// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ #include "ice_common.h" #include "ice_sched.h" #include "ice_adminq_cmd.h" #define ICE_PF_RESET_WAIT_COUNT 200 #define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \ wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \ ((ICE_RX_OPC_MDID << \ GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \ GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \ (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \ GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M)) #define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \ wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \ (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \ GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \ (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \ GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \ (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \ GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \ (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \ GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M)) /** * ice_set_mac_type - Sets MAC type * @hw: pointer to the HW structure * * This function sets the MAC type of the adapter based on the * vendor ID and device ID stored in the HW structure. */ static enum ice_status ice_set_mac_type(struct ice_hw *hw) { if (hw->vendor_id != PCI_VENDOR_ID_INTEL) return ICE_ERR_DEVICE_NOT_SUPPORTED; hw->mac_type = ICE_MAC_GENERIC; return 0; } /** * ice_dev_onetime_setup - Temporary HW/FW workarounds * @hw: pointer to the HW structure * * This function provides temporary workarounds for certain issues * that are expected to be fixed in the HW/FW. */ void ice_dev_onetime_setup(struct ice_hw *hw) { /* configure Rx - set non pxe mode */ wr32(hw, GLLAN_RCTL_0, 0x1); #define MBX_PF_VT_PFALLOC 0x00231E80 /* set VFs per PF */ wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF)); } /** * ice_clear_pf_cfg - Clear PF configuration * @hw: pointer to the hardware structure * * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port * configuration, flow director filters, etc.). */ enum ice_status ice_clear_pf_cfg(struct ice_hw *hw) { struct ice_aq_desc desc; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg); return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); } /** * ice_aq_manage_mac_read - manage MAC address read command * @hw: pointer to the HW struct * @buf: a virtual buffer to hold the manage MAC read response * @buf_size: Size of the virtual buffer * @cd: pointer to command details structure or NULL * * This function is used to return per PF station MAC address (0x0107). * NOTE: Upon successful completion of this command, MAC address information * is returned in user specified buffer. Please interpret user specified * buffer as "manage_mac_read" response. * Response such as various MAC addresses are stored in HW struct (port.mac) * ice_aq_discover_caps is expected to be called before this function is called. */ static enum ice_status ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size, struct ice_sq_cd *cd) { struct ice_aqc_manage_mac_read_resp *resp; struct ice_aqc_manage_mac_read *cmd; struct ice_aq_desc desc; enum ice_status status; u16 flags; u8 i; cmd = &desc.params.mac_read; if (buf_size < sizeof(*resp)) return ICE_ERR_BUF_TOO_SHORT; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read); status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); if (status) return status; resp = (struct ice_aqc_manage_mac_read_resp *)buf; flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M; if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) { ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n"); return ICE_ERR_CFG; } /* A single port can report up to two (LAN and WoL) addresses */ for (i = 0; i < cmd->num_addr; i++) if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) { ether_addr_copy(hw->port_info->mac.lan_addr, resp[i].mac_addr); ether_addr_copy(hw->port_info->mac.perm_addr, resp[i].mac_addr); break; } return 0; } /** * ice_aq_get_phy_caps - returns PHY capabilities * @pi: port information structure * @qual_mods: report qualified modules * @report_mode: report mode capabilities * @pcaps: structure for PHY capabilities to be filled * @cd: pointer to command details structure or NULL * * Returns the various PHY capabilities supported on the Port (0x0600) */ enum ice_status ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode, struct ice_aqc_get_phy_caps_data *pcaps, struct ice_sq_cd *cd) { struct ice_aqc_get_phy_caps *cmd; u16 pcaps_size = sizeof(*pcaps); struct ice_aq_desc desc; enum ice_status status; cmd = &desc.params.get_phy; if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi) return ICE_ERR_PARAM; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps); if (qual_mods) cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM); cmd->param0 |= cpu_to_le16(report_mode); status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd); if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) { pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low); pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high); } return status; } /** * ice_get_media_type - Gets media type * @pi: port information structure */ static enum ice_media_type ice_get_media_type(struct ice_port_info *pi) { struct ice_link_status *hw_link_info; if (!pi) return ICE_MEDIA_UNKNOWN; hw_link_info = &pi->phy.link_info; if (hw_link_info->phy_type_low && hw_link_info->phy_type_high) /* If more than one media type is selected, report unknown */ return ICE_MEDIA_UNKNOWN; if (hw_link_info->phy_type_low) { switch (hw_link_info->phy_type_low) { case ICE_PHY_TYPE_LOW_1000BASE_SX: case ICE_PHY_TYPE_LOW_1000BASE_LX: case ICE_PHY_TYPE_LOW_10GBASE_SR: case ICE_PHY_TYPE_LOW_10GBASE_LR: case ICE_PHY_TYPE_LOW_10G_SFI_C2C: case ICE_PHY_TYPE_LOW_25GBASE_SR: case ICE_PHY_TYPE_LOW_25GBASE_LR: case ICE_PHY_TYPE_LOW_25G_AUI_C2C: case ICE_PHY_TYPE_LOW_40GBASE_SR4: case ICE_PHY_TYPE_LOW_40GBASE_LR4: case ICE_PHY_TYPE_LOW_50GBASE_SR2: case ICE_PHY_TYPE_LOW_50GBASE_LR2: case ICE_PHY_TYPE_LOW_50GBASE_SR: case ICE_PHY_TYPE_LOW_50GBASE_FR: case ICE_PHY_TYPE_LOW_50GBASE_LR: case ICE_PHY_TYPE_LOW_100GBASE_SR4: case ICE_PHY_TYPE_LOW_100GBASE_LR4: case ICE_PHY_TYPE_LOW_100GBASE_SR2: case ICE_PHY_TYPE_LOW_100GBASE_DR: return ICE_MEDIA_FIBER; case ICE_PHY_TYPE_LOW_100BASE_TX: case ICE_PHY_TYPE_LOW_1000BASE_T: case ICE_PHY_TYPE_LOW_2500BASE_T: case ICE_PHY_TYPE_LOW_5GBASE_T: case ICE_PHY_TYPE_LOW_10GBASE_T: case ICE_PHY_TYPE_LOW_25GBASE_T: return ICE_MEDIA_BASET; case ICE_PHY_TYPE_LOW_10G_SFI_DA: case ICE_PHY_TYPE_LOW_25GBASE_CR: case ICE_PHY_TYPE_LOW_25GBASE_CR_S: case ICE_PHY_TYPE_LOW_25GBASE_CR1: case ICE_PHY_TYPE_LOW_40GBASE_CR4: case ICE_PHY_TYPE_LOW_50GBASE_CR2: case ICE_PHY_TYPE_LOW_50GBASE_CP: case ICE_PHY_TYPE_LOW_100GBASE_CR4: case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: case ICE_PHY_TYPE_LOW_100GBASE_CP2: return ICE_MEDIA_DA; case ICE_PHY_TYPE_LOW_1000BASE_KX: case ICE_PHY_TYPE_LOW_2500BASE_KX: case ICE_PHY_TYPE_LOW_2500BASE_X: case ICE_PHY_TYPE_LOW_5GBASE_KR: case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: case ICE_PHY_TYPE_LOW_25GBASE_KR: case ICE_PHY_TYPE_LOW_25GBASE_KR1: case ICE_PHY_TYPE_LOW_25GBASE_KR_S: case ICE_PHY_TYPE_LOW_40GBASE_KR4: case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: case ICE_PHY_TYPE_LOW_50GBASE_KR2: case ICE_PHY_TYPE_LOW_100GBASE_KR4: case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: return ICE_MEDIA_BACKPLANE; } } else { switch (hw_link_info->phy_type_high) { case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: return ICE_MEDIA_BACKPLANE; } } return ICE_MEDIA_UNKNOWN; } /** * ice_aq_get_link_info * @pi: port information structure * @ena_lse: enable/disable LinkStatusEvent reporting * @link: pointer to link status structure - optional * @cd: pointer to command details structure or NULL * * Get Link Status (0x607). Returns the link status of the adapter. */ enum ice_status ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse, struct ice_link_status *link, struct ice_sq_cd *cd) { struct ice_link_status *hw_link_info_old, *hw_link_info; struct ice_aqc_get_link_status_data link_data = { 0 }; struct ice_aqc_get_link_status *resp; enum ice_media_type *hw_media_type; struct ice_fc_info *hw_fc_info; bool tx_pause, rx_pause; struct ice_aq_desc desc; enum ice_status status; u16 cmd_flags; if (!pi) return ICE_ERR_PARAM; hw_link_info_old = &pi->phy.link_info_old; hw_media_type = &pi->phy.media_type; hw_link_info = &pi->phy.link_info; hw_fc_info = &pi->fc; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status); cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS; resp = &desc.params.get_link_status; resp->cmd_flags = cpu_to_le16(cmd_flags); resp->lport_num = pi->lport; status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data), cd); if (status) return status; /* save off old link status information */ *hw_link_info_old = *hw_link_info; /* update current link status information */ hw_link_info->link_speed = le16_to_cpu(link_data.link_speed); hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low); hw_link_info->phy_type_high = le64_to_cpu(link_data.phy_type_high); *hw_media_type = ice_get_media_type(pi); hw_link_info->link_info = link_data.link_info; hw_link_info->an_info = link_data.an_info; hw_link_info->ext_info = link_data.ext_info; hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size); hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M; /* update fc info */ tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX); rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX); if (tx_pause && rx_pause) hw_fc_info->current_mode = ICE_FC_FULL; else if (tx_pause) hw_fc_info->current_mode = ICE_FC_TX_PAUSE; else if (rx_pause) hw_fc_info->current_mode = ICE_FC_RX_PAUSE; else hw_fc_info->current_mode = ICE_FC_NONE; hw_link_info->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED)); /* save link status information */ if (link) *link = *hw_link_info; /* flag cleared so calling functions don't call AQ again */ pi->phy.get_link_info = false; return 0; } /** * ice_init_flex_flags * @hw: pointer to the hardware structure * @prof_id: Rx Descriptor Builder profile ID * * Function to initialize Rx flex flags */ static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id) { u8 idx = 0; /* Flex-flag fields (0-2) are programmed with FLG64 bits with layout: * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE * flexiflags1[3:0] - Not used for flag programming * flexiflags2[7:0] - Tunnel and VLAN types * 2 invalid fields in last index */ switch (prof_id) { /* Rx flex flags are currently programmed for the NIC profiles only. * Different flag bit programming configurations can be added per * profile as needed. */ case ICE_RXDID_FLEX_NIC: case ICE_RXDID_FLEX_NIC_2: ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_FRG, ICE_FLG_UDP_GRE, ICE_FLG_PKT_DSI, ICE_FLG_FIN, idx++); /* flex flag 1 is not used for flexi-flag programming, skipping * these four FLG64 bits. */ ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_SYN, ICE_FLG_RST, ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx++); ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, ICE_FLG_EVLAN_x8100, ICE_FLG_EVLAN_x9100, idx++); ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_VLAN_x8100, ICE_FLG_TNL_VLAN, ICE_FLG_TNL_MAC, ICE_FLG_TNL0, idx++); ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_TNL1, ICE_FLG_TNL2, ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx); break; default: ice_debug(hw, ICE_DBG_INIT, "Flag programming for profile ID %d not supported\n", prof_id); } } /** * ice_init_flex_flds * @hw: pointer to the hardware structure * @prof_id: Rx Descriptor Builder profile ID * * Function to initialize flex descriptors */ static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id) { enum ice_flex_rx_mdid mdid; switch (prof_id) { case ICE_RXDID_FLEX_NIC: case ICE_RXDID_FLEX_NIC_2: ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0); ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1); ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2); mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ? ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH; ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3); ice_init_flex_flags(hw, prof_id); break; default: ice_debug(hw, ICE_DBG_INIT, "Field init for profile ID %d not supported\n", prof_id); } } /** * ice_init_fltr_mgmt_struct - initializes filter management list and locks * @hw: pointer to the HW struct */ static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw) { struct ice_switch_info *sw; hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*hw->switch_info), GFP_KERNEL); sw = hw->switch_info; if (!sw) return ICE_ERR_NO_MEMORY; INIT_LIST_HEAD(&sw->vsi_list_map_head); return ice_init_def_sw_recp(hw); } /** * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks * @hw: pointer to the HW struct */ static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw) { struct ice_switch_info *sw = hw->switch_info; struct ice_vsi_list_map_info *v_pos_map; struct ice_vsi_list_map_info *v_tmp_map; struct ice_sw_recipe *recps; u8 i; list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head, list_entry) { list_del(&v_pos_map->list_entry); devm_kfree(ice_hw_to_dev(hw), v_pos_map); } recps = hw->switch_info->recp_list; for (i = 0; i < ICE_SW_LKUP_LAST; i++) { struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry; recps[i].root_rid = i; mutex_destroy(&recps[i].filt_rule_lock); list_for_each_entry_safe(lst_itr, tmp_entry, &recps[i].filt_rules, list_entry) { list_del(&lst_itr->list_entry); devm_kfree(ice_hw_to_dev(hw), lst_itr); } } ice_rm_all_sw_replay_rule_info(hw); devm_kfree(ice_hw_to_dev(hw), sw->recp_list); devm_kfree(ice_hw_to_dev(hw), sw); } #define ICE_FW_LOG_DESC_SIZE(n) (sizeof(struct ice_aqc_fw_logging_data) + \ (((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry))) #define ICE_FW_LOG_DESC_SIZE_MAX \ ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX) /** * ice_cfg_fw_log - configure FW logging * @hw: pointer to the HW struct * @enable: enable certain FW logging events if true, disable all if false * * This function enables/disables the FW logging via Rx CQ events and a UART * port based on predetermined configurations. FW logging via the Rx CQ can be * enabled/disabled for individual PF's. However, FW logging via the UART can * only be enabled/disabled for all PFs on the same device. * * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in * hw->fw_log need to be set accordingly, e.g. based on user-provided input, * before initializing the device. * * When re/configuring FW logging, callers need to update the "cfg" elements of * the hw->fw_log.evnts array with the desired logging event configurations for * modules of interest. When disabling FW logging completely, the callers can * just pass false in the "enable" parameter. On completion, the function will * update the "cur" element of the hw->fw_log.evnts array with the resulting * logging event configurations of the modules that are being re/configured. FW * logging modules that are not part of a reconfiguration operation retain their * previous states. * * Before resetting the device, it is recommended that the driver disables FW * logging before shutting down the control queue. When disabling FW logging * ("enable" = false), the latest configurations of FW logging events stored in * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after * a device reset. * * When enabling FW logging to emit log messages via the Rx CQ during the * device's initialization phase, a mechanism alternative to interrupt handlers * needs to be used to extract FW log messages from the Rx CQ periodically and * to prevent the Rx CQ from being full and stalling other types of control * messages from FW to SW. Interrupts are typically disabled during the device's * initialization phase. */ static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable) { struct ice_aqc_fw_logging_data *data = NULL; struct ice_aqc_fw_logging *cmd; enum ice_status status = 0; u16 i, chgs = 0, len = 0; struct ice_aq_desc desc; u8 actv_evnts = 0; void *buf = NULL; if (!hw->fw_log.cq_en && !hw->fw_log.uart_en) return 0; /* Disable FW logging only when the control queue is still responsive */ if (!enable && (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq))) return 0; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging); cmd = &desc.params.fw_logging; /* Indicate which controls are valid */ if (hw->fw_log.cq_en) cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID; if (hw->fw_log.uart_en) cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID; if (enable) { /* Fill in an array of entries with FW logging modules and * logging events being reconfigured. */ for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) { u16 val; /* Keep track of enabled event types */ actv_evnts |= hw->fw_log.evnts[i].cfg; if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur) continue; if (!data) { data = devm_kzalloc(ice_hw_to_dev(hw), ICE_FW_LOG_DESC_SIZE_MAX, GFP_KERNEL); if (!data) return ICE_ERR_NO_MEMORY; } val = i << ICE_AQC_FW_LOG_ID_S; val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S; data->entry[chgs++] = cpu_to_le16(val); } /* Only enable FW logging if at least one module is specified. * If FW logging is currently enabled but all modules are not * enabled to emit log messages, disable FW logging altogether. */ if (actv_evnts) { /* Leave if there is effectively no change */ if (!chgs) goto out; if (hw->fw_log.cq_en) cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN; if (hw->fw_log.uart_en) cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN; buf = data; len = ICE_FW_LOG_DESC_SIZE(chgs); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); } } status = ice_aq_send_cmd(hw, &desc, buf, len, NULL); if (!status) { /* Update the current configuration to reflect events enabled. * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW * logging mode is enabled for the device. They do not reflect * actual modules being enabled to emit log messages. So, their * values remain unchanged even when all modules are disabled. */ u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX; hw->fw_log.actv_evnts = actv_evnts; for (i = 0; i < cnt; i++) { u16 v, m; if (!enable) { /* When disabling all FW logging events as part * of device's de-initialization, the original * configurations are retained, and can be used * to reconfigure FW logging later if the device * is re-initialized. */ hw->fw_log.evnts[i].cur = 0; continue; } v = le16_to_cpu(data->entry[i]); m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S; hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg; } } out: if (data) devm_kfree(ice_hw_to_dev(hw), data); return status; } /** * ice_output_fw_log * @hw: pointer to the HW struct * @desc: pointer to the AQ message descriptor * @buf: pointer to the buffer accompanying the AQ message * * Formats a FW Log message and outputs it via the standard driver logs. */ void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf) { ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg Start ]\n"); ice_debug_array(hw, ICE_DBG_AQ_MSG, 16, 1, (u8 *)buf, le16_to_cpu(desc->datalen)); ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg End ]\n"); } /** * ice_get_itr_intrl_gran - determine int/intrl granularity * @hw: pointer to the HW struct * * Determines the itr/intrl granularities based on the maximum aggregate * bandwidth according to the device's configuration during power-on. */ static enum ice_status ice_get_itr_intrl_gran(struct ice_hw *hw) { u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) & GL_PWR_MODE_CTL_CAR_MAX_BW_M) >> GL_PWR_MODE_CTL_CAR_MAX_BW_S; switch (max_agg_bw) { case ICE_MAX_AGG_BW_200G: case ICE_MAX_AGG_BW_100G: case ICE_MAX_AGG_BW_50G: hw->itr_gran = ICE_ITR_GRAN_ABOVE_25; hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25; break; case ICE_MAX_AGG_BW_25G: hw->itr_gran = ICE_ITR_GRAN_MAX_25; hw->intrl_gran = ICE_INTRL_GRAN_MAX_25; break; default: ice_debug(hw, ICE_DBG_INIT, "Failed to determine itr/intrl granularity\n"); return ICE_ERR_CFG; } return 0; } /** * ice_init_hw - main hardware initialization routine * @hw: pointer to the hardware structure */ enum ice_status ice_init_hw(struct ice_hw *hw) { struct ice_aqc_get_phy_caps_data *pcaps; enum ice_status status; u16 mac_buf_len; void *mac_buf; /* Set MAC type based on DeviceID */ status = ice_set_mac_type(hw); if (status) return status; hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) & PF_FUNC_RID_FUNC_NUM_M) >> PF_FUNC_RID_FUNC_NUM_S; status = ice_reset(hw, ICE_RESET_PFR); if (status) return status; status = ice_get_itr_intrl_gran(hw); if (status) return status; status = ice_init_all_ctrlq(hw); if (status) goto err_unroll_cqinit; /* Enable FW logging. Not fatal if this fails. */ status = ice_cfg_fw_log(hw, true); if (status) ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n"); status = ice_clear_pf_cfg(hw); if (status) goto err_unroll_cqinit; ice_clear_pxe_mode(hw); status = ice_init_nvm(hw); if (status) goto err_unroll_cqinit; status = ice_get_caps(hw); if (status) goto err_unroll_cqinit; hw->port_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*hw->port_info), GFP_KERNEL); if (!hw->port_info) { status = ICE_ERR_NO_MEMORY; goto err_unroll_cqinit; } /* set the back pointer to HW */ hw->port_info->hw = hw; /* Initialize port_info struct with switch configuration data */ status = ice_get_initial_sw_cfg(hw); if (status) goto err_unroll_alloc; hw->evb_veb = true; /* Query the allocated resources for Tx scheduler */ status = ice_sched_query_res_alloc(hw); if (status) { ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n"); goto err_unroll_alloc; } /* Initialize port_info struct with scheduler data */ status = ice_sched_init_port(hw->port_info); if (status) goto err_unroll_sched; pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); if (!pcaps) { status = ICE_ERR_NO_MEMORY; goto err_unroll_sched; } /* Initialize port_info struct with PHY capabilities */ status = ice_aq_get_phy_caps(hw->port_info, false, ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL); devm_kfree(ice_hw_to_dev(hw), pcaps); if (status) goto err_unroll_sched; /* Initialize port_info struct with link information */ status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL); if (status) goto err_unroll_sched; /* need a valid SW entry point to build a Tx tree */ if (!hw->sw_entry_point_layer) { ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n"); status = ICE_ERR_CFG; goto err_unroll_sched; } INIT_LIST_HEAD(&hw->agg_list); status = ice_init_fltr_mgmt_struct(hw); if (status) goto err_unroll_sched; ice_dev_onetime_setup(hw); /* Get MAC information */ /* A single port can report up to two (LAN and WoL) addresses */ mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2, sizeof(struct ice_aqc_manage_mac_read_resp), GFP_KERNEL); mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp); if (!mac_buf) { status = ICE_ERR_NO_MEMORY; goto err_unroll_fltr_mgmt_struct; } status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL); devm_kfree(ice_hw_to_dev(hw), mac_buf); if (status) goto err_unroll_fltr_mgmt_struct; ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC); ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2); return 0; err_unroll_fltr_mgmt_struct: ice_cleanup_fltr_mgmt_struct(hw); err_unroll_sched: ice_sched_cleanup_all(hw); err_unroll_alloc: devm_kfree(ice_hw_to_dev(hw), hw->port_info); err_unroll_cqinit: ice_shutdown_all_ctrlq(hw); return status; } /** * ice_deinit_hw - unroll initialization operations done by ice_init_hw * @hw: pointer to the hardware structure */ void ice_deinit_hw(struct ice_hw *hw) { ice_cleanup_fltr_mgmt_struct(hw); ice_sched_cleanup_all(hw); ice_sched_clear_agg(hw); if (hw->port_info) { devm_kfree(ice_hw_to_dev(hw), hw->port_info); hw->port_info = NULL; } /* Attempt to disable FW logging before shutting down control queues */ ice_cfg_fw_log(hw, false); ice_shutdown_all_ctrlq(hw); /* Clear VSI contexts if not already cleared */ ice_clear_all_vsi_ctx(hw); } /** * ice_check_reset - Check to see if a global reset is complete * @hw: pointer to the hardware structure */ enum ice_status ice_check_reset(struct ice_hw *hw) { u32 cnt, reg = 0, grst_delay; /* Poll for Device Active state in case a recent CORER, GLOBR, * or EMPR has occurred. The grst delay value is in 100ms units. * Add 1sec for outstanding AQ commands that can take a long time. */ grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >> GLGEN_RSTCTL_GRSTDEL_S) + 10; for (cnt = 0; cnt < grst_delay; cnt++) { mdelay(100); reg = rd32(hw, GLGEN_RSTAT); if (!(reg & GLGEN_RSTAT_DEVSTATE_M)) break; } if (cnt == grst_delay) { ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n"); return ICE_ERR_RESET_FAILED; } #define ICE_RESET_DONE_MASK (GLNVM_ULD_CORER_DONE_M | \ GLNVM_ULD_GLOBR_DONE_M) /* Device is Active; check Global Reset processes are done */ for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) { reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK; if (reg == ICE_RESET_DONE_MASK) { ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt); break; } mdelay(10); } if (cnt == ICE_PF_RESET_WAIT_COUNT) { ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n", reg); return ICE_ERR_RESET_FAILED; } return 0; } /** * ice_pf_reset - Reset the PF * @hw: pointer to the hardware structure * * If a global reset has been triggered, this function checks * for its completion and then issues the PF reset */ static enum ice_status ice_pf_reset(struct ice_hw *hw) { u32 cnt, reg; /* If at function entry a global reset was already in progress, i.e. * state is not 'device active' or any of the reset done bits are not * set in GLNVM_ULD, there is no need for a PF Reset; poll until the * global reset is done. */ if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) || (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) { /* poll on global reset currently in progress until done */ if (ice_check_reset(hw)) return ICE_ERR_RESET_FAILED; return 0; } /* Reset the PF */ reg = rd32(hw, PFGEN_CTRL); wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M)); for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) { reg = rd32(hw, PFGEN_CTRL); if (!(reg & PFGEN_CTRL_PFSWR_M)) break; mdelay(1); } if (cnt == ICE_PF_RESET_WAIT_COUNT) { ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n"); return ICE_ERR_RESET_FAILED; } return 0; } /** * ice_reset - Perform different types of reset * @hw: pointer to the hardware structure * @req: reset request * * This function triggers a reset as specified by the req parameter. * * Note: * If anything other than a PF reset is triggered, PXE mode is restored. * This has to be cleared using ice_clear_pxe_mode again, once the AQ * interface has been restored in the rebuild flow. */ enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req) { u32 val = 0; switch (req) { case ICE_RESET_PFR: return ice_pf_reset(hw); case ICE_RESET_CORER: ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n"); val = GLGEN_RTRIG_CORER_M; break; case ICE_RESET_GLOBR: ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n"); val = GLGEN_RTRIG_GLOBR_M; break; default: return ICE_ERR_PARAM; } val |= rd32(hw, GLGEN_RTRIG); wr32(hw, GLGEN_RTRIG, val); ice_flush(hw); /* wait for the FW to be ready */ return ice_check_reset(hw); } /** * ice_copy_rxq_ctx_to_hw * @hw: pointer to the hardware structure * @ice_rxq_ctx: pointer to the rxq context * @rxq_index: the index of the Rx queue * * Copies rxq context from dense structure to HW register space */ static enum ice_status ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index) { u8 i; if (!ice_rxq_ctx) return ICE_ERR_BAD_PTR; if (rxq_index > QRX_CTRL_MAX_INDEX) return ICE_ERR_PARAM; /* Copy each dword separately to HW */ for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) { wr32(hw, QRX_CONTEXT(i, rxq_index), *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); } return 0; } /* LAN Rx Queue Context */ static const struct ice_ctx_ele ice_rlan_ctx_info[] = { /* Field Width LSB */ ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0), ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13), ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32), ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89), ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102), ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109), ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114), ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116), ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117), ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119), ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120), ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124), ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127), ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174), ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193), ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194), ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195), ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196), ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198), { 0 } }; /** * ice_write_rxq_ctx * @hw: pointer to the hardware structure * @rlan_ctx: pointer to the rxq context * @rxq_index: the index of the Rx queue * * Converts rxq context from sparse to dense structure and then writes * it to HW register space */ enum ice_status ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx, u32 rxq_index) { u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 }; ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info); return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index); } /* LAN Tx Queue Context */ const struct ice_ctx_ele ice_tlan_ctx_info[] = { /* Field Width LSB */ ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0), ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57), ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60), ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65), ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68), ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78), ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80), ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90), ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92), ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93), ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101), ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102), ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103), ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104), ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105), ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114), ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128), ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129), ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135), ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148), ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152), ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153), ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164), ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165), ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166), ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168), ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 110, 171), { 0 } }; /** * ice_debug_cq * @hw: pointer to the hardware structure * @mask: debug mask * @desc: pointer to control queue descriptor * @buf: pointer to command buffer * @buf_len: max length of buf * * Dumps debug log about control command with descriptor contents. */ void ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc, void *buf, u16 buf_len) { struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc; u16 len; #ifndef CONFIG_DYNAMIC_DEBUG if (!