/* * NVMe admin command implementation. * Copyright (c) 2015-2016 HGST, a Western Digital Company. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include "nvmet.h" u32 nvmet_get_log_page_len(struct nvme_command *cmd) { u32 len = le16_to_cpu(cmd->get_log_page.numdu); len <<= 16; len += le16_to_cpu(cmd->get_log_page.numdl); /* NUMD is a 0's based value */ len += 1; len *= sizeof(u32); return len; } static void nvmet_execute_get_log_page_noop(struct nvmet_req *req) { nvmet_req_complete(req, nvmet_zero_sgl(req, 0, req->data_len)); } static u16 nvmet_get_smart_log_nsid(struct nvmet_req *req, struct nvme_smart_log *slog) { struct nvmet_ns *ns; u64 host_reads, host_writes, data_units_read, data_units_written; ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->get_log_page.nsid); if (!ns) { pr_err("Could not find namespace id : %d\n", le32_to_cpu(req->cmd->get_log_page.nsid)); return NVME_SC_INVALID_NS; } /* we don't have the right data for file backed ns */ if (!ns->bdev) goto out; host_reads = part_stat_read(ns->bdev->bd_part, ios[READ]); data_units_read = part_stat_read(ns->bdev->bd_part, sectors[READ]); host_writes = part_stat_read(ns->bdev->bd_part, ios[WRITE]); data_units_written = part_stat_read(ns->bdev->bd_part, sectors[WRITE]); put_unaligned_le64(host_reads, &slog->host_reads[0]); put_unaligned_le64(data_units_read, &slog->data_units_read[0]); put_unaligned_le64(host_writes, &slog->host_writes[0]); put_unaligned_le64(data_units_written, &slog->data_units_written[0]); out: nvmet_put_namespace(ns); return NVME_SC_SUCCESS; } static u16 nvmet_get_smart_log_all(struct nvmet_req *req, struct nvme_smart_log *slog) { u64 host_reads = 0, host_writes = 0; u64 data_units_read = 0, data_units_written = 0; struct nvmet_ns *ns; struct nvmet_ctrl *ctrl; ctrl = req->sq->ctrl; rcu_read_lock(); list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) { /* we don't have the right data for file backed ns */ if (!ns->bdev) continue; host_reads += part_stat_read(ns->bdev->bd_part, ios[READ]); data_units_read += part_stat_read(ns->bdev->bd_part, sectors[READ]); host_writes += part_stat_read(ns->bdev->bd_part, ios[WRITE]); data_units_written += part_stat_read(ns->bdev->bd_part, sectors[WRITE]); } rcu_read_unlock(); put_unaligned_le64(host_reads, &slog->host_reads[0]); put_unaligned_le64(data_units_read, &slog->data_units_read[0]); put_unaligned_le64(host_writes, &slog->host_writes[0]); put_unaligned_le64(data_units_written, &slog->data_units_written[0]); return NVME_SC_SUCCESS; } static void nvmet_execute_get_log_page_smart(struct nvmet_req *req) { struct nvme_smart_log *log; u16 status = NVME_SC_INTERNAL; if (req->data_len != sizeof(*log)) goto out; log = kzalloc(sizeof(*log), GFP_KERNEL); if (!log) goto out; if (req->cmd->get_log_page.nsid == cpu_to_le32(NVME_NSID_ALL)) status = nvmet_get_smart_log_all(req, log); else status = nvmet_get_smart_log_nsid(req, log); if (status) goto out_free_log; status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); out_free_log: kfree(log); out: nvmet_req_complete(req, status); } static void nvmet_execute_get_log_cmd_effects_ns(struct nvmet_req *req) { u16 status = NVME_SC_INTERNAL; struct nvme_effects_log *log; log = kzalloc(sizeof(*log), GFP_KERNEL); if (!log) goto out; log->acs[nvme_admin_get_log_page] = cpu_to_le32(1 << 0); log->acs[nvme_admin_identify] = cpu_to_le32(1 << 0); log->acs[nvme_admin_abort_cmd] = cpu_to_le32(1 << 0); log->acs[nvme_admin_set_features] = cpu_to_le32(1 << 