/* * BSS client mode implementation * Copyright 2003, Jouni Malinen * Copyright 2004, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc * Copyright 2007, Michael Wu * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /* TODO: * order BSS list by RSSI(?) ("quality of AP") * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE, * SSID) */ #include #include #include #include #include #include #include #include #include #include #include #include "ieee80211_i.h" #include "ieee80211_rate.h" #include "ieee80211_led.h" #define IEEE80211_AUTH_TIMEOUT (HZ / 5) #define IEEE80211_AUTH_MAX_TRIES 3 #define IEEE80211_ASSOC_TIMEOUT (HZ / 5) #define IEEE80211_ASSOC_MAX_TRIES 3 #define IEEE80211_MONITORING_INTERVAL (2 * HZ) #define IEEE80211_PROBE_INTERVAL (60 * HZ) #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ) #define IEEE80211_SCAN_INTERVAL (2 * HZ) #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ) #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ) #define IEEE80211_PROBE_DELAY (HZ / 33) #define IEEE80211_CHANNEL_TIME (HZ / 33) #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5) #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ) #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ) #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ) #define IEEE80211_IBSS_MAX_STA_ENTRIES 128 #define IEEE80211_FC(type, stype) cpu_to_le16(type | stype) #define ERP_INFO_USE_PROTECTION BIT(1) /* mgmt header + 1 byte action code */ #define IEEE80211_MIN_ACTION_SIZE (24 + 1) #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0 /* next values represent the buffer size for A-MPDU frame. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */ #define IEEE80211_MIN_AMPDU_BUF 0x8 #define IEEE80211_MAX_AMPDU_BUF 0x40 static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst, u8 *ssid, size_t ssid_len); static struct ieee80211_sta_bss * ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int channel, u8 *ssid, u8 ssid_len); static void ieee80211_rx_bss_put(struct net_device *dev, struct ieee80211_sta_bss *bss); static int ieee80211_sta_find_ibss(struct net_device *dev, struct ieee80211_if_sta *ifsta); static int ieee80211_sta_wep_configured(struct net_device *dev); static int ieee80211_sta_start_scan(struct net_device *dev, u8 *ssid, size_t ssid_len); static int ieee80211_sta_config_auth(struct net_device *dev, struct ieee80211_if_sta *ifsta); /* Parsed Information Elements */ struct ieee802_11_elems { /* pointers to IEs */ u8 *ssid; u8 *supp_rates; u8 *fh_params; u8 *ds_params; u8 *cf_params; u8 *tim; u8 *ibss_params; u8 *challenge; u8 *wpa; u8 *rsn; u8 *erp_info; u8 *ext_supp_rates; u8 *wmm_info; u8 *wmm_param; u8 *ht_cap_elem; u8 *ht_info_elem; /* length of them, respectively */ u8 ssid_len; u8 supp_rates_len; u8 fh_params_len; u8 ds_params_len; u8 cf_params_len; u8 tim_len; u8 ibss_params_len; u8 challenge_len; u8 wpa_len; u8 rsn_len; u8 erp_info_len; u8 ext_supp_rates_len; u8 wmm_info_len; u8 wmm_param_len; u8 ht_cap_elem_len; u8 ht_info_elem_len; }; static void ieee802_11_parse_elems(u8 *start, size_t len, struct ieee802_11_elems *elems) { size_t left = len; u8 *pos = start; memset(elems, 0, sizeof(*elems)); while (left >= 2) { u8 id, elen; id = *pos++; elen = *pos++; left -= 2; if (elen > left) return; switch (id) { case WLAN_EID_SSID: elems->ssid = pos; elems->ssid_len = elen; break; case WLAN_EID_SUPP_RATES: elems->supp_rates = pos; elems->supp_rates_len = elen; break; case WLAN_EID_FH_PARAMS: elems->fh_params = pos; elems->fh_params_len = elen; break; case WLAN_EID_DS_PARAMS: elems->ds_params = pos; elems->ds_params_len = elen; break; case WLAN_EID_CF_PARAMS: elems->cf_params = pos; elems->cf_params_len = elen; break; case WLAN_EID_TIM: elems->tim = pos; elems->tim_len = elen; break; case WLAN_EID_IBSS_PARAMS: elems->ibss_params = pos; elems->ibss_params_len = elen; break; case WLAN_EID_CHALLENGE: elems->challenge = pos; elems->challenge_len = elen; break; case WLAN_EID_WPA: if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && pos[2] == 0xf2) { /* Microsoft OUI (00:50:F2) */ if (pos[3] == 1) { /* OUI Type 1 - WPA IE */ elems->wpa = pos; elems->wpa_len = elen; } else if (elen >= 5 && pos[3] == 2) { if (pos[4] == 0) { elems->wmm_info = pos; elems->wmm_info_len = elen; } else if (pos[4] == 1) { elems->wmm_param = pos; elems->wmm_param_len = elen; } } } break; case WLAN_EID_RSN: elems->rsn = pos; elems->rsn_len = elen; break; case WLAN_EID_ERP_INFO: elems->erp_info = pos; elems->erp_info_len = elen; break; case WLAN_EID_EXT_SUPP_RATES: elems->ext_supp_rates = pos; elems->ext_supp_rates_len = elen; break; case WLAN_EID_HT_CAPABILITY: elems->ht_cap_elem = pos; elems->ht_cap_elem_len = elen; break; case WLAN_EID_HT_EXTRA_INFO: elems->ht_info_elem = pos; elems->ht_info_elem_len = elen; break; default: break; } left -= elen; pos += elen; } } static int ecw2cw(int ecw) { int cw = 1; while (ecw > 0) { cw <<= 1; ecw--; } return cw - 1; } static void ieee80211_sta_wmm_params(struct net_device *dev, struct ieee80211_if_sta *ifsta, u8 *wmm_param, size_t wmm_param_len) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_tx_queue_params params; size_t left; int count; u8 *pos; if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1) return; count = wmm_param[6] & 0x0f; if (count == ifsta->wmm_last_param_set) return; ifsta->wmm_last_param_set = count; pos = wmm_param + 8; left = wmm_param_len - 8; memset(¶ms, 0, sizeof(params)); if (!local->ops->conf_tx) return; local->wmm_acm = 0; for (; left >= 4; left -= 4, pos += 4) { int aci = (pos[0] >> 5) & 0x03; int acm = (pos[0] >> 4) & 0x01; int queue; switch (aci) { case 1: queue = IEEE80211_TX_QUEUE_DATA3; if (acm) { local->wmm_acm |= BIT(0) | BIT(3); } break; case 2: queue = IEEE80211_TX_QUEUE_DATA1; if (acm) { local->wmm_acm |= BIT(4) | BIT(5); } break; case 3: queue = IEEE80211_TX_QUEUE_DATA0; if (acm) { local->wmm_acm |= BIT(6) | BIT(7); } break; case 0: default: queue = IEEE80211_TX_QUEUE_DATA2; if (acm) { local->wmm_acm |= BIT(1) | BIT(2); } break; } params.aifs = pos[0] & 0x0f; params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4); params.cw_min = ecw2cw(pos[1] & 0x0f); /* TXOP is in units of 32 usec; burst_time in 0.1 ms */ params.burst_time = (pos[2] | (pos[3] << 8)) * 32 / 100; printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d " "cWmin=%d cWmax=%d burst=%d\n", dev->name, queue, aci, acm, params.aifs, params.cw_min, params.cw_max, params.burst_time); /* TODO: handle ACM (block TX, fallback to next lowest allowed * AC for now) */ if (local->ops->conf_tx(local_to_hw(local), queue, ¶ms)) { printk(KERN_DEBUG "%s: failed to set TX queue " "parameters for queue %d\n", dev->name, queue); } } } static void ieee80211_handle_erp_ie(struct net_device *dev, u8 erp_value) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_if_sta *ifsta = &sdata->u.sta; int use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0; int preamble_mode = (erp_value & WLAN_ERP_BARKER_PREAMBLE) != 0; u8 changes = 0; DECLARE_MAC_BUF(mac); if (use_protection != !!(sdata->flags & IEEE80211_SDATA_USE_PROTECTION)) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: CTS protection %s (BSSID=" "%s)\n", dev->name, use_protection ? "enabled" : "disabled", print_mac(mac, ifsta->bssid)); } if (use_protection) sdata->flags |= IEEE80211_SDATA_USE_PROTECTION; else sdata->flags &= ~IEEE80211_SDATA_USE_PROTECTION; changes |= IEEE80211_ERP_CHANGE_PROTECTION; } if (preamble_mode != !