#include #include #include #include #include #include #include #include #include /* Max address size we deal with */ #define OF_MAX_ADDR_CELLS 4 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) static struct of_bus *of_match_bus(struct device_node *np); static int __of_address_to_resource(struct device_node *dev, const __be32 *addrp, u64 size, unsigned int flags, const char *name, struct resource *r); /* Debug utility */ #ifdef DEBUG static void of_dump_addr(const char *s, const __be32 *addr, int na) { printk(KERN_DEBUG "%s", s); while (na--) printk(" %08x", be32_to_cpu(*(addr++))); printk("\n"); } #else static void of_dump_addr(const char *s, const __be32 *addr, int na) { } #endif /* Callbacks for bus specific translators */ struct of_bus { const char *name; const char *addresses; int (*match)(struct device_node *parent); void (*count_cells)(struct device_node *child, int *addrc, int *sizec); u64 (*map)(__be32 *addr, const __be32 *range, int na, int ns, int pna); int (*translate)(__be32 *addr, u64 offset, int na); unsigned int (*get_flags)(const __be32 *addr); }; /* * Default translator (generic bus) */ static void of_bus_default_count_cells(struct device_node *dev, int *addrc, int *sizec) { if (addrc) *addrc = of_n_addr_cells(dev); if (sizec) *sizec = of_n_size_cells(dev); } static u64 of_bus_default_map(__be32 *addr, const __be32 *range, int na, int ns, int pna) { u64 cp, s, da; cp = of_read_number(range, na); s = of_read_number(range + na + pna, ns); da = of_read_number(addr, na); pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n", (unsigned long long)cp, (unsigned long long)s, (unsigned long long)da); if (da < cp || da >= (cp + s)) return OF_BAD_ADDR; return da - cp; } static int of_bus_default_translate(__be32 *addr, u64 offset, int na) { u64 a = of_read_number(addr, na); memset(addr, 0, na * 4); a += offset; if (na > 1) addr[na - 2] = cpu_to_be32(a >> 32); addr[na - 1] = cpu_to_be32(a & 0xffffffffu); return 0; } static unsigned int of_bus_default_get_flags(const __be32 *addr) { return IORESOURCE_MEM; } #ifdef CONFIG_OF_ADDRESS_PCI /* * PCI bus specific translator */ static int of_bus_pci_match(struct device_node *np) { /* * "pciex" is PCI Express * "vci" is for the /chaos bridge on 1st-gen PCI powermacs * "ht" is hypertransport */ return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") || !strcmp(np->type, "vci") || !strcmp(np->type, "ht"); } static void of_bus_pci_count_cells(struct device_node *np, int *addrc, int *sizec) { if (addrc) *addrc = 3; if (sizec) *sizec = 2; } static unsigned int of_bus_pci_get_flags(const __be32 *addr) { unsigned int flags = 0; u32 w = be32_to_cpup(addr); switch((w >> 24) & 0x03) { case 0x01: flags |= IORESOURCE_IO; break; case 0x02: /* 32 bits */ case 0x03: /* 64 bits */ flags |= IORESOURCE_MEM; break; } if (w & 0x40000000) flags |= IORESOURCE_PREFETCH; return flags; } static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, int pna) { u64 cp, s, da; unsigned int af, rf; af = of_bus_pci_get_flags(addr); rf = of_bus_pci_get_flags(range); /* Check address type match */ if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) return OF_BAD_ADDR; /* Read address values, skipping high cell */ cp = of_read_number(range + 1, na - 1); s = of_read_number(range + na + pna, ns); da = of_read_number(addr + 1, na - 1); pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n", (unsigned long long)cp, (unsigned long long)s, (unsigned long long)da); if (da < cp || da >= (cp + s)) return OF_BAD_ADDR; return da - cp; } static int of_bus_pci_translate(__be32 *addr, u64 offset, int na) { return of_bus_default_translate(addr + 1, offset, na - 1); } #endif /* CONFIG_OF_ADDRESS_PCI */ #ifdef CONFIG_PCI const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size, unsigned int *flags) { const __be32 *prop; unsigned int psize; struct device_node *parent; struct of_bus *bus; int onesize, i, na, ns; /* Get