/* * linux/drivers/mmc/mmc.c * * Copyright (C) 2003-2004 Russell King, All Rights Reserved. * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. * SD support Copyright (C) 2005 Pierre Ossman, All Rights Reserved. * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmc.h" #define CMD_RETRIES 3 /* * OCR Bit positions to 10s of Vdd mV. */ static const unsigned short mmc_ocr_bit_to_vdd[] = { 150, 155, 160, 165, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360 }; static const unsigned int tran_exp[] = { 10000, 100000, 1000000, 10000000, 0, 0, 0, 0 }; static const unsigned char tran_mant[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; static const unsigned int tacc_exp[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, }; static const unsigned int tacc_mant[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; /** * mmc_request_done - finish processing an MMC request * @host: MMC host which completed request * @mrq: MMC request which request * * MMC drivers should call this function when they have completed * their processing of a request. */ void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) { struct mmc_command *cmd = mrq->cmd; int err = cmd->error; pr_debug("%s: req done (CMD%u): %d/%d/%d: %08x %08x %08x %08x\n", mmc_hostname(host), cmd->opcode, err, mrq->data ? mrq->data->error : 0, mrq->stop ? mrq->stop->error : 0, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]); if (err && cmd->retries) { cmd->retries--; cmd->error = 0; host->ops->request(host, mrq); } else if (mrq->done) { mrq->done(mrq); } } EXPORT_SYMBOL(mmc_request_done); /** * mmc_start_request - start a command on a host * @host: MMC host to start command on * @mrq: MMC request to start * * Queue a command on the specified host. We expect the * caller to be holding the host lock with interrupts disabled. */ void mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) { #ifdef CONFIG_MMC_DEBUG unsigned int i, sz; #endif pr_debug("%s: starting CMD%u arg %08x flags %08x\n", mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); WARN_ON(!host->claimed); mrq->cmd->error = 0; mrq->cmd->mrq = mrq; if (mrq->data) { BUG_ON(mrq->data->blksz > host->max_blk_size); BUG_ON(mrq->data->blocks > host->max_blk_count); BUG_ON(mrq->data->blocks * mrq->data->blksz > host->max_req_size); #ifdef CONFIG_MMC_DEBUG sz = 0; for (i = 0;i < mrq->data->sg_len;i++) sz += mrq->data->sg[i].length; BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); #endif mrq->cmd->data = mrq->data; mrq->data->error = 0; mrq->data->mrq = mrq; if (mrq->stop) { mrq->data->stop = mrq->stop; mrq->stop->error = 0; mrq->stop->mrq = mrq; } } host->ops->request(host, mrq); } EXPORT_SYMBOL(mmc_start_request); static void mmc_wait_done(struct mmc_request *mrq) { complete(mrq->done_data); } int mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) { DECLARE_COMPLETION_ONSTACK(complete); mrq->done_data = &complete; mrq->done = mmc_wait_done; mmc_start_request(host, mrq); wait_for_completion(&complete); return 0; } EXPORT_SYMBOL(mmc_wait_for_req); /** * mmc_wait_for_cmd - start a command and wait for completion * @host: MMC host to start command * @cmd: MMC command to start * @retries: maximum number of retries * * Start a new MMC command for a host, and wait for the command * to complete. Return any error that occurred while the command * was executing. Do not attempt to parse the response. */ int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) { struct mmc_request mrq; BUG_ON(!host->claimed); memset(&mrq, 0, sizeof(struct mmc_request)); memset(cmd->resp, 0, sizeof(cmd->resp)); cmd->retries = retries; mrq.cmd = cmd; cmd->data = NULL; mmc_wait_for_req(host, &mrq); return cmd->error; } EXPORT_SYMBOL(mmc_wait_for_cmd); /** * mmc_wait_for_app_cmd - start an application command and wait for completion * @host: MMC host to start command * @rca: RCA to send MMC_APP_CMD to * @cmd: MMC command to start * @retries: maximum number of retries * * Sends a MMC_APP_CMD, checks the card response, sends the command * in the parameter and waits for it to complete. Return any error * that occurred while the command was executing. Do not attempt to * parse the response. */ int mmc_wait_for_app_cmd(struct mmc_host *host, unsigned int rca, struct mmc_command *cmd, int retries) { struct mmc_request mrq; struct mmc_command appcmd; int i, err; BUG_ON(!host->claimed); BUG_ON(retries < 0); err = MMC_ERR_INVALID; /* * We have to resend MMC_APP_CMD for each attempt so * we cannot use the retries field in mmc_command. */ for (i = 0;i <= retries;i++) { memset(&mrq, 0, sizeof(struct mmc_request)); appcmd.opcode = MMC_APP_CMD; appcmd.arg = rca << 16; appcmd.flags = MMC_RSP_R1 | MMC_CMD_AC; appcmd.retries = 0; memset(appcmd.resp, 0, sizeof(appcmd.resp)); appcmd.data = NULL; mrq.cmd = &appcmd; appcmd.data = NULL; mmc_wait_for_req(host, &mrq); if (appcmd.error) { err = appcmd.error; continue; } /* Check that card supported application commands */ if (!