// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017 Marvell * * Antoine Tenart */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "safexcel.h" static u32 max_rings = EIP197_MAX_RINGS; module_param(max_rings, uint, 0644); MODULE_PARM_DESC(max_rings, "Maximum number of rings to use."); static void eip197_trc_cache_setupvirt(struct safexcel_crypto_priv *priv) { int i; /* * Map all interfaces/rings to register index 0 * so they can share contexts. Without this, the EIP197 will * assume each interface/ring to be in its own memory domain * i.e. have its own subset of UNIQUE memory addresses. * Which would cause records with the SAME memory address to * use DIFFERENT cache buffers, causing both poor cache utilization * AND serious coherence/invalidation issues. */ for (i = 0; i < 4; i++) writel(0, priv->base + EIP197_FLUE_IFC_LUT(i)); /* * Initialize other virtualization regs for cache * These may not be in their reset state ... */ for (i = 0; i < priv->config.rings; i++) { writel(0, priv->base + EIP197_FLUE_CACHEBASE_LO(i)); writel(0, priv->base + EIP197_FLUE_CACHEBASE_HI(i)); writel(EIP197_FLUE_CONFIG_MAGIC, priv->base + EIP197_FLUE_CONFIG(i)); } writel(0, priv->base + EIP197_FLUE_OFFSETS); writel(0, priv->base + EIP197_FLUE_ARC4_OFFSET); } static void eip197_trc_cache_banksel(struct safexcel_crypto_priv *priv, u32 addrmid, int *actbank) { u32 val; int curbank; curbank = addrmid >> 16; if (curbank != *actbank) { val = readl(priv->base + EIP197_CS_RAM_CTRL); val = (val & ~EIP197_CS_BANKSEL_MASK) | (curbank << EIP197_CS_BANKSEL_OFS); writel(val, priv->base + EIP197_CS_RAM_CTRL); *actbank = curbank; } } static u32 eip197_trc_cache_probe(struct safexcel_crypto_priv *priv, int maxbanks, u32 probemask) { u32 val, addrhi, addrlo, addrmid; int actbank; /* * And probe the actual size of the physically attached cache data RAM * Using a binary subdivision algorithm downto 32 byte cache lines. */ addrhi = 1 << (16 + maxbanks); addrlo = 0; actbank = min(maxbanks - 1, 0); while ((addrhi - addrlo) > 32) { /* write marker to lowest address in top half */ addrmid = (addrhi + addrlo) >> 1; eip197_trc_cache_banksel(priv, addrmid, &actbank); writel((addrmid | (addrlo << 16)) & probemask, priv->base + EIP197_CLASSIFICATION_RAMS + (addrmid & 0xffff)); /* write marker to lowest address in bottom half */ eip197_trc_cache_banksel(priv, addrlo, &actbank); writel((addrlo | (addrhi << 16)) & probemask, priv->base + EIP197_CLASSIFICATION_RAMS + (addrlo & 0xffff)); /* read back marker from top half */ eip197_trc_cache_banksel(priv, addrmid, &actbank); val = readl(priv->base + EIP197_CLASSIFICATION_RAMS + (addrmid & 0xffff)); if (val == ((addrmid | (addrlo << 16)) & probemask)) { /* read back correct, continue with top half */ addrlo = addrmid; } else { /* not read back correct, continue with bottom half */ addrhi = addrmid; } } return addrhi; } static void eip197_trc_cache_clear(struct safexcel_crypto_priv *priv, int cs_rc_max, int cs_ht_wc) { int i; u32 htable_offset, val, offset; /* Clear all records in administration RAM */ for (i = 0; i < cs_rc_max; i++) { offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE; writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) | EIP197_CS_RC_PREV(EIP197_RC_NULL), priv->base + offset); val = EIP197_CS_RC_NEXT(i + 1) | EIP197_CS_RC_PREV(i - 1); if (i == 0) val |= EIP197_CS_RC_PREV(EIP197_RC_NULL); else if (i == cs_rc_max - 1) val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL); writel(val, priv->base + offset + 4); /* must also initialize the address key due to ECC! */ writel(0, priv->base + offset + 8); writel(0, priv->base + offset + 12); } /* Clear the hash table entries */ htable_offset = cs_rc_max * EIP197_CS_RC_SIZE; for (i = 0; i < cs_ht_wc; i++) writel(GENMASK(29, 0), priv->base + EIP197_CLASSIFICATION_RAMS + htable_offset + i * sizeof(u32)); } static void eip197_trc_cache_init(struct safexcel_crypto_priv *priv) { u32 val, dsize, asize; int cs_rc_max, cs_ht_wc, cs_trc_rec_wc, cs_trc_lg_rec_wc; int cs_rc_abs_max, cs_ht_sz; int maxbanks; /* Setup (dummy) virtualization for cache */ eip197_trc_cache_setupvirt(priv); /* * Enable the record cache memory access and * probe the bank select width */ val = readl(priv->base + EIP197_CS_RAM_CTRL); val &= ~EIP197_TRC_ENABLE_MASK; val |= EIP197_TRC_ENABLE_0 | EIP197_CS_BANKSEL_MASK; writel(val, priv->base + EIP197_CS_RAM_CTRL); val = readl(priv->base + EIP197_CS_RAM_CTRL); maxbanks = ((val&EIP197_CS_BANKSEL_MASK)>>EIP197_CS_BANKSEL_OFS) + 1; /* Clear all ECC errors */ writel(0, priv->base + EIP197_TRC_ECCCTRL); /* * Make sure the cache memory is accessible by taking record cache into * reset. Need data memory access here, not admin access. */ val = readl(priv->base + EIP197_TRC_PARAMS); val |= EIP197_TRC_PARAMS_SW_RESET | EIP197_TRC_PARAMS_DATA_ACCESS; writel(val, priv->base + EIP197_TRC_PARAMS); /* Probed data RAM size in bytes */ dsize = eip197_trc_cache_probe(priv, maxbanks, 0xffffffff); /* * Now probe the administration RAM size pretty much the same way * Except that only the lower 30 bits are writable and we don't need * bank selects */ val = readl(priv->base + EIP197_TRC_PARAMS); /* admin access now */ val &= ~(EIP197_TRC_PARAMS_DATA_ACCESS | EIP197_CS_BANKSEL_MASK); writel(val, priv->base + EIP197_TRC_PARAMS); /* Probed admin RAM size in admin words */ asize = eip197_trc_cache_probe(priv, 0, 0xbfffffff) >> 4; /* Clear any ECC errors detected while probing! */ writel(0, priv->base + EIP197_TRC_ECCCTRL); /* * Determine optimal configuration from RAM sizes * Note that we assume that the physical RAM configuration is sane * Therefore, we don't do any parameter error checking here ... */ /* For now, just use a single record format covering everything */ cs_trc_rec_wc = EIP197_CS_TRC_REC_WC; cs_trc_lg_rec_wc = EIP197_CS_TRC_REC_WC; /* * Step #1: How many records will physically fit? * Hard upper limit is 1023! */ cs_rc_abs_max = min_t(uint, ((dsize >> 2) / cs_trc_lg_rec_wc), 1023); /* Step #2: Need at least 2 words in the admin RAM per record */ cs_rc_max = min_t(uint, cs_rc_abs_max, (asize >> 1)); /* Step #3: Determine log2 of hash table size */ cs_ht_sz = __fls(asize - cs_rc_max) - 2; /* Step #4: determine current size of hash table in dwords */ cs_ht_wc = 16<> 4)); /* Clear the cache RAMs */ eip197_trc_cache_clear(priv, cs_rc_max, cs_ht_wc); /* Disable the record cache memory access */ val = readl(priv->base + EIP197_CS_RAM_CTRL); val &= ~EIP197_TRC_ENABLE_MASK; writel(val, priv->base + EIP197_CS_RAM_CTRL); /* Write head and tail pointers of the record free chain */ val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) | EIP197_TRC_FREECHAIN_TAIL_PTR(cs_rc_max - 1); writel(val, priv->base + EIP197_TRC_FREECHAIN); /* Configure the record cache #1 */ val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(cs_trc_rec_wc) | EIP197_TRC_PARAMS2_HTABLE_PTR(cs_rc_max); writel(val, priv->base + EIP197_TRC_PARAMS2); /* Configure the record cache #2 */ val = EIP197_TRC_PARAMS_RC_SZ_LARGE(cs_trc_lg_rec_wc) | EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) | EIP197_TRC_PARAMS_HTABLE_SZ(cs_ht_sz); writel(val, priv->base + EIP197_TRC_PARAMS); dev_info(priv->dev, "TRC init: %dd,%da (%dr,%dh)\n", dsize, asize, cs_rc_max, cs_ht_wc + cs_ht_wc); } static void eip197_init_firmware(struct safexcel_crypto_priv *priv) { int pe, i; u32 val; for (pe = 0; pe < priv->config.pes; pe++) { /* Configure the token FIFO's */ writel(3, EIP197_PE(priv) + EIP197_PE_ICE_PUTF_CTRL(pe)); writel(0, EIP197_PE(priv) + EIP197_PE_ICE_PPTF_CTRL(pe)); /* Clear the ICE scratchpad memory */ val = readl(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe)); val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER | EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN | EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS | EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS; writel(val, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe)); /* clear the scratchpad RAM using 32 bit writes only */ for (i = 0; i < EIP197_NUM_OF_SCRATCH_BLOCKS; i++) writel(0, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_RAM(pe) + (i << 2)); /* Reset the IFPP engine to make its program mem accessible */ writel(EIP197_PE_ICE_x_CTRL_SW_RESET | EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR | EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR, EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe)); /* Reset the IPUE engine to make its program mem accessible */ writel(EIP197_PE_ICE_x_CTRL_SW_RESET | EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR | EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR, EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe)); /* Enable access to all IFPP program memories */ writel(EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); } } static int eip197_write_firmware(struct safexcel_crypto_priv *priv, const struct firmware *fw) { const u32 *data = (const u32 *)fw->data; int i; /* Write the firmware */ for (i = 0; i < fw->size / sizeof(u32); i++) writel(be32_to_cpu(data[i]), priv->base + EIP197_CLASSIFICATION_RAMS + i * sizeof(u32)); /* Exclude final 2 NOPs from size */ return i - EIP197_FW_TERMINAL_NOPS; } /* * If FW is actual production firmware, then poll for its initialization * to complete and check if it is good for the HW, otherwise just return OK. */ static bool poll_fw_ready(struct safexcel_crypto_priv *priv, int fpp) { int pe, pollcnt; u32 base, pollofs; if (fpp) pollofs = EIP197_FW_FPP_READY; else pollofs = EIP197_FW_PUE_READY; for (pe = 0; pe < priv->config.pes; pe++) { base = EIP197_PE_ICE_SCRATCH_RAM(pe); pollcnt = EIP197_FW_START_POLLCNT; while (pollcnt && (readl_relaxed(EIP197_PE(priv) + base + pollofs) != 1)) { pollcnt--; } if (!pollcnt) { dev_err(priv->dev, "FW(%d) for PE %d failed to start\n", fpp, pe); return false; } } return true; } static bool eip197_start_firmware(struct safexcel_crypto_priv *priv, int ipuesz, int ifppsz, int minifw) { int pe; u32 val; for (pe = 0; pe < priv->config.pes; pe++) { /* Disable access to all program memory */ writel(0, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); /* Start IFPP microengines */ if (minifw) val = 0; else val = EIP197_PE_ICE_UENG_START_OFFSET((ifppsz - 1) & EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) | EIP197_PE_ICE_UENG_DEBUG_RESET; writel(val, EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe)); /* Start IPUE microengines */ if (minifw) val = 0; else val = EIP197_PE_ICE_UENG_START_OFFSET((ipuesz - 1) & EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) | EIP197_PE_ICE_UENG_DEBUG_RESET; writel(val, EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe)); } /* For miniFW startup, there is no initialization, so always succeed */ if (minifw) return true; /* Wait until all the firmwares have properly started up */ if (!poll_fw_ready(priv, 1)) return false; if (!poll_fw_ready(priv, 0)) return false; return true; } static int eip197_load_firmwares(struct safexcel_crypto_priv *priv) { const char *fw_name[] = {"ifpp.bin", "ipue.bin"}; const struct firmware *fw[FW_NB]; char fw_path[37], *dir = NULL; int i, j, ret = 0, pe; int ipuesz, ifppsz, minifw = 0; if (priv->version == EIP197D_MRVL) dir = "eip197d"; else if (priv->version == EIP197B_MRVL || priv->version == EIP197_DEVBRD) dir = "eip197b"; else return -ENODEV; retry_fw: for (i = 0; i < FW_NB; i++) { snprintf(fw_path, 37, "inside-secure/%s/%s", dir, fw_name[i]); ret = firmware_request_nowarn(&fw[i], fw_path, priv->dev); if (ret) { if (minifw || priv->version != EIP197B_MRVL) goto release_fw; /* Fallback to the old firmware location for the * EIP197b. */ ret = firmware_request_nowarn(&fw[i], fw_name[i], priv->dev); if (ret) goto release_fw; } } eip197_init_firmware(priv); ifppsz = eip197_write_firmware(priv, fw[FW_IFPP]); /* Enable access to IPUE program memories */ for (pe = 0; pe < priv->config.pes; pe++) writel(EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); ipuesz = eip197_write_firmware(priv, fw[FW_IPUE]); if (eip197_start_firmware(priv, ipuesz, ifppsz, minifw)) { dev_dbg(priv->dev, "Firmware loaded successfully\n"); return 0; } ret = -ENODEV; release_fw: for (j = 0; j < i; j++) release_firmware(fw[j]); if (!minifw) { /* Retry with minifw path */ dev_dbg(priv->dev, "Firmware set not (fully) present or init failed, falling back to BCLA mode\n"); dir = "eip197_minifw"; minifw = 1; goto retry_fw; } dev_dbg(priv->dev, "Firmware load failed.