/* * * Copyright (c) 2011, Microsoft Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. * * Authors: * Haiyang Zhang * Hank Janssen * K. Y. Srinivasan * */ #ifndef _HYPERV_H #define _HYPERV_H #include #include #include #include #include #include #include #include #include #include #define MAX_PAGE_BUFFER_COUNT 32 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ #pragma pack(push, 1) /* Single-page buffer */ struct hv_page_buffer { u32 len; u32 offset; u64 pfn; }; /* Multiple-page buffer */ struct hv_multipage_buffer { /* Length and Offset determines the # of pfns in the array */ u32 len; u32 offset; u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; }; /* * Multiple-page buffer array; the pfn array is variable size: * The number of entries in the PFN array is determined by * "len" and "offset". */ struct hv_mpb_array { /* Length and Offset determines the # of pfns in the array */ u32 len; u32 offset; u64 pfn_array[]; }; /* 0x18 includes the proprietary packet header */ #define MAX_PAGE_BUFFER_PACKET (0x18 + \ (sizeof(struct hv_page_buffer) * \ MAX_PAGE_BUFFER_COUNT)) #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ sizeof(struct hv_multipage_buffer)) #pragma pack(pop) struct hv_ring_buffer { /* Offset in bytes from the start of ring data below */ u32 write_index; /* Offset in bytes from the start of ring data below */ u32 read_index; u32 interrupt_mask; /* * Win8 uses some of the reserved bits to implement * interrupt driven flow management. On the send side * we can request that the receiver interrupt the sender * when the ring transitions from being full to being able * to handle a message of size "pending_send_sz". * * Add necessary state for this enhancement. */ u32 pending_send_sz; u32 reserved1[12]; union { struct { u32 feat_pending_send_sz:1; }; u32 value; } feature_bits; /* Pad it to PAGE_SIZE so that data starts on page boundary */ u8 reserved2[4028]; /* * Ring data starts here + RingDataStartOffset * !!! DO NOT place any fields below this !!! */ u8 buffer[0]; } __packed; struct hv_ring_buffer_info { struct hv_ring_buffer *ring_buffer; u32 ring_size; /* Include the shared header */ spinlock_t ring_lock; u32 ring_datasize; /* < ring_size */ u32 ring_data_startoffset; u32 priv_write_index; u32 priv_read_index; }; /* * * hv_get_ringbuffer_availbytes() * * Get number of bytes available to read and to write to * for the specified ring buffer */ static inline void hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi, u32 *read, u32 *write) { u32 read_loc, write_loc, dsize; /* Capture the read/write indices before they changed */ read_loc = rbi->ring_buffer->read_index; write_loc = rbi->ring_buffer->write_index; dsize = rbi->ring_datasize; *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : read_loc - write_loc; *read = dsize - *write; } static inline u32 hv_get_bytes_to_read(struct hv_ring_buffer_info *rbi) { u32 read_loc, write_loc, dsize, read; dsize = rbi->ring_datasize; read_loc = rbi->ring_buffer->read_index; write_loc = READ_ONCE(rbi->ring_buffer->write_index); read = write_loc >= read_loc ? (write_loc - read_loc) : (dsize - read_loc) + write_loc; return read; } static inline u32 hv_get_bytes_to_write(struct hv_ring_buffer_info *rbi) { u32 read_loc, write_loc, dsize, write; dsize = rbi->ring_datasize; read_loc = READ_ONCE(rbi->ring_buffer->read_index); write_loc = rbi->ring_buffer->write_index; write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : read_loc - write_loc; return write; } /* * VMBUS version is 32 bit entity broken up into * two 16 bit quantities: major_number. minor_number. * * 0 . 13 (Windows Server 2008) * 1 . 1 (Windows 7) * 2 . 4 (Windows 8) * 3 . 0 (Windows 8 R2) * 4 . 0 (Windows 10) */ #define VERSION_WS2008 ((0 << 16) | (13)) #define VERSION_WIN7 ((1 << 16) | (1)) #define VERSION_WIN8 ((2 << 16) | (4)) #define VERSION_WIN8_1 ((3 << 16) | (0)) #define VERSION_WIN10 ((4 << 16) | (0)) #define VERSION_INVAL -1 #define VERSION_CURRENT VERSION_WIN10 /* Make maximum size of pipe payload of 16K */ #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) /* Define PipeMode values. */ #define VMBUS_PIPE_TYPE_BYTE 0x00000000 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 /* The size of the user defined data buffer for non-pipe offers. */ #define MAX_USER_DEFINED_BYTES 120 /* The size of the user defined data buffer for pipe offers. */ #define MAX_PIPE_USER_DEFINED_BYTES 116 /* * At the center of the Channel Management library is the Channel Offer. This * struct contains the fundamental information about an offer. */ struct vmbus_channel_offer { uuid_le if_type; uuid_le