(appcmd.resp[0] & R1_APP_CMD)) return MMC_ERR_FAILED; memset(&mrq, 0, sizeof(struct mmc_request)); memset(cmd->resp, 0, sizeof(cmd->resp)); cmd->retries = 0; mrq.cmd = cmd; cmd->data = NULL; mmc_wait_for_req(host, &mrq); err = cmd->error; if (cmd->error == MMC_ERR_NONE) break; } return err; } EXPORT_SYMBOL(mmc_wait_for_app_cmd); /** * mmc_set_data_timeout - set the timeout for a data command * @data: data phase for command * @card: the MMC card associated with the data transfer * @write: flag to differentiate reads from writes */ void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card, int write) { unsigned int mult; /* * SD cards use a 100 multiplier rather than 10 */ mult = mmc_card_sd(card) ? 100 : 10; /* * Scale up the multiplier (and therefore the timeout) by * the r2w factor for writes. */ if (write) mult <<= card->csd.r2w_factor; data->timeout_ns = card->csd.tacc_ns * mult; data->timeout_clks = card->csd.tacc_clks * mult; /* * SD cards also have an upper limit on the timeout. */ if (mmc_card_sd(card)) { unsigned int timeout_us, limit_us; timeout_us = data->timeout_ns / 1000; timeout_us += data->timeout_clks * 1000 / (card->host->ios.clock / 1000); if (write) limit_us = 250000; else limit_us = 100000; /* * SDHC cards always use these fixed values. */ if (timeout_us > limit_us || mmc_card_blockaddr(card)) { data->timeout_ns = limit_us * 1000; data->timeout_clks = 0; } } } EXPORT_SYMBOL(mmc_set_data_timeout); static int mmc_select_card(struct mmc_host *host, struct mmc_card *card); /** * __mmc_claim_host - exclusively claim a host * @host: mmc host to claim * @card: mmc card to claim host for * * Claim a host for a set of operations. If a valid card * is passed and this wasn't the last card selected, select * the card before returning. * * Note: you should use mmc_card_claim_host or mmc_claim_host. */ int __mmc_claim_host(struct mmc_host *host, struct mmc_card *card) { DECLARE_WAITQUEUE(wait, current); unsigned long flags; int err = 0; add_wait_queue(&host->wq, &wait); spin_lock_irqsave(&host->lock, flags); while (1) { set_current_state(TASK_UNINTERRUPTIBLE); if (!host->claimed) break; spin_unlock_irqrestore(&host->lock, flags); schedule(); spin_lock_irqsave(&host->lock, flags); } set_current_state(TASK_RUNNING); host->claimed = 1; spin_unlock_irqrestore(&host->lock, flags); remove_wait_queue(&host->wq, &wait); if (card != (void *)-1) { err = mmc_select_card(host, card); if (err != MMC_ERR_NONE) return err; } return err; } EXPORT_SYMBOL(__mmc_claim_host); /** * mmc_release_host - release a host * @host: mmc host to release * * Release a MMC host, allowing others to claim the host * for their operations. */ void mmc_release_host(struct mmc_host *host) { unsigned long flags; BUG_ON(!host->claimed); spin_lock_irqsave(&host->lock, flags); host->claimed = 0; spin_unlock_irqrestore(&host->lock, flags); wake_up(&host->wq); } EXPORT_SYMBOL(mmc_release_host); static inline void mmc_set_ios(struct mmc_host *host) { struct mmc_ios *ios = &host->ios; pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " "width %u timing %u\n", mmc_hostname(host), ios->clock, ios->bus_mode, ios->power_mode, ios->chip_select, ios->vdd, ios->bus_width, ios->timing); host->ops->set_ios(host, ios); } static int mmc_select_card(struct mmc_host *host, struct mmc_card *card) { int err; struct mmc_command cmd; BUG_ON(!host->claimed); if (host->card_selected == card) return MMC_ERR_NONE; host->card_selected = card; cmd.opcode = MMC_SELECT_CARD; cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(host, &cmd, CMD_RETRIES); if (err != MMC_ERR_NONE) return err; /* * We can only change the bus width of SD cards when * they are selected so we have to put the handling * here. * * The card is in 1 bit mode by default so * we only need to change if it supports the * wider version. */ if (mmc_card_sd(card) && (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { /* * Default bus width is 1 bit. */ host->ios.bus_width = MMC_BUS_WIDTH_1; if (host->caps & MMC_CAP_4_BIT_DATA) { struct mmc_command cmd; cmd.opcode = SD_APP_SET_BUS_WIDTH; cmd.arg = SD_BUS_WIDTH_4; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_app_cmd(host, card->rca, &cmd, CMD_RETRIES); if (err != MMC_ERR_NONE) return err; host->ios.bus_width = MMC_BUS_WIDTH_4; } } mmc_set_ios(host); return MMC_ERR_NONE; } /* * Ensure that no card is selected. */ static void mmc_deselect_cards(struct mmc_host *host) { struct mmc_command cmd; if (host->card_selected) { host->card_selected = NULL; cmd.opcode = MMC_SELECT_CARD; cmd.arg = 0; cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; mmc_wait_for_cmd(host, &cmd, 0); } } static inline void mmc_delay(unsigned int ms) { if (ms < 1000 / HZ) { cond_resched(); mdelay(ms); } else { msleep(ms); } } /* * Mask off any voltages we don't support and select * the lowest voltage */ static u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) { int bit; ocr &= host->ocr_avail; bit = ffs(ocr); if (bit) { bit -= 1; ocr &= 3 << bit; host->ios.vdd = bit; mmc_set_ios(host); } else { ocr = 0; } return ocr; } #define UNSTUFF_BITS(resp,start,size) \ ({ \ const int __size = size; \ const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ const int __off = 3 - ((start) / 32); \ const int __shft = (start) & 31; \ u32 __res; \ \ __res = resp[__off] >> __shft; \ if (__size + __shft > 32) \ __res |= resp[__off-1] << ((32 - __shft) % 32); \ __res & __mask; \ }) /* * Given the decoded CSD structure, decode the raw CID to our CID structure. */ static void mmc_decode_cid(struct mmc_card *card) { u32 *resp = card->raw_cid; memset(&card->cid, 0, sizeof(struct mmc_cid)); if (mmc_card_sd(card)) { /* * SD doesn't currently have a version field so we will * have to assume we can parse this. */ card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4); card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4); card->cid.serial = UNSTUFF_BITS(resp, 24, 32); card->cid.year = UNSTUFF_BITS(resp, 12, 8); card->cid.month = UNSTUFF_BITS(resp, 8, 4); card->cid.year += 2000; /* SD cards year offset */ } else { /* * The selection of the format here is based upon published * specs from sandisk and from what people have reported. */ switch (card->csd.mmca_vsn) { case 0: /* MMC v1.0 - v1.2 */ case 1: /* MMC v1.4 */ card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); card->cid.serial = UNSTUFF_BITS(resp, 16, 24); card->cid.month = UNSTUFF_BITS(resp, 12, 4); card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; break; case 2: /* MMC v2.0 - v2.2 */ case 3: /* MMC v3.1 - v3.3 */ case 4: /* MMC v4 */ card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); card->cid.serial = UNSTUFF_BITS(resp, 16, 32); card->cid.month = UNSTUFF_BITS(resp, 12, 4); card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; break; default: printk("%s: card has unknown MMCA version %d\n", mmc_hostname(card->host), card->csd.mmca_vsn); mmc_card_set_bad(card); break; } } } /* * Given a 128-bit response, decode to our card CSD structure. */ static void mmc_decode_csd(struct mmc_card *card) { struct mmc_csd *csd = &card->csd; unsigned int e, m, csd_struct; u32 *resp = card->raw_csd; if (mmc_card_sd(card)) { csd_struct = UNSTUFF_BITS(resp, 126, 2); switch (csd_struct) { case 0: m = UNSTUFF_BITS(resp, 115, 4); e = UNSTUFF_BITS(resp, 112, 3); csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10; csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100; m = UNSTUFF_BITS(resp, 99, 4); e = UNSTUFF_BITS(resp, 96, 3); csd->max_dtr = tran_exp[e] * tran_mant[m]; csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); e = UNSTUFF_BITS(resp, 47, 3); m = UNSTUFF_BITS(resp, 62, 12); csd->capacity = (1 + m) << (e + 2); csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); csd->read_partial = UNSTUFF_BITS(resp, 79, 1); csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); csd->write_partial = UNSTUFF_BITS(resp, 21, 1); break; case 1: /* * This is a block-addressed SDHC card. Most * interesting fields are unused and have fixed * values. To avoid getting tripped by buggy cards, * we assume those fixed values ourselves. */ mmc_card_set_blockaddr(card); csd->tacc_ns = 0; /* Unused */ csd->tacc_clks = 0; /* Unused */ m = UNSTUFF_BITS(resp, 99, 4); e = UNSTUFF_BITS(resp, 96, 3); csd->max_dtr = tran_exp[e] * tran_mant[m]; csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); m = UNSTUFF_BITS(resp, 48, 22); csd->capacity = (1 + m) << 10; csd->read_blkbits = 9; csd->read_partial = 0; csd->write_misalign = 0; csd->read_misalign = 0; csd->r2w_factor = 4; /* Unused */ csd->write_blkbits = 9; csd->write_partial = 0; break; default: printk("%s: unrecognised CSD structure