/* * handling privileged instructions * * Copyright IBM Corp. 2008, 2013 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License (version 2 only) * as published by the Free Software Foundation. * * Author(s): Carsten Otte * Christian Borntraeger */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gaccess.h" #include "kvm-s390.h" #include "trace.h" static int handle_set_prefix(struct kvm_vcpu *vcpu) { u64 operand2; u32 address = 0; u8 tmp; vcpu->stat.instruction_spx++; operand2 = kvm_s390_get_base_disp_s(vcpu); /* must be word boundary */ if (operand2 & 3) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* get the value */ if (get_guest(vcpu, address, (u32 __user *) operand2)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); address = address & 0x7fffe000u; /* make sure that the new value is valid memory */ if (copy_from_guest_absolute(vcpu, &tmp, address, 1) || (copy_from_guest_absolute(vcpu, &tmp, address + PAGE_SIZE, 1))) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); kvm_s390_set_prefix(vcpu, address); VCPU_EVENT(vcpu, 5, "setting prefix to %x", address); trace_kvm_s390_handle_prefix(vcpu, 1, address); return 0; } static int handle_store_prefix(struct kvm_vcpu *vcpu) { u64 operand2; u32 address; vcpu->stat.instruction_stpx++; operand2 = kvm_s390_get_base_disp_s(vcpu); /* must be word boundary */ if (operand2 & 3) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); address = vcpu->arch.sie_block->prefix; address = address & 0x7fffe000u; /* get the value */ if (put_guest(vcpu, address, (u32 __user *)operand2)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); VCPU_EVENT(vcpu, 5, "storing prefix to %x", address); trace_kvm_s390_handle_prefix(vcpu, 0, address); return 0; } static int handle_store_cpu_address(struct kvm_vcpu *vcpu) { u64 useraddr; vcpu->stat.instruction_stap++; useraddr = kvm_s390_get_base_disp_s(vcpu); if (useraddr & 1) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); if (put_guest(vcpu, vcpu->vcpu_id, (u16 __user *)useraddr)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); VCPU_EVENT(vcpu, 5, "storing cpu address to %llx", useraddr); trace_kvm_s390_handle_stap(vcpu, useraddr); return 0; } static int handle_skey(struct kvm_vcpu *vcpu) { vcpu->stat.instruction_storage_key++; vcpu->arch.sie_block->gpsw.addr = __rewind_psw(vcpu->arch.sie_block->gpsw, 4); VCPU_EVENT(vcpu, 4, "%s", "retrying storage key operation"); return 0; } static int handle_tpi(struct kvm_vcpu *vcpu) { struct kvm_s390_interrupt_info *inti; u64 addr; int cc; addr = kvm_s390_get_base_disp_s(vcpu); if (addr & 3) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); cc = 0; inti = kvm_s390_get_io_int(vcpu->kvm, vcpu->run->s.regs.crs[6], 0); if (!inti) goto no_interrupt; cc = 1; if (addr) { /* * Store the two-word I/O interruption code into the * provided area. */ put_guest(vcpu, inti->io.subchannel_id, (u16 __user *) addr); put_guest(vcpu, inti->io.subchannel_nr, (u16 __user *) (addr + 2)); put_guest(vcpu, inti->io.io_int_parm, (u32 __user *) (addr + 4)); } else { /* * Store the three-word I/O interruption code into * the appropriate lowcore area. */ put_guest(vcpu, inti->io.subchannel_id, (u16 __user *) __LC_SUBCHANNEL_ID); put_guest(vcpu, inti->io.subchannel_nr, (u16 __user *) __LC_SUBCHANNEL_NR); put_guest(vcpu, inti->io.io_int_parm, (u32 __user *) __LC_IO_INT_PARM); put_guest(vcpu, inti->io.io_int_word, (u32 __user *) __LC_IO_INT_WORD); } kfree(inti); no_interrupt: /* Set condition code and we're done. */ vcpu->arch.sie_block->gpsw.mask &= ~(3ul << 44); vcpu->arch.sie_block->gpsw.mask |= (cc & 3ul) << 44; return 0; } static int handle_tsch(struct kvm_vcpu *vcpu) { struct kvm_s390_interrupt_info *inti; inti = kvm_s390_get_io_int(vcpu->kvm, 0, vcpu->run->s.regs.gprs[1]); /* * Prepare exit to userspace. * We indicate whether we dequeued a pending I/O interrupt * so that userspace can re-inject it if the instruction gets * a program check. While this may re-order the pending I/O * interrupts, this is no problem since the priority is kept * intact. */ vcpu->run->exit_reason = KVM_EXIT_S390_TSCH; vcpu->run->s390_tsch.dequeued = !!inti; if (inti) { vcpu->run->s390_tsch.subchannel_id = inti->io.subchannel_id; vcpu->run->s390_tsch.subchannel_nr = inti->io.subchannel_nr; vcpu->run->s390_tsch.io_int_parm = inti->io.io_int_parm; vcpu->run->s390_tsch.io_int_word = inti->io.io_int_word; } vcpu->run->s390_tsch.ipb = vcpu->arch.sie_block->ipb; kfree(inti); return -EREMOTE; } static int handle_io_inst(struct kvm_vcpu *vcpu) { VCPU_EVENT(vcpu, 4, "%s", "I/O instruction"); if (vcpu->kvm->arch.css_support) { /* * Most I/O instructions will be handled by userspace. * Exceptions are tpi and the interrupt portion of tsch. */ if (vcpu->arch.sie_block->ipa == 0xb236) return handle_tpi(vcpu); if (vcpu->arch.sie_block->ipa == 0xb235) return handle_tsch(vcpu); /* Handle in userspace. */ return -EOPNOTSUPP; } else { /* * Set condition code 3 to stop the guest from issueing channel * I/O instructions. */ vcpu->arch.sie_block->gpsw.mask &= ~(3ul << 44); vcpu->arch.sie_block->gpsw.mask |= (3 & 3ul) << 44; return 0; } } static int handle_stfl(struct kvm_vcpu *vcpu) { unsigned int facility_list; int rc; vcpu->stat.instruction_stfl++; /* only pass the facility bits, which we can handle */ facility_list = S390_lowcore.stfl_fac_list & 0xff82fff3; rc = copy_to_guest(vcpu, offsetof(struct _lowcore, stfl_fac_list), &facility_list, sizeof(facility_list)); if (rc) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); VCPU_EVENT(vcpu, 5, "store facility list value %x", facility_list); trace_kvm_s390_handle_stfl(vcpu, facility_list); return 0; } static void handle_new_psw(struct kvm_vcpu *vcpu) { /* Check whether the new psw is enabled for machine checks. */ if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK) kvm_s390_deliver_pending_machine_checks(vcpu); } #define PSW_MASK_ADDR_MODE (PSW_MASK_EA | PSW_MASK_BA) #define PSW_MASK_UNASSIGNED 0xb80800fe7fffffffUL #define PSW_ADDR_24 0x0000000000ffffffUL #define PSW_ADDR_31 0x000000007fffffffUL static int is_valid_psw(psw_t *psw) { if (psw->mask & PSW_MASK_UNASSIGNED) return 0; if ((psw->mask & PSW_MASK_ADDR_MODE) == PSW_MASK_BA) { if (psw->addr & ~PSW_ADDR_31) return 0; } if (!(psw->mask & PSW_MASK_ADDR_MODE) && (psw->addr & ~PSW_ADDR_24)) return 0; if ((psw->mask & PSW_MASK_ADDR_MODE) == PSW_MASK_EA) return 0; return 1; } int kvm_s390_handle_lpsw(struct kvm_vcpu *vcpu) { psw_t *gpsw = &vcpu->arch.sie_block->gpsw; psw_compat_t new_psw; u64 addr; if (gpsw->mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OPERATION); addr = kvm_s390_get_base_disp_s(vcpu); if (addr & 7) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); if (copy_from_guest(vcpu, &new_psw, addr, sizeof(new_psw))) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); if (!