(sdata->flags & IEEE80211_SDATA_SHORT_PREAMBLE)) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: switched to %s barker preamble" " (BSSID=%s)\n", dev->name, (preamble_mode == WLAN_ERP_PREAMBLE_SHORT) ? "short" : "long", print_mac(mac, ifsta->bssid)); } if (preamble_mode) sdata->flags &= ~IEEE80211_SDATA_SHORT_PREAMBLE; else sdata->flags |= IEEE80211_SDATA_SHORT_PREAMBLE; changes |= IEEE80211_ERP_CHANGE_PREAMBLE; } if (changes) ieee80211_erp_info_change_notify(dev, changes); } int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie, struct ieee80211_ht_info *ht_info) { if (ht_info == NULL) return -EINVAL; memset(ht_info, 0, sizeof(*ht_info)); if (ht_cap_ie) { u8 ampdu_info = ht_cap_ie->ampdu_params_info; ht_info->ht_supported = 1; ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info); ht_info->ampdu_factor = ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR; ht_info->ampdu_density = (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2; memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16); } else ht_info->ht_supported = 0; return 0; } int ieee80211_ht_addt_info_ie_to_ht_bss_info( struct ieee80211_ht_addt_info *ht_add_info_ie, struct ieee80211_ht_bss_info *bss_info) { if (bss_info == NULL) return -EINVAL; memset(bss_info, 0, sizeof(*bss_info)); if (ht_add_info_ie) { u16 op_mode; op_mode = le16_to_cpu(ht_add_info_ie->operation_mode); bss_info->primary_channel = ht_add_info_ie->control_chan; bss_info->bss_cap = ht_add_info_ie->ht_param; bss_info->bss_op_mode = (u8)(op_mode & 0xff); } return 0; } static void ieee80211_sta_send_associnfo(struct net_device *dev, struct ieee80211_if_sta *ifsta) { char *buf; size_t len; int i; union iwreq_data wrqu; if (!ifsta->assocreq_ies && !ifsta->assocresp_ies) return; buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len + ifsta->assocresp_ies_len), GFP_KERNEL); if (!buf) return; len = sprintf(buf, "ASSOCINFO("); if (ifsta->assocreq_ies) { len += sprintf(buf + len, "ReqIEs="); for (i = 0; i < ifsta->assocreq_ies_len; i++) { len += sprintf(buf + len, "%02x", ifsta->assocreq_ies[i]); } } if (ifsta->assocresp_ies) { if (ifsta->assocreq_ies) len += sprintf(buf + len, " "); len += sprintf(buf + len, "RespIEs="); for (i = 0; i < ifsta->assocresp_ies_len; i++) { len += sprintf(buf + len, "%02x", ifsta->assocresp_ies[i]); } } len += sprintf(buf + len, ")"); if (len > IW_CUSTOM_MAX) { len = sprintf(buf, "ASSOCRESPIE="); for (i = 0; i < ifsta->assocresp_ies_len; i++) { len += sprintf(buf + len, "%02x", ifsta->assocresp_ies[i]); } } memset(&wrqu, 0, sizeof(wrqu)); wrqu.data.length = len; wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf); kfree(buf); } static void ieee80211_set_associated(struct net_device *dev, struct ieee80211_if_sta *ifsta, bool assoc) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); union iwreq_data wrqu; if (!!(ifsta->flags & IEEE80211_STA_ASSOCIATED) == assoc) return; if (assoc) { struct ieee80211_sub_if_data *sdata; struct ieee80211_sta_bss *bss; ifsta->flags |= IEEE80211_STA_ASSOCIATED; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (sdata->type != IEEE80211_IF_TYPE_STA) return; bss = ieee80211_rx_bss_get(dev, ifsta->bssid, local->hw.conf.channel, ifsta->ssid, ifsta->ssid_len); if (bss) { if (bss->has_erp_value) ieee80211_handle_erp_ie(dev, bss->erp_value); ieee80211_rx_bss_put(dev, bss); } netif_carrier_on(dev); ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET; memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN); memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN); ieee80211_sta_send_associnfo(dev, ifsta); } else { ifsta->flags &= ~IEEE80211_STA_ASSOCIATED; netif_carrier_off(dev); ieee80211_reset_erp_info(dev); memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN); } wrqu.ap_addr.sa_family = ARPHRD_ETHER; wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL); ifsta->last_probe = jiffies; ieee80211_led_assoc(local, assoc); } static void ieee80211_set_disassoc(struct net_device *dev, struct ieee80211_if_sta *ifsta, int deauth) { if (deauth) ifsta->auth_tries = 0; ifsta->assoc_tries = 0; ieee80211_set_associated(dev, ifsta, 0); } static void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb, int encrypt) { struct ieee80211_sub_if_data *sdata; struct ieee80211_tx_packet_data *pkt_data; sdata = IEEE80211_DEV_TO_SUB_IF(dev); skb->dev = sdata->local->mdev; skb_set_mac_header(skb, 0); skb_set_network_header(skb, 0); skb_set_transport_header(skb, 0); pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); pkt_data->ifindex = sdata->dev->ifindex; if (!encrypt) pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT; dev_queue_xmit(skb); } static void ieee80211_send_auth(struct net_device *dev, struct ieee80211_if_sta *ifsta, int transaction, u8 *extra, size_t extra_len, int encrypt) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct sk_buff *skb; struct ieee80211_mgmt *mgmt; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 6 + extra_len); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer for auth " "frame\n", dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6); memset(mgmt, 0, 24 + 6); mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT, IEEE80211_STYPE_AUTH); if (encrypt) mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); memcpy(mgmt->da, ifsta->bssid, ETH_ALEN); memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN); memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg); mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); ifsta->auth_transaction = transaction + 1; mgmt->u.auth.status_code = cpu_to_le16(0); if (extra) memcpy(skb_put(skb, extra_len), extra, extra_len); ieee80211_sta_tx(dev, skb, encrypt); } static void ieee80211_authenticate(struct net_device *dev, struct ieee80211_if_sta *ifsta) { DECLARE_MAC_BUF(mac); ifsta->auth_tries++; if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) { printk(KERN_DEBUG "%s: authentication with AP %s" " timed out\n", dev->name, print_mac(mac, ifsta->bssid)); ifsta->state = IEEE80211_DISABLED; return; } ifsta->state = IEEE80211_AUTHENTICATE; printk(KERN_DEBUG "%s: authenticate with AP %s\n", dev->name, print_mac(mac, ifsta->bssid)); ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0); mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT); } static void ieee80211_send_assoc(struct net_device *dev, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_hw_mode *mode; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u8 *pos, *ies; int i, len; u16 capab; struct ieee80211_sta_bss *bss; int wmm = 0; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200 + ifsta->extra_ie_len + ifsta->ssid_len); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer for assoc " "frame\n", dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mode = local->oper_hw_mode; capab = ifsta->capab; if (mode->mode == MODE_IEEE80211G) { capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME | WLAN_CAPABILITY_SHORT_PREAMBLE; } bss = ieee80211_rx_bss_get(dev, ifsta->bssid, local->hw.conf.channel, ifsta->ssid, ifsta->ssid_len); if (bss) { if (bss->capability & WLAN_CAPABILITY_PRIVACY) capab |= WLAN_CAPABILITY_PRIVACY; if (bss->wmm_ie) { wmm = 1; } ieee80211_rx_bss_put(dev, bss); } mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24); memset(mgmt, 0, 24); memcpy(mgmt->da, ifsta->bssid, ETH_ALEN); memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN); memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) { skb_put(skb, 10); mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT, IEEE80211_STYPE_REASSOC_REQ); mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab); mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1); memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid, ETH_ALEN); } else { skb_put(skb, 4); mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT, IEEE80211_STYPE_ASSOC_REQ); mgmt->u.assoc_req.capab_info = cpu_to_le16(capab); mgmt->u.assoc_req.listen_interval = cpu_to_le16(1); } /* SSID */ ies = pos = skb_put(skb, 2 + ifsta->ssid_len); *pos++ = WLAN_EID_SSID; *pos++ = ifsta->ssid_len; memcpy(pos, ifsta->ssid, ifsta->ssid_len); len = mode->num_rates; if (len > 8) len = 8; pos = skb_put(skb, len + 2); *pos++ = WLAN_EID_SUPP_RATES; *pos++ = len; for (i = 0; i < len; i++) { int rate = mode->rates[i].rate; *pos++ = (u8) (rate / 5); } if (mode->num_rates > len) { pos = skb_put(skb, mode->num_rates - len + 2); *pos++ = WLAN_EID_EXT_SUPP_RATES; *pos++ = mode->num_rates - len; for (i = len; i < mode->num_rates; i++) { int rate = mode->rates[i].rate; *pos++ = (u8) (rate / 5); } } if (ifsta->extra_ie) { pos = skb_put(skb, ifsta->extra_ie_len); memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len); } if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) { pos = skb_put(skb, 9); *pos++ = WLAN_EID_VENDOR_SPECIFIC; *pos++ = 7; /* len */ *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */ *pos++ = 0x50; *pos++ = 0xf2; *pos++ = 2; /* WME */ *pos++ = 0; /* WME info */ *pos++ = 1; /* WME ver */ *pos++ = 0; } /* wmm support is a must to HT */ if (wmm && mode->ht_info.ht_supported) { __le16 tmp = cpu_to_le16(mode->ht_info.cap); pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2); *pos++ = WLAN_EID_HT_CAPABILITY; *pos++ = sizeof(struct ieee80211_ht_cap); memset(pos, 0, sizeof(struct ieee80211_ht_cap)); memcpy(pos, &tmp, sizeof(u16)); pos += sizeof(u16); *pos++ = (mode->ht_info.ampdu_factor | (mode->ht_info.ampdu_density << 2)); memcpy(pos, mode->ht_info.supp_mcs_set, 16); } kfree(ifsta->assocreq_ies); ifsta->assocreq_ies_len = (skb->data + skb->len) - ies; ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL); if (ifsta->assocreq_ies) memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len); ieee80211_sta_tx(dev, skb, 0); } static void ieee80211_send_deauth(struct net_device *dev, struct ieee80211_if_sta *ifsta, u16 reason) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct sk_buff *skb; struct ieee80211_mgmt *mgmt; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt)); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer for deauth " "frame\n", dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24); memset(mgmt, 0, 24); memcpy(mgmt->da, ifsta->bssid, ETH_ALEN); memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN); memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT, IEEE80211_STYPE_DEAUTH); skb_put(skb, 2); mgmt->u.deauth.reason_code = cpu_to_le16(reason); ieee80211_sta_tx(dev, skb, 0); } static void ieee80211_send_disassoc(struct net_device *dev, struct ieee80211_if_sta *ifsta, u16 reason) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct sk_buff *skb; struct ieee80211_mgmt *mgmt; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt)); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc " "frame\n", dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24); memset(mgmt, 0, 24); memcpy(mgmt->da, ifsta->bssid, ETH_ALEN); memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN); memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT, IEEE80211_STYPE_DISASSOC); skb_put(skb, 2); mgmt->u.disassoc.reason_code = cpu_to_le16(reason); ieee80211_sta_tx(dev, skb, 0); } static int ieee80211_privacy_mismatch(struct net_device *dev, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sta_bss *bss; int bss_privacy; int wep_privacy; int privacy_invoked; if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL)) return 0; bss = ieee80211_rx_bss_get(dev, ifsta->bssid, local->hw.conf.channel, ifsta->ssid, ifsta->ssid_len); if (!bss) return 0; bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY); wep_privacy = !!ieee80211_sta_wep_configured(dev); privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED); ieee80211_rx_bss_put(dev, bss); if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked)) return 0; return 1; } static void ieee80211_associate(struct net_device *dev, struct ieee80211_if_sta *ifsta) { DECLARE_MAC_BUF(mac); ifsta->assoc_tries++; if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) { printk(KERN_DEBUG "%s: association with AP %s" " timed out\n", dev->name, print_mac(mac, ifsta->bssid)); ifsta->state = IEEE80211_DISABLED; return; } ifsta->state = IEEE80211_ASSOCIATE; printk(KERN_DEBUG "%s: associate with AP %s\n", dev->name, print_mac(mac, ifsta->bssid)); if (ieee80211_privacy_mismatch(dev, ifsta)) { printk(KERN_DEBUG "%s: mismatch in privacy configuration and " "mixed-cell disabled - abort association\n", dev->name); ifsta->state = IEEE80211_DISABLED; return; } ieee80211_send_assoc(dev, ifsta); mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT); } static void ieee80211_associated(struct net_device *dev, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct sta_info *sta; int disassoc; DECLARE_MAC_BUF(mac); /* TODO: start monitoring current AP signal quality and number of * missed beacons. Scan other channels every now and then and search * for better APs. */ /* TODO: remove expired BSSes */ ifsta->state = IEEE80211_ASSOCIATED; sta = sta_info_get(local, ifsta->bssid); if (!sta) { printk(KERN_DEBUG "%s: No STA entry for own AP %s\n", dev->name, print_mac(mac, ifsta->bssid)); disassoc = 1; } else { disassoc = 0; if (time_after(jiffies, sta->last_rx + IEEE80211_MONITORING_INTERVAL)) { if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) { printk(KERN_DEBUG "%s: No ProbeResp from " "current AP %s - assume out of " "range\n", dev->name, print_mac(mac, ifsta->bssid)); disassoc = 1; sta_info_free(sta); } else ieee80211_send_probe_req(dev, ifsta->bssid, local->scan_ssid, local->scan_ssid_len); ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL; } else { ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL; if (time_after(jiffies, ifsta->last_probe + IEEE80211_PROBE_INTERVAL)) { ifsta->last_probe = jiffies; ieee80211_send_probe_req(dev, ifsta->bssid, ifsta->ssid, ifsta->ssid_len); } } sta_info_put(sta); } if (disassoc) { ifsta->state = IEEE80211_DISABLED; ieee80211_set_associated(dev, ifsta, 0); } else { mod_timer(&ifsta->timer, jiffies + IEEE80211_MONITORING_INTERVAL); } } static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst, u8 *ssid, size_t ssid_len) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_hw_mode *mode; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u8 *pos, *supp_rates, *esupp_rates = NULL; int i; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer for probe " "request\n", dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24); memset(mgmt, 0, 24); mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT, IEEE80211_STYPE_PROBE_REQ); memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN); if (dst) { memcpy(mgmt->da, dst, ETH_ALEN); memcpy(mgmt->bssid, dst, ETH_ALEN); } else { memset(mgmt->da, 0xff, ETH_ALEN); memset(mgmt->bssid, 0xff, ETH_ALEN); } pos = skb_put(skb, 2 + ssid_len); *pos++ = WLAN_EID_SSID; *pos++ = ssid_len; memcpy(pos, ssid, ssid_len); supp_rates = skb_put(skb, 2); supp_rates[0] = WLAN_EID_SUPP_RATES; supp_rates[1] = 0; mode = local->oper_hw_mode; for (i = 0; i < mode->num_rates; i++) { struct ieee80211_rate *rate = &mode->rates[i]; if (!(rate->flags & IEEE80211_RATE_SUPPORTED)) continue; if (esupp_rates) { pos = skb_put(skb, 1); esupp_rates[1]++; } else if (supp_rates[1] == 8) { esupp_rates = skb_put(skb, 3); esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES; esupp_rates[1] = 1; pos = &esupp_rates[2]; } else { pos = skb_put(skb, 1); supp_rates[1]++; } *pos = rate->rate / 5; } ieee80211_sta_tx(dev, skb, 0); } static int ieee80211_sta_wep_configured(struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (!sdata || !sdata->default_key || sdata->default_key->conf.alg != ALG_WEP) return 0; return 1; } static void ieee80211_auth_completed(struct net_device *dev, struct ieee80211_if_sta *ifsta) { printk(KERN_DEBUG "%s: authenticated\n", dev->name); ifsta->flags |= IEEE80211_STA_AUTHENTICATED; ieee80211_associate(dev, ifsta); } static void ieee80211_auth_challenge(struct net_device *dev, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len) { u8 *pos; struct ieee802_11_elems elems; printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name); pos = mgmt->u.auth.variable; ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems); if (!elems.challenge) { printk(KERN_DEBUG "%s: no challenge IE in shared key auth " "frame\n", dev->name); return; } ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2, elems.challenge_len + 2, 1); } static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid, u8 dialog_token, u16 status, u16 policy, u16 buf_size, u16 timeout) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_if_sta *ifsta = &sdata->u.sta; struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u16 capab; skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 + sizeof(mgmt->u.action.u.addba_resp)); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer " "for addba resp frame\n", dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24); memset(mgmt, 0, 24); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN); if (sdata->type == IEEE80211_IF_TYPE_AP) memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN); else memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT, IEEE80211_STYPE_ACTION); skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp)); mgmt->u.action.category = WLAN_CATEGORY_BACK; mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP; mgmt->u.action.u.addba_resp.dialog_token = dialog_token; capab = (u16)(policy << 1); /* bit 1 aggregation policy */ capab |= (u16)(tid << 2); /* bit 