0); log->acs[nvme_admin_get_features] = cpu_to_le32(1 << 0); log->acs[nvme_admin_async_event] = cpu_to_le32(1 << 0); log->acs[nvme_admin_keep_alive] = cpu_to_le32(1 << 0); log->iocs[nvme_cmd_read] = cpu_to_le32(1 << 0); log->iocs[nvme_cmd_write] = cpu_to_le32(1 << 0); log->iocs[nvme_cmd_flush] = cpu_to_le32(1 << 0); log->iocs[nvme_cmd_dsm] = cpu_to_le32(1 << 0); log->iocs[nvme_cmd_write_zeroes] = cpu_to_le32(1 << 0); status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); kfree(log); out: nvmet_req_complete(req, status); } static void nvmet_execute_get_log_changed_ns(struct nvmet_req *req) { struct nvmet_ctrl *ctrl = req->sq->ctrl; u16 status = NVME_SC_INTERNAL; size_t len; if (req->data_len != NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32)) goto out; mutex_lock(&ctrl->lock); if (ctrl->nr_changed_ns == U32_MAX) len = sizeof(__le32); else len = ctrl->nr_changed_ns * sizeof(__le32); status = nvmet_copy_to_sgl(req, 0, ctrl->changed_ns_list, len); if (!status) status = nvmet_zero_sgl(req, len, req->data_len - len); ctrl->nr_changed_ns = 0; nvmet_clear_aen_bit(req, NVME_AEN_BIT_NS_ATTR); mutex_unlock(&ctrl->lock); out: nvmet_req_complete(req, status); } static u32 nvmet_format_ana_group(struct nvmet_req *req, u32 grpid, struct nvme_ana_group_desc *desc) { struct nvmet_ctrl *ctrl = req->sq->ctrl; struct nvmet_ns *ns; u32 count = 0; if (!(req->cmd->get_log_page.lsp & NVME_ANA_LOG_RGO)) { rcu_read_lock(); list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) if (ns->anagrpid == grpid) desc->nsids[count++] = cpu_to_le32(ns->nsid); rcu_read_unlock(); } desc->grpid = cpu_to_le32(grpid); desc->nnsids = cpu_to_le32(count); desc->chgcnt = cpu_to_le64(nvmet_ana_chgcnt); desc->state = req->port->ana_state[grpid]; memset(desc->rsvd17, 0, sizeof(desc->rsvd17)); return sizeof(struct nvme_ana_group_desc) + count * sizeof(__le32); } static void nvmet_execute_get_log_page_ana(struct nvmet_req *req) { struct nvme_ana_rsp_hdr hdr = { 0, }; struct nvme_ana_group_desc *desc; size_t offset = sizeof(struct nvme_ana_rsp_hdr); /* start beyond hdr */ size_t len; u32 grpid; u16 ngrps = 0; u16 status; status = NVME_SC_INTERNAL; desc = kmalloc(sizeof(struct nvme_ana_group_desc) + NVMET_MAX_NAMESPACES * sizeof(__le32), GFP_KERNEL); if (!desc) goto out; down_read(&nvmet_ana_sem); for (grpid = 1; grpid <= NVMET_MAX_ANAGRPS; grpid++) { if (!nvmet_ana_group_enabled[grpid]) continue; len = nvmet_format_ana_group(req, grpid, desc); status = nvmet_copy_to_sgl(req, offset, desc, len); if (status) break; offset += len; ngrps++; } for ( ; grpid <= NVMET_MAX_ANAGRPS; grpid++) { if (nvmet_ana_group_enabled[grpid]) ngrps++; } hdr.chgcnt = cpu_to_le64(nvmet_ana_chgcnt); hdr.ngrps = cpu_to_le16(ngrps); nvmet_clear_aen_bit(req, NVME_AEN_BIT_ANA_CHANGE); up_read(&nvmet_ana_sem); kfree(desc); /* copy the header last once we know the number of groups */ status = nvmet_copy_to_sgl(req, 0, &hdr, sizeof(hdr)); out: nvmet_req_complete(req, status); } static void nvmet_execute_identify_ctrl(struct nvmet_req *req) { struct nvmet_ctrl *ctrl = req->sq->ctrl; struct nvme_id_ctrl *id; u16 status = 0; const char model[] = "Linux"; id = kzalloc(sizeof(*id), GFP_KERNEL); if (!id) { status = NVME_SC_INTERNAL; goto out; } /* XXX: figure out how to assign real vendors IDs. */ id->vid = 0; id->ssvid = 0; memset(id->sn, ' ', sizeof(id->sn)); bin2hex(id->sn, &ctrl->subsys->serial, min(sizeof(ctrl->subsys->serial), sizeof(id->sn) / 2)); memcpy_and_pad(id->mn, sizeof(id->mn), model, sizeof(model) - 