline dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { const struct dma_map_ops *ops = get_dma_ops(dev); dma_addr_t addr; BUG_ON(!valid_dma_direction(dir)); /* Don't allow RAM to be mapped */ BUG_ON(pfn_valid(PHYS_PFN(phys_addr))); addr = phys_addr; if (ops->map_resource) addr = ops->map_resource(dev, phys_addr, size, dir, attrs); debug_dma_map_resource(dev, phys_addr, size, dir, addr); return addr; } static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops->unmap_resource) ops->unmap_resource(dev, addr, size, dir, attrs); debug_dma_unmap_resource(dev, addr, size, dir); } static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops->sync_single_for_cpu) ops->sync_single_for_cpu(dev, addr, size, dir); debug_dma_sync_single_for_cpu(dev, addr, size, dir); } static inline void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops->sync_single_for_device) ops->sync_single_for_device(dev, addr, size, dir); debug_dma_sync_single_for_device(dev, addr, size, dir); } static inline void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t addr, unsigned long offset, size_t size, enum dma_data_direction dir) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops->sync_single_for_cpu) ops->sync_single_for_cpu(dev, addr + offset, size, dir); debug_dma_sync_single_range_for_cpu(dev, addr, offset, size, dir); } static inline void dma_sync_single_range_for_device(struct device *dev, dma_addr_t addr, unsigned long offset, size_t size, enum dma_data_direction dir) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops->sync_single_for_device) ops->sync_single_for_device(dev, addr + offset, size, dir); debug_dma_sync_single_range_for_device(dev, addr, offset, size, dir); } static inline void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops->sync_sg_for_cpu) ops->sync_sg_for_cpu(dev, sg, nelems, dir); debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); } static inline void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops->sync_sg_for_device) ops->sync_sg_for_device(dev, sg, nelems, dir); debug_dma_sync_sg_for_device(dev, sg, nelems, dir); } #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0) #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0) #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0) #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0) #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0) #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0) static inline void dma_cache_sync(struct device *dev, void *vaddr, size_t size, enum dma_data_direction dir) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!valid_dma_direction(dir)); if (ops->cache_sync) ops->cache_sync(dev, vaddr, size, dir); } extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size); void *dma_common_contiguous_remap(struct page *page, size_t size, unsigned long vm_flags, pgprot_t prot, const void *caller); void *dma_common_pages_remap(struct page **pages, size_t size, unsigned long vm_flags, pgprot_t prot, const void *caller); void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags); /** * dma_mmap_attrs - map a coherent DMA allocation into user space * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices * @vma: vm_area_struct describing requested user mapping * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs * @handle: device-view address returned from dma_alloc_attrs * @size: size of memory originally requested in dma_alloc_attrs * @attrs: attributes of mapping properties requested in dma_alloc_attrs * * Map a coherent DMA buffer previously allocated by dma_alloc_attrs * into user space. The coherent DMA buffer must not be freed by the * driver until the user space mapping has been released. */ static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!ops); if (ops->mmap) return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size); } #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0) int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size); static inline int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!ops); if (ops->get_sgtable) return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size); } #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0) #ifndef arch_dma_alloc_attrs #define arch_dma_alloc_attrs(dev) (true) #endif static inline void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs) { const struct dma_map_ops *ops = get_dma_ops(dev); void *cpu_addr; BUG_ON(!ops); WARN_ON_ONCE(dev && !dev->coherent_dma_mask); if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) return cpu_addr; /* let the implementation decide on the zone to allocate from: */ flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); if (!arch_dma_alloc_attrs(&dev)) return NULL; if (!ops->alloc) return NULL; cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); return cpu_addr; } static inline void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle, unsigned long attrs) { const struct dma_map_ops *ops = get_dma_ops(dev); BUG_ON(!ops); if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) return; /* * On non-coherent platforms which implement DMA-coherent buffers via * non-cacheable remaps, ops->free() may call vunmap(). Thus getting * this far in IRQ context is a) at risk of a BUG_ON() or trying to * sleep on some machines, and b) an indication that the driver is * probably misusing the coherent API anyway. */ WARN_ON(irqs_disabled()); if (!ops->free || !cpu_addr) return; debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); ops->free(dev, size, cpu_addr, dma_handle, attrs); } static inline void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) { return dma_alloc_attrs(dev, size, dma_handle, flag, 0); } static inline void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle) { return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0); } static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { const struct dma_map_ops *ops = get_dma_ops(dev); debug_dma_mapping_error(dev, dma_addr); if (ops->mapping_error) return ops->mapping_error(dev, dma_addr); return 0; } static inline void dma_check_mask(struct device *dev, u64 