(new_psw.mask & PSW32_MASK_BASE)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); gpsw->mask = (new_psw.mask & ~PSW32_MASK_BASE) << 32; gpsw->mask |= new_psw.addr & PSW32_ADDR_AMODE; gpsw->addr = new_psw.addr & ~PSW32_ADDR_AMODE; if (!is_valid_psw(gpsw)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); handle_new_psw(vcpu); return 0; } static int handle_lpswe(struct kvm_vcpu *vcpu) { psw_t new_psw; u64 addr; addr = kvm_s390_get_base_disp_s(vcpu); if (addr & 7) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); if (copy_from_guest(vcpu, &new_psw, addr, sizeof(new_psw))) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); vcpu->arch.sie_block->gpsw = new_psw; if (!is_valid_psw(&vcpu->arch.sie_block->gpsw)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); handle_new_psw(vcpu); return 0; } static int handle_stidp(struct kvm_vcpu *vcpu) { u64 operand2; vcpu->stat.instruction_stidp++; operand2 = kvm_s390_get_base_disp_s(vcpu); if (operand2 & 7) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); if (put_guest(vcpu, vcpu->arch.stidp_data, (u64 __user *)operand2)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); VCPU_EVENT(vcpu, 5, "%s", "store cpu id"); return 0; } static void handle_stsi_3_2_2(struct kvm_vcpu *vcpu, struct sysinfo_3_2_2 *mem) { struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; int cpus = 0; int n; spin_lock(&fi->lock); for (n = 0; n < KVM_MAX_VCPUS; n++) if (fi->local_int[n]) cpus++; spin_unlock(&fi->lock); /* deal with other level 3 hypervisors */ if (stsi(mem, 3, 2, 2)) mem->count = 0; if (mem->count < 8) mem->count++; for (n = mem->count - 1; n > 0 ; n--) memcpy(&mem->vm[n], &mem->vm[n - 1], sizeof(mem->vm[0])); mem->vm[0].cpus_total = cpus; mem->vm[0].cpus_configured = cpus; mem->vm[0].cpus_standby = 0; mem->vm[0].cpus_reserved = 0; mem->vm[0].caf = 1000; memcpy(mem->vm[0].name, "KVMguest", 8); ASCEBC(mem->vm[0].name, 8); memcpy(mem->vm[0].cpi, "KVM/Linux ", 16); ASCEBC(mem->vm[0].cpi, 16); } static int handle_stsi(struct kvm_vcpu *vcpu) { int fc = (vcpu->run->s.regs.gprs[0] & 0xf0000000) >> 28; int sel1 = vcpu->run->s.regs.gprs[0] & 0xff; int sel2 = vcpu->run->s.regs.gprs[1] & 0xffff; unsigned long mem = 0; u64 operand2; int rc = 0; vcpu->stat.instruction_stsi++; VCPU_EVENT(vcpu, 4, "stsi: fc: %x sel1: %x sel2: %x", fc, sel1, sel2); operand2 = kvm_s390_get_base_disp_s(vcpu); if (operand2 & 0xfff && fc > 0) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); switch (fc) { case 0: vcpu->run->s.regs.gprs[0] = 3 << 28; vcpu->arch.sie_block->gpsw.mask &= ~(3ul << 44); return 0; case 1: /* same handling for 1 and 2 */ case 2: mem = get_zeroed_page(GFP_KERNEL); if (!mem) goto out_no_data; if (stsi((void *) mem, fc, sel1, sel2)) goto out_no_data; break; case 3: if (sel1 != 2 || sel2 != 2) goto out_no_data; mem = get_zeroed_page(GFP_KERNEL); if (!mem) goto out_no_data; handle_stsi_3_2_2(vcpu, (void *) mem); break; default: goto out_no_data; } if (copy_to_guest_absolute(vcpu, operand2, (void *) mem, PAGE_SIZE)) { rc = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); goto out_exception; } trace_kvm_s390_handle_stsi(vcpu, fc, sel1, sel2, operand2); free_page(mem); vcpu->arch.sie_block->gpsw.mask &= ~(3ul << 44); vcpu->run->s.regs.gprs[0] = 0; return 0; out_no_data: /* condition code 3 */ vcpu->arch.sie_block->gpsw.mask |= 3ul << 