5:2 TID number */ capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */ mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab); mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout); mgmt->u.action.u.addba_resp.status = cpu_to_le16(status); ieee80211_sta_tx(dev, skb, 0); return; } static void ieee80211_sta_process_addba_request(struct net_device *dev, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_hw *hw = &local->hw; struct ieee80211_conf *conf = &hw->conf; struct sta_info *sta; struct tid_ampdu_rx *tid_agg_rx; u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status; u8 dialog_token; int ret = -EOPNOTSUPP; DECLARE_MAC_BUF(mac); sta = sta_info_get(local, mgmt->sa); if (!sta) return; /* extract session parameters from addba request frame */ dialog_token = mgmt->u.action.u.addba_req.dialog_token; timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout); start_seq_num = le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4; capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab); ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1; tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2; buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6; status = WLAN_STATUS_REQUEST_DECLINED; /* sanity check for incoming parameters: * check if configuration can support the BA policy * and if buffer size does not exceeds max value */ if (((ba_policy != 1) && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA))) || (buf_size > IEEE80211_MAX_AMPDU_BUF)) { status = WLAN_STATUS_INVALID_QOS_PARAM; #ifdef CONFIG_MAC80211_HT_DEBUG if (net_ratelimit()) printk(KERN_DEBUG "Block Ack Req with bad params from " "%s on tid %u. policy %d, buffer size %d\n", print_mac(mac, mgmt->sa), tid, ba_policy, buf_size); #endif /* CONFIG_MAC80211_HT_DEBUG */ goto end_no_lock; } /* determine default buffer size */ if (buf_size == 0) { struct ieee80211_hw_mode *mode = conf->mode; buf_size = IEEE80211_MIN_AMPDU_BUF; buf_size = buf_size << mode->ht_info.ampdu_factor; } tid_agg_rx = &sta->ampdu_mlme.tid_rx[tid]; /* examine state machine */ spin_lock_bh(&sta->ampdu_mlme.ampdu_rx); if (tid_agg_rx->state != HT_AGG_STATE_IDLE) { #ifdef CONFIG_MAC80211_HT_DEBUG if (net_ratelimit()) printk(KERN_DEBUG "unexpected Block Ack Req from " "%s on tid %u\n", print_mac(mac, mgmt->sa), tid); #endif /* CONFIG_MAC80211_HT_DEBUG */ goto end; } /* prepare reordering buffer */ tid_agg_rx->reorder_buf = kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC); if ((!tid_agg_rx->reorder_buf) && net_ratelimit()) { printk(KERN_ERR "can not allocate reordering buffer " "to tid %d\n", tid); goto end; } memset(tid_agg_rx->reorder_buf, 0, buf_size * sizeof(struct sk_buf *)); if (local->ops->ampdu_action) ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START, sta->addr, tid, start_seq_num); #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret); #endif /* CONFIG_MAC80211_HT_DEBUG */ if (ret) { kfree(tid_agg_rx->reorder_buf); goto end; } /* change state and send addba resp */ tid_agg_rx->state = HT_AGG_STATE_OPERATIONAL; tid_agg_rx->dialog_token = dialog_token; tid_agg_rx->ssn = start_seq_num; tid_agg_rx->head_seq_num = start_seq_num; tid_agg_rx->buf_size = buf_size; tid_agg_rx->timeout = timeout; tid_agg_rx->stored_mpdu_num = 0; status = WLAN_STATUS_SUCCESS; end: spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx); end_no_lock: ieee80211_send_addba_resp(sta->dev, sta->addr, tid, dialog_token, status, 1, buf_size, timeout); sta_info_put(sta); } void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid, u16 initiator, u16 reason_code) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_if_sta *ifsta = &sdata->u.sta; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u16 params; skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 + sizeof(mgmt->u.action.u.delba)); if (!skb) { printk(KERN_ERR "%s: failed to allocate buffer " "for delba frame\n", dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24); memset(mgmt, 0, 24); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN); if (sdata->type == IEEE80211_IF_TYPE_AP) memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN); else memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT, IEEE80211_STYPE_ACTION); skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba)); mgmt->u.action.category = WLAN_CATEGORY_BACK; mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA; params = (u16)(initiator << 11); /* bit 11 initiator */ params |= (u16)(tid << 12); /* bit 15:12 TID number */ mgmt->u.action.u.delba.params = cpu_to_le16(params); mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code); ieee80211_sta_tx(dev, skb, 0); } void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid, u16 initiator, u16 reason) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_hw *hw = &local->hw; struct sta_info *sta; int ret, i; sta = sta_info_get(local, ra); if (!sta) return; /* check if TID is in operational state */ spin_lock_bh(&sta->ampdu_mlme.ampdu_rx); if (sta->ampdu_mlme.tid_rx[tid].state != HT_AGG_STATE_OPERATIONAL) { spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx); if (net_ratelimit()) printk(KERN_DEBUG "rx BA session requested to stop on " "inactive tid %d\n", tid); sta_info_put(sta); return; } sta->ampdu_mlme.tid_rx[tid].state = HT_AGG_STATE_REQ_STOP_BA_MSK | (initiator << HT_AGG_STATE_INITIATOR_SHIFT); spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx); /* stop HW Rx aggregation. ampdu_action existence * already verified in session init so we add the BUG_ON */ BUG_ON(!local->ops->ampdu_action); ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP, ra, tid, EINVAL); if (ret) printk(KERN_DEBUG "HW problem - can not stop rx " "aggergation for tid %d\n", tid); /* shutdown timer has not expired */ if (initiator != WLAN_BACK_TIMER) del_timer_sync(&sta->ampdu_mlme.tid_rx[tid]. session_timer); /* check if this is a self generated aggregation halt */ if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER) ieee80211_send_delba(dev, ra, tid, 0, reason); /* free the reordering buffer */ for (i = 0; i < sta->ampdu_mlme.tid_rx[tid].buf_size; i++) { if (sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]) { /* release the reordered frames */ dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]); sta->ampdu_mlme.tid_rx[tid].stored_mpdu_num--; sta->ampdu_mlme.tid_rx[tid].reorder_buf[i] = NULL; } } kfree(sta->ampdu_mlme.tid_rx[tid].reorder_buf); sta->ampdu_mlme.tid_rx[tid].state = HT_AGG_STATE_IDLE; sta_info_put(sta); } /* * After receiving Block Ack Request (BAR) we activated a * timer after each frame arrives from the originator. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed. */ void sta_rx_agg_session_timer_expired(unsigned long data) { /* not an elegant detour, but there is no choice as the timer passes * only one argument, and verious sta_info are needed here, so init * flow in sta_info_add gives the TID as data, while the timer_to_id * array gives the sta through container_of */ u8 *ptid = (u8 *)data; u8 *timer_to_id = ptid - *ptid; struct sta_info *sta = container_of(timer_to_id, struct sta_info, timer_to_tid[0]); printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid); ieee80211_sta_stop_rx_ba_session(sta->dev, sta->addr, (u16)*ptid, WLAN_BACK_TIMER, WLAN_REASON_QSTA_TIMEOUT); } static void ieee80211_rx_mgmt_auth(struct net_device *dev, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); u16 auth_alg, auth_transaction, status_code; DECLARE_MAC_BUF(mac); if (ifsta->state != IEEE80211_AUTHENTICATE && sdata->type != IEEE80211_IF_TYPE_IBSS) { printk(KERN_DEBUG "%s: authentication frame received from " "%s, but not in authenticate state - ignored\n", dev->name, print_mac(mac, mgmt->sa)); return; } if (len < 24 + 6) { printk(KERN_DEBUG "%s: too short (%zd) authentication frame " "received from %s - ignored\n", dev->name, len, print_mac(mac, mgmt->sa)); return; } if (sdata->type != IEEE80211_IF_TYPE_IBSS && memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) { printk(KERN_DEBUG "%s: authentication frame received from " "unknown AP (SA=%s BSSID=%s) - " "ignored\n", dev->name, print_mac(mac, mgmt->sa), print_mac(mac, mgmt->bssid)); return; } if (sdata->type != IEEE80211_IF_TYPE_IBSS && memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) { printk(KERN_DEBUG "%s: authentication