mask) { if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1))) dev_warn(dev, "SME is active, device will require DMA bounce buffers\n"); } static inline int dma_supported(struct device *dev, u64 mask) { const struct dma_map_ops *ops = get_dma_ops(dev); if (!ops) return 0; if (!ops->dma_supported) return 1; return ops->dma_supported(dev, mask); } #ifndef HAVE_ARCH_DMA_SET_MASK static inline int dma_set_mask(struct device *dev, u64 mask) { if (!dev->dma_mask || !dma_supported(dev, mask)) return -EIO; dma_check_mask(dev, mask); *dev->dma_mask = mask; return 0; } #endif static inline u64 dma_get_mask(struct device *dev) { if (dev && dev->dma_mask && *dev->dma_mask) return *dev->dma_mask; return DMA_BIT_MASK(32); } #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK int dma_set_coherent_mask(struct device *dev, u64 mask); #else static inline int dma_set_coherent_mask(struct device *dev, u64 mask) { if (!dma_supported(dev, mask)) return -EIO; dma_check_mask(dev, mask); dev->coherent_dma_mask = mask; return 0; } #endif /* * Set both the DMA mask and the coherent DMA mask to the same thing. * Note that we don't check the return value from dma_set_coherent_mask() * as the DMA API guarantees that the coherent DMA mask can be set to * the same or smaller than the streaming DMA mask. */ static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask) { int rc = dma_set_mask(dev, mask); if (rc == 0) dma_set_coherent_mask(dev, mask); return rc; } /* * Similar to the above, except it deals with the case where the device * does not have dev->dma_mask appropriately setup. */ static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask) { dev->dma_mask = &dev->coherent_dma_mask; return dma_set_mask_and_coherent(dev, mask); } extern u64 dma_get_required_mask(struct device *dev); #ifndef arch_setup_dma_ops static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *iommu, bool coherent) { } #endif #ifndef arch_teardown_dma_ops static inline void arch_teardown_dma_ops(struct device *dev) { dev->dma_ops = NULL; } #endif static inline unsigned int dma_get_max_seg_size(struct device *dev) { if (dev->dma_parms && dev->dma_parms->max_segment_size) return dev->dma_parms->max_segment_size; return SZ_64K; } static inline unsigned int dma_set_max_seg_size(struct device *dev, unsigned int size) { if (dev->dma_parms) { dev->dma_parms->max_segment_size = size; return 0; } return -EIO; } static inline unsigned long dma_get_seg_boundary(struct device *dev) { if (dev->dma_parms && dev->dma_parms->segment_boundary_mask) return dev->dma_parms->segment_boundary_mask; return DMA_BIT_MASK(32); } static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask) { if (dev->dma_parms) { dev->dma_parms->segment_boundary_mask = mask; return 0; } return -EIO; } #ifndef dma_max_pfn static inline unsigned long dma_max_pfn(struct device *dev) { return (*dev->dma_mask >> PAGE_SHIFT) + dev->dma_pfn_offset; } #endif static inline void *dma_zalloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) { void *ret = dma_alloc_coherent(dev, size, dma_handle, flag | __GFP_ZERO); return ret; } static inline int dma_get_cache_alignment(void) { #ifdef ARCH_DMA_MINALIGN return ARCH_DMA_MINALIGN; #endif return 1; } /* flags for the coherent memory api */ #define DMA_MEMORY_EXCLUSIVE 0x01 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags); void dma_release_declared_memory(struct device *dev); void *dma_mark_declared_memory_occupied(struct device *dev, dma_addr_t device_addr, size_t size); #else static inline int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags) { return -ENOSYS; } static inline void dma_release_declared_memory(struct device *dev) { } static inline void * dma_mark_declared_memory_occupied(struct device *dev, dma_addr_t device_addr, size_t size) { return ERR_PTR(-EBUSY); } #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ /* * Managed DMA API */ #ifdef CONFIG_HAS_DMA extern void *dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp); extern void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle); #else /* !CONFIG_HAS_DMA */ static inline void *dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp) { return NULL; } static inline void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle) { } #endif /* !CONFIG_HAS_DMA */ extern void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT extern int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags); extern void dmam_release_declared_memory(struct device *dev); #else /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ static inline int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, gfp_t gfp) { return 0; } static inline void dmam_release_declared_memory(struct device *dev) { } #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ static inline void *dma_alloc_wc(struct device *dev, size_t size, dma_addr_t *dma_addr, gfp_t gfp) { return dma_alloc_attrs(dev, size, dma_addr, gfp, DMA_ATTR_WRITE_COMBINE); } #ifndef dma_alloc_writecombine #define dma_alloc_writecombine dma_alloc_wc #endif static inline void dma_free_wc(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr) { return dma_free_attrs(dev, size, cpu_addr, dma_addr, DMA_ATTR_WRITE_COMBINE); } #ifndef dma_free_writecombine #define dma_free_writecombine dma_free_wc #endif static inline int dma_mmap_wc(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size) { return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, DMA_ATTR_WRITE_COMBINE); } #ifndef dma_mmap_writecombine #define dma_mmap_writecombine dma_mmap_wc #endif #ifdef CONFIG_NEED_DMA_MAP_STATE #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME #define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME) #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL)) #define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME) #define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL)) #else #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) #define dma_unmap_addr(PTR, ADDR_NAME) (0) #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0) #define dma_unmap_len(PTR, LEN_NAME) (0) #define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0) #endif #endif