/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright(c) 2013 - 2018 Intel Corporation. */ #ifndef _I40E_TXRX_H_ #define _I40E_TXRX_H_ #include /* Interrupt Throttling and Rate Limiting Goodies */ #define I40E_DEFAULT_IRQ_WORK 256 /* The datasheet for the X710 and XL710 indicate that the maximum value for * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing * the register value which is divided by 2 lets use the actual values and * avoid an excessive amount of translation. */ #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ #define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */ #define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */ #define I40E_ITR_20K 50 #define I40E_ITR_8K 122 #define I40E_MAX_ITR 8160 /* maximum value as per datasheet */ #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC) #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK) #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC)) #define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) #define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) /* 0x40 is the enable bit for interrupt rate limiting, and must be set if * the value of the rate limit is non-zero */ #define INTRL_ENA BIT(6) #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) /** * i40e_intrl_usec_to_reg - convert interrupt rate limit to register * @intrl: interrupt rate limit to convert * * This function converts a decimal interrupt rate limit to the appropriate * register format expected by the firmware when setting interrupt rate limit. */ static inline u16 i40e_intrl_usec_to_reg(int intrl) { if (intrl >> 2) return ((intrl >> 2) | INTRL_ENA); else return 0; } #define I40E_QUEUE_END_OF_LIST 0x7FF /* this enum matches hardware bits and is meant to be used by DYN_CTLN * registers and QINT registers or more generally anywhere in the manual * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any * register but instead is a special value meaning "don't update" ITR0/1/2. */ enum i40e_dyn_idx_t { I40E_IDX_ITR0 = 0, I40E_IDX_ITR1 = 1, I40E_IDX_ITR2 = 2, I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ }; /* these are indexes into ITRN registers */ #define I40E_RX_ITR I40E_IDX_ITR0 #define I40E_TX_ITR I40E_IDX_ITR1 /* Supported RSS offloads */ #define I40E_DEFAULT_RSS_HENA ( \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \ BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD)) #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) #define i40e_pf_get_default_rss_hena(pf) \ (((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \ I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA) /* Supported Rx Buffer Sizes (a multiple of 128) */ #define I40E_RXBUFFER_256 256 #define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */ #define I40E_RXBUFFER_2048 2048 #define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */ #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */ /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, * this adds up to 512 bytes of extra data meaning the smallest allocation * we could have is 1K. * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab) * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab) */ #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) #define i40e_rx_desc i40e_16byte_rx_desc #define I40E_RX_DMA_ATTR \ (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) /* Attempt to maximize the headroom available for incoming frames. We * use a 2K buffer for receives and need 1536/1534 to store the data for * the frame. This leaves us with 512 bytes of room. From that we need * to deduct the space needed for the shared info and the padding needed * to IP align the frame. * * Note: For cache line sizes 256 or larger this value is going to end * up negative. In these cases we should fall back to the legacy * receive path. */ #if (PAGE_SIZE < 8192) #define I40E_2K_TOO_SMALL_WITH_PADDING \ ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048)) static inline int i40e_compute_pad(int rx_buf_len) { int page_size, pad_size; page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len; return pad_size; } static inline int i40e_skb_pad(void) { int rx_buf_len; /* If a 2K buffer cannot handle a standard Ethernet frame then * optimize padding for a 3K buffer instead of a 1.5K buffer. * * For a 3K buffer we need to add enough padding to allow for * tailroom due to NET_IP_ALIGN possibly shifting us out of * cache-line alignment. */ if (I40E_2K_TOO_SMALL_WITH_PADDING) rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); else rx_buf_len = I40E_RXBUFFER_1536; /* if needed make room for NET_IP_ALIGN */ rx_buf_len -= NET_IP_ALIGN; return i40e_compute_pad(rx_buf_len); } #define I40E_SKB_PAD i40e_skb_pad() #else #define I40E_2K_TOO_SMALL_WITH_PADDING false #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) #endif /** * i40e_test_staterr - tests bits in Rx descriptor status and error fields * @rx_desc: pointer to receive descriptor (in le64 format) * @stat_err_bits: value to mask * * This function does some fast chicanery in order to return the * value of the mask which is really only used for boolean tests. * The status_error_len doesn't need to be shifted because it begins * at offset zero. */ static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc, const u64 stat_err_bits) { return !!