frame received from " "unknown BSSID (SA=%s BSSID=%s) - " "ignored\n", dev->name, print_mac(mac, mgmt->sa), print_mac(mac, mgmt->bssid)); return; } auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg); auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction); status_code = le16_to_cpu(mgmt->u.auth.status_code); printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d " "transaction=%d status=%d)\n", dev->name, print_mac(mac, mgmt->sa), auth_alg, auth_transaction, status_code); if (sdata->type == IEEE80211_IF_TYPE_IBSS) { /* IEEE 802.11 standard does not require authentication in IBSS * networks and most implementations do not seem to use it. * However, try to reply to authentication attempts if someone * has actually implemented this. * TODO: Could implement shared key authentication. */ if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) { printk(KERN_DEBUG "%s: unexpected IBSS authentication " "frame (alg=%d transaction=%d)\n", dev->name, auth_alg, auth_transaction); return; } ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0); } if (auth_alg != ifsta->auth_alg || auth_transaction != ifsta->auth_transaction) { printk(KERN_DEBUG "%s: unexpected authentication frame " "(alg=%d transaction=%d)\n", dev->name, auth_alg, auth_transaction); return; } if (status_code != WLAN_STATUS_SUCCESS) { printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d " "code=%d)\n", dev->name, ifsta->auth_alg, status_code); if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) { u8 algs[3]; const int num_algs = ARRAY_SIZE(algs); int i, pos; algs[0] = algs[1] = algs[2] = 0xff; if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN) algs[0] = WLAN_AUTH_OPEN; if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY) algs[1] = WLAN_AUTH_SHARED_KEY; if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP) algs[2] = WLAN_AUTH_LEAP; if (ifsta->auth_alg == WLAN_AUTH_OPEN) pos = 0; else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY) pos = 1; else pos = 2; for (i = 0; i < num_algs; i++) { pos++; if (pos >= num_algs) pos = 0; if (algs[pos] == ifsta->auth_alg || algs[pos] == 0xff) continue; if (algs[pos] == WLAN_AUTH_SHARED_KEY && !ieee80211_sta_wep_configured(dev)) continue; ifsta->auth_alg = algs[pos]; printk(KERN_DEBUG "%s: set auth_alg=%d for " "next try\n", dev->name, ifsta->auth_alg); break; } } return; } switch (ifsta->auth_alg) { case WLAN_AUTH_OPEN: case WLAN_AUTH_LEAP: ieee80211_auth_completed(dev, ifsta); break; case WLAN_AUTH_SHARED_KEY: if (ifsta->auth_transaction == 4) ieee80211_auth_completed(dev, ifsta); else ieee80211_auth_challenge(dev, ifsta, mgmt, len); break; } } static void ieee80211_rx_mgmt_deauth(struct net_device *dev, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len) { u16 reason_code; DECLARE_MAC_BUF(mac); if (len < 24 + 2) { printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame " "received from %s - ignored\n", dev->name, len, print_mac(mac, mgmt->sa)); return; } if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) { printk(KERN_DEBUG "%s: deauthentication frame received from " "unknown AP (SA=%s BSSID=%s) - " "ignored\n", dev->name, print_mac(mac, mgmt->sa), print_mac(mac, mgmt->bssid)); return; } reason_code = le16_to_cpu(mgmt->u.deauth.reason_code); printk(KERN_DEBUG "%s: RX deauthentication from %s" " (reason=%d)\n", dev->name, print_mac(mac, mgmt->sa), reason_code); if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) { printk(KERN_DEBUG "%s: deauthenticated\n", dev->name); } if (ifsta->state == IEEE80211_AUTHENTICATE || ifsta->state == IEEE80211_ASSOCIATE || ifsta->state == IEEE80211_ASSOCIATED) { ifsta->state = IEEE80211_AUTHENTICATE; mod_timer(&ifsta->timer, jiffies + IEEE80211_RETRY_AUTH_INTERVAL); } ieee80211_set_disassoc(dev, ifsta, 1); ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED; } static void ieee80211_rx_mgmt_disassoc(struct net_device *dev, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len) { u16 reason_code; DECLARE_MAC_BUF(mac); if (len < 24 + 2) { printk(KERN_DEBUG "%s: too short (%zd) disassociation frame " "received from %s - ignored\n", dev->name, len, print_mac(mac, mgmt->sa)); return; } if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) { printk(KERN_DEBUG "%s: disassociation frame received from " "unknown AP (SA=%s BSSID=%s) - " "ignored\n", dev->name, print_mac(mac, mgmt->sa), print_mac(mac, mgmt->bssid)); return; } reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code); printk(KERN_DEBUG "%s: RX disassociation from %s" " (reason=%d)\n", dev->name, print_mac(mac, mgmt->sa), reason_code); if (ifsta->flags & IEEE80211_STA_ASSOCIATED) printk(KERN_DEBUG "%s: disassociated\n", dev->name); if (ifsta->state == IEEE80211_ASSOCIATED) { ifsta->state = IEEE80211_ASSOCIATE; mod_timer(&ifsta->timer, jiffies + IEEE80211_RETRY_AUTH_INTERVAL); } ieee80211_set_disassoc(dev, ifsta, 0); } static void ieee80211_rx_mgmt_assoc_resp(struct net_device *dev, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len, int reassoc) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_hw_mode *mode; struct sta_info *sta; u32 rates; u16 capab_info, status_code, aid; struct ieee802_11_elems elems; u8 *pos; int i, j; DECLARE_MAC_BUF(mac); /* AssocResp and ReassocResp have identical structure, so process both * of them in this function. */ if (ifsta->state != IEEE80211_ASSOCIATE) { printk(KERN_DEBUG "%s: association frame received from " "%s, but not in associate state - ignored\n", dev->name, print_mac(mac, mgmt->sa)); return; } if (len < 24 + 6) { printk(KERN_DEBUG "%s: too short (%zd) association frame " "received from %s - ignored\n", dev->name, len, print_mac(mac, mgmt->sa)); return; } if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) { printk(KERN_DEBUG "%s: association frame received from " "unknown AP (SA=%s BSSID=%s) - " "ignored\n", dev->name, print_mac(mac, mgmt->sa), print_mac(mac, mgmt->bssid)); return; } capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info); status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code); aid = le16_to_cpu(mgmt->u.assoc_resp.aid); printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x " "status=%d aid=%d)\n", dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa), capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14)))); if (status_code != WLAN_STATUS_SUCCESS) { printk(KERN_DEBUG "%s: AP denied association (code=%d)\n", dev->name, status_code); /* if this was a reassociation, ensure we try a "full" * association next time. This works around some broken APs * which do not correctly reject reassociation requests. */ ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET; return; } if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14))) printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not " "set\n", dev->name, aid); aid &= ~(BIT(15) | BIT(14)); pos = mgmt->u.assoc_resp.variable; ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems); if (!elems.supp_rates) { printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n", dev->name); return; } printk(KERN_DEBUG "%s: associated\n", dev->name); ifsta->aid = aid; ifsta->ap_capab = capab_info; kfree(ifsta->assocresp_ies); ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt); ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL); if (ifsta->assocresp_ies) memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len); ieee80211_set_associated(dev, ifsta, 1); /* Add STA entry for the AP */ sta = sta_info_get(local, ifsta->bssid); if (!sta) { struct ieee80211_sta_bss *bss; sta = sta_info_add(local, dev, ifsta->bssid, GFP_KERNEL); if (!sta) { printk(KERN_DEBUG "%s: failed to add STA entry for the" " AP\n", dev->name); return; } bss = ieee80211_rx_bss_get(dev, ifsta->bssid, local->hw.conf.channel, ifsta->ssid, ifsta->ssid_len); if (bss) { sta->last_rssi = bss->rssi; sta->last_signal = bss->signal; sta->last_noise = bss->noise; ieee80211_rx_bss_put(dev, bss); } } sta->dev = dev; sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP; rates = 0; mode = local->oper_hw_mode; for (i = 0; i < elems.supp_rates_len; i++) { int rate = (elems.supp_rates[i] & 0x7f) * 5; for (j = 0; j < mode->num_rates; j++) if (mode->rates[j].rate == rate) rates |= BIT(j); } for (i = 0; i < elems.ext_supp_rates_len; i++) { int rate = (elems.ext_supp_rates[i] & 0x7f) * 5; for (j = 0; j < mode->num_rates; j++) if (mode->rates[j].rate == rate) rates |= BIT(j); } sta->supp_rates = rates; if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param && local->ops->conf_ht) { struct ieee80211_ht_bss_info bss_info; ieee80211_ht_cap_ie_to_ht_info( (struct ieee80211_ht_cap *) elems.ht_cap_elem, &sta->ht_info); ieee80211_ht_addt_info_ie_to_ht_bss_info( (struct ieee80211_ht_addt_info *) elems.ht_info_elem, &bss_info); ieee80211_hw_config_ht(local, 1, &sta->ht_info, &bss_info); } rate_control_rate_init(sta, local); if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) { sta->flags |= WLAN_STA_WME; ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param, elems.wmm_param_len); } sta_info_put(sta); ieee80211_associated(dev, ifsta); } /* Caller must hold local->sta_bss_lock */ static void __ieee80211_rx_bss_hash_add(struct net_device *dev, struct ieee80211_sta_bss *bss) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); bss->hnext = local->sta_bss_hash[STA_HASH(bss->bssid)]; local->sta_bss_hash[STA_HASH(bss->bssid)] = bss; } /* Caller must hold local->sta_bss_lock */ static void __ieee80211_rx_bss_hash_del(struct net_device *dev, struct ieee80211_sta_bss *bss) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sta_bss *b, *prev = NULL; b = local->sta_bss_hash[STA_HASH(bss->bssid)]; while (b) { if (b == bss) { if (!prev) local->sta_bss_hash[STA_HASH(bss->bssid)] = bss->hnext; else prev->hnext = bss->hnext; break; } prev = b; b = b->hnext; } } static struct ieee80211_sta_bss * ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int channel, u8 *ssid, u8 ssid_len) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sta_bss *bss; bss = kzalloc(sizeof(*bss), GFP_ATOMIC); if (!bss) return NULL; atomic_inc(&bss->users); atomic_inc(&bss->users); memcpy(bss->bssid, bssid, ETH_ALEN); bss->channel = channel; if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) { memcpy(bss->ssid, ssid, ssid_len); bss->ssid_len = ssid_len; } spin_lock_bh(&local->sta_bss_lock); /* TODO: order by RSSI? */ list_add_tail(&bss->list, &local->sta_bss_list); __ieee80211_rx_bss_hash_add(dev, bss); spin_unlock_bh(&local->sta_bss_lock); return bss; } static struct ieee80211_sta_bss * ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int channel, u8 *ssid, u8 ssid_len) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sta_bss *bss; spin_lock_bh(&local->sta_bss_lock); bss = local->sta_bss_hash[STA_HASH(bssid)]; while (bss) { if (!memcmp(bss->bssid, bssid, ETH_ALEN) && bss->channel == channel && bss->ssid_len == ssid_len && (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) { atomic_inc(&bss->users); break; } bss = bss->hnext; } spin_unlock_bh(&local->sta_bss_lock); return bss; } static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss) { kfree(bss->wpa_ie); kfree(bss->rsn_ie); kfree(bss->wmm_ie); kfree(bss->ht_ie); kfree(bss); } static void ieee80211_rx_bss_put(struct net_device *dev, struct ieee80211_sta_bss *bss) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); if (!atomic_dec_and_test(&bss->users)) return; spin_lock_bh(&local->sta_bss_lock); __ieee80211_rx_bss_hash_del(dev, bss); list_del(&bss->list); spin_unlock_bh(&local->sta_bss_lock); ieee80211_rx_bss_free(bss); } void ieee80211_rx_bss_list_init(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); spin_lock_init(&local->sta_bss_lock); INIT_LIST_HEAD(&local->sta_bss_list); } void ieee80211_rx_bss_list_deinit(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sta_bss *bss, *tmp; list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list) ieee80211_rx_bss_put(dev, bss); } static void ieee80211_rx_bss_info(struct net_device *dev, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status, int beacon) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee802_11_elems elems; size_t baselen; int channel, clen; struct ieee80211_sta_bss *bss; struct sta_info *sta; struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); u64 timestamp; DECLARE_MAC_BUF(mac); DECLARE_MAC_BUF(mac2); if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN)) return; /* ignore ProbeResp to foreign address */ #if 0 printk(KERN_DEBUG "%s: RX %s from %s to %s\n", dev->name, beacon ? "Beacon" : "Probe Response", print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da)); #endif baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt; if (baselen > len) return; timestamp = le64_to_cpu(mgmt->u.beacon.timestamp); if (sdata->type == IEEE80211_IF_TYPE_IBSS && beacon && memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0) { #ifdef CONFIG_MAC80211_IBSS_DEBUG static unsigned long last_tsf_debug = 0; u64 tsf; if (local->ops->get_tsf) tsf = local->ops->get_tsf(local_to_hw(local)); else tsf = -1LLU; if (time_after(jiffies, last_tsf_debug + 5 * HZ)) { printk(KERN_DEBUG "RX beacon SA=%s BSSID=" "%s TSF=0x%llx BCN=0x%llx diff=%lld " "@%lu\n", print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->bssid), (unsigned long long)tsf, (unsigned long long)timestamp, (unsigned long long)(tsf - timestamp), jiffies); last_tsf_debug = jiffies; } #endif /* CONFIG_MAC80211_IBSS_DEBUG */ } ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems); if (sdata->type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates && memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 && (sta = sta_info_get(local, mgmt->sa))) { struct ieee80211_hw_mode *mode; struct ieee80211_rate *rates; size_t num_rates; u32 supp_rates, prev_rates; int i, j; mode = local->sta_sw_scanning ? local->scan_hw_mode : local->oper_hw_mode; if (local->sta_hw_scanning) { /* search for the correct mode matches the beacon */ list_for_each_entry(mode, &local->modes_list, list) if (mode->mode == rx_status->phymode) break; if (mode == NULL) mode = local->oper_hw_mode; } rates = mode->rates; num_rates = mode->num_rates; supp_rates = 0; for (i = 0; i < elems.supp_rates_len + elems.ext_supp_rates_len; i++) { u8 rate = 0; int own_rate; if (i < elems.supp_rates_len) rate = elems.supp_rates[i]; else if (elems.ext_supp_rates) rate = elems.ext_supp_rates [i - elems.supp_rates_len]; own_rate = 5 * (rate & 0x7f); for (j = 0; j < num_rates; j++) if (rates[j].rate == own_rate) supp_rates |= BIT(j); } prev_rates = sta->supp_rates; sta->supp_rates &= supp_rates; if (sta->supp_rates == 0) { /* No matching rates - this should not really happen. * Make sure that at least one rate is marked * supported to avoid issues with TX rate ctrl. */ sta->supp_rates = sdata->u.sta.supp_rates_bits; } if (sta->supp_rates != prev_rates) { printk(KERN_DEBUG "%s: updated supp_rates set for " "%s based on beacon info (0x%x & 0x%x -> " "0x%x)\n", dev->name, print_mac(mac, sta->addr), prev_rates, supp_rates, sta->supp_rates); } sta_info_put(sta); } if (!elems.ssid) return; if (elems.ds_params && elems.ds_params_len == 1) channel = elems.ds_params[0]; else channel = rx_status->channel; bss = ieee80211_rx_bss_get(dev, mgmt->bssid, channel, elems.ssid, elems.ssid_len); if (!bss) { bss = ieee80211_rx_bss_add(dev, mgmt->bssid, channel, elems.ssid, elems.ssid_len); if (!bss) return; } else { #if 0 /* TODO: order by RSSI? */ spin_lock_bh(&local->sta_bss_lock); list_move_tail(&bss->list, &local->sta_bss_list); spin_unlock_bh(&local->sta_bss_lock); #endif } if (bss->probe_resp && beacon) { /* Do not allow beacon to override data from Probe Response. */ ieee80211_rx_bss_put(dev, bss); return; } /* save the ERP value so that it is available at association time */ if (elems.erp_info && elems.erp_info_len >= 1) { bss->erp_value = elems.erp_info[0]; bss->has_erp_value = 1; } bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int); bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info); bss->supp_rates_len = 0; if (elems.supp_rates) { clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len; if (clen > elems.supp_rates_len) clen = elems.supp_rates_len; memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates, clen); bss->supp_rates_len += clen; } if (elems.ext_supp_rates) { clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len; if (clen > elems.ext_supp_rates_len) clen = elems.ext_supp_rates_len; memcpy(&bss->supp_rates[bss->supp_rates_len], elems.ext_supp_rates, clen); bss->supp_rates_len += clen; } if (elems.wpa && (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len || memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) { kfree(bss->wpa_ie); bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC); if (bss->wpa_ie) { memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2); bss->wpa_ie_len = elems.wpa_len + 2; } else bss->wpa_ie_len = 0; } else if (!elems.wpa && bss->wpa_ie) { kfree(bss->wpa_ie); bss->wpa_ie = NULL; bss->wpa_ie_len = 0; } if (elems.rsn && (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len || memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) { kfree(bss->rsn_ie); bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC); if (bss->rsn_ie) { memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2); bss->rsn_ie_len = elems.rsn_len + 2; } else bss->rsn_ie_len = 0; } else if (!elems.rsn && bss->rsn_ie) { kfree(bss->rsn_ie); bss->rsn_ie = NULL; bss->rsn_ie_len = 0; } if (elems.wmm_param && (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len || memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) { kfree(bss->wmm_ie); bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC); if (bss->wmm_ie) { memcpy(bss->wmm_ie, elems.wmm_param - 2, elems.wmm_param_len + 2); bss->wmm_ie_len = elems.wmm_param_len + 2; } else bss->wmm_ie_len = 0; } else if (!elems.wmm_param && bss->wmm_ie) { kfree(bss->wmm_ie); bss->wmm_ie = NULL; bss->wmm_ie_len = 0; } if (elems.ht_cap_elem && (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len || memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) { kfree(bss->ht_ie); bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC); if (bss->ht_ie) { memcpy(bss->ht_ie, elems.ht_cap_elem - 2, elems.ht_cap_elem_len + 2); bss->ht_ie_len = elems.ht_cap_elem_len + 2; } else bss->ht_ie_len = 0; } else if (!elems.ht_cap_elem && bss->ht_ie) { kfree(bss->ht_ie); bss->ht_ie = NULL; bss->ht_ie_len = 0; } bss->hw_mode = rx_status->phymode; bss->freq = rx_status->freq; if (channel != rx_status->channel && (bss->hw_mode == MODE_IEEE80211G || bss->hw_mode == MODE_IEEE80211B) && channel >= 1 && channel <= 14) { static const int freq_list[] = { 2412, 2417, 2422, 2427, 2432, 2437, 2442, 2447, 2452, 2457, 2462, 2467, 2472, 2484 }; /* IEEE 802.11g/b mode can receive packets from neighboring * channels, so map the channel into frequency. */ bss->freq = freq_list[channel - 1]; } bss->timestamp = timestamp; bss->last_update = jiffies; bss->rssi = rx_status->ssi; bss->signal = rx_status->signal; bss->noise = rx_status->noise; if (!beacon) bss->probe_resp++; ieee80211_rx_bss_put(dev, bss); } static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0); } static void ieee80211_rx_mgmt_beacon(struct net_device *dev, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee80211_sub_if_data *sdata; struct ieee80211_if_sta *ifsta; size_t baselen; struct ieee802_11_elems elems; struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_conf *conf = &local->hw.conf; ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1); sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (sdata->type != IEEE80211_IF_TYPE_STA) return; ifsta = &sdata->u.sta; if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) || memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) return; /* Process beacon from the current BSS */ baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt; if (baselen > len) return; ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems); if (elems.erp_info && elems.erp_info_len >= 1) ieee80211_handle_erp_ie(dev, elems.erp_info[0]); if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param && local->ops->conf_ht && conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) { struct ieee80211_ht_bss_info bss_info; ieee80211_ht_addt_info_ie_to_ht_bss_info( (struct ieee80211_ht_addt_info *) elems.ht_info_elem, &bss_info); /* check if AP changed bss inforamation */ if ((conf->ht_bss_conf.primary_channel != bss_info.primary_channel) || (conf->ht_bss_conf.bss_cap != bss_info.bss_cap) || (conf->ht_bss_conf.bss_op_mode != bss_info.bss_op_mode)) ieee80211_hw_config_ht(local, 1, &conf->ht_conf, &bss_info); } if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) { ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param, elems.wmm_param_len); } } static void ieee80211_rx_mgmt_probe_req(struct net_device *dev, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); int tx_last_beacon; struct sk_buff *skb; struct ieee80211_mgmt *resp; u8 *pos, *end; DECLARE_MAC_BUF(mac); #ifdef CONFIG_MAC80211_IBSS_DEBUG DECLARE_MAC_BUF(mac2); DECLARE_MAC_BUF(mac3); #endif if (sdata->type != IEEE80211_IF_TYPE_IBSS || ifsta->state != IEEE80211_IBSS_JOINED || len < 24 + 2 || !ifsta->probe_resp) return; if (local->ops->tx_last_beacon) tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local)); else tx_last_beacon = 1; #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID=" "%s (tx_last_beacon=%d)\n", dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da), print_mac(mac3, mgmt->bssid), tx_last_beacon); #endif /* CONFIG_MAC80211_IBSS_DEBUG */ if (!tx_last_beacon) return; if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 && memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0) return; end = ((u8 *) mgmt) + len; pos = mgmt->u.probe_req.variable; if (pos[0] != WLAN_EID_SSID || pos + 2 + pos[1] > end) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq " "from %s\n", dev->name, print_mac(mac, mgmt->sa)); } return; } if (pos[1] != 0 && (pos[1] != ifsta->ssid_len || memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) { /* Ignore ProbeReq for foreign SSID */ return; } /* Reply with ProbeResp */ skb = skb_copy(ifsta->probe_resp, GFP_KERNEL); if (!skb) return; resp = (struct ieee80211_mgmt *) skb->data; memcpy(resp->da, mgmt->sa, ETH_ALEN); #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n", dev->name, print_mac(mac, resp->da)); #endif /* CONFIG_MAC80211_IBSS_DEBUG */ ieee80211_sta_tx(dev, skb, 0); } static void ieee80211_rx_mgmt_action(struct net_device *dev, struct ieee80211_if_sta *ifsta, struct ieee80211_mgmt *mgmt, size_t len) { if (len < IEEE80211_MIN_ACTION_SIZE) return; switch (mgmt->u.action.category) { case WLAN_CATEGORY_BACK: switch (mgmt->u.action.u.addba_req.action_code) { case WLAN_ACTION_ADDBA_REQ: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.addba_req))) break; ieee80211_sta_process_addba_request(dev, mgmt, len); break; default: if (net_ratelimit()) printk(KERN_DEBUG "%s: received unsupported BACK\n", dev->name); break; } break; default: break; } } void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb, struct ieee80211_rx_status *rx_status) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata; struct ieee80211_if_sta *ifsta; struct ieee80211_mgmt *mgmt; u16 fc; if (skb->len < 24) goto fail; sdata = IEEE80211_DEV_TO_SUB_IF(dev); ifsta = &sdata->u.sta; mgmt = (struct ieee80211_mgmt *) skb->data; fc = le16_to_cpu(mgmt->frame_control); switch (fc & IEEE80211_FCTL_STYPE) { case IEEE80211_STYPE_PROBE_REQ: case IEEE80211_STYPE_PROBE_RESP: case IEEE80211_STYPE_BEACON: memcpy(skb->cb, rx_status, sizeof(*rx_status)); case IEEE80211_STYPE_AUTH: case IEEE80211_STYPE_ASSOC_RESP: case IEEE80211_STYPE_REASSOC_RESP: case IEEE80211_STYPE_DEAUTH: case IEEE80211_STYPE_DISASSOC: case IEEE80211_STYPE_ACTION: skb_queue_tail(&ifsta->skb_queue, skb); queue_work(local->hw.workqueue, &ifsta->work); return; default: printk(KERN_DEBUG "%s: received unknown management frame - " "stype=%d\n", dev->name, (fc & IEEE80211_FCTL_STYPE) >> 4); break; } fail: kfree_skb(skb); } static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev, struct sk_buff *skb) { struct ieee80211_rx_status *rx_status; struct ieee80211_sub_if_data *sdata; struct ieee80211_if_sta *ifsta; struct ieee80211_mgmt *mgmt; u16 fc; sdata = IEEE80211_DEV_TO_SUB_IF(dev); ifsta = &sdata->u.sta; rx_status = (struct ieee80211_rx_status *) skb->cb; mgmt = (struct ieee80211_mgmt *) skb->data; fc = le16_to_cpu(mgmt->frame_control); switch (fc & IEEE80211_FCTL_STYPE) { case IEEE80211_STYPE_PROBE_REQ: ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len, rx_status); break; case IEEE80211_STYPE_PROBE_RESP: ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status); break; case IEEE80211_STYPE_BEACON: ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status); break; case IEEE80211_STYPE_AUTH: ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len); break; case