if_instance; /* * These two fields are not currently used. */ u64 reserved1; u64 reserved2; u16 chn_flags; u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ union { /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ struct { unsigned char user_def[MAX_USER_DEFINED_BYTES]; } std; /* * Pipes: * The following sructure is an integrated pipe protocol, which * is implemented on top of standard user-defined data. Pipe * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own * use. */ struct { u32 pipe_mode; unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; } pipe; } u; /* * The sub_channel_index is defined in win8. */ u16 sub_channel_index; u16 reserved3; } __packed; /* Server Flags */ #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 #define VMBUS_CHANNEL_PARENT_OFFER 0x200 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 struct vmpacket_descriptor { u16 type; u16 offset8; u16 len8; u16 flags; u64 trans_id; } __packed; struct vmpacket_header { u32 prev_pkt_start_offset; struct vmpacket_descriptor descriptor; } __packed; struct vmtransfer_page_range { u32 byte_count; u32 byte_offset; } __packed; struct vmtransfer_page_packet_header { struct vmpacket_descriptor d; u16 xfer_pageset_id; u8 sender_owns_set; u8 reserved; u32 range_cnt; struct vmtransfer_page_range ranges[1]; } __packed; struct vmgpadl_packet_header { struct vmpacket_descriptor d; u32 gpadl; u32 reserved; } __packed; struct vmadd_remove_transfer_page_set { struct vmpacket_descriptor d; u32 gpadl; u16 xfer_pageset_id; u16 reserved; } __packed; /* * This structure defines a range in guest physical space that can be made to * look virtually contiguous. */ struct gpa_range { u32 byte_count; u32 byte_offset; u64 pfn_array[0]; }; /* * This is the format for an Establish Gpadl packet, which contains a handle by * which this GPADL will be known and a set of GPA ranges associated with it. * This can be converted to a MDL by the guest OS. If there are multiple GPA * ranges, then the resulting MDL will be "chained," representing multiple VA * ranges. */ struct vmestablish_gpadl { struct vmpacket_descriptor d; u32 gpadl; u32 range_cnt; struct gpa_range range[1]; } __packed; /* * This is the format for a Teardown Gpadl packet, which indicates that the * GPADL handle in the Establish Gpadl packet will never be referenced again. */ struct vmteardown_gpadl { struct vmpacket_descriptor d; u32 gpadl; u32 reserved; /* for alignment to a 8-byte boundary */ } __packed; /* * This is the format for a GPA-Direct packet, which contains a set of GPA * ranges, in addition to commands and/or data. */ struct vmdata_gpa_direct { struct vmpacket_descriptor d; u32 reserved; u32 range_cnt; struct gpa_range range[1]; } __packed; /* This is the format for a Additional Data Packet. */ struct vmadditional_data { struct vmpacket_descriptor d; u64 total_bytes; u32 offset; u32 byte_cnt; unsigned char data[1]; } __packed; union vmpacket_largest_possible_header { struct vmpacket_descriptor simple_hdr; struct vmtransfer_page_packet_header xfer_page_hdr; struct vmgpadl_packet_header gpadl_hdr; struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; struct vmestablish_gpadl establish_gpadl_hdr; struct vmteardown_gpadl teardown_gpadl_hdr; struct vmdata_gpa_direct data_gpa_direct_hdr; }; #define VMPACKET_DATA_START_ADDRESS(__packet) \ (void *)(((unsigned char *)__packet) + \ ((struct vmpacket_descriptor)__packet)->offset8 * 8) #define VMPACKET_DATA_LENGTH(__packet) \ ((((struct vmpacket_descriptor)__packet)->len8 - \ ((struct vmpacket_descriptor)__packet)->offset8) * 8) #define VMPACKET_TRANSFER_MODE(__packet) \ (((struct IMPACT)__packet)->type) enum vmbus_packet_type { VM_PKT_INVALID = 0x0, VM_PKT_SYNCH = 0x1, VM_PKT_ADD_XFER_PAGESET = 0x2, VM_PKT_RM_XFER_PAGESET = 0x3, VM_PKT_ESTABLISH_GPADL = 0x4, VM_PKT_TEARDOWN_GPADL = 0x5, VM_PKT_DATA_INBAND = 0x6, VM_PKT_DATA_USING_XFER_PAGES = 0x7, VM_PKT_DATA_USING_GPADL = 0x8, VM_PKT_DATA_USING_GPA_DIRECT = 0x9, VM_PKT_CANCEL_REQUEST = 0xa, VM_PKT_COMP = 0xb, VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, VM_PKT_ADDITIONAL_DATA = 0xd }; #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 /* Version 1 messages */ enum vmbus_channel_message_type { CHANNELMSG_INVALID = 0, CHANNELMSG_OFFERCHANNEL = 1, CHANNELMSG_RESCIND_CHANNELOFFER = 2, CHANNELMSG_REQUESTOFFERS = 3, CHANNELMSG_ALLOFFERS_DELIVERED = 4, CHANNELMSG_OPENCHANNEL = 5, CHANNELMSG_OPENCHANNEL_RESULT = 6, CHANNELMSG_CLOSECHANNEL = 7, CHANNELMSG_GPADL_HEADER = 8, CHANNELMSG_GPADL_BODY = 9, CHANNELMSG_GPADL_CREATED = 10, CHANNELMSG_GPADL_TEARDOWN = 11, CHANNELMSG_GPADL_TORNDOWN = 12, CHANNELMSG_RELID_RELEASED = 13, CHANNELMSG_INITIATE_CONTACT = 14, CHANNELMSG_VERSION_RESPONSE = 15, CHANNELMSG_UNLOAD = 16, CHANNELMSG_UNLOAD_RESPONSE = 17, CHANNELMSG_18 = 18, CHANNELMSG_19 = 19, CHANNELMSG_20 = 20, CHANNELMSG_TL_CONNECT_REQUEST = 21, CHANNELMSG_COUNT }; struct vmbus_channel_message_header { enum vmbus_channel_message_type msgtype; u32 padding; } __packed; /* Query VMBus Version parameters */ struct vmbus_channel_query_vmbus_version { struct vmbus_channel_message_header header; u32 version; } __packed; /* VMBus Version Supported parameters */ struct vmbus_channel_version_supported { struct vmbus_channel_message_header header; u8 version_supported; } __packed; /* Offer Channel parameters */ struct vmbus_channel_offer_channel { struct vmbus_channel_message_header header; struct vmbus_channel_offer offer; u32 child_relid; u8 monitorid; /* * win7 and beyond splits this field into a bit field. */ u8 monitor_allocated:1; u8 reserved:7; /* * These are new fields added in win7 and later. * Do not access these fields without checking the * negotiated protocol. * * If "is_dedicated_interrupt" is set, we must not set the * associated bit in the channel bitmap while sending the * interrupt to the host. * * connection_id is to be used in signaling the host. */ u16 is_dedicated_interrupt:1; u16 reserved1:15; u32 connection_id; } __packed; /* Rescind Offer parameters */ struct vmbus_channel_rescind_offer { struct vmbus_channel_message_header header; u32 child_relid; } __packed; /* * Request Offer -- no parameters, SynIC message contains the partition ID * Set Snoop -- no parameters, SynIC message contains the partition ID * Clear Snoop -- no parameters, SynIC message contains the partition ID * All Offers Delivered -- no parameters, SynIC message contains the partition * ID * Flush Client -- no parameters, SynIC message contains the partition ID */ /* Open Channel parameters */ struct vmbus_channel_open_channel { struct vmbus_channel_message_header header; /* Identifies the specific VMBus channel that is being opened. */ u32 child_relid; /* ID making a particular open request at a channel offer unique. */ u32 openid; /* GPADL for the channel's ring buffer. */ u32 ringbuffer_gpadlhandle; /* * Starting with win8, this field will be used to specify * the target virtual processor on which to deliver the interrupt for * the host to guest communication. * Prior to win8, incoming channel interrupts would only * be delivered on cpu 0. Setting this value to 0 would * preserve the earlier behavior. */ u32 target_vp; /* * The upstream ring buffer begins at offset zero in the memory * described by RingBufferGpadlHandle. The downstream ring buffer * follows it at this offset (in pages). */ u32 downstream_ringbuffer_pageoffset; /* User-specific data to be passed along to the server endpoint. */ unsigned char userdata[MAX_USER_DEFINED_BYTES]; } __packed; /* Open Channel Result parameters */ struct vmbus_channel_open_result { struct vmbus_channel_message_header header; u32 child_relid; u32 openid; u32 status; } __packed; /* Close channel parameters; */ struct vmbus_channel_close_channel { struct vmbus_channel_message_header header; u32 child_relid; } __packed; /* Channel Message GPADL */ #define GPADL_TYPE_RING_BUFFER 1 #define GPADL_TYPE_SERVER_SAVE_AREA 2 #define GPADL_TYPE_TRANSACTION 8 /* * The number of PFNs in a GPADL message is defined by the number of * pages that would be spanned by ByteCount and ByteOffset. If the * implied number of PFNs won't fit in this packet, there will be a * follow-up packet that contains more. */ struct vmbus_channel_gpadl_header { struct vmbus_channel_message_header header; u32 child_relid; u32 gpadl; u16 range_buflen; u16 rangecount; struct gpa_range range[0]; } __packed; /* This is the followup packet that contains more PFNs. */ struct vmbus_channel_gpadl_body { struct vmbus_channel_message_header header; u32 msgnumber; u32 gpadl; u64 pfn[0]; } __packed; struct vmbus_channel_gpadl_created { struct vmbus_channel_message_header header; u32 child_relid; u32 gpadl; u32 creation_status; } __packed; struct vmbus_channel_gpadl_teardown { struct vmbus_channel_message_header header; u32 child_relid; u32 gpadl; } __packed; struct vmbus_channel_gpadl_torndown { struct vmbus_channel_message_header header; u32 gpadl; } __packed; struct vmbus_channel_relid_released { struct vmbus_channel_message_header header; u32 child_relid; } __packed; struct vmbus_channel_initiate_contact { struct vmbus_channel_message_header header; u32 vmbus_version_requested; u32 target_vcpu; /* The VCPU the host should respond to */ u64 interrupt_page; u64 