(rx_desc->wb.qword1.status_error_len & cpu_to_le64(stat_err_bits)); } /* How many Rx Buffers do we bundle into one write to the hardware ? */ #define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */ #define I40E_RX_NEXT_DESC(r, i, n) \ do { \ (i)++; \ if ((i) == (r)->count) \ i = 0; \ (n) = I40E_RX_DESC((r), (i)); \ } while (0) #define I40E_MAX_BUFFER_TXD 8 #define I40E_MIN_TX_LEN 17 /* The size limit for a transmit buffer in a descriptor is (16K - 1). * In order to align with the read requests we will align the value to * the nearest 4K which represents our maximum read request size. */ #define I40E_MAX_READ_REQ_SIZE 4096 #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1) #define I40E_MAX_DATA_PER_TXD_ALIGNED \ (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1)) /** * i40e_txd_use_count - estimate the number of descriptors needed for Tx * @size: transmit request size in bytes * * Due to hardware alignment restrictions (4K alignment), we need to * assume that we can have no more than 12K of data per descriptor, even * though each descriptor can take up to 16K - 1 bytes of aligned memory. * Thus, we need to divide by 12K. But division is slow! Instead, * we decompose the operation into shifts and one relatively cheap * multiply operation. * * To divide by 12K, we first divide by 4K, then divide by 3: * To divide by 4K, shift right by 12 bits * To divide by 3, multiply by 85, then divide by 256 * (Divide by 256 is done by shifting right by 8 bits) * Finally, we add one to round up. Because 256 isn't an exact multiple of * 3, we'll underestimate near each multiple of 12K. This is actually more * accurate as we have 4K - 1 of wiggle room that we can fit into the last * segment. For our purposes this is accurate out to 1M which is orders of * magnitude greater than our largest possible GSO size. * * This would then be implemented as: * return (((size >> 12) * 85) >> 8) + 1; * * Since multiplication and division are commutative, we can reorder * operations into: * return ((size * 85) >> 20) + 1; */ static inline unsigned int i40e_txd_use_count(unsigned int size) { return ((size * 85) >> 20) + 1; } /* Tx Descriptors needed, worst case */ #define DESC_NEEDED (MAX_SKB_FRAGS + 6) #define I40E_TX_FLAGS_HW_VLAN BIT(1) #define I40E_TX_FLAGS_SW_VLAN BIT(2) #define I40E_TX_FLAGS_TSO BIT(3) #define I40E_TX_FLAGS_IPV4 BIT(4) #define I40E_TX_FLAGS_IPV6 BIT(5) #define I40E_TX_FLAGS_TSYN BIT(8) #define I40E_TX_FLAGS_FD_SB BIT(9) #define I40E_TX_FLAGS_UDP_TUNNEL BIT(10) #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000 #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29 #define I40E_TX_FLAGS_VLAN_SHIFT 16 struct i40e_tx_buffer { struct i40e_tx_desc *next_to_watch; union { struct xdp_frame *xdpf; struct sk_buff *skb; void *raw_buf; }; unsigned int bytecount; unsigned short gso_segs; DEFINE_DMA_UNMAP_ADDR(dma); DEFINE_DMA_UNMAP_LEN(len); u32 tx_flags; }; struct i40e_rx_buffer { dma_addr_t dma; struct page *page; __u32 page_offset; __u16 pagecnt_bias; }; struct i40e_queue_stats { u64 packets; u64 bytes; }; struct i40e_tx_queue_stats { u64 restart_queue; u64 tx_busy; u64 tx_done_old; u64 tx_linearize; u64 tx_force_wb; int prev_pkt_ctr; }; struct i40e_rx_queue_stats { u64 non_eop_descs; u64 alloc_page_failed; u64 alloc_buff_failed; u64 page_reuse_count; u64 page_alloc_count; u64 page_waive_count; u64 page_busy_count; }; enum i40e_ring_state_t { __I40E_TX_FDIR_INIT_DONE, __I40E_TX_XPS_INIT_DONE, __I40E_RING_STATE_NBITS /* must be last */ }; /* some useful defines for virtchannel interface, which * is the only remaining user of header split */ #define I40E_RX_DTYPE_HEADER_SPLIT 1 #define I40E_RX_SPLIT_L2 0x1 #define I40E_RX_SPLIT_IP 0x2 #define I40E_RX_SPLIT_TCP_UDP 0x4 #define I40E_RX_SPLIT_SCTP 0x8 /* struct that defines a descriptor ring, associated with a VSI */ struct i40e_ring { struct i40e_ring *next; /* pointer to next ring in q_vector */ void *desc; /* Descriptor ring memory */ struct device *dev; /* Used for DMA mapping */ struct net_device *netdev; /* netdev ring maps to */ struct bpf_prog *xdp_prog; union { struct i40e_tx_buffer *tx_bi; struct i40e_rx_buffer *rx_bi; struct xdp_buff **rx_bi_zc; }; DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS); u16 queue_index; /* Queue number of ring */ u8 dcb_tc; /* Traffic class of ring */ u8 __iomem *tail; /* high bit set means dynamic, use accessor routines to read/write. * hardware only supports 2us resolution for the ITR registers. * these values always store the USER setting, and must be converted * before programming to a register. */ u16 itr_setting; u16 count; /* Number of descriptors */ u16 reg_idx; /* HW register index of the ring */ u16 rx_buf_len; /* used in interrupt processing */ u16 next_to_use; u16 next_to_clean; u16 xdp_tx_active; u8 atr_sample_rate; u8 atr_count; bool ring_active; /* is ring online or not */ bool arm_wb; /* do something to arm write back */ u8 packet_stride; u16 flags; #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0) #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1) #define I40E_TXR_FLAGS_XDP BIT(2) /* stats structs */ struct i40e_queue_stats stats; struct u64_stats_sync syncp; union { struct i40e_tx_queue_stats tx_stats; struct i40e_rx_queue_stats rx_stats; }; unsigned int size; /* length of descriptor ring in bytes */ dma_addr_t dma; /* physical address of ring */ struct i40e_vsi *vsi; /* Backreference to associated VSI */ struct i40e_q_vector *q_vector; /* Backreference to associated vector */ struct