1, ' '); memcpy_and_pad(id->fr, sizeof(id->fr), UTS_RELEASE, strlen(UTS_RELEASE), ' '); id->rab = 6; /* * XXX: figure out how we can assign a IEEE OUI, but until then * the safest is to leave it as zeroes. */ /* we support multiple ports, multiples hosts and ANA: */ id->cmic = (1 << 0) | (1 << 1) | (1 << 3); /* no limit on data transfer sizes for now */ id->mdts = 0; id->cntlid = cpu_to_le16(ctrl->cntlid); id->ver = cpu_to_le32(ctrl->subsys->ver); /* XXX: figure out what to do about RTD3R/RTD3 */ id->oaes = cpu_to_le32(NVMET_AEN_CFG_OPTIONAL); id->ctratt = cpu_to_le32(NVME_CTRL_ATTR_HID_128_BIT | NVME_CTRL_ATTR_TBKAS); id->oacs = 0; /* * We don't really have a practical limit on the number of abort * comands. But we don't do anything useful for abort either, so * no point in allowing more abort commands than the spec requires. */ id->acl = 3; id->aerl = NVMET_ASYNC_EVENTS - 1; /* first slot is read-only, only one slot supported */ id->frmw = (1 << 0) | (1 << 1); id->lpa = (1 << 0) | (1 << 1) | (1 << 2); id->elpe = NVMET_ERROR_LOG_SLOTS - 1; id->npss = 0; /* We support keep-alive timeout in granularity of seconds */ id->kas = cpu_to_le16(NVMET_KAS); id->sqes = (0x6 << 4) | 0x6; id->cqes = (0x4 << 4) | 0x4; /* no enforcement soft-limit for maxcmd - pick arbitrary high value */ id->maxcmd = cpu_to_le16(NVMET_MAX_CMD); id->nn = cpu_to_le32(ctrl->subsys->max_nsid); id->mnan = cpu_to_le32(NVMET_MAX_NAMESPACES); id->oncs = cpu_to_le16(NVME_CTRL_ONCS_DSM | NVME_CTRL_ONCS_WRITE_ZEROES); /* XXX: don't report vwc if the underlying device is write through */ id->vwc = NVME_CTRL_VWC_PRESENT; /* * We can't support atomic writes bigger than a LBA without support * from the backend device. */ id->awun = 0; id->awupf = 0; id->sgls = cpu_to_le32(1 << 0); /* we always support SGLs */ if (ctrl->ops->has_keyed_sgls) id->sgls |= cpu_to_le32(1 << 2); if (req->port->inline_data_size) id->sgls |= cpu_to_le32(1 << 20); strlcpy(id->subnqn, ctrl->subsys->subsysnqn, sizeof(id->subnqn)); /* Max command capsule size is sqe + single page of in-capsule data */ id->ioccsz = cpu_to_le32((sizeof(struct nvme_command) + req->port->inline_data_size) / 16); /* Max response capsule size is cqe */ id->iorcsz = cpu_to_le32(sizeof(struct nvme_completion) / 16); id->msdbd = ctrl->ops->msdbd; id->anacap = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4); id->anatt = 10; /* random value */ id->anagrpmax = cpu_to_le32(NVMET_MAX_ANAGRPS); id->nanagrpid = cpu_to_le32(NVMET_MAX_ANAGRPS); /* * Meh, we don't really support any power state. Fake up the same * values that qemu does. */ id->psd[0].max_power = cpu_to_le16(0x9c4); id->psd[0].entry_lat = cpu_to_le32(0x10); id->psd[0].exit_lat = cpu_to_le32(0x4); id->nwpc = 1 << 0; /* write protect and no write protect */ status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); kfree(id); out: nvmet_req_complete(req, status); } static void nvmet_execute_identify_ns(struct nvmet_req *req) { struct nvmet_ns *ns; struct nvme_id_ns *id; u16 status = 0; if (le32_to_cpu(req->cmd->identify.nsid) == NVME_NSID_ALL) { status = NVME_SC_INVALID_NS | NVME_SC_DNR; goto out; } id = kzalloc(sizeof(*id), GFP_KERNEL); if (!id) { status = NVME_SC_INTERNAL; goto out; } /* return an all zeroed buffer if we can't find an active namespace */ ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->identify.nsid); if (!ns) goto done; /* * nuse = ncap = nsze isn't always true, but we have no way to find * that out