\n"); return ret; } static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv) { u32 cd_size_rnd, val; int i, cd_fetch_cnt; cd_size_rnd = (priv->config.cd_size + (BIT(priv->hwconfig.hwdataw) - 1)) >> priv->hwconfig.hwdataw; /* determine number of CD's we can fetch into the CD FIFO as 1 block */ if (priv->flags & SAFEXCEL_HW_EIP197) { /* EIP197: try to fetch enough in 1 go to keep all pipes busy */ cd_fetch_cnt = (1 << priv->hwconfig.hwcfsize) / cd_size_rnd; cd_fetch_cnt = min_t(uint, cd_fetch_cnt, (priv->config.pes * EIP197_FETCH_DEPTH)); } else { /* for the EIP97, just fetch all that fits minus 1 */ cd_fetch_cnt = ((1 << priv->hwconfig.hwcfsize) / cd_size_rnd) - 1; } for (i = 0; i < priv->config.rings; i++) { /* ring base address */ writel(lower_32_bits(priv->ring[i].cdr.base_dma), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); writel(upper_32_bits(priv->ring[i].cdr.base_dma), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.cd_offset << 16) | priv->config.cd_size, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE); writel(((cd_fetch_cnt * (cd_size_rnd << priv->hwconfig.hwdataw)) << 16) | (cd_fetch_cnt * priv->config.cd_offset), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG); /* Configure DMA tx control */ val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS); val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS); writel(val, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DMA_CFG); /* clear any pending interrupt */ writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT); } return 0; } static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv) { u32 rd_size_rnd, val; int i, rd_fetch_cnt; /* determine number of RD's we can fetch into the FIFO as one block */ rd_size_rnd = (EIP197_RD64_FETCH_SIZE + (BIT(priv->hwconfig.hwdataw) - 1)) >> priv->hwconfig.hwdataw; if (priv->flags & SAFEXCEL_HW_EIP197) { /* EIP197: try to fetch enough in 1 go to keep all pipes busy */ rd_fetch_cnt = (1 << priv->hwconfig.hwrfsize) / rd_size_rnd; rd_fetch_cnt = min_t(uint, rd_fetch_cnt, (priv->config.pes * EIP197_FETCH_DEPTH)); } else { /* for the EIP97, just fetch all that fits minus 1 */ rd_fetch_cnt = ((1 << priv->hwconfig.hwrfsize) / rd_size_rnd) - 1; } for (i = 0; i < priv->config.rings; i++) { /* ring base address */ writel(lower_32_bits(priv->ring[i].rdr.base_dma), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); writel(upper_32_bits(priv->ring[i].rdr.base_dma), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 16) | priv->config.rd_size, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE); writel(((rd_fetch_cnt * (rd_size_rnd << priv->hwconfig.hwdataw)) << 16) | (rd_fetch_cnt * priv->config.rd_offset), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG); /* Configure DMA tx control */ val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS); val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS); val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUF; writel(val, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DMA_CFG); /* clear any pending interrupt */ writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT); /* enable ring interrupt */ val = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i)); val |= EIP197_RDR_IRQ(i); writel(val, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i)); } return 0; } static int safexcel_hw_init(struct safexcel_crypto_priv *priv) { u32 val; int i, ret, pe; dev_dbg(priv->dev, "HW init: using %d pipe(s) and %d ring(s)\n", priv->config.pes, priv->config.rings); /* * For EIP197's only set maximum number of TX commands to 2^5 = 32 * Skip for the EIP97 as it does not have this field. */ if (priv->flags & SAFEXCEL_HW_EIP197) { val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); val |= EIP197_MST_CTRL_TX_MAX_CMD(5); writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); } /* Configure wr/rd cache values */ writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) | EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS), EIP197_HIA_GEN_CFG(priv) + EIP197_MST_CTRL); /* Interrupts reset */ /* Disable all global interrupts */ writel(0, EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ENABLE_CTRL); /* Clear any pending interrupt */ writel(GENMASK(31, 0), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK); /* Processing Engine configuration */ for (pe = 0; pe < priv->config.pes; pe++) { /* Data Fetch Engine configuration */ /* Reset all DFE threads */ writel(EIP197_DxE_THR_CTRL_RESET_PE, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); if (priv->flags & SAFEXCEL_HW_EIP197) /* Reset HIA input interface arbiter (EIP197 only) */ writel(EIP197_HIA_RA_PE_CTRL_RESET, EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe)); /* DMA transfer size to use */ val = EIP197_HIA_DFE_CFG_DIS_DEBUG; val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(6) | EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9); val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(6) | EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7); val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS); val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS); writel(val, EIP197_HIA_DFE(priv) + EIP197_HIA_DFE_CFG(pe)); /* Leave the DFE threads reset state */ writel(0, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); /* Configure the processing engine thresholds */ writel(EIP197_PE_IN_xBUF_THRES_MIN(6) | EIP197_PE_IN_xBUF_THRES_MAX(9), EIP197_PE(priv) + EIP197_PE_IN_DBUF_THRES(pe)); writel(EIP197_PE_IN_xBUF_THRES_MIN(6) | EIP197_PE_IN_xBUF_THRES_MAX(7), EIP197_PE(priv) + EIP197_PE_IN_TBUF_THRES(pe)); if (priv->flags & SAFEXCEL_HW_EIP197) /* enable HIA input interface arbiter and rings */ writel(EIP197_HIA_RA_PE_CTRL_EN | GENMASK(priv->config.rings - 1, 0), EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe)); /* Data Store Engine configuration */ /* Reset all DSE threads */ writel(EIP197_DxE_THR_CTRL_RESET_PE, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); /* Wait for all DSE threads to complete */ while ((readl(EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_STAT(pe)) & GENMASK(15, 12)) != GENMASK(15, 12)) ; /* DMA