parent & match bus type */ parent = of_get_parent(dev); if (parent == NULL) return NULL; bus = of_match_bus(parent); if (strcmp(bus->name, "pci")) { of_node_put(parent); return NULL; } bus->count_cells(dev, &na, &ns); of_node_put(parent); if (!OF_CHECK_ADDR_COUNT(na)) return NULL; /* Get "reg" or "assigned-addresses" property */ prop = of_get_property(dev, bus->addresses, &psize); if (prop == NULL) return NULL; psize /= 4; onesize = na + ns; for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { u32 val = be32_to_cpu(prop[0]); if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) { if (size) *size = of_read_number(prop + na, ns); if (flags) *flags = bus->get_flags(prop); return prop; } } return NULL; } EXPORT_SYMBOL(of_get_pci_address); int of_pci_address_to_resource(struct device_node *dev, int bar, struct resource *r) { const __be32 *addrp; u64 size; unsigned int flags; addrp = of_get_pci_address(dev, bar, &size, &flags); if (addrp == NULL) return -EINVAL; return __of_address_to_resource(dev, addrp, size, flags, NULL, r); } EXPORT_SYMBOL_GPL(of_pci_address_to_resource); int of_pci_range_parser_init(struct of_pci_range_parser *parser, struct device_node *node) { const int na = 3, ns = 2; int rlen; parser->node = node; parser->pna = of_n_addr_cells(node); parser->np = parser->pna + na + ns; parser->range = of_get_property(node, "ranges", &rlen); if (parser->range == NULL) return -ENOENT; parser->end = parser->range + rlen / sizeof(__be32); return 0; } EXPORT_SYMBOL_GPL(of_pci_range_parser_init); struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, struct of_pci_range *range) { const int na = 3, ns = 2; if (!range) return NULL; if (!parser->range || parser->range + parser->np > parser->end) return NULL; range->pci_space = parser->range[0]; range->flags = of_bus_pci_get_flags(parser->range); range->pci_addr = of_read_number(parser->range + 1, ns); range->cpu_addr = of_translate_address(parser->node, parser->range + na); range->size = of_read_number(parser->range + parser->pna + na, ns); parser->range += parser->np; /* Now consume following elements while they are contiguous */ while (parser->range + parser->np <= parser->end) { u32 flags, pci_space; u64 pci_addr, cpu_addr, size; pci_space = be32_to_cpup(parser->range); flags = of_bus_pci_get_flags(parser->range); pci_addr = of_read_number(parser->range + 1, ns); cpu_addr = of_translate_address(parser->node, parser->range + na); size = of_read_number(parser->range + parser->pna + na, ns); if (flags != range->flags) break; if (pci_addr != range->pci_addr + range->size || cpu_addr != range->cpu_addr + range->size) break; range->size += size; parser->range += parser->np; } return range; } EXPORT_SYMBOL_GPL(of_pci_range_parser_one); /* * of_pci_range_to_resource - Create a resource from an of_pci_range * @range: the PCI range that describes the resource * @np: device node where the range belongs to * @res: pointer to a valid resource that will be updated to * reflect the values contained in the range. * * Returns EINVAL if the range cannot be converted to resource. * * Note that if the range is an IO range, the resource will be converted * using pci_address_to_pio() which can fail if it is called too early or * if the range cannot be matched to any host bridge IO space (our case here). * To guard against that we try to register the IO range first. * If that fails we know that pci_address_to_pio() will do too. */ int of_pci_range_to_resource(struct of_pci_range *range, struct device_node *np, struct resource *res) { int err; res->flags = range->flags; res->parent = res->child = res->sibling = NULL; res->name = np->full_name; if (res->flags & IORESOURCE_IO) { unsigned long port; err = pci_register_io_range(range->cpu_addr, range->size); if (err) goto invalid_range; port = pci_address_to_pio(range->cpu_addr); if (port == (unsigned long)-1) { err = -EINVAL; goto