version %d\n", mmc_hostname(card->host), csd_struct); mmc_card_set_bad(card); return; } } else { /* * We only understand CSD structure v1.1 and v1.2. * v1.2 has extra information in bits 15, 11 and 10. */ csd_struct = UNSTUFF_BITS(resp, 126, 2); if (csd_struct != 1 && csd_struct != 2) { printk("%s: unrecognised CSD structure version %d\n", mmc_hostname(card->host), csd_struct); mmc_card_set_bad(card); return; } csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); m = UNSTUFF_BITS(resp, 115, 4); e = UNSTUFF_BITS(resp, 112, 3); csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10; csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100; m = UNSTUFF_BITS(resp, 99, 4); e = UNSTUFF_BITS(resp, 96, 3); csd->max_dtr = tran_exp[e] * tran_mant[m]; csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); e = UNSTUFF_BITS(resp, 47, 3); m = UNSTUFF_BITS(resp, 62, 12); csd->capacity = (1 + m) << (e + 2); csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); csd->read_partial = UNSTUFF_BITS(resp, 79, 1); csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); csd->write_partial = UNSTUFF_BITS(resp, 21, 1); } } /* * Given a 64-bit response, decode to our card SCR structure. */ static void mmc_decode_scr(struct mmc_card *card) { struct sd_scr *scr = &card->scr; unsigned int scr_struct; u32 resp[4]; BUG_ON(!mmc_card_sd(card)); resp[3] = card->raw_scr[1]; resp[2] = card->raw_scr[0]; scr_struct = UNSTUFF_BITS(resp, 60, 4); if (scr_struct != 0) { printk("%s: unrecognised SCR structure version %d\n", mmc_hostname(card->host), scr_struct); mmc_card_set_bad(card); return; } scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4); scr->bus_widths = UNSTUFF_BITS(resp, 48, 4); } /* * Locate a MMC card on this MMC host given a raw CID. */ static struct mmc_card *mmc_find_card(struct mmc_host *host, u32 *raw_cid) { struct mmc_card *card; list_for_each_entry(card, &host->cards, node) { if (memcmp(card->raw_cid, raw_cid, sizeof(card->raw_cid)) == 0) return card; } return NULL; } /* * Allocate a new MMC card, and assign a unique RCA. */ static struct mmc_card * mmc_alloc_card(struct mmc_host *host, u32 *raw_cid, unsigned int *frca) { struct mmc_card *card, *c; unsigned int rca = *frca; card = kmalloc(sizeof(struct mmc_card), GFP_KERNEL); if (!card) return ERR_PTR(-ENOMEM); mmc_init_card(card, host); memcpy(card->raw_cid, raw_cid, sizeof(card->raw_cid)); again: list_for_each_entry(c, &host->cards, node) if (c->rca == rca) { rca++; goto again; } card->rca = rca; *frca = rca; return card; } /* * Tell attached cards to go to IDLE state */ static void mmc_idle_cards(struct mmc_host *host) { struct mmc_command cmd; host->ios.chip_select = MMC_CS_HIGH; mmc_set_ios(host); mmc_delay(1); cmd.opcode = MMC_GO_IDLE_STATE; cmd.arg = 0; cmd.flags = MMC_RSP_NONE | MMC_CMD_BC; mmc_wait_for_cmd(host, &cmd, 0); mmc_delay(1); host->ios.chip_select = MMC_CS_DONTCARE; mmc_set_ios(host); mmc_delay(1); } /* * Apply power to the MMC stack. This is a two-stage process. * First, we enable power to the card without the clock running. * We then wait a bit for the power to stabilise. Finally, * enable the bus drivers and clock to the card. * * We must _NOT_ enable the clock prior to power stablising. * * If a host does all the power sequencing itself, ignore the * initial MMC_POWER_UP stage. */ static void mmc_power_up(struct mmc_host *host) { int bit = fls(host->ocr_avail) - 1; host->ios.vdd = bit; host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; host->ios.power_mode = MMC_POWER_UP; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); mmc_delay(1); host->ios.clock = host->f_min; host->ios.power_mode = MMC_POWER_ON; mmc_set_ios(host); mmc_delay(2); } static void mmc_power_off(struct mmc_host *host) { host->ios.clock = 0; host->ios.vdd = 0; host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); } static int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr) { struct mmc_command cmd; int i, err = 0; cmd.opcode = MMC_SEND_OP_COND; cmd.arg = ocr; cmd.flags = MMC_RSP_R3 | MMC_CMD_BCR; for (i = 100; i; i--) { err = mmc_wait_for_cmd(host, &cmd, 0); if (err != MMC_ERR_NONE) break; if (cmd.resp[0] & MMC_CARD_BUSY || ocr == 0) break; err = MMC_ERR_TIMEOUT; mmc_delay(10); } if (rocr) *rocr = cmd.resp[0]; return err; } static int mmc_send_app_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr) { struct mmc_command cmd; int i, err = 0; cmd.opcode = SD_APP_OP_COND; cmd.arg = ocr; cmd.flags = MMC_RSP_R3 | MMC_CMD_BCR; for (i = 100; i; i--) { err = mmc_wait_for_app_cmd(host, 