(mask & hw->debug_mask)) return; #endif if (!desc) return; len = le16_to_cpu(cq_desc->datalen); ice_debug(hw, mask, "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n", le16_to_cpu(cq_desc->opcode), le16_to_cpu(cq_desc->flags), le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval)); ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n", le32_to_cpu(cq_desc->cookie_high), le32_to_cpu(cq_desc->cookie_low)); ice_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n", le32_to_cpu(cq_desc->params.generic.param0), le32_to_cpu(cq_desc->params.generic.param1)); ice_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n", le32_to_cpu(cq_desc->params.generic.addr_high), le32_to_cpu(cq_desc->params.generic.addr_low)); if (buf && cq_desc->datalen != 0) { ice_debug(hw, mask, "Buffer:\n"); if (buf_len < len) len = buf_len; ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len); } } /* FW Admin Queue command wrappers */ /** * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue * @hw: pointer to the HW struct * @desc: descriptor describing the command * @buf: buffer to use for indirect commands (NULL for direct commands) * @buf_size: size of buffer for indirect commands (0 for direct commands) * @cd: pointer to command details structure * * Helper function to send FW Admin Queue commands to the FW Admin Queue. */ enum ice_status ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf, u16 buf_size, struct ice_sq_cd *cd) { return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd); } /** * ice_aq_get_fw_ver * @hw: pointer to the HW struct * @cd: pointer to command details structure or NULL * * Get the firmware version (0x0001) from the admin queue commands */ enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd) { struct ice_aqc_get_ver *resp; struct ice_aq_desc desc; enum ice_status status; resp = &desc.params.get_ver; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver); status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); if (!status) { hw->fw_branch = resp->fw_branch; hw->fw_maj_ver = resp->fw_major; hw->fw_min_ver = resp->fw_minor; hw->fw_patch = resp->fw_patch; hw->fw_build = le32_to_cpu(resp->fw_build); hw->api_branch = resp->api_branch; hw->api_maj_ver = resp->api_major; hw->api_min_ver = resp->api_minor; hw->api_patch = resp->api_patch; } return status; } /** * ice_aq_q_shutdown * @hw: pointer to the HW struct * @unloading: is the driver unloading itself * * Tell the Firmware that we're shutting down the AdminQ and whether * or not the driver is unloading as well (0x0003). */ enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading) { struct ice_aqc_q_shutdown *cmd; struct ice_aq_desc desc; cmd = &desc.params.q_shutdown; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown); if (unloading) cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING); return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); } /** * ice_aq_req_res * @hw: pointer to the HW struct * @res: resource ID * @access: access type * @sdp_number: resource number * @timeout: the maximum time in ms that the driver may hold the resource * @cd: pointer to command details structure or NULL * * Requests common resource using the admin queue commands (0x0008). * When attempting to acquire the Global Config Lock, the driver can * learn of three states: * 1) ICE_SUCCESS - acquired lock, and can perform download package * 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load * 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has * successfully downloaded the package; the driver does * not have to download the package and can continue * loading * * Note that if the caller is in an acquire lock, perform action, release lock * phase of operation, it is possible that the FW may detect a timeout and issue * a CORER. In this case, the driver will receive a CORER interrupt and will * have to determine its cause. The calling thread that is handling this flow * will likely get an error propagated back to it indicating the Download * Package, Update Package or the Release Resource AQ commands timed out. */ static enum ice_status ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res, enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout, struct ice_sq_cd *cd) { struct ice_aqc_req_res *cmd_resp; struct ice_aq_desc desc; enum ice_status status; cmd_resp = &desc.params.res_owner; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res); cmd_resp->res_id = cpu_to_le16(res); cmd_resp->access_type = cpu_to_le16(access); cmd_resp->res_number = cpu_to_le32(sdp_number); cmd_resp->timeout = cpu_to_le32(*timeout); *timeout = 0; status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); /* The completion specifies the maximum time in ms that the driver * may hold the resource in the Timeout field. */ /* Global config lock response utilizes an additional status field. * * If the Global config lock resource is held by some other driver, the * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field * and the timeout field indicates the maximum time the current owner * of the resource has to free it. */ if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) { if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) { *timeout = le32_to_cpu(cmd_resp->timeout); return 0; } else if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_IN_PROG) { *timeout = le32_to_cpu(cmd_resp->timeout); return ICE_ERR_AQ_ERROR; } else if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_DONE) { return ICE_ERR_AQ_NO_WORK; } /* invalid FW response, force a timeout immediately */ *timeout = 0; return ICE_ERR_AQ_ERROR; } /* If the resource is held by some other driver, the command completes * with a busy return value and the timeout field indicates the maximum * time the current owner of the resource has to free it. */ if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) *timeout = le32_to_cpu(cmd_resp->timeout); return status; } /** * ice_aq_release_res * @hw: pointer to the HW struct * @res: resource ID * @sdp_number: resource number * @cd: pointer to command details structure or NULL * * release common resource using the admin queue commands (0x0009) */ static enum ice_status ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number, struct ice_sq_cd *cd) { struct ice_aqc_req_res *cmd; struct ice_aq_desc desc; cmd = &desc.params.res_owner; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res); cmd->res_id = cpu_to_le16(res); cmd->res_number = cpu_to_le32(sdp_number); return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); } /** * ice_acquire_res * @hw: pointer to the HW structure * @res: resource ID * @access: access type (read or write) * @timeout: timeout in milliseconds * * This function will attempt to acquire the ownership of a resource. */ enum ice_status ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res, enum ice_aq_res_access_type access, u32 timeout) { #define ICE_RES_POLLING_DELAY_MS 10 u32 delay = ICE_RES_POLLING_DELAY_MS; u32 time_left = timeout; enum ice_status status; status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has * previously acquired the resource and performed any necessary updates; * in this case the caller does not obtain the resource and has no * further work to do. */ if (status == ICE_ERR_AQ_NO_WORK) goto ice_acquire_res_exit; if (status) ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access); /* If necessary, poll until the current lock owner timeouts */ timeout = time_left; while (status && timeout && time_left) { mdelay(delay); timeout = (timeout > delay) ? timeout - delay : 0; status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); if (status == ICE_ERR_AQ_NO_WORK) /* lock free, but no work to do */ break; if (!status) /* lock acquired */ break; } if (status && status != ICE_ERR_AQ_NO_WORK) ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n"); ice_acquire_res_exit: if (status == ICE_ERR_AQ_NO_WORK) { if (access == ICE_RES_WRITE) ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n"); else ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n"); } return status; } /** * ice_release_res * @hw: pointer to the HW structure * @res: resource ID * * This function will release a resource using the proper Admin Command. */ void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res) { enum ice_status status; u32 total_delay = 0; status = ice_aq_release_res(hw, res, 0, NULL); /* there are some rare cases when trying to release the resource * results in an admin queue timeout, so handle them correctly */ while ((status == ICE_ERR_AQ_TIMEOUT) && (total_delay < hw->adminq.sq_cmd_timeout)) { mdelay(1); status = ice_aq_release_res(hw, res, 0, NULL); total_delay++; } } /** * ice_get_num_per_func - determine number of resources per PF * @hw: pointer to the HW structure * @max: value to be evenly split between each PF * * Determine the number of valid functions by going through the bitmap returned * from parsing capabilities and use this to calculate the number of resources * per PF based on the max value passed in. */ static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max) { u8 funcs; #define ICE_CAPS_VALID_FUNCS_M 0xFF funcs = hweight8(hw->dev_caps.common_cap.valid_functions & ICE_CAPS_VALID_FUNCS_M); if (!funcs) return 0; return max / funcs; } /** * ice_parse_caps - parse function/device capabilities * @hw: pointer to the HW struct * @buf: pointer to a buffer containing function/device capability records * @cap_count: number of capability records in the list * @opc: type of capabilities list to parse * * Helper function to parse function(0x000a)/device(0x000b) capabilities list. */ static void ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count, enum ice_adminq_opc opc) { struct ice_aqc_list_caps_elem *cap_resp; struct ice_hw_func_caps *func_p = NULL; struct ice_hw_dev_caps *dev_p = NULL; struct ice_hw_common_caps *caps; u32 i; if (!buf) return; cap_resp = (struct ice_aqc_list_caps_elem *)buf; if (opc == ice_aqc_opc_list_dev_caps) { dev_p = &hw->dev_caps; caps = &dev_p->common_cap; } else if (opc == ice_aqc_opc_list_func_caps) { func_p = &hw->func_caps; caps = &func_p->common_cap; } else { ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n"); return; } for (i = 0; caps && i < cap_count; i++, cap_resp++) { u32 logical_id = le32_to_cpu(cap_resp->logical_id); u32 phys_id = le32_to_cpu(cap_resp->phys_id); u32 number = le32_to_cpu(cap_resp->number); u16 cap = le16_to_cpu(cap_resp->cap); switch (cap) { case ICE_AQC_CAPS_VALID_FUNCTIONS: caps->valid_functions = number; ice_debug(hw, ICE_DBG_INIT, "HW caps: Valid Functions = %d\n", caps->valid_functions); break; case ICE_AQC_CAPS_SRIOV: caps->sr_iov_1_1 = (number == 1); ice_debug(hw, ICE_DBG_INIT, "HW caps: SR-IOV = %d\n", caps->sr_iov_1_1); break; case ICE_AQC_CAPS_VF: if (dev_p) { dev_p->num_vfs_exposed = number; ice_debug(hw, ICE_DBG_INIT, "HW caps: VFs exposed = %d\n", dev_p->num_vfs_exposed); } else if (func_p) { func_p->num_allocd_vfs = number; func_p->vf_base_id = logical_id; ice_debug(hw, ICE_DBG_INIT, "HW caps: VFs allocated = %d\n", func_p->num_allocd_vfs); ice_debug(hw, ICE_DBG_INIT, "HW caps: VF base_id = %d\n", func_p->vf_base_id); } break; case ICE_AQC_CAPS_VSI: if (dev_p) { dev_p->num_vsi_allocd_to_host = number; ice_debug(hw, ICE_DBG_INIT, "HW caps: Dev.VSI cnt = %d\n", dev_p->num_vsi_allocd_to_host); } else if (func_p) { func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI); ice_debug(hw, ICE_DBG_INIT, "HW caps: Func.VSI cnt = %d\n", number); } break; case ICE_AQC_CAPS_RSS: caps->rss_table_size = number; caps->rss_table_entry_width = logical_id; ice_debug(hw, ICE_DBG_INIT, "HW caps: RSS table size = %d\n", caps->rss_table_size); ice_debug(hw, ICE_DBG_INIT, "HW caps: RSS table width = %d\n", caps->rss_table_entry_width); break; case ICE_AQC_CAPS_RXQS: caps->num_rxq = number; caps->rxq_first_id = phys_id; ice_debug(hw, ICE_DBG_INIT, "HW caps: Num Rx Qs = %d\n", caps->num_rxq); ice_debug(hw, ICE_DBG_INIT, "HW caps: Rx first queue ID = %d\n", caps->rxq_first_id); break; case ICE_AQC_CAPS_TXQS: caps->num_txq = number; caps->txq_first_id = phys_id; ice_debug(hw, ICE_DBG_INIT, "HW caps: Num Tx Qs = %d\n", caps->num_txq); ice_debug(hw, ICE_DBG_INIT, "HW caps: Tx first queue ID = %d\n", caps->txq_first_id); break; case ICE_AQC_CAPS_MSIX: caps->num_msix_vectors = number; caps->msix_vector_first_id = phys_id; ice_debug(hw, ICE_DBG_INIT, "HW caps: MSIX vector count = %d\n", caps->num_msix_vectors); ice_debug(hw, ICE_DBG_INIT, "HW caps: MSIX first vector index = %d\n", caps->msix_vector_first_id); break; case ICE_AQC_CAPS_MAX_MTU: caps->max_mtu = number; if (dev_p) ice_debug(hw, ICE_DBG_INIT, "HW caps: Dev.MaxMTU = %d\n", caps->max_mtu); else if (func_p) ice_debug(hw, ICE_DBG_INIT, "HW caps: func.MaxMTU = %d\n", caps->max_mtu); break; default: ice_debug(hw, ICE_DBG_INIT, "HW caps: Unknown capability[%d]: 0x%x\n", i, cap); break; } } } /** * ice_aq_discover_caps - query function/device capabilities * @hw: pointer to the HW struct * @buf: a virtual buffer to hold the capabilities * @buf_size: Size of the virtual buffer * @cap_count: cap count needed if AQ err==ENOMEM * @opc: capabilities type to discover - pass in the command opcode * @cd: pointer to command details structure or NULL * * Get the function(0x000a)/device(0x000b) capabilities description from * the firmware. */ static enum ice_status ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count, enum ice_adminq_opc opc, struct ice_sq_cd *cd) { struct ice_aqc_list_caps *cmd; struct ice_aq_desc desc; enum ice_status status; cmd = &desc.params.get_cap; if (opc != ice_aqc_opc_list_func_caps && opc != ice_aqc_opc_list_dev_caps) return ICE_ERR_PARAM; ice_fill_dflt_direct_cmd_desc(&desc, opc); status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); if (!status) ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc); else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM) *cap_count = le32_to_cpu(cmd->count); return status; } /** * ice_discover_caps - get info about the HW * @hw: pointer to the hardware structure * @opc: capabilities type to discover - pass in the command opcode */ static enum ice_status ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc) { enum ice_status status; u32 cap_count; u16 cbuf_len; u8 retries; /* The driver doesn't know how many capabilities the device will return * so the buffer size required isn't known ahead of time. The driver * starts with cbuf_len and if this turns out to be insufficient, the * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs. * The driver then allocates the buffer based on the count and retries * the operation. So it follows that the retry count is 2. */ #define ICE_GET_CAP_BUF_COUNT 40 #define ICE_GET_CAP_RETRY_COUNT 2 cap_count = ICE_GET_CAP_BUF_COUNT; retries = ICE_GET_CAP_RETRY_COUNT; do { void *cbuf; cbuf_len = (u16)(cap_count * sizeof(struct ice_aqc_list_caps_elem)); cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL); if (!cbuf) return ICE_ERR_NO_MEMORY; status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count, opc, NULL); devm_kfree(ice_hw_to_dev(hw), cbuf); if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM) break; /* If ENOMEM is returned, try again with bigger buffer */ } while (--retries); return status; } /** * ice_get_caps - get info about the HW * @hw: pointer to the hardware structure */ enum ice_status ice_get_caps(struct ice_hw *hw) { enum ice_status status; status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps); if (!status) status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps); return status; } /** * ice_aq_manage_mac_write - manage MAC address write command * @hw: pointer to the HW struct * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address * @flags: flags to control write behavior * @cd: pointer to command details structure or NULL * * This function is used to write MAC address to the NVM (0x0108). */ enum ice_status ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags, struct ice_sq_cd *cd) { struct ice_aqc_manage_mac_write *cmd; struct ice_aq_desc desc; cmd = &desc.params.mac_write; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write); cmd->flags = flags; /* Prep values for flags, sah, sal */ cmd->sah = htons(*((const u16 *)mac_addr)); cmd->sal = htonl(*((const u32 *)(mac_addr + 2))); return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); } /** * ice_aq_clear_pxe_mode * @hw: pointer to the HW struct * * Tell the firmware that the driver is taking over from PXE (0x0110). */ static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw) { struct ice_aq_desc desc; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode); desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT; return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); } /** * ice_clear_pxe_mode - clear pxe operations mode * @hw: pointer to the HW struct * * Make sure all PXE mode settings are cleared, including things * like descriptor fetch/write-back mode. */ void ice_clear_pxe_mode(struct ice_hw *hw) { if (ice_check_sq_alive(hw, &hw->adminq)) ice_aq_clear_pxe_mode(hw); } /** * ice_get_link_speed_based_on_phy_type - returns link speed * @phy_type_low: lower part of phy_type * @phy_type_high: higher part of phy_type * * This helper function will convert an entry in PHY type structure * [phy_type_low, phy_type_high] to its corresponding link speed. * Note: In the structure of [phy_type_low, phy_type_high], there should * be one bit set, as this function will convert one PHY type to its * speed. * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned */ static u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high) { u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; switch (phy_type_low) { case ICE_PHY_TYPE_LOW_100BASE_TX: case ICE_PHY_TYPE_LOW_100M_SGMII: speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB; break; case ICE_PHY_TYPE_LOW_1000BASE_T: case ICE_PHY_TYPE_LOW_1000BASE_SX: case ICE_PHY_TYPE_LOW_1000BASE_LX: case ICE_PHY_TYPE_LOW_1000BASE_KX: case ICE_PHY_TYPE_LOW_1G_SGMII: speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB; break; case ICE_PHY_TYPE_LOW_2500BASE_T: case ICE_PHY_TYPE_LOW_2500BASE_X: case ICE_PHY_TYPE_LOW_2500BASE_KX: speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB; break; case ICE_PHY_TYPE_LOW_5GBASE_T: case ICE_PHY_TYPE_LOW_5GBASE_KR: speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB; break; case ICE_PHY_TYPE_LOW_10GBASE_T: case ICE_PHY_TYPE_LOW_10G_SFI_DA: case ICE_PHY_TYPE_LOW_10GBASE_SR: case ICE_PHY_TYPE_LOW_10GBASE_LR: case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: case ICE_PHY_TYPE_LOW_10G_SFI_C2C: speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB; break; case ICE_PHY_TYPE_LOW_25GBASE_T: case ICE_PHY_TYPE_LOW_25GBASE_CR: case ICE_PHY_TYPE_LOW_25GBASE_CR_S: case ICE_PHY_TYPE_LOW_25GBASE_CR1: case ICE_PHY_TYPE_LOW_25GBASE_SR: case ICE_PHY_TYPE_LOW_25GBASE_LR: case ICE_PHY_TYPE_LOW_25GBASE_KR: case ICE_PHY_TYPE_LOW_25GBASE_KR_S: case ICE_PHY_TYPE_LOW_25GBASE_KR1: case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: case ICE_PHY_TYPE_LOW_25G_AUI_C2C: speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB; break; case ICE_PHY_TYPE_LOW_40GBASE_CR4: case ICE_PHY_TYPE_LOW_40GBASE_SR4: case ICE_PHY_TYPE_LOW_40GBASE_LR4: case ICE_PHY_TYPE_LOW_40GBASE_KR4: case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC: case ICE_PHY_TYPE_LOW_40G_XLAUI: speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB; break; case ICE_PHY_TYPE_LOW_50GBASE_CR2: case ICE_PHY_TYPE_LOW_50GBASE_SR2: case ICE_PHY_TYPE_LOW_50GBASE_LR2: case ICE_PHY_TYPE_LOW_50GBASE_KR2: case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC: case ICE_PHY_TYPE_LOW_50G_LAUI2: case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC: case ICE_PHY_TYPE_LOW_50G_AUI2: case ICE_PHY_TYPE_LOW_50GBASE_CP: case ICE_PHY_TYPE_LOW_50GBASE_SR: case ICE_PHY_TYPE_LOW_50GBASE_FR: case ICE_PHY_TYPE_LOW_50GBASE_LR: case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: case ICE_PHY_TYPE_LOW_50G_AUI1: speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB; break; case ICE_PHY_TYPE_LOW_100GBASE_CR4: case ICE_PHY_TYPE_LOW_100GBASE_SR4: case ICE_PHY_TYPE_LOW_100GBASE_LR4: case ICE_PHY_TYPE_LOW_100GBASE_KR4: case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC: case ICE_PHY_TYPE_LOW_100G_CAUI4: case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC: case ICE_PHY_TYPE_LOW_100G_AUI4: case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: case ICE_PHY_TYPE_LOW_100GBASE_CP2: case ICE_PHY_TYPE_LOW_100GBASE_SR2: case ICE_PHY_TYPE_LOW_100GBASE_DR: speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB; break; default: speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; break; } switch (phy_type_high) { case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC: case ICE_PHY_TYPE_HIGH_100G_CAUI2: case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC: case ICE_PHY_TYPE_HIGH_100G_AUI2: speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB; break; default: speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; break; } if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN && speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) return ICE_AQ_LINK_SPEED_UNKNOWN; else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN) return ICE_AQ_LINK_SPEED_UNKNOWN; else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) return speed_phy_type_low; else return speed_phy_type_high; } /** * ice_update_phy_type * @phy_type_low: pointer to the lower part of phy_type * @phy_type_high: pointer to the higher part of phy_type * @link_speeds_bitmap: targeted link speeds bitmap * * Note: For the link_speeds_bitmap structure, you can check it at * [ice_aqc_get_link_status->link_speed]. Caller can pass in * link_speeds_bitmap include multiple speeds. * * Each entry in this [phy_type_low, phy_type_high] structure will * present a certain link speed. This helper function will turn on bits * in [phy_type_low, phy_type_high] structure based on the value of * link_speeds_bitmap input parameter. */ void ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high, u16 link_speeds_bitmap) { u16 speed = ICE_AQ_LINK_SPEED_UNKNOWN; u64 pt_high; u64 pt_low; int index; /* We first check with low part of phy_type */ for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) { pt_low = BIT_ULL(index); speed = ice_get_link_speed_based_on_phy_type(pt_low, 0); if (link_speeds_bitmap & speed) *phy_type_low |= BIT_ULL(index); } /* We then check with high part of phy_type */ for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) { pt_high = BIT_ULL(index); speed = ice_get_link_speed_based_on_phy_type(0, pt_high); if (link_speeds_bitmap & speed) *phy_type_high |= BIT_ULL(index); } } /** * ice_aq_set_phy_cfg * @hw: pointer to the HW struct * @lport: logical