rcu_head rcu; /* to avoid race on free */ u16 next_to_alloc; struct sk_buff *skb; /* When i40e_clean_rx_ring_irq() must * return before it sees the EOP for * the current packet, we save that skb * here and resume receiving this * packet the next time * i40e_clean_rx_ring_irq() is called * for this ring. */ struct i40e_channel *ch; u16 rx_offset; struct xdp_rxq_info xdp_rxq; struct xsk_buff_pool *xsk_pool; struct xdp_desc *xsk_descs; /* For storing descriptors in the AF_XDP ZC path */ } ____cacheline_internodealigned_in_smp; static inline bool ring_uses_build_skb(struct i40e_ring *ring) { return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED); } static inline void set_ring_build_skb_enabled(struct i40e_ring *ring) { ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED; } static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring) { ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED; } static inline bool ring_is_xdp(struct i40e_ring *ring) { return !!(ring->flags & I40E_TXR_FLAGS_XDP); } static inline void set_ring_xdp(struct i40e_ring *ring) { ring->flags |= I40E_TXR_FLAGS_XDP; } #define I40E_ITR_ADAPTIVE_MIN_INC 0x0002 #define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002 #define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e #define I40E_ITR_ADAPTIVE_LATENCY 0x8000 #define I40E_ITR_ADAPTIVE_BULK 0x0000 struct i40e_ring_container { struct i40e_ring *ring; /* pointer to linked list of ring(s) */ unsigned long next_update; /* jiffies value of next update */ unsigned int total_bytes; /* total bytes processed this int */ unsigned int total_packets; /* total packets processed this int */ u16 count; u16 target_itr; /* target ITR setting for ring(s) */ u16 current_itr; /* current ITR setting for ring(s) */ }; /* iterator for handling rings in ring container */ #define i40e_for_each_ring(pos, head) \ for (pos = (head).ring; pos != NULL; pos = pos->next) static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring) { #if (PAGE_SIZE < 8192) if (ring->rx_buf_len > (PAGE_SIZE / 2)) return 1; #endif return 0; } #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring)) bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count); netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev); u16 i40e_lan_select_queue(struct net_device *netdev, struct sk_buff *skb, struct net_device *sb_dev); void i40e_clean_tx_ring(struct i40e_ring *tx_ring); void i40e_clean_rx_ring(struct i40e_ring *rx_ring); int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring); int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring); void i40e_free_tx_resources(struct i40e_ring *tx_ring); void i40e_free_rx_resources(struct i40e_ring *rx_ring); int i40e_napi_poll(struct napi_struct *napi, int budget); void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector); u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw); void i40e_detect_recover_hung(struct i40e_vsi *vsi); int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size); bool __i40e_chk_linearize(struct sk_buff *skb); int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, u32 flags); int i40e_alloc_rx_bi(struct i40e_ring *rx_ring); /** * i40e_get_head - Retrieve head from head writeback * @tx_ring: tx ring to fetch head of * * Returns value of Tx ring head based on value stored * in head write-back location **/ static inline u32 i40e_get_head(struct i40e_ring *tx_ring) { void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count; return le32_to_cpu(*(volatile __le32 *)head); } /** * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed * @skb: send buffer * * Returns number of data descriptors needed for this skb. Returns 0 to indicate * there is not enough descriptors available in this ring since we need at least * one descriptor. **/ static inline int i40e_xmit_descriptor_count(struct sk_buff *skb) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; unsigned int nr_frags = skb_shinfo(skb)->nr_frags; int count = 0, size = skb_headlen(skb); for (;;) { count += i40e_txd_use_count(size); if (!nr_frags--) break; size = skb_frag_size(frag++); } return count; } /** * i40e_maybe_stop_tx - 1st level check for Tx stop conditions * @tx_ring: the ring to be checked * @size: the size buffer we want to assure is available * * Returns 0 if stop is not needed **/ static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) { if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) return 0; return __i40e_maybe_stop_tx(tx_ring, size); } /** * i40e_chk_linearize - Check if there are more than 8 fragments per packet * @skb: send buffer * @count: number of buffers used * * Note: Our HW can't scatter-gather more than 8 fragments to build * a packet on the wire and so we need to figure out the cases where we * need to linearize the skb. **/ static inline bool i40e_chk_linearize(struct sk_buff *skb, int count) { /* Both TSO and single send will work if count is less than 8 */ if (likely(count < I40E_MAX_BUFFER_TXD)) return false; if (skb_is_gso(skb)) return __i40e_chk_linearize(skb); /* we can support up to 8 data buffers for a single send */ return count != I40E_MAX_BUFFER_TXD; } /** * txring_txq - Find the netdev Tx ring based on the i40e Tx ring * @ring: Tx ring to find the netdev equivalent of **/ static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring) { return netdev_get_tx_queue(ring->netdev, ring->queue_index); } #endif /* _I40E_TXRX_H_ */