invalid_range; } res->start = port; } else { res->start = range->cpu_addr; } res->end = res->start + range->size - 1; return 0; invalid_range: res->start = (resource_size_t)OF_BAD_ADDR; res->end = (resource_size_t)OF_BAD_ADDR; return err; } #endif /* CONFIG_PCI */ /* * ISA bus specific translator */ static int of_bus_isa_match(struct device_node *np) { return !strcmp(np->name, "isa"); } static void of_bus_isa_count_cells(struct device_node *child, int *addrc, int *sizec) { if (addrc) *addrc = 2; if (sizec) *sizec = 1; } static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, int pna) { u64 cp, s, da; /* Check address type match */ if ((addr[0] ^ range[0]) & cpu_to_be32(1)) return OF_BAD_ADDR; /* Read address values, skipping high cell */ cp = of_read_number(range + 1, na - 1); s = of_read_number(range + na + pna, ns); da = of_read_number(addr + 1, na - 1); pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n", (unsigned long long)cp, (unsigned long long)s, (unsigned long long)da); if (da < cp || da >= (cp + s)) return OF_BAD_ADDR; return da - cp; } static int of_bus_isa_translate(__be32 *addr, u64 offset, int na) { return of_bus_default_translate(addr + 1, offset, na - 1); } static unsigned int of_bus_isa_get_flags(const __be32 *addr) { unsigned int flags = 0; u32 w = be32_to_cpup(addr); if (w & 1) flags |= IORESOURCE_IO; else flags |= IORESOURCE_MEM; return flags; } /* * Array of bus specific translators */ static struct of_bus of_busses[] = { #ifdef CONFIG_OF_ADDRESS_PCI /* PCI */ { .name = "pci", .addresses = "assigned-addresses", .match = of_bus_pci_match, .count_cells = of_bus_pci_count_cells, .map = of_bus_pci_map, .translate = of_bus_pci_translate, .get_flags = of_bus_pci_get_flags, }, #endif /* CONFIG_OF_ADDRESS_PCI */ /* ISA */ { .name = "isa", .addresses = "reg", .match = of_bus_isa_match, .count_cells = of_bus_isa_count_cells, .map = of_bus_isa_map, .translate = of_bus_isa_translate, .get_flags = of_bus_isa_get_flags, }, /* Default */ { .name = "default", .addresses = "reg", .match = NULL, .count_cells = of_bus_default_count_cells, .map = of_bus_default_map, .translate = of_bus_default_translate, .get_flags = of_bus_default_get_flags, }, }; static struct of_bus *of_match_bus(struct device_node *np) { int i; for (i = 0; i < ARRAY_SIZE(of_busses); i++) if (!of_busses[i].match || of_busses[i].match(np)) return &of_busses[i]; BUG(); return NULL; } static int of_translate_one(struct device_node *parent, struct of_bus *bus, struct of_bus *pbus, __be32 *addr, int na, int ns, int pna, const char *rprop) { const __be32 *ranges; unsigned int rlen; int rone; u64 offset = OF_BAD_ADDR; /* Normally, an absence of a "ranges" property means we are * crossing a non-translatable boundary, and thus the addresses * below the current not cannot be converted to CPU physical ones. * Unfortunately, while this is very clear in the spec, it's not * what Apple understood, and they do have things like /uni-n or * /ht nodes with no "ranges" property and a lot of perfectly * useable mapped devices below them. Thus we treat the absence of * "ranges" as equivalent to an empty "ranges" property which means * a 1:1 translation at that level. It's up to the caller not to try * to translate addresses that aren't supposed to be translated in * the first place. --BenH. * * As far as we know, this damage only exists on Apple machines, so * This code is only enabled on powerpc. --gcl */ ranges = of_get_property(parent, rprop, &rlen); #if !defined(CONFIG_PPC) if (ranges == NULL) { pr_err("OF: no ranges; cannot translate\n"); return 1; } #endif /* !defined(CONFIG_PPC) */ if (ranges == NULL || rlen == 0) { offset = of_read_number(addr, na); memset(addr, 0, pna * 4); pr_debug("OF: empty ranges; 1:1 translation\n"); goto finish; } pr_debug("OF: walking ranges...