0, &cmd, CMD_RETRIES); if (err != MMC_ERR_NONE) break; if (cmd.resp[0] & MMC_CARD_BUSY || ocr == 0) break; err = MMC_ERR_TIMEOUT; mmc_delay(10); } if (rocr) *rocr = cmd.resp[0]; return err; } static int mmc_send_if_cond(struct mmc_host *host, u32 ocr, int *rsd2) { struct mmc_command cmd; int err, sd2; static const u8 test_pattern = 0xAA; /* * To support SD 2.0 cards, we must always invoke SD_SEND_IF_COND * before SD_APP_OP_COND. This command will harmlessly fail for * SD 1.0 cards. */ cmd.opcode = SD_SEND_IF_COND; cmd.arg = ((ocr & 0xFF8000) != 0) << 8 | test_pattern; cmd.flags = MMC_RSP_R7 | MMC_CMD_BCR; err = mmc_wait_for_cmd(host, &cmd, 0); if (err == MMC_ERR_NONE) { if ((cmd.resp[0] & 0xFF) == test_pattern) { sd2 = 1; } else { sd2 = 0; err = MMC_ERR_FAILED; } } else { /* * Treat errors as SD 1.0 card. */ sd2 = 0; err = MMC_ERR_NONE; } if (rsd2) *rsd2 = sd2; return err; } /* * Discover cards by requesting their CID. If this command * times out, it is not an error; there are no further cards * to be discovered. Add new cards to the list. * * Create a mmc_card entry for each discovered card, assigning * it an RCA, and save the raw CID for decoding later. */ static void mmc_discover_cards(struct mmc_host *host) { struct mmc_card *card; unsigned int first_rca = 1, err; while (1) { struct mmc_command cmd; cmd.opcode = MMC_ALL_SEND_CID; cmd.arg = 0; cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR; err = mmc_wait_for_cmd(host, &cmd, CMD_RETRIES); if (err == MMC_ERR_TIMEOUT) { err = MMC_ERR_NONE; break; } if (err != MMC_ERR_NONE) { printk(KERN_ERR "%s: error requesting CID: %d\n", mmc_hostname(host), err); break; } card = mmc_find_card(host, cmd.resp); if (!card) { card = mmc_alloc_card(host, cmd.resp, &first_rca); if (IS_ERR(card)) { err = PTR_ERR(card); break; } list_add(&card->node, &host->cards); } card->state &= ~MMC_STATE_DEAD; if (host->mode == MMC_MODE_SD) { card->type = MMC_TYPE_SD; cmd.opcode = SD_SEND_RELATIVE_ADDR; cmd.arg = 0; cmd.flags = MMC_RSP_R6 | MMC_CMD_BCR; err = mmc_wait_for_cmd(host, &cmd, CMD_RETRIES); if (err != MMC_ERR_NONE) mmc_card_set_dead(card); else { card->rca = cmd.resp[0] >> 16; if (!host->ops->get_ro) { printk(KERN_WARNING "%s: host does not " "support reading read-only " "switch. assuming write-enable.\n", mmc_hostname(host)); } else { if (host->ops->get_ro(host)) mmc_card_set_readonly(card); } } } else { card->type = MMC_TYPE_MMC; cmd.opcode = MMC_SET_RELATIVE_ADDR; cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(host, &cmd, CMD_RETRIES); if (err != MMC_ERR_NONE) mmc_card_set_dead(card); } } } static void mmc_read_csds(struct mmc_host *host) { struct mmc_card *card; list_for_each_entry(card, &host->cards, node) { struct mmc_command cmd; int err; if (card->state & (MMC_STATE_DEAD|MMC_STATE_PRESENT)) continue; cmd.opcode = MMC_SEND_CSD; cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_R2 | MMC_CMD_AC; err = mmc_wait_for_cmd(host, &cmd, CMD_RETRIES); if (err != MMC_ERR_NONE) { mmc_card_set_dead(card); continue; } memcpy(card->raw_csd, cmd.resp, sizeof(card->raw_csd)); mmc_decode_csd(card); mmc_decode_cid(card); } } static void mmc_process_ext_csds(struct mmc_host *host) { int err; struct mmc_card *card; struct mmc_request mrq; struct mmc_command cmd; struct mmc_data data; struct scatterlist sg; /* * As the ext_csd is so large and mostly unused, we don't store the * raw block in mmc_card. */ u8 *ext_csd; ext_csd = kmalloc(512, GFP_KERNEL); if (!ext_csd) { printk("%s: could not allocate a buffer to receive the ext_csd." "mmc v4 cards will be treated as v3.\n", mmc_hostname(host)); return; } list_for_each_entry(card, &host->cards, node) { if (card->state & (MMC_STATE_DEAD|MMC_STATE_PRESENT)) continue; if (mmc_card_sd(card)) continue; if (card->csd.mmca_vsn < CSD_SPEC_VER_4) continue; err = mmc_select_card(host, card); if (err != MMC_ERR_NONE) { mmc_card_set_dead(card); continue; } memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = MMC_SEND_EXT_CSD; cmd.arg = 0; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; memset(&data, 0, sizeof(struct mmc_data)); mmc_set_data_timeout(&data, card, 0); data.blksz = 512; data.blocks = 1; data.flags = MMC_DATA_READ; data.sg = &sg; data.sg_len = 1; memset(&mrq, 0, sizeof(struct mmc_request)); mrq.cmd = &cmd; mrq.data = &data; sg_init_one(&sg, ext_csd, 512); mmc_wait_for_req(host, &mrq); if (cmd.error != MMC_ERR_NONE || data.error != MMC_ERR_NONE) { if (card->csd.capacity == (4096 * 512)) { printk(KERN_ERR "%s: unable to read EXT_CSD " "on a possible high capacity card. " "Card will be ignored.