transfer size to use */ val = EIP197_HIA_DSE_CFG_DIS_DEBUG; val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(7) | EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(8); val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS); val |= EIP197_HIA_DSE_CFG_ALWAYS_BUFFERABLE; /* FIXME: instability issues can occur for EIP97 but disabling * it impacts performance. */ if (priv->flags & SAFEXCEL_HW_EIP197) val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR; writel(val, EIP197_HIA_DSE(priv) + EIP197_HIA_DSE_CFG(pe)); /* Leave the DSE threads reset state */ writel(0, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); /* Configure the procesing engine thresholds */ writel(EIP197_PE_OUT_DBUF_THRES_MIN(7) | EIP197_PE_OUT_DBUF_THRES_MAX(8), EIP197_PE(priv) + EIP197_PE_OUT_DBUF_THRES(pe)); /* Processing Engine configuration */ /* Token & context configuration */ val = EIP197_PE_EIP96_TOKEN_CTRL_CTX_UPDATES | EIP197_PE_EIP96_TOKEN_CTRL_NO_TOKEN_WAIT | EIP197_PE_EIP96_TOKEN_CTRL_ENABLE_TIMEOUT; writel(val, EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL(pe)); /* H/W capabilities selection: just enable everything */ writel(EIP197_FUNCTION_ALL, EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION_EN(pe)); writel(EIP197_FUNCTION_ALL, EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION2_EN(pe)); } /* Command Descriptor Rings prepare */ for (i = 0; i < priv->config.rings; i++) { /* Clear interrupts for this ring */ writel(GENMASK(31, 0), EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CLR(i)); /* Disable external triggering */ writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG); /* Clear the pending prepared counter */ writel(EIP197_xDR_PREP_CLR_COUNT, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT); /* Clear the pending processed counter */ writel(EIP197_xDR_PROC_CLR_COUNT, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT); writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR); writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR); writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset) << 2, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_SIZE); } /* Result Descriptor Ring prepare */ for (i = 0; i < priv->config.rings; i++) { /* Disable external triggering*/ writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG); /* Clear the pending prepared counter */ writel(EIP197_xDR_PREP_CLR_COUNT, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT); /* Clear the pending processed counter */ writel(EIP197_xDR_PROC_CLR_COUNT, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT); writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR); writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR); /* Ring size */ writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset) << 2, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_SIZE); } for (pe = 0; pe < priv->config.pes; pe++) { /* Enable command descriptor rings */ writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0), EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); /* Enable result descriptor rings */ writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0), EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); } /* Clear any HIA interrupt */ writel(GENMASK(30, 20), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK); if (priv->flags & SAFEXCEL_HW_EIP197) { eip197_trc_cache_init(priv); priv->flags |= EIP197_TRC_CACHE; ret = eip197_load_firmwares(priv); if (ret) return ret; } safexcel_hw_setup_cdesc_rings(priv); safexcel_hw_setup_rdesc_rings(priv); return 0; } /* Called with ring's lock taken */ static void safexcel_try_push_requests(struct safexcel_crypto_priv *priv, int ring) { int coal = min_t(int, priv->ring[ring].requests, EIP197_MAX_BATCH_SZ); if (!coal) return; /* Configure when we want an interrupt */ writel(EIP197_HIA_RDR_THRESH_PKT_MODE | EIP197_HIA_RDR_THRESH_PROC_PKT(coal), EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_THRESH); } void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring) { struct crypto_async_request *req, *backlog; struct safexcel_context *ctx; int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results; /* If a request wasn't properly dequeued because of a lack of resources, * proceeded it first, */ req = priv->ring[ring].req; backlog = priv->ring[ring].backlog; if (req) goto handle_req; while (true) { spin_lock_bh(&priv->ring[ring].queue_lock); backlog = crypto_get_backlog(&priv->ring[ring].queue); req = crypto_dequeue_request(&priv->ring[ring].queue); spin_unlock_bh(&priv->ring[ring].queue_lock); if (!req) { priv->ring[ring].req = NULL; priv->ring[ring].backlog = NULL; goto finalize; } handle_req: ctx = crypto_tfm_ctx(req->tfm); ret = ctx->send(req, ring, &commands, &results); if (ret) goto request_failed; if (backlog) backlog->complete(backlog, -EINPROGRESS); /* In case the send() helper did not issue any command to push * to the engine because the input data was cached, continue to * dequeue other requests as this is valid and not an error. */ if (!commands && !results) continue; cdesc += commands; rdesc += results; nreq++; } request_failed: /* Not enough resources to handle all the requests. Bail out and save * the request and the backlog for the next dequeue call (per-ring). */ priv->ring[ring].req = req; priv->ring[ring].backlog = backlog; finalize: if (!nreq) return; spin_lock_bh(&priv->ring[ring].lock); priv->ring[ring].requests += nreq; if (!priv->ring[ring].busy) { safexcel_try_push_requests(priv, ring); priv->ring[ring].busy = true; } spin_unlock_bh(&priv->ring[ring].lock); /* let the RDR know we have pending descriptors */ writel((rdesc * priv->config.rd_offset) << 2, EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT); /* let the CDR know we have pending descriptors */ writel((cdesc * priv->config.cd_offset) << 2, EIP197_HIA_CDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT); } inline int safexcel_rdesc_check_errors(struct safexcel_crypto_priv *priv, struct safexcel_result_desc *rdesc) { if (likely((!rdesc->descriptor_overflow) && (!rdesc->buffer_overflow) && (!rdesc->result_data.error_code))) return 0; if (rdesc->descriptor_overflow) dev_err(priv->dev, "Descriptor