port number * @cfg: structure with PHY configuration data to be set * @cd: pointer to command details structure or NULL * * Set the various PHY configuration parameters supported on the Port. * One or more of the Set PHY config parameters may be ignored in an MFP * mode as the PF may not have the privilege to set some of the PHY Config * parameters. This status will be indicated by the command response (0x0601). */ enum ice_status ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport, struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd) { struct ice_aq_desc desc; if (!cfg) return ICE_ERR_PARAM; /* Ensure that only valid bits of cfg->caps can be turned on. */ if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) { ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n", cfg->caps); cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK; } ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg); desc.params.set_phy.lport_num = lport; desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd); } /** * ice_update_link_info - update status of the HW network link * @pi: port info structure of the interested logical port */ enum ice_status ice_update_link_info(struct ice_port_info *pi) { struct ice_aqc_get_phy_caps_data *pcaps; struct ice_phy_info *phy_info; enum ice_status status; struct ice_hw *hw; if (!pi) return ICE_ERR_PARAM; hw = pi->hw; pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); if (!pcaps) return ICE_ERR_NO_MEMORY; phy_info = &pi->phy; status = ice_aq_get_link_info(pi, true, NULL, NULL); if (status) goto out; if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, NULL); if (status) goto out; memcpy(phy_info->link_info.module_type, &pcaps->module_type, sizeof(phy_info->link_info.module_type)); } out: devm_kfree(ice_hw_to_dev(hw), pcaps); return status; } /** * ice_set_fc * @pi: port information structure * @aq_failures: pointer to status code, specific to ice_set_fc routine * @ena_auto_link_update: enable automatic link update * * Set the requested flow control mode. */ enum ice_status ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update) { struct ice_aqc_set_phy_cfg_data cfg = { 0 }; struct ice_aqc_get_phy_caps_data *pcaps; enum ice_status status; u8 pause_mask = 0x0; struct ice_hw *hw; if (!pi) return ICE_ERR_PARAM; hw = pi->hw; *aq_failures = ICE_SET_FC_AQ_FAIL_NONE; switch (pi->fc.req_mode) { case ICE_FC_FULL: pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; break; case ICE_FC_RX_PAUSE: pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; break; case ICE_FC_TX_PAUSE: pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; break; default: break; } pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); if (!pcaps) return ICE_ERR_NO_MEMORY; /* Get the current PHY config */ status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, NULL); if (status) { *aq_failures = ICE_SET_FC_AQ_FAIL_GET; goto out; } /* clear the old pause settings */ cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE | ICE_AQC_PHY_EN_RX_LINK_PAUSE); /* set the new capabilities */ cfg.caps |= pause_mask; /* If the capabilities have changed, then set the new config */ if (cfg.caps != pcaps->caps) { int retry_count, retry_max = 10; /* Auto restart link so settings take effect */ if (ena_auto_link_update) cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; /* Copy over all the old settings */ cfg.phy_type_high = pcaps->phy_type_high; cfg.phy_type_low = pcaps->phy_type_low; cfg.low_power_ctrl = pcaps->low_power_ctrl; cfg.eee_cap = pcaps->eee_cap; cfg.eeer_value = pcaps->eeer_value; cfg.link_fec_opt = pcaps->link_fec_options; status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL); if (status) { *aq_failures = ICE_SET_FC_AQ_FAIL_SET; goto out; } /* Update the link info * It sometimes takes a really long time for link to * come back from the atomic reset. Thus, we wait a * little bit. */ for (retry_count = 0; retry_count < retry_max; retry_count++) { status = ice_update_link_info(pi); if (!status) break; mdelay(100); } if (status) *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE; } out: devm_kfree(ice_hw_to_dev(hw), pcaps); return status; } /** * ice_get_link_status - get status of the HW network link * @pi: port information structure * @link_up: pointer to bool (true/false = linkup/linkdown) * * Variable link_up is true if link is up, false if link is down. * The variable link_up is invalid if status is non zero. As a * result of this call, link status reporting becomes enabled */ enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up) { struct ice_phy_info *phy_info; enum ice_status status = 0; if (!pi || !link_up) return ICE_ERR_PARAM; phy_info = &pi->phy; if (phy_info->get_link_info) { status = ice_update_link_info(pi); if (status) ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n", status); } *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP; return status; } /** * ice_aq_set_link_restart_an * @pi: pointer to the port information structure * @ena_link: if true: enable link, if false: disable link * @cd: pointer to command details structure or NULL * * Sets up the link and restarts the Auto-Negotiation over the link. */ enum ice_status ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link, struct ice_sq_cd *cd) { struct ice_aqc_restart_an *cmd; struct ice_aq_desc desc; cmd = &desc.params.restart_an; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an); cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART; cmd->lport_num = pi->lport; if (ena_link) cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE; else cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE; return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); } /** * ice_aq_set_event_mask * @hw: pointer to the HW struct * @port_num: port number of the physical function * @mask: event mask to be set * @cd: pointer to command details structure or NULL * * Set event mask (0x0613) */ enum ice_status ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask, struct ice_sq_cd *cd) { struct ice_aqc_set_event_mask *cmd; struct ice_aq_desc desc; cmd = &desc.params.set_event_mask; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask); cmd->lport_num = port_num; cmd->event_mask = cpu_to_le16(mask); return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); } /** * ice_aq_set_port_id_led * @pi: pointer to the port information * @is_orig_mode: is this LED set to original mode (by the net-list) * @cd: pointer to command details structure or NULL * * Set LED value for the given port (0x06e9) */ enum ice_status ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode, struct ice_sq_cd *cd) { struct ice_aqc_set_port_id_led *cmd; struct ice_hw *hw = pi->hw; struct ice_aq_desc desc; cmd = &desc.params.set_port_id_led; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led); if (is_orig_mode) cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG; else cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK; return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); } /** * __ice_aq_get_set_rss_lut * @hw: pointer to the hardware structure * @vsi_id: VSI FW index * @lut_type: LUT table type * @lut: pointer to the LUT buffer provided by the caller * @lut_size: size of the LUT buffer * @glob_lut_idx: global LUT index * @set: set true to set the table, false to get the table * * Internal function to get (0x0B05) or set (0x0B03) RSS look up table */ static enum ice_status __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut, u16 lut_size, u8 glob_lut_idx, bool set) { struct ice_aqc_get_set_rss_lut *cmd_resp; struct ice_aq_desc desc; enum ice_status status; u16 flags = 0; cmd_resp = &desc.params.get_set_rss_lut; if (set) { ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); } else { ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut); } cmd_resp->vsi_id = cpu_to_le16(((vsi_id << ICE_AQC_GSET_RSS_LUT_VSI_ID_S) & ICE_AQC_GSET_RSS_LUT_VSI_ID_M) | ICE_AQC_GSET_RSS_LUT_VSI_VALID); switch (lut_type) { case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI: case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF: case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL: flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) & ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M); break; default: status = ICE_ERR_PARAM; goto ice_aq_get_set_rss_lut_exit; } if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) { flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) & ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M); if (!set) goto ice_aq_get_set_rss_lut_send; } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) { if (!set) goto ice_aq_get_set_rss_lut_send; } else { goto ice_aq_get_set_rss_lut_send; } /* LUT size is only valid for Global and PF table types */ switch (lut_size) { case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128: break; case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512: flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG << ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) & ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M; break; case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K: if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) { flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG << ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) & ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M; break; } /* fall-through */ default: status = ICE_ERR_PARAM; goto ice_aq_get_set_rss_lut_exit; } ice_aq_get_set_rss_lut_send: cmd_resp->flags = cpu_to_le16(flags); status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL); ice_aq_get_set_rss_lut_exit: return status; } /** * ice_aq_get_rss_lut * @hw: pointer to the hardware structure * @vsi_handle: software VSI handle * @lut_type: LUT table type * @lut: pointer to the LUT buffer provided by the caller * @lut_size: size of the LUT buffer * * get the RSS lookup table, PF or VSI type */ enum ice_status ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type, u8 *lut, u16 lut_size) { if (!ice_is_vsi_valid(hw, vsi_handle) || !lut) return ICE_ERR_PARAM; return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle), lut_type, lut, lut_size, 0, false); } /** * ice_aq_set_rss_lut * @hw: pointer to the hardware structure * @vsi_handle: software VSI handle * @lut_type: LUT table type * @lut: pointer to the LUT buffer provided by the caller * @lut_size: size of the LUT buffer * * set the RSS lookup table, PF or VSI type */ enum ice_status ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type, u8 *lut, u16 lut_size) { if (!ice_is_vsi_valid(hw, vsi_handle) || !lut) return ICE_ERR_PARAM; return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle), lut_type, lut, lut_size, 0, true); } /** * __ice_aq_get_set_rss_key * @hw: pointer to the HW struct * @vsi_id: VSI FW index * @key: pointer to key info struct * @set: set true to set the key, false to get the key * * get (0x0B04) or set (0x0B02) the