\n", mmc_hostname(card->host)); mmc_card_set_dead(card); } else { printk(KERN_WARNING "%s: unable to read " "EXT_CSD, performance might " "suffer.\n", mmc_hostname(card->host)); } continue; } card->ext_csd.sectors = ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | ext_csd[EXT_CSD_SEC_CNT + 3] << 24; if (card->ext_csd.sectors) mmc_card_set_blockaddr(card); switch (ext_csd[EXT_CSD_CARD_TYPE]) { case EXT_CSD_CARD_TYPE_52 | EXT_CSD_CARD_TYPE_26: card->ext_csd.hs_max_dtr = 52000000; break; case EXT_CSD_CARD_TYPE_26: card->ext_csd.hs_max_dtr = 26000000; break; default: /* MMC v4 spec says this cannot happen */ printk("%s: card is mmc v4 but doesn't support " "any high-speed modes.\n", mmc_hostname(card->host)); continue; } if (host->caps & MMC_CAP_MMC_HIGHSPEED) { /* Activate highspeed support. */ cmd.opcode = MMC_SWITCH; cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (EXT_CSD_HS_TIMING << 16) | (1 << 8) | EXT_CSD_CMD_SET_NORMAL; cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; err = mmc_wait_for_cmd(host, &cmd, CMD_RETRIES); if (err != MMC_ERR_NONE) { printk("%s: failed to switch card to mmc v4 " "high-speed mode.\n", mmc_hostname(card->host)); continue; } mmc_card_set_highspeed(card); host->ios.timing = MMC_TIMING_MMC_HS; mmc_set_ios(host); } /* Check for host support for wide-bus modes. */ if (host->caps & MMC_CAP_4_BIT_DATA) { /* Activate 4-bit support. */ cmd.opcode = MMC_SWITCH; cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (EXT_CSD_BUS_WIDTH << 16) | (EXT_CSD_BUS_WIDTH_4 << 8) | EXT_CSD_CMD_SET_NORMAL; cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; err = mmc_wait_for_cmd(host, &cmd, CMD_RETRIES); if (err != MMC_ERR_NONE) { printk("%s: failed to switch card to " "mmc v4 4-bit bus mode.\n", mmc_hostname(card->host)); continue; } host->ios.bus_width = MMC_BUS_WIDTH_4; mmc_set_ios(host); } } kfree(ext_csd); mmc_deselect_cards(host); } static void mmc_read_scrs(struct mmc_host *host) { int err; struct mmc_card *card; struct mmc_request mrq; struct mmc_command cmd; struct mmc_data data; struct scatterlist sg; list_for_each_entry(card, &host->cards, node) { if (card->state & (MMC_STATE_DEAD|MMC_STATE_PRESENT)) continue; if (!mmc_card_sd(card)) continue; err = mmc_select_card(host, card); if (err != MMC_ERR_NONE) { mmc_card_set_dead(card); continue; } memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = MMC_APP_CMD; cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(host, &cmd, 0); if ((err != MMC_ERR_NONE) || !(cmd.resp[0] & R1_APP_CMD)) { mmc_card_set_dead(card); continue; } memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = SD_APP_SEND_SCR; cmd.arg = 0; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; memset(&data, 0, sizeof(struct mmc_data)); mmc_set_data_timeout(&data, card, 0); data.blksz = 1 << 3; data.blocks = 1; data.flags = MMC_DATA_READ; data.sg = &sg; data.sg_len = 1; memset(&mrq, 0, sizeof(struct mmc_request)); mrq.cmd = &cmd; mrq.data = &data; sg_init_one(&sg, (u8*)card->raw_scr, 8); mmc_wait_for_req(host, &mrq); if (cmd.error != MMC_ERR_NONE || data.error != MMC_ERR_NONE) { mmc_card_set_dead(card); continue; } card->raw_scr[0] = ntohl(card->raw_scr[0]); card->raw_scr[1] = ntohl(card->raw_scr[1]); mmc_decode_scr(card); } mmc_deselect_cards(host); } static void mmc_read_switch_caps(struct mmc_host *host) { int err; struct mmc_card *card; struct mmc_request mrq; struct mmc_command cmd; struct mmc_data data; unsigned char *status; struct scatterlist sg; if (!(host->caps & MMC_CAP_SD_HIGHSPEED)) return; status = kmalloc(64, GFP_KERNEL); if (!status) { printk(KERN_WARNING "%s: Unable to allocate buffer for " "reading switch capabilities.\n", mmc_hostname(host)); return; } list_for_each_entry(card, &host->cards, node) { if (card->state & (MMC_STATE_DEAD|MMC_STATE_PRESENT)) continue; if (!mmc_card_sd(card)) continue; if (card->scr.sda_vsn < SCR_SPEC_VER_1) continue; err = mmc_select_card(host, card); if (err != MMC_ERR_NONE) { mmc_card_set_dead(card); continue; } memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = SD_SWITCH; cmd.arg = 0x00FFFFF1; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; memset(&data, 0, sizeof(struct mmc_data)); mmc_set_data_timeout(&data, card, 0); data.blksz = 64; data.blocks = 1; data.flags = MMC_DATA_READ; data.sg = &sg; data.sg_len = 1; memset(&mrq, 0, sizeof(struct mmc_request)); mrq.cmd = &cmd; mrq.data = &data; sg_init_one(&sg, status, 64); mmc_wait_for_req(host, &mrq); if (cmd.error != MMC_ERR_NONE || data.error != MMC_ERR_NONE) { printk("%s: unable to read switch capabilities, " "performance might suffer.