\n"); /* Now walk through the ranges */ rlen /= 4; rone = na + pna + ns; for (; rlen >= rone; rlen -= rone, ranges += rone) { offset = bus->map(addr, ranges, na, ns, pna); if (offset != OF_BAD_ADDR) break; } if (offset == OF_BAD_ADDR) { pr_debug("OF: not found !\n"); return 1; } memcpy(addr, ranges + na, 4 * pna); finish: of_dump_addr("OF: parent translation for:", addr, pna); pr_debug("OF: with offset: %llx\n", (unsigned long long)offset); /* Translate it into parent bus space */ return pbus->translate(addr, offset, pna); } /* * Translate an address from the device-tree into a CPU physical address, * this walks up the tree and applies the various bus mappings on the * way. * * Note: We consider that crossing any level with #size-cells == 0 to mean * that translation is impossible (that is we are not dealing with a value * that can be mapped to a cpu physical address). This is not really specified * that way, but this is traditionally the way IBM at least do things */ static u64 __of_translate_address(struct device_node *dev, const __be32 *in_addr, const char *rprop) { struct device_node *parent = NULL; struct of_bus *bus, *pbus; __be32 addr[OF_MAX_ADDR_CELLS]; int na, ns, pna, pns; u64 result = OF_BAD_ADDR; pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev)); /* Increase refcount at current level */ of_node_get(dev); /* Get parent & match bus type */ parent = of_get_parent(dev); if (parent == NULL) goto bail; bus = of_match_bus(parent); /* Count address cells & copy address locally */ bus->count_cells(dev, &na, &ns); if (!OF_CHECK_COUNTS(na, ns)) { pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev)); goto bail; } memcpy(addr, in_addr, na * 4); pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n", bus->name, na, ns, of_node_full_name(parent)); of_dump_addr("OF: translating address:", addr, na); /* Translate */ for (;;) { /* Switch to parent bus */ of_node_put(dev); dev = parent; parent = of_get_parent(dev); /* If root, we have finished */ if (parent == NULL) { pr_debug("OF: reached root node\n"); result = of_read_number(addr, na); break; } /* Get new parent bus and counts */ pbus = of_match_bus(parent); pbus->count_cells(dev, &pna, &pns); if (!OF_CHECK_COUNTS(pna, pns)) { printk(KERN_ERR "prom_parse: Bad cell count for %s\n", of_node_full_name(dev)); break; } pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n", pbus->name, pna, pns, of_node_full_name(parent)); /* Apply bus translation */ if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) break; /* Complete the move up one level */ na = pna; ns = pns; bus = pbus; of_dump_addr("OF: one level translation:", addr, na); } bail: of_node_put(parent); of_node_put(dev); return result; } u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) { return __of_translate_address(dev, in_addr, "ranges"); } EXPORT_SYMBOL(of_translate_address); u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) { return __of_translate_address(dev, in_addr, "dma-ranges"); } EXPORT_SYMBOL(of_translate_dma_address); const __be32 *of_get_address(struct device_node *dev, int index, u64 *size, unsigned int *flags) { const __be32 *prop; unsigned int psize; struct device_node *parent; struct of_bus *bus; int onesize, i, na, ns; /* Get parent & match bus type */ parent = of_get_parent(dev); if (parent == NULL) return NULL; bus = of_match_bus(parent); bus->count_cells(dev, &na, &ns); of_node_put(parent); if (!OF_CHECK_ADDR_COUNT(na)) return NULL; /* Get "reg" or "assigned-addresses" property */ prop = of_get_property(dev, bus->addresses, &psize); if (prop == NULL) return NULL; psize /= 4; onesize = na + ns; for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) if (i == index) { if (size) *size = of_read_number(prop + na, ns); if (flags) *flags = bus->get_flags(prop); return prop; } return NULL; } EXPORT_SYMBOL(of_get_address); #ifdef PCI_IOBASE struct io_range { struct list_head list; phys_addr_t start; resource_size_t size; }; static LIST_HEAD(io_range_list); static