from the underlying device. */ id->ncap = id->nsze = cpu_to_le64(ns->size >> ns->blksize_shift); switch (req->port->ana_state[ns->anagrpid]) { case NVME_ANA_INACCESSIBLE: case NVME_ANA_PERSISTENT_LOSS: break; default: id->nuse = id->nsze; break; } /* * We just provide a single LBA format that matches what the * underlying device reports. */ id->nlbaf = 0; id->flbas = 0; /* * Our namespace might always be shared. Not just with other * controllers, but also with any other user of the block device. */ id->nmic = (1 << 0); id->anagrpid = cpu_to_le32(ns->anagrpid); memcpy(&id->nguid, &ns->nguid, sizeof(id->nguid)); id->lbaf[0].ds = ns->blksize_shift; if (ns->readonly) id->nsattr |= (1 << 0); nvmet_put_namespace(ns); done: status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); kfree(id); out: nvmet_req_complete(req, status); } static void nvmet_execute_identify_nslist(struct nvmet_req *req) { static const int buf_size = NVME_IDENTIFY_DATA_SIZE; struct nvmet_ctrl *ctrl = req->sq->ctrl; struct nvmet_ns *ns; u32 min_nsid = le32_to_cpu(req->cmd->identify.nsid); __le32 *list; u16 status = 0; int i = 0; list = kzalloc(buf_size, GFP_KERNEL); if (!list) { status = NVME_SC_INTERNAL; goto out; } rcu_read_lock(); list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) { if (ns->nsid <= min_nsid) continue; list[i++] = cpu_to_le32(ns->nsid); if (i == buf_size / sizeof(__le32)) break; } rcu_read_unlock(); status = nvmet_copy_to_sgl(req, 0, list, buf_size); kfree(list); out: nvmet_req_complete(req, status); } static u16 nvmet_copy_ns_identifier(struct nvmet_req *req, u8 type, u8 len, void *id, off_t *off) { struct nvme_ns_id_desc desc = { .nidt = type, .nidl = len, }; u16 status; status = nvmet_copy_to_sgl(req, *off, &desc, sizeof(desc)); if (status) return status; *off += sizeof(desc); status = nvmet_copy_to_sgl(req, *off, id, len); if (status) return status; *off += len; return 0; } static void nvmet_execute_identify_desclist(struct nvmet_req *req) { struct nvmet_ns *ns; u16 status = 0; off_t off = 0; ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->identify.nsid); if (!ns) { status = NVME_SC_INVALID_NS | NVME_SC_DNR; goto out; } if (memchr_inv(&ns->uuid, 0, sizeof(ns->uuid))) { status = nvmet_copy_ns_identifier(req, NVME_NIDT_UUID, NVME_NIDT_UUID_LEN, &ns->uuid, &off); if (status) goto out_put_ns; } if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid))) { status = nvmet_copy_ns_identifier(req, NVME_NIDT_NGUID, NVME_NIDT_NGUID_LEN, &ns->nguid, &off); if (status) goto out_put_ns; } if (sg_zero_buffer(req->sg, req->sg_cnt, NVME_IDENTIFY_DATA_SIZE - off, off) != NVME_IDENTIFY_DATA_SIZE - off) status = NVME_SC_INTERNAL | NVME_SC_DNR; out_put_ns: nvmet_put_namespace(ns); out: nvmet_req_complete(req, status); } /* * A "minimum viable" abort implementation: the command is mandatory in the * spec, but we are not required to do any useful work. We couldn't really * do a useful abort, so don't bother even with waiting for the command * to be exectuted and return immediately telling the command to abort * wasn't found. */ static void nvmet_execute_abort(struct nvmet_req *req) { nvmet_set_result(req, 1); nvmet_req_complete(req, 0); } static u16 nvmet_write_protect_flush_sync(struct nvmet_req *req) { u16 status; if (req->ns->file) status = nvmet_file_flush(req); else status = nvmet_bdev_flush(req); if (status) pr_err("write protect flush failed nsid: %u\n", req->ns->nsid); return status; } static u16 nvmet_set_feat_write_protect(struct