RSS key per VSI */ static enum ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id, struct ice_aqc_get_set_rss_keys *key, bool set) { struct ice_aqc_get_set_rss_key *cmd_resp; u16 key_size = sizeof(*key); struct ice_aq_desc desc; cmd_resp = &desc.params.get_set_rss_key; if (set) { ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); } else { ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key); } cmd_resp->vsi_id = cpu_to_le16(((vsi_id << ICE_AQC_GSET_RSS_KEY_VSI_ID_S) & ICE_AQC_GSET_RSS_KEY_VSI_ID_M) | ICE_AQC_GSET_RSS_KEY_VSI_VALID); return ice_aq_send_cmd(hw, &desc, key, key_size, NULL); } /** * ice_aq_get_rss_key * @hw: pointer to the HW struct * @vsi_handle: software VSI handle * @key: pointer to key info struct * * get the RSS key per VSI */ enum ice_status ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle, struct ice_aqc_get_set_rss_keys *key) { if (!ice_is_vsi_valid(hw, vsi_handle) || !key) return ICE_ERR_PARAM; return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), key, false); } /** * ice_aq_set_rss_key * @hw: pointer to the HW struct * @vsi_handle: software VSI handle * @keys: pointer to key info struct * * set the RSS key per VSI */ enum ice_status ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle, struct ice_aqc_get_set_rss_keys *keys) { if (!ice_is_vsi_valid(hw, vsi_handle) || !keys) return ICE_ERR_PARAM; return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), keys, true); } /** * ice_aq_add_lan_txq * @hw: pointer to the hardware structure * @num_qgrps: Number of added queue groups * @qg_list: list of queue groups to be added * @buf_size: size of buffer for indirect command * @cd: pointer to command details structure or NULL * * Add Tx LAN queue (0x0C30) * * NOTE: * Prior to calling add Tx LAN queue: * Initialize the following as part of the Tx queue context: * Completion queue ID if the queue uses Completion queue, Quanta profile, * Cache profile and Packet shaper profile. * * After add Tx LAN queue AQ command is completed: * Interrupts should be associated with specific queues, * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue * flow. */ static enum ice_status ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps, struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size, struct ice_sq_cd *cd) { u16 i, sum_header_size, sum_q_size = 0; struct ice_aqc_add_tx_qgrp *list; struct ice_aqc_add_txqs *cmd; struct ice_aq_desc desc; cmd = &desc.params.add_txqs; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs); if (!qg_list) return ICE_ERR_PARAM; if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) return ICE_ERR_PARAM; sum_header_size = num_qgrps * (sizeof(*qg_list) - sizeof(*qg_list->txqs)); list = qg_list; for (i = 0; i < num_qgrps; i++) { struct ice_aqc_add_txqs_perq *q = list->txqs; sum_q_size += list->num_txqs * sizeof(*q); list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs); } if (buf_size != (sum_header_size + sum_q_size)) return ICE_ERR_PARAM; desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); cmd->num_qgrps = num_qgrps; return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); } /** * ice_aq_dis_lan_txq * @hw: pointer to the hardware structure * @num_qgrps: number of groups in the list * @qg_list: the list of groups to disable * @buf_size: the total size of the qg_list buffer in bytes * @rst_src: if called due to reset, specifies the reset source * @vmvf_num: the relative VM or VF number that is undergoing the reset * @cd: pointer to command details structure or NULL * * Disable LAN Tx queue (0x0C31) */ static enum ice_status ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps, struct ice_aqc_dis_txq_item *qg_list, u16 buf_size, enum ice_disq_rst_src rst_src, u16 vmvf_num, struct ice_sq_cd *cd) { struct ice_aqc_dis_txqs *cmd; struct ice_aq_desc desc; enum ice_status status; u16 i, sz = 0; cmd = &desc.params.dis_txqs; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs); /* qg_list can be NULL only in VM/VF reset flow */ if (!qg_list && !rst_src) return ICE_ERR_PARAM; if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) return ICE_ERR_PARAM; cmd->num_entries = num_qgrps; cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) & ICE_AQC_Q_DIS_TIMEOUT_M); switch (rst_src) { case ICE_VM_RESET: cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET; cmd->vmvf_and_timeout |= cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M); break; case ICE_VF_RESET: cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET; /* In this case, FW expects vmvf_num to be absolute VF ID */ cmd->vmvf_and_timeout |= cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) & ICE_AQC_Q_DIS_VMVF_NUM_M); break; case ICE_NO_RESET: default: break; } /* flush pipe on time out */ cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE; /* If no queue group info, we are in a reset flow. Issue the AQ */ if (!qg_list) goto do_aq; /* set RD bit to indicate that command buffer is provided by the driver * and it needs to be read by the firmware */ desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); for (i = 0; i < num_qgrps; ++i) { /* Calculate the size taken up by the queue IDs in this group */ sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id); /* Add the size of the group header */ sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id); /* If the num of queues is even, add 2 bytes of padding */ if ((qg_list[i].num_qs % 2) == 0) sz += 2; } if (buf_size != sz) return ICE_ERR_PARAM; do_aq: status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); if (status) { if (!qg_list) ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n", vmvf_num, hw->adminq.sq_last_status); else ice_debug(hw, ICE_DBG_SCHED, "disable Q %d failed %d\n", le16_to_cpu(qg_list[0].q_id[0]), hw->adminq.sq_last_status); } return status; } /* End of FW Admin Queue command wrappers */ /** * ice_write_byte - write a byte to a packed context structure * @src_ctx: the context structure to read from * @dest_ctx: the context to be written to * @ce_info: a description of the struct to be filled */ static void ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) { u8 src_byte, dest_byte, mask; u8 *from, *dest; u16 shift_width; /* copy from the next struct field */ from = src_ctx + ce_info->offset; /* prepare the bits and mask */ shift_width = ce_info->lsb % 8; mask = (u8)(BIT(ce_info->width) - 1); src_byte = *from; src_byte &= mask; /* shift to correct alignment */ mask <<= shift_width; src_byte <<= shift_width; /* get the current bits from the target bit string */ dest = dest_ctx + (ce_info->lsb / 8); memcpy(&dest_byte, dest, sizeof(dest_byte)); dest_byte &= ~mask; /* get the bits not changing */ dest_byte |= src_byte; /* add in the new bits */ /* put it all back */ memcpy(dest, &dest_byte, sizeof(dest_byte)); } /** * ice_write_word - write a word to a packed context structure * @src_ctx: the context structure to read from * @dest_ctx: the context to be written to * @ce_info: a description of the struct to be filled */ static void ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) { u16 src_word, mask; __le16 dest_word; u8 *from, *dest; u16 shift_width; /* copy from the next struct field */ from = src_ctx + ce_info->offset; /* prepare the bits and mask */ shift_width = ce_info->lsb % 8; mask = BIT(ce_info->width) - 1; /* don't swizzle the bits until after the mask because the mask bits * will be in a different bit position on big endian machines */ src_word = *(u16 *)from; src_word &= mask; /* shift to correct alignment */ mask <<= shift_width; src_word <<= shift_width; /* get the current bits from the target bit string */ dest = dest_ctx + (ce_info->lsb / 8); memcpy(&dest_word, dest, sizeof(dest_word)); dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */ dest_word |= cpu_to_le16(src_word); /* add in the new bits */ /* put it all back */ memcpy(dest, &dest_word, sizeof(dest_word)); } /** * ice_write_dword - write a dword to a packed context structure * @src_ctx: the context structure to read from * @dest_ctx: the context to be written to * @ce_info: a description of the struct to be filled */ static void ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) { u32 src_dword, mask; __le32 dest_dword; u8 *from, *dest; u16 shift_width; /* copy from the next struct field */ from = src_ctx + ce_info->offset; /* prepare the bits and mask */ shift_width = ce_info->lsb % 8; /* if the field width is exactly 32 on an x86 machine, then the shift * operation will not work because the SHL instructions count is masked * to 5 bits so the shift will do nothing */ if (ce_info->width < 32) mask = BIT(ce_info->width) - 1; else mask = (u32)~0; /* don't swizzle the bits until after the mask because the mask bits * will be in a different bit position on big endian machines */ src_dword = *(u32 *)from; src_dword &= mask; /* shift to correct alignment */ mask <<= shift_width; src_dword <<= shift_width; /* get the current bits from the target bit string */ dest = dest_ctx + (ce_info->lsb / 8); memcpy(&dest_dword, dest, sizeof(dest_dword)); dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */ dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */ /* put it all back */ memcpy(dest, &dest_dword, sizeof(dest_dword)); } /** * ice_write_qword - write a qword to a packed context structure * @src_ctx: the context structure to read from * @dest_ctx: the context to be written to * @ce_info: a description of the struct to be filled */ static void ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) { u64 src_qword, mask; __le64 dest_qword; u8 *from, *dest; u16 shift_width; /* copy from the next struct field */ from = src_ctx + ce_info->offset; /* prepare the bits and mask */ shift_width = ce_info->lsb % 8; /* if the field width is exactly 64 on an x86 machine, then the shift * operation will not work because the SHL instructions count is masked * to 6 bits so the shift will do nothing */ if (ce_info->width < 64) mask = BIT_ULL(ce_info->width) - 1; else mask = (u64)~0; /* don't swizzle the bits until after the mask because the mask bits * will be in a different bit position on big endian machines */ src_qword = *(u64 *)from; src_qword &= mask; /* shift to correct alignment */ mask <<= shift_width; src_qword <<= shift_width; /* get the current bits from the target bit string */ dest = dest_ctx + (ce_info->lsb / 8); memcpy(&dest_qword, dest, sizeof(dest_qword)); dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */ dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */ /* put it all back */ memcpy(dest, &dest_qword, sizeof(dest_qword)); } /** * ice_set_ctx - set context bits in packed structure * @src_ctx: pointer to a generic non-packed context structure * @dest_ctx: pointer to memory for the packed structure * @ce_info: a description of the structure to be transformed */ enum ice_status ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) { int f; for (f = 0; ce_info[f].width; f++) { /* We have to deal with each element