44; out_exception: free_page(mem); return rc; } static const intercept_handler_t b2_handlers[256] = { [0x02] = handle_stidp, [0x10] = handle_set_prefix, [0x11] = handle_store_prefix, [0x12] = handle_store_cpu_address, [0x29] = handle_skey, [0x2a] = handle_skey, [0x2b] = handle_skey, [0x30] = handle_io_inst, [0x31] = handle_io_inst, [0x32] = handle_io_inst, [0x33] = handle_io_inst, [0x34] = handle_io_inst, [0x35] = handle_io_inst, [0x36] = handle_io_inst, [0x37] = handle_io_inst, [0x38] = handle_io_inst, [0x39] = handle_io_inst, [0x3a] = handle_io_inst, [0x3b] = handle_io_inst, [0x3c] = handle_io_inst, [0x5f] = handle_io_inst, [0x74] = handle_io_inst, [0x76] = handle_io_inst, [0x7d] = handle_stsi, [0xb1] = handle_stfl, [0xb2] = handle_lpswe, }; int kvm_s390_handle_b2(struct kvm_vcpu *vcpu) { intercept_handler_t handler; /* * a lot of B2 instructions are priviledged. We first check for * the privileged ones, that we can handle in the kernel. If the * kernel can handle this instruction, we check for the problem * state bit and (a) handle the instruction or (b) send a code 2 * program check. * Anything else goes to userspace.*/ handler = b2_handlers[vcpu->arch.sie_block->ipa & 0x00ff]; if (handler) { if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OPERATION); else return handler(vcpu); } return -EOPNOTSUPP; } static int handle_epsw(struct kvm_vcpu *vcpu) { int reg1, reg2; reg1 = (vcpu->arch.sie_block->ipb & 0x00f00000) >> 24; reg2 = (vcpu->arch.sie_block->ipb & 0x000f0000) >> 16; /* This basically extracts the mask half of the psw. */ vcpu->run->s.regs.gprs[reg1] &= 0xffffffff00000000; vcpu->run->s.regs.gprs[reg1] |= vcpu->arch.sie_block->gpsw.mask >> 32; if (reg2) { vcpu->run->s.regs.gprs[reg2] &= 0xffffffff00000000; vcpu->run->s.regs.gprs[reg2] |= vcpu->arch.sie_block->gpsw.mask & 0x00000000ffffffff; } return 0; } #define PFMF_RESERVED 0xfffc0101UL #define PFMF_SK 0x00020000UL #define PFMF_CF 0x00010000UL #define PFMF_UI 0x00008000UL #define PFMF_FSC 0x00007000UL #define PFMF_NQ 0x00000800UL #define PFMF_MR 0x00000400UL #define PFMF_MC 0x00000200UL #define PFMF_KEY 0x000000feUL static int handle_pfmf(struct kvm_vcpu *vcpu) { int reg1, reg2; unsigned long start, end; vcpu->stat.instruction_pfmf++; kvm_s390_get_regs_rre(vcpu, ®1, ®2); if (!MACHINE_HAS_PFMF) return kvm_s390_inject_program_int(vcpu, PGM_OPERATION); if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OPERATION); if (vcpu->run->s.regs.gprs[reg1] & PFMF_RESERVED) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* Only provide non-quiescing support if the host supports it */ if (vcpu->run->s.regs.gprs[reg1] & PFMF_NQ && S390_lowcore.stfl_fac_list & 0x00020000) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* No support for conditional-SSKE */ if (vcpu->run->s.regs.gprs[reg1] & (PFMF_MR | PFMF_MC)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); start = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK; switch (vcpu->run->s.regs.gprs[reg1] & PFMF_FSC) { case 0x00000000: end = (start + (1UL << 12)) & ~((1UL << 12) - 1); break; case 0x00001000: end = (start + (1UL << 20)) & ~((1UL << 20) - 1); break; /* We dont support EDAT2 case 0x00002000: end = (start + (1UL << 31)) & ~((1UL << 31) - 1); break;*/ default: return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); } while (start < end) { unsigned long useraddr; useraddr = gmap_translate(start, vcpu->arch.gmap); if (IS_ERR((void *)useraddr)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); if (vcpu->run->s.regs.gprs[reg1] & PFMF_CF) { if (clear_user((void __user *)useraddr, PAGE_SIZE)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); } if (vcpu->run->s.regs.gprs[reg1] & PFMF_SK) { if (set_guest_storage_key(current->mm, useraddr, vcpu->run->s.regs.gprs[reg1] & PFMF_KEY, vcpu->run->s.regs.gprs[reg1] & PFMF_NQ)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); } start += PAGE_SIZE; } if (vcpu->run->s.regs.gprs[reg1] & PFMF_FSC) vcpu->run->s.regs.gprs[reg2] = end; return 0; } static const intercept_handler_t b9_handlers[256] = { [0x8d] = handle_epsw, [0x9c] = handle_io_inst, [0xaf] = handle_pfmf, }; int kvm_s390_handle_b9(struct kvm_vcpu *vcpu) { intercept_handler_t handler; /* This is handled just as for the B2 instructions. */ handler = b9_handlers[vcpu->arch.sie_block->ipa & 0x00ff]; if (handler) { if ((handler != handle_epsw) && (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OPERATION); else return handler(vcpu); } return -EOPNOTSUPP; } static const intercept_handler_t eb_handlers[256] = { [0x8a] = handle_io_inst, }; int kvm_s390_handle_priv_eb(struct kvm_vcpu *vcpu) { intercept_handler_t handler; /* All eb instructions that end up here are privileged. */ if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OPERATION); handler = eb_handlers[vcpu->arch.sie_block->ipb & 0xff]; if (handler) return handler(vcpu); return -EOPNOTSUPP; } static int handle_tprot(struct kvm_vcpu *vcpu) { u64 address1, address2; struct vm_area_struct *vma; unsigned long user_address; vcpu->stat.instruction_tprot++; kvm_s390_get_base_disp_sse(vcpu, &address1, &address2); /* we only handle the Linux memory detection case: * access key == 0 * guest DAT == off * everything else goes to userspace. */ if (address2 & 0xf0) return -EOPNOTSUPP; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_DAT) return -EOPNOTSUPP; down_read(¤t->mm->mmap_sem); user_address = __gmap_translate(address1, vcpu->arch.gmap); if (IS_ERR_VALUE(user_address)) goto out_inject; vma = find_vma(current->mm, user_address); if (!vma) goto out_inject; vcpu->arch.sie_block->gpsw.mask &= ~(3ul << 44); if (!(vma->vm_flags & VM_WRITE) && (vma->vm_flags & VM_READ)) vcpu->arch.sie_block->gpsw.mask |= (1ul << 44); if (!(vma->vm_flags & VM_WRITE) && !(vma->vm_flags & VM_READ)) vcpu->arch.sie_block->gpsw.mask |= (2ul << 44); up_read(¤t->mm->mmap_sem); return 0; out_inject: up_read(¤t->mm->mmap_sem); return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); } int kvm_s390_handle_e5(struct kvm_vcpu *vcpu) { /* For e5xx... instructions we only handle TPROT */ if ((vcpu->arch.sie_block->ipa & 0x00ff) == 0x01) return handle_tprot(vcpu); return -EOPNOTSUPP; } static int handle_sckpf(struct kvm_vcpu *vcpu) { u32 value; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OPERATION); if (vcpu->run->s.regs.gprs[0] & 0x00000000ffff0000) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); value = vcpu->run->s.regs.gprs[0] & 0x000000000000ffff; vcpu->arch.sie_block->todpr = value; return 0; } static const intercept_handler_t x01_handlers[256] = { [0x07] = handle_sckpf, }; int kvm_s390_handle_01(struct kvm_vcpu *vcpu) { intercept_handler_t handler; handler = x01_handlers[vcpu->arch.sie_block->ipa & 0x00ff]; if (handler) return handler(vcpu); return -EOPNOTSUPP; }