overflow detected"); if (rdesc->buffer_overflow) dev_err(priv->dev, "Buffer overflow detected"); if (rdesc->result_data.error_code & 0x4066) { /* Fatal error (bits 1,2,5,6 & 14) */ dev_err(priv->dev, "result descriptor error (%x)", rdesc->result_data.error_code); return -EIO; } else if (rdesc->result_data.error_code & (BIT(7) | BIT(4) | BIT(3) | BIT(0))) { /* * Give priority over authentication fails: * Blocksize, length & overflow errors, * something wrong with the input! */ return -EINVAL; } else if (rdesc->result_data.error_code & BIT(9)) { /* Authentication failed */ return -EBADMSG; } /* All other non-fatal errors */ return -EINVAL; } inline void safexcel_rdr_req_set(struct safexcel_crypto_priv *priv, int ring, struct safexcel_result_desc *rdesc, struct crypto_async_request *req) { int i = safexcel_ring_rdr_rdesc_index(priv, ring, rdesc); priv->ring[ring].rdr_req[i] = req; } inline struct crypto_async_request * safexcel_rdr_req_get(struct safexcel_crypto_priv *priv, int ring) { int i = safexcel_ring_first_rdr_index(priv, ring); return priv->ring[ring].rdr_req[i]; } void safexcel_complete(struct safexcel_crypto_priv *priv, int ring) { struct safexcel_command_desc *cdesc; /* Acknowledge the command descriptors */ do { cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr); if (IS_ERR(cdesc)) { dev_err(priv->dev, "Could not retrieve the command descriptor\n"); return; } } while (!cdesc->last_seg); } void safexcel_inv_complete(struct crypto_async_request *req, int error) { struct safexcel_inv_result *result = req->data; if (error == -EINPROGRESS) return; result->error = error; complete(&result->completion); } int safexcel_invalidate_cache(struct crypto_async_request *async, struct safexcel_crypto_priv *priv, dma_addr_t ctxr_dma, int ring) { struct safexcel_command_desc *cdesc; struct safexcel_result_desc *rdesc; int ret = 0; /* Prepare command descriptor */ cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma); if (IS_ERR(cdesc)) return PTR_ERR(cdesc); cdesc->control_data.type = EIP197_TYPE_EXTENDED; cdesc->control_data.options = 0; cdesc->control_data.refresh = 0; cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR; /* Prepare result descriptor */ rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0); if (IS_ERR(rdesc)) { ret = PTR_ERR(rdesc); goto cdesc_rollback; } safexcel_rdr_req_set(priv, ring, rdesc, async); return ret; cdesc_rollback: safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr); return ret; } static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv, int ring) { struct crypto_async_request *req; struct safexcel_context *ctx; int ret, i, nreq, ndesc, tot_descs, handled = 0; bool should_complete; handle_results: tot_descs = 0; nreq = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT); nreq >>= EIP197_xDR_PROC_xD_PKT_OFFSET; nreq &= EIP197_xDR_PROC_xD_PKT_MASK; if (!nreq) goto requests_left; for (i = 0; i < nreq; i++) { req = safexcel_rdr_req_get(priv, ring); ctx = crypto_tfm_ctx(req->tfm); ndesc = ctx->handle_result(priv, ring, req, &should_complete, &ret); if (ndesc < 0) { dev_err(priv->dev, "failed to handle result (%d)\n", ndesc); goto acknowledge; } if (should_complete) { local_bh_disable(); req->complete(req, ret); local_bh_enable(); } tot_descs += ndesc; handled++; } acknowledge: if (i) writel(EIP197_xDR_PROC_xD_PKT(i) | EIP197_xDR_PROC_xD_COUNT(tot_descs * priv->config.rd_offset), EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT); /* If the number of requests overflowed the counter, try to proceed more * requests. */ if (nreq == EIP197_xDR_PROC_xD_PKT_MASK) goto handle_results; requests_left: spin_lock_bh(&priv->ring[ring].lock); priv->ring[ring].requests -= handled; safexcel_try_push_requests(priv, ring); if (!priv->ring[ring].requests) priv->ring[ring].busy = false; spin_unlock_bh(&priv->ring[ring].lock); } static void safexcel_dequeue_work(struct work_struct *work) { struct safexcel_work_data *data = container_of(work, struct safexcel_work_data, work); safexcel_dequeue(data->priv, data->ring); } struct safexcel_ring_irq_data { struct safexcel_crypto_priv *priv; int ring; }; static irqreturn_t safexcel_irq_ring(int irq, void *data) { struct safexcel_ring_irq_data *irq_data = data; struct safexcel_crypto_priv *priv = irq_data->priv; int ring = irq_data->ring, rc = IRQ_NONE; u32 status, stat; status = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLED_STAT(ring)); if (!status) return rc; /* RDR interrupts */ if (status & EIP197_RDR_IRQ(ring)) { stat = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT); if (unlikely(stat & EIP197_xDR_ERR)) { /* * Fatal error, the RDR is unusable and must be * reinitialized. This should not happen under * normal circumstances. */ dev_err(priv->dev, "RDR: fatal error.\n"); } else if (likely(stat & EIP197_xDR_THRESH)) { rc = IRQ_WAKE_THREAD; } /* ACK the interrupts */ writel(stat & 0xff, EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT); } /* ACK the interrupts */ writel(status, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ACK(ring)); return rc; } static irqreturn_t safexcel_irq_ring_thread(int irq, void *data) { struct safexcel_ring_irq_data *irq_data = data; struct safexcel_crypto_priv *priv = irq_data->priv; int ring = irq_data->ring; safexcel_handle_result_descriptor(priv, ring); queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); return IRQ_HANDLED; } static int safexcel_request_ring_irq(void *pdev, int irqid, int is_pci_dev, irq_handler_t handler, irq_handler_t threaded_handler, struct safexcel_ring_irq_data *ring_irq_priv) { int ret, irq; struct device *dev; if (IS_ENABLED(CONFIG_PCI) && is_pci_dev) { struct pci_dev *pci_pdev = pdev; dev = &pci_pdev->dev; irq = pci_irq_vector(pci_pdev, irqid); if (irq < 0) { dev_err(dev, "unable to get device MSI IRQ %d (err %d)\n", irqid, irq); return irq; } } else if (IS_ENABLED(CONFIG_OF)) { struct platform_device *plf_pdev = pdev; char irq_name[6] = {0}; /* "ringX\0" */ snprintf(irq_name, 6, "ring%d", irqid); dev = &plf_pdev->dev; irq = platform_get_irq_byname(plf_pdev, irq_name); if (irq < 0) { dev_err(dev, "unable to get IRQ '%s' (err %d)\n", irq_name, irq); return irq; } } ret = devm_request_threaded_irq(dev, irq, handler, threaded_handler, IRQF_ONESHOT, dev_name(dev), ring_irq_priv); if (ret) { dev_err(dev, "unable to request IRQ %d\n", irq); return ret; } return irq; } static struct safexcel_alg_template *safexcel_algs[] = { &safexcel_alg_ecb_des, &safexcel_alg_cbc_des, &safexcel_alg_ecb_des3_ede, &safexcel_alg_cbc_des3_ede, &safexcel_alg_ecb_aes, &safexcel_alg_cbc_aes, &safexcel_alg_cfb_aes, &safexcel_alg_ofb_aes, &safexcel_alg_ctr_aes, &safexcel_alg_md5, &safexcel_alg_sha1, &safexcel_alg_sha224, &safexcel_alg_sha256, &safexcel_alg_sha384, &safexcel_alg_sha512, &safexcel_alg_hmac_md5, &safexcel_alg_hmac_sha1, &safexcel_alg_hmac_sha224, &safexcel_alg_hmac_sha256, &safexcel_alg_hmac_sha384, &safexcel_alg_hmac_sha512, &safexcel_alg_authenc_hmac_sha1_cbc_aes, &safexcel_alg_authenc_hmac_sha224_cbc_aes, &safexcel_alg_authenc_hmac_sha256_cbc_aes, &safexcel_alg_authenc_hmac_sha384_cbc_aes, &safexcel_alg_authenc_hmac_sha512_cbc_aes, &safexcel_alg_authenc_hmac_sha1_cbc_des3_ede, &safexcel_alg_authenc_hmac_sha1_ctr_aes, &safexcel_alg_authenc_hmac_sha224_ctr_aes, &safexcel_alg_authenc_hmac_sha256_ctr_aes, &safexcel_alg_authenc_hmac_sha384_ctr_aes, &safexcel_alg_authenc_hmac_sha512_ctr_aes, &safexcel_alg_xts_aes, &safexcel_alg_gcm, &safexcel_alg_ccm, &safexcel_alg_crc32, &safexcel_alg_cbcmac, }; static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv) { int i, j, ret = 0; for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) { safexcel_algs[i]->priv = priv; /* Do we have all required base algorithms available? */ if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) != safexcel_algs[i]->algo_mask) /* No, so don't register this ciphersuite */ continue; if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher); else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD) ret = crypto_register_aead(&safexcel_algs[i]->alg.aead); else ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash); if (ret) goto fail; } return 0; fail: for (j = 0; j < i; j++) { /* Do we have all required base algorithms available? */ if ((safexcel_algs[j]->algo_mask & priv->hwconfig.algo_flags) != safexcel_algs[j]->algo_mask) /* No, so don't unregister this ciphersuite */ continue; if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher); else if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_AEAD) crypto_unregister_aead(&safexcel_algs[j]->alg.aead); else crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash); } return ret; } static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv) { int i; for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) { /* Do we have all required base algorithms available? */ if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) != safexcel_algs[i]->algo_mask) /* No, so don't unregister this ciphersuite */ continue; if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher); else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD) crypto_unregister_aead(&safexcel_algs[i]->alg.aead); else crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash); } } static void safexcel_configure(struct safexcel_crypto_priv *priv) { u32 val, mask = 0; val = readl(EIP197_HIA_AIC_G(priv) + EIP197_HIA_OPTIONS); /* Read number of PEs from the engine */ if (priv->flags & SAFEXCEL_HW_EIP197) /* Wider field width for all EIP197 type engines */ mask = EIP197_N_PES_MASK; else /* Narrow field width for EIP97 type engine */ mask = EIP97_N_PES_MASK; priv->config.pes = (val >> EIP197_N_PES_OFFSET) & mask; priv->config.rings = min_t(u32, val & GENMASK(3, 0), max_rings); val = (val & GENMASK(27, 25)) >> 25; mask = BIT(val) - 1; priv->config.cd_size = (sizeof(struct safexcel_command_desc) / sizeof(u32)); priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask; priv->config.rd_size = (sizeof(struct safexcel_result_desc) / sizeof(u32)); priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask; } static void safexcel_init_register_offsets(struct safexcel_crypto_priv *priv) { struct safexcel_register_offsets *offsets = &priv->offsets; if (priv->flags & SAFEXCEL_HW_EIP197) { offsets->hia_aic = EIP197_HIA_AIC_BASE; offsets->hia_aic_g = EIP197_HIA_AIC_G_BASE; offsets->hia_aic_r = EIP197_HIA_AIC_R_BASE; offsets->hia_aic_xdr = EIP197_HIA_AIC_xDR_BASE; offsets->hia_dfe = EIP197_HIA_DFE_BASE; offsets->hia_dfe_thr = EIP197_HIA_DFE_THR_BASE; offsets->hia_dse = EIP197_HIA_DSE_BASE; offsets->hia_dse_thr = EIP197_HIA_DSE_THR_BASE; offsets->hia_gen_cfg = EIP197_HIA_GEN_CFG_BASE; offsets->pe = EIP197_PE_BASE; offsets->global = EIP197_GLOBAL_BASE; } else { offsets->hia_aic = EIP97_HIA_AIC_BASE; offsets->hia_aic_g = EIP97_HIA_AIC_G_BASE; offsets->hia_aic_r = EIP97_HIA_AIC_R_BASE; offsets->hia_aic_xdr = EIP97_HIA_AIC_xDR_BASE; offsets->hia_dfe = EIP97_HIA_DFE_BASE; offsets->hia_dfe_thr = EIP97_HIA_DFE_THR_BASE; offsets->hia_dse = EIP97_HIA_DSE_BASE; offsets->hia_dse_thr = EIP97_HIA_DSE_THR_BASE; offsets->hia_gen_cfg = EIP97_HIA_GEN_CFG_BASE; offsets->pe = EIP97_PE_BASE; offsets->global = EIP97_GLOBAL_BASE; } } /* * Generic part of probe routine, shared by platform and PCI driver * * Assumes IO resources have been mapped, private data mem has been allocated, * clocks have been enabled, device pointer has been assigned etc. * */ static int safexcel_probe_generic(void *pdev, struct safexcel_crypto_priv *priv, int is_pci_dev) { struct device *dev = priv->dev; u32 peid, version, mask, val, hiaopt; int i, ret, hwctg; priv->context_pool = dmam_pool_create("safexcel-context", dev, sizeof(struct safexcel_context_record), 1, 0); if (!priv->context_pool) return -ENOMEM; /* * First try the EIP97 HIA version regs * For the EIP197, this is guaranteed to NOT return any of the test * values */ version = readl(priv->base + EIP97_HIA_AIC_BASE + EIP197_HIA_VERSION); mask = 0; /* do not swap */ if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) { priv->hwconfig.hiaver = EIP197_VERSION_MASK(version); } else if (EIP197_REG_HI16(version) == EIP197_HIA_VERSION_BE) { /* read back byte-swapped, so complement byte swap bits */ mask = EIP197_MST_CTRL_BYTE_SWAP_BITS; priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version); } else { /* So it wasn't an EIP97 ... maybe it's an EIP197? */ version = readl(priv->base + EIP197_HIA_AIC_BASE + EIP197_HIA_VERSION); if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) { priv->hwconfig.hiaver = EIP197_VERSION_MASK(version); priv->flags |= SAFEXCEL_HW_EIP197; } else if (EIP197_REG_HI16(version) == EIP197_HIA_VERSION_BE) { /* read back byte-swapped, so complement swap bits */ mask = EIP197_MST_CTRL_BYTE_SWAP_BITS; priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version); priv->flags |= SAFEXCEL_HW_EIP197; } else { return -ENODEV; } } /* Now initialize the reg offsets based on the probing info so far */ safexcel_init_register_offsets(priv); /* * If the version was read byte-swapped, we need to flip the device * swapping Keep in mind here, though, that what we write will also be * byte-swapped ... */ if (mask) { val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); val = val ^ (mask >> 24); /* toggle byte swap bits */ writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); } /* * We're not done probing yet! We may fall through to here if no HIA * was found at all. So, with the endianness presumably correct now and * the offsets setup, *really* probe for the EIP97/EIP197. */ version = readl(EIP197_GLOBAL(priv) + EIP197_VERSION); if (((priv->flags & SAFEXCEL_HW_EIP197) && (EIP197_REG_LO16(version) != EIP197_VERSION_LE)) || ((!(priv->flags & SAFEXCEL_HW_EIP197) && (EIP197_REG_LO16(version) != EIP97_VERSION_LE)))) { /* * We did not find the device that matched our initial probing * (or our initial probing failed) Report appropriate error. */ return -ENODEV; } priv->hwconfig.hwver = EIP197_VERSION_MASK(version); hwctg = version >> 28; peid = version & 255; /* Detect EIP96 packet engine and version */ version = readl(EIP197_PE(priv) + EIP197_PE_EIP96_VERSION(0)); if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) { dev_err(dev, "EIP%d: EIP96 not detected.\n", peid); return -ENODEV; } priv->hwconfig.pever = EIP197_VERSION_MASK(version); hiaopt = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_OPTIONS); if (priv->flags & SAFEXCEL_HW_EIP197) { /* EIP197 */ priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) & EIP197_HWDATAW_MASK; priv->hwconfig.hwcfsize = ((hiaopt >> EIP197_CFSIZE_OFFSET) & EIP197_CFSIZE_MASK) + EIP197_CFSIZE_ADJUST; priv->hwconfig.hwrfsize = ((hiaopt >> EIP197_RFSIZE_OFFSET) & EIP197_RFSIZE_MASK) + EIP197_RFSIZE_ADJUST; } else { /* EIP97 */ priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) & EIP97_HWDATAW_MASK; priv->hwconfig.hwcfsize = (hiaopt >> EIP97_CFSIZE_OFFSET) & EIP97_CFSIZE_MASK; priv->hwconfig.hwrfsize = (hiaopt >> EIP97_RFSIZE_OFFSET) & EIP97_RFSIZE_MASK; } /* Get supported algorithms from EIP96 transform engine */ priv->hwconfig.algo_flags = readl(EIP197_PE(priv) + EIP197_PE_EIP96_OPTIONS(0)); /* Print single info line describing what we just detected */ dev_info(priv->dev, "EIP%d:%x(%d)-HIA:%x(%d,%d,%d),PE:%x,alg:%08x\n", peid, priv->hwconfig.hwver, hwctg, priv->hwconfig.hiaver, priv->hwconfig.hwdataw, priv->hwconfig.hwcfsize, priv->hwconfig.hwrfsize, priv->hwconfig.pever, priv->hwconfig.algo_flags); safexcel_configure(priv); if (IS_ENABLED(CONFIG_PCI) && priv->version == EIP197_DEVBRD) { /* * Request MSI vectors for global + 1 per ring - * or just 1 for older dev images */ struct pci_dev *pci_pdev = pdev; ret = pci_alloc_irq_vectors(pci_pdev, priv->config.rings + 1, priv->config.rings + 1, PCI_IRQ_MSI | PCI_IRQ_MSIX); if (ret < 0) { dev_err(dev, "Failed to allocate PCI MSI interrupts\n"); return ret; } } /* Register the ring IRQ handlers and configure the rings */ priv->ring = devm_kcalloc(dev, priv->config.rings, sizeof(*priv->ring), GFP_KERNEL); if (!priv->ring) return -ENOMEM; for (i = 0; i < priv->config.rings; i++) { char wq_name[9] = {0}; int irq; struct safexcel_ring_irq_data *ring_irq; ret = safexcel_init_ring_descriptors(priv, &priv->ring[i].cdr, &priv->ring[i].rdr); if (ret) { dev_err(dev, "Failed to initialize rings\n"); return ret; } priv->ring[i].rdr_req = devm_kcalloc(dev, EIP197_DEFAULT_RING_SIZE, sizeof(priv->ring[i].rdr_req), GFP_KERNEL); if (!priv->ring[i].rdr_req) return -ENOMEM; ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL); if (!ring_irq) return -ENOMEM; ring_irq->priv = priv; ring_irq->ring = i; irq = safexcel_request_ring_irq(pdev, EIP197_IRQ_NUMBER(i, is_pci_dev), is_pci_dev, safexcel_irq_ring, safexcel_irq_ring_thread, ring_irq); if (irq < 0) { dev_err(dev, "Failed to get IRQ ID for ring %d\n", i); return irq; } priv->ring[i].work_data.priv = priv; priv->ring[i].work_data.ring = i; INIT_WORK(&priv->ring[i].work_data.work, safexcel_dequeue_work); snprintf(wq_name, 9, "wq_ring%d", i); priv->ring[i].workqueue = create_singlethread_workqueue(wq_name); if (!priv->ring[i].workqueue) return -ENOMEM; priv->ring[i].requests = 0; priv->ring[i].busy = false; crypto_init_queue(&priv->ring[i].queue, EIP197_DEFAULT_RING_SIZE); spin_lock_init(&priv->ring[i].lock); spin_lock_init(&priv->ring[i].queue_lock); } atomic_set(&priv->ring_used, 0); ret = safexcel_hw_init(priv); if (ret) { dev_err(dev, "HW init failed (%d)\n", ret); return ret; } ret = safexcel_register_algorithms(priv); if (ret) { dev_err(dev, "Failed to register algorithms (%d)\n", ret); return ret; } return 0; } static void safexcel_hw_reset_rings(struct safexcel_crypto_priv *priv) { int i; for (i = 0; i < priv->config.rings; i++) { /* clear any pending interrupt */ writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT); writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT); /* Reset the CDR base address */ writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); /* Reset the RDR base address */ writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); } } #if IS_ENABLED(CONFIG_OF) /* for Device Tree platform driver */ static int safexcel_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct safexcel_crypto_priv *priv; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->version = (enum safexcel_eip_version)of_device_get_match_data(dev); platform_set_drvdata(pdev, priv); priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) { dev_err(dev, "failed to get resource\n"); return PTR_ERR(priv->base); } priv->clk = devm_clk_get(&pdev->dev, NULL); ret = PTR_ERR_OR_ZERO(priv->clk); /* The clock