of the FW response * using the correct size so that we are correct regardless * of the endianness of the machine. */ switch (ce_info[f].size_of) { case sizeof(u8): ice_write_byte(src_ctx, dest_ctx, &ce_info[f]); break; case sizeof(u16): ice_write_word(src_ctx, dest_ctx, &ce_info[f]); break; case sizeof(u32): ice_write_dword(src_ctx, dest_ctx, &ce_info[f]); break; case sizeof(u64): ice_write_qword(src_ctx, dest_ctx, &ce_info[f]); break; default: return ICE_ERR_INVAL_SIZE; } } return 0; } /** * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC * @hw: pointer to the HW struct * @vsi_handle: software VSI handle * @tc: TC number * @q_handle: software queue handle */ static struct ice_q_ctx * ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle) { struct ice_vsi_ctx *vsi; struct ice_q_ctx *q_ctx; vsi = ice_get_vsi_ctx(hw, vsi_handle); if (!vsi) return NULL; if (q_handle >= vsi->num_lan_q_entries[tc]) return NULL; if (!vsi->lan_q_ctx[tc]) return NULL; q_ctx = vsi->lan_q_ctx[tc]; return &q_ctx[q_handle]; } /** * ice_ena_vsi_txq * @pi: port information structure * @vsi_handle: software VSI handle * @tc: TC number * @q_handle: software queue handle * @num_qgrps: Number of added queue groups * @buf: list of queue groups to be added * @buf_size: size of buffer for indirect command * @cd: pointer to command details structure or NULL * * This function adds one LAN queue */ enum ice_status ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle, u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size, struct ice_sq_cd *cd) { struct ice_aqc_txsched_elem_data node = { 0 }; struct ice_sched_node *parent; struct ice_q_ctx *q_ctx; enum ice_status status; struct ice_hw *hw; if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) return ICE_ERR_CFG; if (num_qgrps > 1 || buf->num_txqs > 1) return ICE_ERR_MAX_LIMIT; hw = pi->hw; if (!ice_is_vsi_valid(hw, vsi_handle)) return ICE_ERR_PARAM; mutex_lock(&pi->sched_lock); q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle); if (!q_ctx) { ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n", q_handle); status = ICE_ERR_PARAM; goto ena_txq_exit; } /* find a parent node */ parent = ice_sched_get_free_qparent(pi, vsi_handle, tc, ICE_SCHED_NODE_OWNER_LAN); if (!parent) { status = ICE_ERR_PARAM; goto ena_txq_exit; } buf->parent_teid = parent->info.node_teid; node.parent_teid = parent->info.node_teid; /* Mark that the values in the "generic" section as valid. The default * value in the "generic" section is zero. This means that : * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0. * - 0 priority among siblings, indicated by Bit 1-3. * - WFQ, indicated by Bit 4. * - 0 Adjustment value is used in PSM credit update flow, indicated by * Bit 5-6. * - Bit 7 is reserved. * Without setting the generic section as valid in valid_sections, the * Admin queue command will fail with error code ICE_AQ_RC_EINVAL. */ buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC; /* add the LAN queue */ status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd); if (status) { ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n", le16_to_cpu(buf->txqs[0].txq_id), hw->adminq.sq_last_status); goto ena_txq_exit; } node.node_teid = buf->txqs[0].q_teid; node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF; q_ctx->q_handle = q_handle; /* add a leaf node into schduler tree queue layer */ status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node); ena_txq_exit: mutex_unlock(&pi->sched_lock); return status; } /** * ice_dis_vsi_txq * @pi: port information structure * @vsi_handle: software VSI handle * @tc: TC number * @num_queues: number of queues * @q_handles: pointer to software queue handle array * @q_ids: pointer to the q_id array * @q_teids: pointer to queue node teids * @rst_src: if called due to reset, specifies the reset source * @vmvf_num: the relative VM or VF number that is undergoing the reset * @cd: pointer to command details structure or NULL * * This function removes queues and their corresponding nodes in SW DB */ enum ice_status ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues, u16 *q_handles, u16 *q_ids, u32 *q_teids, enum ice_disq_rst_src rst_src, u16 vmvf_num, struct ice_sq_cd *cd) { enum ice_status status = ICE_ERR_DOES_NOT_EXIST; struct ice_aqc_dis_txq_item qg_list; struct ice_q_ctx *q_ctx; u16 i; if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) return ICE_ERR_CFG; /* if queue is disabled already yet the disable queue command has to be * sent to complete the VF reset, then call ice_aq_dis_lan_txq without * any queue information */ if (!num_queues && rst_src) return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src, vmvf_num, NULL); mutex_lock(&pi->sched_lock); for (i = 0; i < num_queues; i++) { struct ice_sched_node *node; node = ice_sched_find_node_by_teid(pi->root, q_teids[i]); if (!node) continue; q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handles[i]); if (!q_ctx) { ice_debug(pi->hw, ICE_DBG_SCHED, "invalid queue handle%d\n", q_handles[i]); continue; } if (q_ctx->q_handle != q_handles[i]) { ice_debug(pi->hw, ICE_DBG_SCHED, "Err:handles %d %d\n", q_ctx->q_handle, q_handles[i]); continue; } qg_list.parent_teid = node->info.parent_teid; qg_list.num_qs = 1; qg_list.q_id[0] = cpu_to_le16(q_ids[i]); status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list, sizeof(qg_list), rst_src, vmvf_num, cd); if (status) break; ice_free_sched_node(pi, node); q_ctx->q_handle = ICE_INVAL_Q_HANDLE; } mutex_unlock(&pi->sched_lock); return status; } /** * ice_cfg_vsi_qs - configure the new/existing VSI queues * @pi: port information structure * @vsi_handle: software VSI handle * @tc_bitmap: TC bitmap * @maxqs: max queues array per TC * @owner: LAN or RDMA * * This function adds/updates the VSI queues per TC. */ static enum ice_status ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, u16 *maxqs, u8 owner) { enum ice_status status = 0; u8 i; if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) return ICE_ERR_CFG; if (!ice_is_vsi_valid(pi->hw, vsi_handle)) return ICE_ERR_PARAM; mutex_lock(&pi->sched_lock); ice_for_each_traffic_class(i) { /* configuration is possible only if TC node is present */ if (!ice_sched_get_tc_node(pi, i)) continue; status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner, ice_is_tc_ena(tc_bitmap, i)); if (status) break; } mutex_unlock(&pi->sched_lock); return status; } /** * ice_cfg_vsi_lan - configure VSI LAN queues * @pi: port information structure * @vsi_handle: software VSI handle * @tc_bitmap: TC bitmap * @max_lanqs: max LAN queues array per TC * * This function adds/updates the VSI LAN queues per TC. */ enum ice_status ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, u16 *max_lanqs) { return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs, ICE_SCHED_NODE_OWNER_LAN); } /** * ice_replay_pre_init - replay pre initialization * @hw: pointer to the HW struct * * Initializes required config data for VSI, FD, ACL, and RSS before replay. */ static enum ice_status ice_replay_pre_init(struct ice_hw *hw) { struct ice_switch_info *sw = hw->switch_info; u8 i; /* Delete old entries from replay filter list head if there is any */ ice_rm_all_sw_replay_rule_info(hw); /* In start of replay, move entries into replay_rules list, it * will allow adding rules entries back to filt_rules list, * which is operational list. */ for (i = 0; i < ICE_SW_LKUP_LAST; i++) list_replace_init(&sw->recp_list[i].filt_rules, &sw->recp_list[i].filt_replay_rules); return 0; } /** * ice_replay_vsi - replay VSI configuration * @hw: pointer to the HW struct * @vsi_handle: driver VSI handle * * Restore all VSI configuration after reset. It is required to call this * function with main VSI first. */ enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle) { enum ice_status status; if (!ice_is_vsi_valid(hw, vsi_handle)) return ICE_ERR_PARAM; /* Replay pre-initialization if there is any */ if (vsi_handle == ICE_MAIN_VSI_HANDLE) { status = ice_replay_pre_init(hw); if (status) return status; } /* Replay per VSI all filters */ status = ice_replay_vsi_all_fltr(hw, vsi_handle); return status; } /** * ice_replay_post - post replay configuration cleanup * @hw: pointer to the HW struct * * Post replay cleanup. */ void ice_replay_post(struct ice_hw *hw) { /* Delete old entries from replay filter list head */ ice_rm_all_sw_replay_rule_info(hw); } /** * ice_stat_update40 - read 40 bit stat from the chip and update stat values * @hw: ptr to the hardware info * @hireg: high 32 bit HW register to read from * @loreg: low 32 bit HW register to read from * @prev_stat_loaded: bool to specify if previous stats are loaded * @prev_stat: ptr to previous loaded stat value * @cur_stat: ptr to current stat value */ void ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg, bool prev_stat_loaded, u64 *prev_stat, u64 *cur_stat) { u64 new_data; new_data = rd32(hw, loreg); new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; /* device stats are not reset at PFR, they likely will not be zeroed * when the driver starts. So save the first values read and use them as * offsets to be subtracted from the raw values in order to report stats * that count from zero. */ if (!prev_stat_loaded) *prev_stat = new_data; if (new_data >= *prev_stat) *cur_stat = new_data - *prev_stat; else /* to manage the potential roll-over */ *cur_stat = (new_data + BIT_ULL(40)) - *prev_stat; *cur_stat &= 0xFFFFFFFFFFULL; } /** * ice_stat_update32 - read 32 bit stat from the chip and update stat values * @hw: ptr to the hardware info * @reg: HW register to read from * @prev_stat_loaded: bool to specify if previous stats are loaded * @prev_stat: ptr to previous loaded stat value * @cur_stat: ptr to current stat value */ void ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, u64 *prev_stat, u64 *cur_stat) { u32 new_data; new_data = rd32(hw, reg); /* device stats are not reset at PFR, they likely will not be zeroed * when the driver starts. So save the first values read and use them as * offsets to be subtracted from the raw values in order to report stats * that count from zero. */ if (!prev_stat_loaded) *prev_stat = new_data; if (new_data >= *prev_stat) *cur_stat = new_data - *prev_stat; else /* to manage the potential roll-over */ *cur_stat = (new_data + BIT_ULL(32)) - *prev_stat; } /** * ice_sched_query_elem - query element information from HW * @hw: pointer to the HW struct * @node_teid: node TEID to be queried * @buf: buffer to element information * * This function queries HW element information */ enum ice_status ice_sched_query_elem(struct ice_hw *hw, u32 node_teid, struct ice_aqc_get_elem *buf) { u16 buf_size, num_elem_ret = 0; enum ice_status status; buf_size = sizeof(*buf); memset(buf, 0, buf_size); buf->generic[0].node_teid = cpu_to_le32(node_teid); status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret, NULL); if (status || num_elem_ret != 1) ice_debug(hw, ICE_DBG_SCHED, "query element failed\n"); return status; }