DEFINE_SPINLOCK(io_range_lock); #endif /* * Record the PCI IO range (expressed as CPU physical address + size). * Return a negative value if an error has occured, zero otherwise */ int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size) { int err = 0; #ifdef PCI_IOBASE struct io_range *range; resource_size_t allocated_size = 0; /* check if the range hasn't been previously recorded */ spin_lock(&io_range_lock); list_for_each_entry(range, &io_range_list, list) { if (addr >= range->start && addr + size <= range->start + size) { /* range already registered, bail out */ goto end_register; } allocated_size += range->size; } /* range not registed yet, check for available space */ if (allocated_size + size - 1 > IO_SPACE_LIMIT) { /* if it's too big check if 64K space can be reserved */ if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) { err = -E2BIG; goto end_register; } size = SZ_64K; pr_warn("Requested IO range too big, new size set to 64K\n"); } /* add the range to the list */ range = kzalloc(sizeof(*range), GFP_KERNEL); if (!range) { err = -ENOMEM; goto end_register; } range->start = addr; range->size = size; list_add_tail(&range->list, &io_range_list); end_register: spin_unlock(&io_range_lock); #endif return err; } phys_addr_t pci_pio_to_address(unsigned long pio) { phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; #ifdef PCI_IOBASE struct io_range *range; resource_size_t allocated_size = 0; if (pio > IO_SPACE_LIMIT) return address; spin_lock(&io_range_lock); list_for_each_entry(range, &io_range_list, list) { if (pio >= allocated_size && pio < allocated_size + range->size) { address = range->start + pio - allocated_size; break; } allocated_size += range->size; } spin_unlock(&io_range_lock); #endif return address; } unsigned long __weak pci_address_to_pio(phys_addr_t address) { #ifdef PCI_IOBASE struct io_range *res; resource_size_t offset = 0; unsigned long addr = -1; spin_lock(&io_range_lock); list_for_each_entry(res, &io_range_list, list) { if (address >= res->start && address < res->start + res->size) { addr = res->start - address + offset; break; } offset += res->size; } spin_unlock(&io_range_lock); return addr; #else if (address > IO_SPACE_LIMIT) return (unsigned long)-1; return (unsigned long) address; #endif } static int __of_address_to_resource(struct device_node *dev, const __be32 *addrp, u64 size, unsigned int flags, const char *name, struct resource *r) { u64 taddr; if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0) return -EINVAL; taddr = of_translate_address(dev, addrp); if (taddr == OF_BAD_ADDR) return -EINVAL; memset(r, 0, sizeof(struct resource)); if (flags & IORESOURCE_IO) { unsigned long port; port = pci_address_to_pio(taddr); if (port == (unsigned long)-1) return -EINVAL; r->start = port; r->end = port + size - 1; } else { r->start = taddr; r->end = taddr + size - 1; } r->flags = flags; r->name = name ? name : dev->full_name; return 0; } /** * of_address_to_resource - Translate device tree address and return as resource * * Note that if your address is a PIO address, the conversion will fail if * the physical address can't be internally converted to an IO token with * pci_address_to_pio(), that is because it's either called to early or it * can't be matched to any host bridge IO space */ int of_address_to_resource(struct device_node *dev, int index, struct resource *r) { const __be32 *addrp; u64 size; unsigned int flags; const char *name = NULL; addrp = of_get_address(dev, index, &size, &flags); if (addrp == NULL) return -EINVAL; /* Get optional "reg-names" property to add a name to a resource */ of_property_read_string_index(dev, "reg-names", index, &name); return __of_address_to_resource(dev, addrp, size, flags, name, r); } EXPORT_SYMBOL_GPL(of_address_to_resource); struct device_node *of_find_matching_node_by_address(struct device_node *from, const struct of_device_id *matches, u64 base_address) { struct