nvmet_req *req) { u32 write_protect = le32_to_cpu(req->cmd->common.cdw11); struct nvmet_subsys *subsys = req->sq->ctrl->subsys; u16 status = NVME_SC_FEATURE_NOT_CHANGEABLE; req->ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->rw.nsid); if (unlikely(!req->ns)) return status; mutex_lock(&subsys->lock); switch (write_protect) { case NVME_NS_WRITE_PROTECT: req->ns->readonly = true; status = nvmet_write_protect_flush_sync(req); if (status) req->ns->readonly = false; break; case NVME_NS_NO_WRITE_PROTECT: req->ns->readonly = false; status = 0; break; default: break; } if (!status) nvmet_ns_changed(subsys, req->ns->nsid); mutex_unlock(&subsys->lock); return status; } u16 nvmet_set_feat_kato(struct nvmet_req *req) { u32 val32 = le32_to_cpu(req->cmd->common.cdw11); req->sq->ctrl->kato = DIV_ROUND_UP(val32, 1000); nvmet_set_result(req, req->sq->ctrl->kato); return 0; } u16 nvmet_set_feat_async_event(struct nvmet_req *req, u32 mask) { u32 val32 = le32_to_cpu(req->cmd->common.cdw11); if (val32 & ~mask) return NVME_SC_INVALID_FIELD | NVME_SC_DNR; WRITE_ONCE(req->sq->ctrl->aen_enabled, val32); nvmet_set_result(req, val32); return 0; } static void nvmet_execute_set_features(struct nvmet_req *req) { struct nvmet_subsys *subsys = req->sq->ctrl->subsys; u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); u16 status = 0; switch (cdw10 & 0xff) { case NVME_FEAT_NUM_QUEUES: nvmet_set_result(req, (subsys->max_qid - 1) | ((subsys->max_qid - 1) << 16)); break; case NVME_FEAT_KATO: status = nvmet_set_feat_kato(req); break; case NVME_FEAT_ASYNC_EVENT: status = nvmet_set_feat_async_event(req, NVMET_AEN_CFG_ALL); break; case NVME_FEAT_HOST_ID: status = NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; break; case NVME_FEAT_WRITE_PROTECT: status = nvmet_set_feat_write_protect(req); break; default: status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; break; } nvmet_req_complete(req, status); } static u16 nvmet_get_feat_write_protect(struct nvmet_req *req) { struct nvmet_subsys *subsys = req->sq->ctrl->subsys; u32 result; req->ns = nvmet_find_namespace(req->sq->ctrl, req->cmd->common.nsid); if (!req->ns) return NVME_SC_INVALID_NS | NVME_SC_DNR; mutex_lock(&subsys->lock); if (req->ns->readonly == true) result = NVME_NS_WRITE_PROTECT; else result = NVME_NS_NO_WRITE_PROTECT; nvmet_set_result(req, result); mutex_unlock(&subsys->lock); return 0; } void nvmet_get_feat_kato(struct nvmet_req *req) { nvmet_set_result(req, req->sq->ctrl->kato * 1000); } void nvmet_get_feat_async_event(struct nvmet_req *req) { nvmet_set_result(req, READ_ONCE(req->sq->ctrl->aen_enabled)); } static void nvmet_execute_get_features(struct nvmet_req *req) { struct nvmet_subsys *subsys = req->sq->ctrl->subsys; u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); u16 status = 0; switch (cdw10 & 0xff) { /* * These features are mandatory in the spec, but we don't * have a useful way to implement them. We'll eventually * need to come up with some fake values for these. */ #if 0 case NVME_FEAT_ARBITRATION: break; case NVME_FEAT_POWER_MGMT: break; case NVME_FEAT_TEMP_THRESH: break; case NVME_FEAT_ERR_RECOVERY: break; case NVME_FEAT_IRQ_COALESCE: break; case NVME_FEAT_IRQ_CONFIG: break; case NVME_FEAT_WRITE_ATOMIC: break; #endif case NVME_FEAT_ASYNC_EVENT: nvmet_get_feat_async_event(req); break; case NVME_FEAT_VOLATILE_WC: nvmet_set_result(req, 1); break; case NVME_FEAT_NUM_QUEUES: nvmet_set_result(req, (subsys->max_qid-1) | ((subsys->max_qid-1) << 16)); break; case NVME_FEAT_KATO: nvmet_get_feat_kato(req); break; case NVME_FEAT_HOST_ID: /* need 128-bit host identifier flag */ if (!