\n", mmc_hostname(card->host)); continue; } if (status[13] & 0x02) card->sw_caps.hs_max_dtr = 50000000; memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = SD_SWITCH; cmd.arg = 0x80FFFFF1; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; memset(&data, 0, sizeof(struct mmc_data)); mmc_set_data_timeout(&data, card, 0); data.blksz = 64; data.blocks = 1; data.flags = MMC_DATA_READ; data.sg = &sg; data.sg_len = 1; memset(&mrq, 0, sizeof(struct mmc_request)); mrq.cmd = &cmd; mrq.data = &data; sg_init_one(&sg, status, 64); mmc_wait_for_req(host, &mrq); if (cmd.error != MMC_ERR_NONE || data.error != MMC_ERR_NONE || (status[16] & 0xF) != 1) { printk(KERN_WARNING "%s: Problem switching card " "into high-speed mode!\n", mmc_hostname(host)); continue; } mmc_card_set_highspeed(card); host->ios.timing = MMC_TIMING_SD_HS; mmc_set_ios(host); } kfree(status); mmc_deselect_cards(host); } static unsigned int mmc_calculate_clock(struct mmc_host *host) { struct mmc_card *card; unsigned int max_dtr = host->f_max; list_for_each_entry(card, &host->cards, node) if (!mmc_card_dead(card)) { if (mmc_card_highspeed(card) && mmc_card_sd(card)) { if (max_dtr > card->sw_caps.hs_max_dtr) max_dtr = card->sw_caps.hs_max_dtr; } else if (mmc_card_highspeed(card) && !mmc_card_sd(card)) { if (max_dtr > card->ext_csd.hs_max_dtr) max_dtr = card->ext_csd.hs_max_dtr; } else if (max_dtr > card->csd.max_dtr) { max_dtr = card->csd.max_dtr; } } pr_debug("%s: selected %d.%03dMHz transfer rate\n", mmc_hostname(host), max_dtr / 1000000, (max_dtr / 1000) % 1000); return max_dtr; } /* * Check whether cards we already know about are still present. * We do this by requesting status, and checking whether a card * responds. * * A request for status does not cause a state change in data * transfer mode. */ static void mmc_check_cards(struct mmc_host *host) { struct list_head *l, *n; mmc_deselect_cards(host); list_for_each_safe(l, n, &host->cards) { struct mmc_card *card = mmc_list_to_card(l); struct mmc_command cmd; int err; cmd.opcode = MMC_SEND_STATUS; cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(host, &cmd, CMD_RETRIES); if (err == MMC_ERR_NONE) continue; mmc_card_set_dead(card); } } static void mmc_setup(struct mmc_host *host) { if (host->ios.power_mode != MMC_POWER_ON) { int err; u32 ocr; host->mode = MMC_MODE_SD; mmc_power_up(host); mmc_idle_cards(host); err = mmc_send_if_cond(host, host->ocr_avail, NULL); if (err != MMC_ERR_NONE) { return; } err = mmc_send_app_op_cond(host, 0, &ocr); /* * If we fail to detect any SD cards then try * searching for MMC cards. */ if (err != MMC_ERR_NONE) { host->mode = MMC_MODE_MMC; err = mmc_send_op_cond(host, 0, &ocr); if (err != MMC_ERR_NONE) return; } host->ocr = mmc_select_voltage(host, ocr); /* * Since we're changing the OCR value, we seem to * need to tell some cards to go back to the idle * state. We wait 1ms to give cards time to * respond. */ if (host->ocr) mmc_idle_cards(host); } else { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.clock = host->f_min; mmc_set_ios(host); /* * We should remember the OCR mask from the existing * cards, and detect the new cards OCR mask, combine * the two and re-select the VDD. However, if we do * change VDD, we should do an idle, and then do a * full re-initialisation. We would need to notify * drivers so that they can re-setup the cards as * well, while keeping their queues at bay. * * For the moment, we take the easy way out - if the * new cards don't like our currently selected VDD, * they drop off the bus. */ } if (host->ocr == 0) return; /* * Send the selected OCR multiple times... until the cards * all get the idea that they should be ready for CMD2. * (My SanDisk card seems to need this.) */ if (host->mode == MMC_MODE_SD) { int err, sd2; err = mmc_send_if_cond(host, host->ocr, &sd2); if (err == MMC_ERR_NONE) { /* * If SD_SEND_IF_COND indicates an SD 2.0 * compliant card and we should set bit 30 * of the ocr to indicate that we can handle * block-addressed SDHC cards. */ mmc_send_app_op_cond(host, host->ocr | (sd2 << 30), NULL); } } else { /* The extra bit indicates that we support high capacity */ mmc_send_op_cond(host, host->ocr | (1 << 30), NULL); } mmc_discover_cards(host); /* * Ok, now switch to push-pull mode. */ host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; mmc_set_ios(host); mmc_read_csds(host); if (host->mode == MMC_MODE_SD) { mmc_read_scrs(host); mmc_read_switch_caps(host); } else