monitor_page1; u64 monitor_page2; } __packed; /* Hyper-V socket: guest's connect()-ing to host */ struct vmbus_channel_tl_connect_request { struct vmbus_channel_message_header header; uuid_le guest_endpoint_id; uuid_le host_service_id; } __packed; struct vmbus_channel_version_response { struct vmbus_channel_message_header header; u8 version_supported; } __packed; enum vmbus_channel_state { CHANNEL_OFFER_STATE, CHANNEL_OPENING_STATE, CHANNEL_OPEN_STATE, CHANNEL_OPENED_STATE, }; /* * Represents each channel msg on the vmbus connection This is a * variable-size data structure depending on the msg type itself */ struct vmbus_channel_msginfo { /* Bookkeeping stuff */ struct list_head msglistentry; /* So far, this is only used to handle gpadl body message */ struct list_head submsglist; /* Synchronize the request/response if needed */ struct completion waitevent; union { struct vmbus_channel_version_supported version_supported; struct vmbus_channel_open_result open_result; struct vmbus_channel_gpadl_torndown gpadl_torndown; struct vmbus_channel_gpadl_created gpadl_created; struct vmbus_channel_version_response version_response; } response; u32 msgsize; /* * The channel message that goes out on the "wire". * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header */ unsigned char msg[0]; }; struct vmbus_close_msg { struct vmbus_channel_msginfo info; struct vmbus_channel_close_channel msg; }; /* Define connection identifier type. */ union hv_connection_id { u32 asu32; struct { u32 id:24; u32 reserved:8; } u; }; /* Definition of the hv_signal_event hypercall input structure. */ struct hv_input_signal_event { union hv_connection_id connectionid; u16 flag_number; u16 rsvdz; }; struct hv_input_signal_event_buffer { u64 align8; struct hv_input_signal_event event; }; enum hv_signal_policy { HV_SIGNAL_POLICY_DEFAULT = 0, HV_SIGNAL_POLICY_EXPLICIT, }; enum vmbus_device_type { HV_IDE = 0, HV_SCSI, HV_FC, HV_NIC, HV_ND, HV_PCIE, HV_FB, HV_KBD, HV_MOUSE, HV_KVP, HV_TS, HV_HB, HV_SHUTDOWN, HV_FCOPY, HV_BACKUP, HV_DM, HV_UNKOWN, }; struct vmbus_device { u16 dev_type; uuid_le guid; bool perf_device; }; struct vmbus_channel { /* Unique channel id */ int id; struct list_head listentry; struct hv_device *device_obj; enum vmbus_channel_state state; struct vmbus_channel_offer_channel offermsg; /* * These are based on the OfferMsg.MonitorId. * Save it here for easy access. */ u8 monitor_grp; u8 monitor_bit; bool rescind; /* got rescind msg */ u32 ringbuffer_gpadlhandle; /* Allocated memory for ring buffer */ void *ringbuffer_pages; u32 ringbuffer_pagecount; struct hv_ring_buffer_info outbound; /* send to parent */ struct hv_ring_buffer_info inbound; /* receive from parent */ spinlock_t inbound_lock; struct vmbus_close_msg close_msg; /* Channel callback are invoked in this workqueue context */ /* HANDLE dataWorkQueue; */ void (*onchannel_callback)(void *context); void *channel_callback_context; /* * A channel can be marked for efficient (batched) * reading: * If batched_reading is set to "true", we read until the * channel is empty and hold off interrupts from the host * during the entire read process. * If batched_reading is set to "false", the client is not * going to perform batched reading. * * By default we will enable batched reading; specific * drivers that don't want this behavior can turn it off. */ bool batched_reading; bool is_dedicated_interrupt; struct hv_input_signal_event_buffer sig_buf; struct hv_input_signal_event *sig_event; /* * Starting with win8, this field will be used to specify * the target virtual processor on which to deliver the interrupt for * the host to guest communication. * Prior to win8, incoming channel interrupts would only * be delivered on cpu 0. Setting this value to 0 would * preserve the earlier behavior. */ u32 target_vp; /* The corresponding CPUID in the guest */ u32 target_cpu; /* * State to manage the CPU affiliation of channels. */ struct cpumask alloced_cpus_in_node; int numa_node; /* * Support for sub-channels. For high performance devices, * it will be useful to have multiple sub-channels to support * a scalable communication infrastructure with the host. * The support for sub-channels is implemented as an extention * to the current infrastructure. * The initial offer is considered the primary channel and this * offer message will indicate if the host supports sub-channels. * The guest is free to ask for sub-channels to be offerred and can * open these sub-channels as a normal "primary" channel. However, * all sub-channels will have the same type and instance guids as the * primary channel. Requests sent on a given channel