isn't mandatory */ if (ret != -ENOENT) { if (ret) return ret; ret = clk_prepare_enable(priv->clk); if (ret) { dev_err(dev, "unable to enable clk (%d)\n", ret); return ret; } } priv->reg_clk = devm_clk_get(&pdev->dev, "reg"); ret = PTR_ERR_OR_ZERO(priv->reg_clk); /* The clock isn't mandatory */ if (ret != -ENOENT) { if (ret) goto err_core_clk; ret = clk_prepare_enable(priv->reg_clk); if (ret) { dev_err(dev, "unable to enable reg clk (%d)\n", ret); goto err_core_clk; } } ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); if (ret) goto err_reg_clk; /* Generic EIP97/EIP197 device probing */ ret = safexcel_probe_generic(pdev, priv, 0); if (ret) goto err_reg_clk; return 0; err_reg_clk: clk_disable_unprepare(priv->reg_clk); err_core_clk: clk_disable_unprepare(priv->clk); return ret; } static int safexcel_remove(struct platform_device *pdev) { struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev); int i; safexcel_unregister_algorithms(priv); safexcel_hw_reset_rings(priv); clk_disable_unprepare(priv->clk); for (i = 0; i < priv->config.rings; i++) destroy_workqueue(priv->ring[i].workqueue); return 0; } static const struct of_device_id safexcel_of_match_table[] = { { .compatible = "inside-secure,safexcel-eip97ies", .data = (void *)EIP97IES_MRVL, }, { .compatible = "inside-secure,safexcel-eip197b", .data = (void *)EIP197B_MRVL, }, { .compatible = "inside-secure,safexcel-eip197d", .data = (void *)EIP197D_MRVL, }, /* For backward compatibility and intended for generic use */ { .compatible = "inside-secure,safexcel-eip97", .data = (void *)EIP97IES_MRVL, }, { .compatible = "inside-secure,safexcel-eip197", .data = (void *)EIP197B_MRVL, }, {}, }; static struct platform_driver crypto_safexcel = { .probe = safexcel_probe, .remove = safexcel_remove, .driver = { .name = "crypto-safexcel", .of_match_table = safexcel_of_match_table, }, }; #endif #if IS_ENABLED(CONFIG_PCI) /* PCIE devices - i.e. Inside Secure development boards */ static int safexcel_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct safexcel_crypto_priv *priv; void __iomem *pciebase; int rc; u32 val; dev_dbg(dev, "Probing PCIE device: vendor %04x, device %04x, subv %04x, subdev %04x, ctxt %lx\n", ent->vendor, ent->device, ent->subvendor, ent->subdevice, ent->driver_data); priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->version = (enum safexcel_eip_version)ent->driver_data; pci_set_drvdata(pdev, priv); /* enable the device */ rc = pcim_enable_device(pdev); if (rc) { dev_err(dev, "Failed to enable PCI device\n"); return rc; } /* take ownership of PCI BAR0 */ rc = pcim_iomap_regions(pdev, 1, "crypto_safexcel"); if (rc) { dev_err(dev, "Failed to map IO region for BAR0\n"); return rc; } priv->base = pcim_iomap_table(pdev)[0]; if (priv->version == EIP197_DEVBRD) { dev_dbg(dev, "Device identified as FPGA based development board - applying HW reset\n"); rc = pcim_iomap_regions(pdev, 4, "crypto_safexcel"); if (rc) { dev_err(dev, "Failed to map IO region for BAR4\n"); return rc; } pciebase = pcim_iomap_table(pdev)[2]; val = readl(pciebase + EIP197_XLX_IRQ_BLOCK_ID_ADDR); if ((val >> 16) == EIP197_XLX_IRQ_BLOCK_ID_VALUE) { dev_dbg(dev, "Detected Xilinx PCIE IRQ block version %d, multiple MSI support enabled\n", (val & 0xff)); /* Setup MSI identity map mapping */ writel(EIP197_XLX_USER_VECT_LUT0_IDENT, pciebase + EIP197_XLX_USER_VECT_LUT0_ADDR); writel(EIP197_XLX_USER_VECT_LUT1_IDENT, pciebase + EIP197_XLX_USER_VECT_LUT1_ADDR); writel(EIP197_XLX_USER_VECT_LUT2_IDENT, pciebase + EIP197_XLX_USER_VECT_LUT2_ADDR); writel(EIP197_XLX_USER_VECT_LUT3_IDENT, pciebase + EIP197_XLX_USER_VECT_LUT3_ADDR); /* Enable all device interrupts */ writel(GENMASK(31, 0), pciebase + EIP197_XLX_USER_INT_ENB_MSK); } else { dev_err(dev, "Unrecognised IRQ block identifier %x\n", val); return -ENODEV; } /* HW reset FPGA dev board */ /* assert reset */ writel(1, priv->base + EIP197_XLX_GPIO_BASE); wmb(); /* maintain strict ordering for accesses here */ /* deassert reset */ writel(0, priv->base + EIP197_XLX_GPIO_BASE); wmb(); /* maintain strict ordering for accesses here */ } /* enable bus mastering */ pci_set_master(pdev); /* Generic EIP97/EIP197 device probing */ rc = safexcel_probe_generic(pdev, priv, 1); return rc; } void safexcel_pci_remove(struct pci_dev *pdev) { struct safexcel_crypto_priv *priv = pci_get_drvdata(pdev); int i; safexcel_unregister_algorithms(priv); for (i = 0; i < priv->config.rings; i++) destroy_workqueue(priv->ring[i].workqueue); safexcel_hw_reset_rings(priv); } static const struct pci_device_id safexcel_pci_ids[] = { { PCI_DEVICE_SUB(PCI_VENDOR_ID_XILINX, 0x9038, 0x16ae, 0xc522), .driver_data = EIP197_DEVBRD, }, {}, }; MODULE_DEVICE_TABLE(pci, safexcel_pci_ids); static struct pci_driver safexcel_pci_driver = { .name = "crypto-safexcel", .id_table = safexcel_pci_ids, .probe = safexcel_pci_probe, .remove = safexcel_pci_remove, }; #endif /* Unfortunately, we have to resort to global variables here */ #if IS_ENABLED(CONFIG_PCI) int pcireg_rc = -EINVAL; /* Default safe value */ #endif #if IS_ENABLED(CONFIG_OF) int ofreg_rc = -EINVAL; /* Default safe value */ #endif static int __init safexcel_init(void) { #if IS_ENABLED(CONFIG_PCI) /* Register PCI driver */ pcireg_rc = pci_register_driver(&safexcel_pci_driver); #endif #if IS_ENABLED(CONFIG_OF) /* Register platform driver */ ofreg_rc = platform_driver_register(&crypto_safexcel); #if IS_ENABLED(CONFIG_PCI) /* Return success if either PCI or OF registered OK */ return pcireg_rc ? ofreg_rc : 0; #else return ofreg_rc; #endif #else #if IS_ENABLED(CONFIG_PCI) return pcireg_rc; #else return -EINVAL; #endif #endif } static void __exit safexcel_exit(void) { #if IS_ENABLED(CONFIG_OF) /* Unregister platform driver */ if (!ofreg_rc) platform_driver_unregister(&crypto_safexcel); #endif #if IS_ENABLED(CONFIG_PCI) /* Unregister PCI driver if successfully registered before */ if (!pcireg_rc) pci_unregister_driver(&safexcel_pci_driver); #endif } module_init(safexcel_init); module_exit(safexcel_exit); MODULE_AUTHOR("Antoine Tenart "); MODULE_AUTHOR("Ofer Heifetz "); MODULE_AUTHOR("Igal Liberman "); MODULE_DESCRIPTION("Support for SafeXcel cryptographic engines: EIP97 & EIP197"); MODULE_LICENSE("GPL v2");