mmc_process_ext_csds(host); } /** * mmc_detect_change - process change of state on a MMC socket * @host: host which changed state. * @delay: optional delay to wait before detection (jiffies) * * All we know is that card(s) have been inserted or removed * from the socket(s). We don't know which socket or cards. */ void mmc_detect_change(struct mmc_host *host, unsigned long delay) { #ifdef CONFIG_MMC_DEBUG mmc_claim_host(host); BUG_ON(host->removed); mmc_release_host(host); #endif mmc_schedule_delayed_work(&host->detect, delay); } EXPORT_SYMBOL(mmc_detect_change); static void mmc_rescan(struct work_struct *work) { struct mmc_host *host = container_of(work, struct mmc_host, detect.work); struct list_head *l, *n; unsigned char power_mode; mmc_claim_host(host); /* * Check for removed cards and newly inserted ones. We check for * removed cards first so we can intelligently re-select the VDD. */ power_mode = host->ios.power_mode; if (power_mode == MMC_POWER_ON) mmc_check_cards(host); mmc_setup(host); /* * Some broken cards process CMD1 even in stand-by state. There is * no reply, but an ILLEGAL_COMMAND error is cached and returned * after next command. We poll for card status here to clear any * possibly pending error. */ if (power_mode == MMC_POWER_ON) mmc_check_cards(host); if (!list_empty(&host->cards)) { /* * (Re-)calculate the fastest clock rate which the * attached cards and the host support. */ host->ios.clock = mmc_calculate_clock(host); mmc_set_ios(host); } mmc_release_host(host); list_for_each_safe(l, n, &host->cards) { struct mmc_card *card = mmc_list_to_card(l); /* * If this is a new and good card, register it. */ if (!mmc_card_present(card) && !mmc_card_dead(card)) { if (mmc_register_card(card)) mmc_card_set_dead(card); } /* * If this card is dead, destroy it. */ if (mmc_card_dead(card)) { list_del(&card->node); mmc_remove_card(card); } } /* * If we discover that there are no cards on the * bus, turn off the clock and power down. */ if (list_empty(&host->cards)) mmc_power_off(host); } /** * mmc_alloc_host - initialise the per-host structure. * @extra: sizeof private data structure * @dev: pointer to host device model structure * * Initialise the per-host structure. */ struct mmc_host *mmc_alloc_host(int extra, struct device *dev) { struct mmc_host *host; host = mmc_alloc_host_sysfs(extra, dev); if (host) { spin_lock_init(&host->lock); init_waitqueue_head(&host->wq); INIT_LIST_HEAD(&host->cards); INIT_DELAYED_WORK(&host->detect, mmc_rescan); /* * By default, hosts do not support SGIO or large requests. * They have to set these according to their abilities. */ host->max_hw_segs = 1; host->max_phys_segs = 1; host->max_seg_size = PAGE_CACHE_SIZE; host->max_req_size = PAGE_CACHE_SIZE; host->max_blk_size = 512; host->max_blk_count = PAGE_CACHE_SIZE / 512; } return host; } EXPORT_SYMBOL(mmc_alloc_host); /** * mmc_add_host - initialise host hardware * @host: mmc host */ int mmc_add_host(struct mmc_host *host) { int ret; ret = mmc_add_host_sysfs(host); if (ret == 0) { mmc_power_off(host); mmc_detect_change(host, 0); } return ret; } EXPORT_SYMBOL(mmc_add_host); /** * mmc_remove_host - remove host hardware * @host: mmc host * * Unregister and remove all cards associated with this host, * and power down the MMC bus. */ void mmc_remove_host(struct mmc_host *host) { struct list_head *l, *n; #ifdef CONFIG_MMC_DEBUG mmc_claim_host(host); host->removed = 1; mmc_release_host(host); #endif mmc_flush_scheduled_work(); list_for_each_safe(l, n, &host->cards) { struct mmc_card *card = mmc_list_to_card(l); mmc_remove_card(card); } mmc_power_off(host); mmc_remove_host_sysfs(host); } EXPORT_SYMBOL(mmc_remove_host); /** * mmc_free_host - free the host structure * @host: mmc host * * Free the host once all references to it have been dropped. */ void mmc_free_host(struct mmc_host *host) { mmc_free_host_sysfs(host); } EXPORT_SYMBOL(mmc_free_host); #ifdef CONFIG_PM /** * mmc_suspend_host - suspend a host * @host: mmc host * @state: suspend mode (PM_SUSPEND_xxx) */ int mmc_suspend_host(struct mmc_host *host, pm_message_t state) { struct list_head *l, *n; mmc_flush_scheduled_work(); list_for_each_safe(l, n, &host->cards) { struct mmc_card *card = mmc_list_to_card(l); mmc_remove_card(card); } mmc_power_off(host); return 0; } EXPORT_SYMBOL(mmc_suspend_host); /** * mmc_resume_host - resume a previously suspended host * @host: mmc host */ int mmc_resume_host(struct mmc_host *host) { mmc_rescan(&host->detect.work); return 0; } EXPORT_SYMBOL(mmc_resume_host); #endif MODULE_LICENSE("GPL");