will result in a * response on the same channel. */ /* * Sub-channel creation callback. This callback will be called in * process context when a sub-channel offer is received from the host. * The guest can open the sub-channel in the context of this callback. */ void (*sc_creation_callback)(struct vmbus_channel *new_sc); /* * Channel rescind callback. Some channels (the hvsock ones), need to * register a callback which is invoked in vmbus_onoffer_rescind(). */ void (*chn_rescind_callback)(struct vmbus_channel *channel); /* * The spinlock to protect the structure. It is being used to protect * test-and-set access to various attributes of the structure as well * as all sc_list operations. */ spinlock_t lock; /* * All Sub-channels of a primary channel are linked here. */ struct list_head sc_list; /* * Current number of sub-channels. */ int num_sc; /* * Number of a sub-channel (position within sc_list) which is supposed * to be used as the next outgoing channel. */ int next_oc; /* * The primary channel this sub-channel belongs to. * This will be NULL for the primary channel. */ struct vmbus_channel *primary_channel; /* * Support per-channel state for use by vmbus drivers. */ void *per_channel_state; /* * To support per-cpu lookup mapping of relid to channel, * link up channels based on their CPU affinity. */ struct list_head percpu_list; /* * Host signaling policy: The default policy will be * based on the ring buffer state. We will also support * a policy where the client driver can have explicit * signaling control. */ enum hv_signal_policy signal_policy; /* * On the channel send side, many of the VMBUS * device drivers explicity serialize access to the * outgoing ring buffer. Give more control to the * VMBUS device drivers in terms how to serialize * accesss to the outgoing ring buffer. * The default behavior will be to aquire the * ring lock to preserve the current behavior. */ bool acquire_ring_lock; /* * For performance critical channels (storage, networking * etc,), Hyper-V has a mechanism to enhance the throughput * at the expense of latency: * When the host is to be signaled, we just set a bit in a shared page * and this bit will be inspected by the hypervisor within a certain * window and if the bit is set, the host will be signaled. The window * of time is the monitor latency - currently around 100 usecs. This * mechanism improves throughput by: * * A) Making the host more efficient - each time it wakes up, * potentially it will process morev number of packets. The * monitor latency allows a batch to build up. * B) By deferring the hypercall to signal, we will also minimize * the interrupts. * * Clearly, these optimizations improve throughput at the expense of * latency. Furthermore, since the channel is shared for both * control and data messages, control messages currently suffer * unnecessary latency adversley impacting performance and boot * time. To fix this issue, permit tagging the channel as being * in "low latency" mode. In this mode, we will bypass the monitor * mechanism. */ bool low_latency; }; static inline void set_channel_lock_state(struct vmbus_channel *c, bool state) { c->acquire_ring_lock = state; } static inline bool is_hvsock_channel(const struct vmbus_channel *c) { return !!(c->offermsg.offer.chn_flags & VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); } static inline void set_channel_signal_state(struct vmbus_channel *c, enum hv_signal_policy policy) { c->signal_policy = policy; } static inline void set_channel_read_state(struct vmbus_channel *c, bool state) { c->batched_reading = state; } static inline void set_per_channel_state(struct vmbus_channel *c, void *s) { c->per_channel_state = s; } static inline void *get_per_channel_state(struct vmbus_channel *c) { return c->per_channel_state; } static inline void set_channel_pending_send_size(struct vmbus_channel *c, u32 size) { c->outbound.ring_buffer->pending_send_sz = size; } static inline void set_low_latency_mode(struct vmbus_channel *c) { c->low_latency = true; } static inline void clear_low_latency_mode(struct vmbus_channel *c) { c->low_latency = false; } void vmbus_onmessage(void *context); int vmbus_request_offers(void); /* * APIs for managing sub-channels. */ void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, void (*sc_cr_cb)(struct vmbus_channel *new_sc)); void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, void (*chn_rescind_cb)(struct vmbus_channel *)); /* * Retrieve the (sub) channel on which to send an outgoing request. * When a primary channel has multiple sub-channels, we choose a * channel whose VCPU binding is closest