(req->cmd->common.cdw11 & cpu_to_le32(1 << 0))) { status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; break; } status = nvmet_copy_to_sgl(req, 0, &req->sq->ctrl->hostid, sizeof(req->sq->ctrl->hostid)); break; case NVME_FEAT_WRITE_PROTECT: status = nvmet_get_feat_write_protect(req); break; default: status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; break; } nvmet_req_complete(req, status); } void nvmet_execute_async_event(struct nvmet_req *req) { struct nvmet_ctrl *ctrl = req->sq->ctrl; mutex_lock(&ctrl->lock); if (ctrl->nr_async_event_cmds >= NVMET_ASYNC_EVENTS) { mutex_unlock(&ctrl->lock); nvmet_req_complete(req, NVME_SC_ASYNC_LIMIT | NVME_SC_DNR); return; } ctrl->async_event_cmds[ctrl->nr_async_event_cmds++] = req; mutex_unlock(&ctrl->lock); schedule_work(&ctrl->async_event_work); } void nvmet_execute_keep_alive(struct nvmet_req *req) { struct nvmet_ctrl *ctrl = req->sq->ctrl; pr_debug("ctrl %d update keep-alive timer for %d secs\n", ctrl->cntlid, ctrl->kato); mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); nvmet_req_complete(req, 0); } u16 nvmet_parse_admin_cmd(struct nvmet_req *req) { struct nvme_command *cmd = req->cmd; u16 ret; ret = nvmet_check_ctrl_status(req, cmd); if (unlikely(ret)) return ret; switch (cmd->common.opcode) { case nvme_admin_get_log_page: req->data_len = nvmet_get_log_page_len(cmd); switch (cmd->get_log_page.lid) { case NVME_LOG_ERROR: /* * We currently never set the More bit in the status * field, so all error log entries are invalid and can * be zeroed out. This is called a minum viable * implementation (TM) of this mandatory log page. */ req->execute = nvmet_execute_get_log_page_noop; return 0; case NVME_LOG_SMART: req->execute = nvmet_execute_get_log_page_smart; return 0; case NVME_LOG_FW_SLOT: /* * We only support a single firmware slot which always * is active, so we can zero out the whole firmware slot * log and still claim to fully implement this mandatory * log page. */ req->execute = nvmet_execute_get_log_page_noop; return 0; case NVME_LOG_CHANGED_NS: req->execute = nvmet_execute_get_log_changed_ns; return 0; case NVME_LOG_CMD_EFFECTS: req->execute = nvmet_execute_get_log_cmd_effects_ns; return 0; case NVME_LOG_ANA: req->execute = nvmet_execute_get_log_page_ana; return 0; } break; case nvme_admin_identify: req->data_len = NVME_IDENTIFY_DATA_SIZE; switch (cmd->identify.cns) { case NVME_ID_CNS_NS: req->execute = nvmet_execute_identify_ns; return 0; case NVME_ID_CNS_CTRL: req->execute = nvmet_execute_identify_ctrl; return 0; case NVME_ID_CNS_NS_ACTIVE_LIST: req->execute = nvmet_execute_identify_nslist; return 0; case NVME_ID_CNS_NS_DESC_LIST: req->execute = nvmet_execute_identify_desclist; return 0; } break; case nvme_admin_abort_cmd: req->execute = nvmet_execute_abort; req->data_len = 0; return 0; case nvme_admin_set_features: req->execute = nvmet_execute_set_features; req->data_len = 0; return 0; case nvme_admin_get_features: req->execute = nvmet_execute_get_features; req->data_len = 0; return 0; case nvme_admin_async_event: req->execute = nvmet_execute_async_event; req->data_len = 0; return 0; case nvme_admin_keep_alive: req->execute = nvmet_execute_keep_alive; req->data_len = 0; return 0; } pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode, req->sq->qid); return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; }