device_node *dn = of_find_matching_node(from, matches); struct resource res; while (dn) { if (of_address_to_resource(dn, 0, &res)) continue; if (res.start == base_address) return dn; dn = of_find_matching_node(dn, matches); } return NULL; } /** * of_iomap - Maps the memory mapped IO for a given device_node * @device: the device whose io range will be mapped * @index: index of the io range * * Returns a pointer to the mapped memory */ void __iomem *of_iomap(struct device_node *np, int index) { struct resource res; if (of_address_to_resource(np, index, &res)) return NULL; return ioremap(res.start, resource_size(&res)); } EXPORT_SYMBOL(of_iomap); /* * of_io_request_and_map - Requests a resource and maps the memory mapped IO * for a given device_node * @device: the device whose io range will be mapped * @index: index of the io range * @name: name of the resource * * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded * error code on failure. Usage example: * * base = of_io_request_and_map(node, 0, "foo"); * if (IS_ERR(base)) * return PTR_ERR(base); */ void __iomem *of_io_request_and_map(struct device_node *np, int index, const char *name) { struct resource res; void __iomem *mem; if (of_address_to_resource(np, index, &res)) return IOMEM_ERR_PTR(-EINVAL); if (!request_mem_region(res.start, resource_size(&res), name)) return IOMEM_ERR_PTR(-EBUSY); mem = ioremap(res.start, resource_size(&res)); if (!mem) { release_mem_region(res.start, resource_size(&res)); return IOMEM_ERR_PTR(-ENOMEM); } return mem; } EXPORT_SYMBOL(of_io_request_and_map); /** * of_dma_get_range - Get DMA range info * @np: device node to get DMA range info * @dma_addr: pointer to store initial DMA address of DMA range * @paddr: pointer to store initial CPU address of DMA range * @size: pointer to store size of DMA range * * Look in bottom up direction for the first "dma-ranges" property * and parse it. * dma-ranges format: * DMA addr (dma_addr) : naddr cells * CPU addr (phys_addr_t) : pna cells * size : nsize cells * * It returns -ENODEV if "dma-ranges" property was not found * for this device in DT. */ int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size) { struct device_node *node = of_node_get(np); const __be32 *ranges = NULL; int len, naddr, nsize, pna; int ret = 0; u64 dmaaddr; if (!node) return -EINVAL; while (1) { naddr = of_n_addr_cells(node); nsize = of_n_size_cells(node); node = of_get_next_parent(node); if (!node) break; ranges = of_get_property(node, "dma-ranges", &len); /* Ignore empty ranges, they imply no translation required */ if (ranges && len > 0) break; /* * At least empty ranges has to be defined for parent node if * DMA is supported */ if (!ranges) break; } if (!ranges) { pr_debug("%s: no dma-ranges found for node(%s)\n", __func__, np->full_name); ret = -ENODEV; goto out; } len /= sizeof(u32); pna = of_n_addr_cells(node); /* dma-ranges format: * DMA addr : naddr cells * CPU addr : pna cells * size : nsize cells */ dmaaddr = of_read_number(ranges, naddr); *paddr = of_translate_dma_address(np, ranges); if (*paddr == OF_BAD_ADDR) { pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n", __func__, dma_addr, np->full_name); ret = -EINVAL; goto out; } *dma_addr = dmaaddr; *size = of_read_number(ranges + naddr + pna, nsize); pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", *dma_addr, *paddr, *size); out: of_node_put(node); return ret; } EXPORT_SYMBOL_GPL(of_dma_get_range); /** * of_dma_is_coherent - Check if device is coherent * @np: device node * * It returns true if "dma-coherent" property was found * for this device in DT. */ bool of_dma_is_coherent(struct device_node *np) { struct device_node *node = of_node_get(np); while (node) { if (of_property_read_bool(node, "dma-coherent")) { of_node_put(node); return true; } node = of_get_next_parent(node); } of_node_put(node); return false; } EXPORT_SYMBOL_GPL(of_dma_is_coherent);