to the VCPU on which * this call is being made. */ struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary); /* * Check if sub-channels have already been offerred. This API will be useful * when the driver is unloaded after establishing sub-channels. In this case, * when the driver is re-loaded, the driver would have to check if the * subchannels have already been established before attempting to request * the creation of sub-channels. * This function returns TRUE to indicate that subchannels have already been * created. * This function should be invoked after setting the callback function for * sub-channel creation. */ bool vmbus_are_subchannels_present(struct vmbus_channel *primary); /* The format must be the same as struct vmdata_gpa_direct */ struct vmbus_channel_packet_page_buffer { u16 type; u16 dataoffset8; u16 length8; u16 flags; u64 transactionid; u32 reserved; u32 rangecount; struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; } __packed; /* The format must be the same as struct vmdata_gpa_direct */ struct vmbus_channel_packet_multipage_buffer { u16 type; u16 dataoffset8; u16 length8; u16 flags; u64 transactionid; u32 reserved; u32 rangecount; /* Always 1 in this case */ struct hv_multipage_buffer range; } __packed; /* The format must be the same as struct vmdata_gpa_direct */ struct vmbus_packet_mpb_array { u16 type; u16 dataoffset8; u16 length8; u16 flags; u64 transactionid; u32 reserved; u32 rangecount; /* Always 1 in this case */ struct hv_mpb_array range; } __packed; extern int vmbus_open(struct vmbus_channel *channel, u32 send_ringbuffersize, u32 recv_ringbuffersize, void *userdata, u32 userdatalen, void(*onchannel_callback)(void *context), void *context); extern void vmbus_close(struct vmbus_channel *channel); extern int vmbus_sendpacket(struct vmbus_channel *channel, void *buffer, u32 bufferLen, u64 requestid, enum vmbus_packet_type type, u32 flags); extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel, void *buffer, u32 bufferLen, u64 requestid, enum vmbus_packet_type type, u32 flags, bool kick_q); extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, struct hv_page_buffer pagebuffers[], u32 pagecount, void *buffer, u32 bufferlen, u64 requestid); extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel, struct hv_page_buffer pagebuffers[], u32 pagecount, void *buffer, u32 bufferlen, u64 requestid, u32 flags, bool kick_q); extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, struct hv_multipage_buffer *mpb, void *buffer, u32 bufferlen, u64 requestid); extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, struct vmbus_packet_mpb_array *mpb, u32 desc_size, void *buffer, u32 bufferlen, u64 requestid); extern int vmbus_establish_gpadl(struct vmbus_channel *channel, void *kbuffer, u32 size, u32 *gpadl_handle); extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, u32 gpadl_handle); extern int vmbus_recvpacket(struct vmbus_channel *channel, void *buffer, u32 bufferlen, u32 *buffer_actual_len, u64 *requestid); extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, void *buffer, u32 bufferlen, u32 *buffer_actual_len, u64 *requestid); extern void vmbus_ontimer(unsigned long data); /* Base driver object */ struct hv_driver { const char *name; /* * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER * channel flag, actually doesn't mean a synthetic device because the * offer's if_type/if_instance can change for every new hvsock * connection. * * However, to facilitate the notification of new-offer/rescind-offer * from vmbus driver to hvsock driver, we can handle hvsock offer as * a special vmbus device, and hence we need the below flag to * indicate if the driver is the hvsock driver or not: we need to * specially treat the hvosck offer & driver in vmbus_match(). */ bool hvsock; /* the device type supported by this driver */ uuid_le dev_type; const struct hv_vmbus_device_id *id_table; struct device_driver driver; int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); int (*remove)(struct hv_device *); void (*shutdown)(struct hv_device *); }; /* Base device object */ struct hv_device { /* the device type id of this device */ uuid_le dev_type; /* the device instance id of this device */ uuid_le dev_instance; u16 vendor_id; u16 device_id; struct device device; struct vmbus_channel *channel; }; static inline struct hv_device *device_to_hv_device(struct device *d) { return container_of(d, struct hv_device, device); } static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) { return container_of(d, struct hv_driver, driver); } static inline void hv_set_drvdata(struct hv_device *dev, void *data) { dev_set_drvdata(&dev->device, data); } static inline void *hv_get_drvdata(struct hv_device *dev) { return dev_get_drvdata(&dev->device); } /* Vmbus interface */ #define vmbus_driver_register(driver) \ __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name); void vmbus_driver_unregister(struct hv_driver *hv_driver); void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, resource_size_t min, resource_size_t max, resource_size_t size, resource_size_t align, bool fb_overlap_ok); void vmbus_free_mmio(resource_size_t start, resource_size_t size); int vmbus_cpu_number_to_vp_number(int cpu_number); u64 hv_do_hypercall(u64 control, void *input, void *output); /* * GUID definitions of various offer types - services offered to the guest. */ /* * Network GUID * {f8615163-df3e-46c5-913f-f2d2f965ed0e} */ #define HV_NIC_GUID \ .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) /* * IDE GUID * {32412632-86cb-44a2-9b5c-50d1417354f5} */ #define HV_IDE_GUID \ .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) /* * SCSI GUID * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} */ #define HV_SCSI_GUID \ .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) /* * Shutdown GUID * {0e0b6031-5213-4934-818b-38d90ced39db} */ #define HV_SHUTDOWN_GUID \ .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) /* * Time Synch GUID * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} */ #define HV_TS_GUID \ .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) /* * Heartbeat GUID * {57164f39-9115-4e78-ab55-382f3bd5422d} */ #define HV_HEART_BEAT_GUID \ .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) /* * KVP GUID * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} */ #define HV_KVP_GUID \ .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) /* * Dynamic memory GUID * {525074dc-8985-46e2-8057-a307dc18a502} */ #define HV_DM_GUID \ .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) /* * Mouse GUID * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} */ #define HV_MOUSE_GUID \ .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) /* * Keyboard GUID * {f912ad6d-2b17-48ea-bd65-f927a61c7684} */ #define HV_KBD_GUID \ .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) /* * VSS (Backup/Restore) GUID */ #define HV_VSS_GUID \ .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) /* * Synthetic Video GUID * {DA0A7802-E377-4aac-8E77-0558EB1073F8} */ #define HV_SYNTHVID_GUID \ .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) /* * Synthetic FC GUID * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} */ #define HV_SYNTHFC_GUID \ .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) /* * Guest File Copy Service * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} */ #define HV_FCOPY_GUID \ .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) /* * NetworkDirect. This is the guest RDMA service. * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} */ #define HV_ND_GUID \ .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) /* * PCI Express Pass Through * {44C4F61D-4444-4400-9D52-802E27EDE19F} */ #define HV_PCIE_GUID \ .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) /* * Common header for Hyper-V ICs */ #define ICMSGTYPE_NEGOTIATE 0 #define ICMSGTYPE_HEARTBEAT 1 #define ICMSGTYPE_KVPEXCHANGE 2 #define ICMSGTYPE_SHUTDOWN 3 #define ICMSGTYPE_TIMESYNC 4 #define ICMSGTYPE_VSS 5 #define ICMSGHDRFLAG_TRANSACTION 1 #define ICMSGHDRFLAG_REQUEST 2 #define ICMSGHDRFLAG_RESPONSE 4 /* * While we want to handle util services as regular devices, * there is only one instance of each of these services; so * we statically allocate the service specific state. */ struct hv_util_service { u8 *recv_buffer; void *channel; void (*util_cb)(void *); int (*util_init)(struct hv_util_service *); void (*util_deinit)(void); }; struct vmbuspipe_hdr { u32 flags; u32 msgsize; } __packed; struct ic_version { u16 major; u16 minor; } __packed; struct icmsg_hdr { struct ic_version icverframe; u16 icmsgtype; struct ic_version icvermsg; u16 icmsgsize; u32 status; u8 ictransaction_id; u8 icflags; u8 reserved[2]; } __packed; struct icmsg_negotiate { u16 icframe_vercnt; u16 icmsg_vercnt; u32 reserved; struct ic_version icversion_data[1]; /* any size array */ } __packed; struct shutdown_msg_data { u32 reason_code; u32 timeout_seconds; u32 flags; u8 display_message[2048]; } __packed; struct heartbeat_msg_data { u64 seq_num; u32 reserved[8]; } __packed; /* Time Sync IC defs */ #define ICTIMESYNCFLAG_PROBE 0 #define ICTIMESYNCFLAG_SYNC 1 #define ICTIMESYNCFLAG_SAMPLE 2 #ifdef __x86_64__ #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ #else #define WLTIMEDELTA 116444736000000000LL #endif struct ictimesync_data { u64 parenttime; u64 childtime; u64 roundtriptime; u8 flags; } __packed; struct hyperv_service_callback { u8 msg_type; char *log_msg; uuid_le data; struct vmbus_channel *channel; void (*callback) (void *context); }; #define MAX_SRV_VER 0x7ffffff extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *, struct icmsg_negotiate *, u8 *, int, int); void hv_event_tasklet_disable(struct vmbus_channel *channel); void hv_event_tasklet_enable(struct vmbus_channel *channel); void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid); /* * Negotiated version with the Host. */ extern __u32 vmbus_proto_version; int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id, const uuid_le *shv_host_servie_id); void vmbus_set_event(struct vmbus_channel *channel); /* Get the start of the ring buffer. */ static inline void * hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info) { return (void *)ring_info->ring_buffer->buffer; } /* * To optimize the flow management on the send-side, * when the sender is blocked because of lack of * sufficient space in the ring buffer, potential the * consumer of the ring buffer can signal the producer. * This is controlled by the following parameters: * * 1. pending_send_sz: This is the size in bytes that the * producer is trying to send. * 2. The feature bit feat_pending_send_sz set to indicate if * the consumer of the ring will signal when the ring * state transitions from being full to a state where * there is room for the producer to send the pending packet. */ static inline bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi) { u32 cur_write_sz; u32 pending_sz; /* * Issue a full memory barrier before making the signaling decision. * Here is the reason for having this barrier: * If the reading of the pend_sz (in this function) * were to be reordered and read before we commit the new read * index (in the calling function) we could * have a problem. If the host were to set the pending_sz after we * have sampled pending_sz and go to sleep before we commit the * read index, we could miss sending the interrupt. Issue a full * memory barrier to address this. */ virt_mb(); pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); /* If the other end is not blocked on write don't bother. */ if (pending_sz == 0) return false; cur_write_sz = hv_get_bytes_to_write(rbi); if (cur_write_sz >= pending_sz) return true; return false; } /* * An API to support in-place processing of incoming VMBUS packets. */ #define VMBUS_PKT_TRAILER 8 static inline struct vmpacket_descriptor * get_next_pkt_raw(struct vmbus_channel *channel) { struct hv_ring_buffer_info *ring_info = &channel->inbound; u32 priv_read_loc = ring_info->priv_read_index; void *ring_buffer = hv_get_ring_buffer(ring_info); u32 dsize = ring_info->ring_datasize; /* * delta is the difference between what is available to read and * what was already consumed in place. We commit read index after * the whole batch is processed. */ u32 delta = priv_read_loc >= ring_info->ring_buffer->read_index ? priv_read_loc - ring_info->ring_buffer->read_index : (dsize - ring_info->ring_buffer->read_index) + priv_read_loc; u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta); if (bytes_avail_toread < sizeof(struct vmpacket_descriptor)) return NULL; return ring_buffer + priv_read_loc; } /* * A helper function to step through packets "in-place" * This API is to be called after each successful call * get_next_pkt_raw(). */ static inline void put_pkt_raw(struct vmbus_channel *channel, struct vmpacket_descriptor *desc) { struct hv_ring_buffer_info *ring_info = &channel->inbound; u32 packetlen = desc->len8 << 3; u32 dsize = ring_info->ring_datasize; /* * Include the packet trailer. */ ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER; ring_info->priv_read_index %= dsize; } /* * This call commits the read index and potentially signals the host. * Here is the pattern for using the "in-place" consumption APIs: * * while (get_next_pkt_raw() { * process the packet "in-place"; * put_pkt_raw(); * } * if (packets processed in place) * commit_rd_index(); */ static inline void commit_rd_index(struct vmbus_channel *channel) { struct hv_ring_buffer_info *ring_info = &channel->inbound; /* * Make sure all reads are done before we update the read index since * the writer may start writing to the read area once the read index * is updated. */ virt_rmb(); ring_info->ring_buffer->read_index = ring_info->priv_read_index; if (hv_need_to_signal_on_read(ring_info)) vmbus_set_event(channel); } #endif /* _HYPERV_H */