IEEE80211_STYPE_ASSOC_RESP: ieee80211_rx_mgmt_assoc_resp(dev, ifsta, mgmt, skb->len, 0); break; case IEEE80211_STYPE_REASSOC_RESP: ieee80211_rx_mgmt_assoc_resp(dev, ifsta, mgmt, skb->len, 1); break; case IEEE80211_STYPE_DEAUTH: ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len); break; case IEEE80211_STYPE_DISASSOC: ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len); break; case IEEE80211_STYPE_ACTION: ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len); break; } kfree_skb(skb); } ieee80211_txrx_result ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb, struct ieee80211_rx_status *rx_status) { struct ieee80211_mgmt *mgmt; u16 fc; if (skb->len < 2) return TXRX_DROP; mgmt = (struct ieee80211_mgmt *) skb->data; fc = le16_to_cpu(mgmt->frame_control); if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) return TXRX_CONTINUE; if (skb->len < 24) return TXRX_DROP; if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) { if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) { ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status); dev_kfree_skb(skb); return TXRX_QUEUED; } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) { ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status); dev_kfree_skb(skb); return TXRX_QUEUED; } } return TXRX_CONTINUE; } static int ieee80211_sta_active_ibss(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); int active = 0; struct sta_info *sta; read_lock_bh(&local->sta_lock); list_for_each_entry(sta, &local->sta_list, list) { if (sta->dev == dev && time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL, jiffies)) { active++; break; } } read_unlock_bh(&local->sta_lock); return active; } static void ieee80211_sta_expire(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct sta_info *sta, *tmp; LIST_HEAD(tmp_list); DECLARE_MAC_BUF(mac); write_lock_bh(&local->sta_lock); list_for_each_entry_safe(sta, tmp, &local->sta_list, list) if (time_after(jiffies, sta->last_rx + IEEE80211_IBSS_INACTIVITY_LIMIT)) { printk(KERN_DEBUG "%s: expiring inactive STA %s\n", dev->name, print_mac(mac, sta->addr)); __sta_info_get(sta); sta_info_remove(sta); list_add(&sta->list, &tmp_list); } write_unlock_bh(&local->sta_lock); list_for_each_entry_safe(sta, tmp, &tmp_list, list) { sta_info_free(sta); sta_info_put(sta); } } static void ieee80211_sta_merge_ibss(struct net_device *dev, struct ieee80211_if_sta *ifsta) { mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL); ieee80211_sta_expire(dev); if (ieee80211_sta_active_ibss(dev)) return; printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other " "IBSS networks with same SSID (merge)\n", dev->name); ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len); } void ieee80211_sta_timer(unsigned long data) { struct ieee80211_sub_if_data *sdata = (struct ieee80211_sub_if_data *) data; struct ieee80211_if_sta *ifsta = &sdata->u.sta; struct ieee80211_local *local = wdev_priv(&sdata->wdev); set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request); queue_work(local->hw.workqueue, &ifsta->work); } void ieee80211_sta_work(struct work_struct *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.sta.work); struct net_device *dev = sdata->dev; struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_if_sta *ifsta; struct sk_buff *skb; if (!netif_running(dev)) return; if (local->sta_sw_scanning || local->sta_hw_scanning) return; if (sdata->type != IEEE80211_IF_TYPE_STA && sdata->type != IEEE80211_IF_TYPE_IBSS) { printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface " "(type=%d)\n", dev->name, sdata->type); return; } ifsta = &sdata->u.sta; while ((skb = skb_dequeue(&ifsta->skb_queue))) ieee80211_sta_rx_queued_mgmt(dev, skb); if (ifsta->state != IEEE80211_AUTHENTICATE && ifsta->state != IEEE80211_ASSOCIATE && test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) { if (ifsta->scan_ssid_len) ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len); else ieee80211_sta_start_scan(dev, NULL, 0); return; } if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) { if (ieee80211_sta_config_auth(dev, ifsta)) return; clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request); } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request)) return; switch (ifsta->state) { case IEEE80211_DISABLED: break; case IEEE80211_AUTHENTICATE: ieee80211_authenticate(dev, ifsta); break; case IEEE80211_ASSOCIATE: ieee80211_associate(dev, ifsta); break; case IEEE80211_ASSOCIATED: ieee80211_associated(dev, ifsta); break; case IEEE80211_IBSS_SEARCH: ieee80211_sta_find_ibss(dev, ifsta); break; case IEEE80211_IBSS_JOINED: ieee80211_sta_merge_ibss(dev, ifsta); break; default: printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n", ifsta->state); break; } if (ieee80211_privacy_mismatch(dev, ifsta)) { printk(KERN_DEBUG "%s: privacy configuration mismatch and " "mixed-cell disabled - disassociate\n", dev->name); ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED); ieee80211_set_disassoc(dev, ifsta, 0); } } static void ieee80211_sta_reset_auth(struct net_device *dev, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); if (local->ops->reset_tsf) { /* Reset own TSF to allow time synchronization work. */ local->ops->reset_tsf(local_to_hw(local)); } ifsta->wmm_last_param_set = -1; /* allow any WMM update */ if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN) ifsta->auth_alg = WLAN_AUTH_OPEN; else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY) ifsta->auth_alg = WLAN_AUTH_SHARED_KEY; else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP) ifsta->auth_alg = WLAN_AUTH_LEAP; else ifsta->auth_alg = WLAN_AUTH_OPEN; printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name, ifsta->auth_alg); ifsta->auth_transaction = -1; ifsta->flags &= ~IEEE80211_STA_ASSOCIATED; ifsta->auth_tries = ifsta->assoc_tries = 0; netif_carrier_off(dev); } void ieee80211_sta_req_auth(struct net_device *dev, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (sdata->type != IEEE80211_IF_TYPE_STA) return; if ((ifsta->flags & (IEEE80211_STA_BSSID_SET | IEEE80211_STA_AUTO_BSSID_SEL)) && (ifsta->flags & (IEEE80211_STA_SSID_SET | IEEE80211_STA_AUTO_SSID_SEL))) { set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request); queue_work(local->hw.workqueue, &ifsta->work); } } static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta, const char *ssid, int ssid_len) { int tmp, hidden_ssid; if (ssid_len == ifsta->ssid_len && !memcmp(ifsta->ssid, ssid, ssid_len)) return 1; if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) return 0; hidden_ssid = 1; tmp = ssid_len; while (tmp--) { if (ssid[tmp] != '\0') { hidden_ssid = 0; break; } } if (hidden_ssid && ifsta->ssid_len == ssid_len) return 1; if (ssid_len == 1 && ssid[0] == ' ') return 1; return 0; } static int ieee80211_sta_config_auth(struct net_device *dev, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_sta_bss *bss, *selected = NULL; int top_rssi = 0, freq; if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL | IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) { ifsta->state = IEEE80211_AUTHENTICATE; ieee80211_sta_reset_auth(dev, ifsta); return 0; } spin_lock_bh(&local->sta_bss_lock); freq = local->oper_channel->freq; list_for_each_entry(bss, &local->sta_bss_list, list) { if (!(bss->capability & WLAN_CAPABILITY_ESS)) continue; if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^ !!sdata->default_key) continue; if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) && bss->freq != freq) continue; if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) && memcmp(bss->bssid, ifsta->bssid, ETH_ALEN)) continue; if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) && !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len)) continue; if (!selected || top_rssi < bss->rssi) { selected = bss; top_rssi = bss->rssi; } } if (selected) atomic_inc(&selected->users); spin_unlock_bh(&local->sta_bss_lock); if (selected) { ieee80211_set_channel(local, -1, selected->freq); if (!(ifsta->flags & IEEE80211_STA_SSID_SET)) ieee80211_sta_set_ssid(dev, selected->ssid, selected->ssid_len); ieee80211_sta_set_bssid(dev, selected->bssid); ieee80211_rx_bss_put(dev, selected); ifsta->state = IEEE80211_AUTHENTICATE; ieee80211_sta_reset_auth(dev, ifsta); return 0; } else { if (ifsta->state != IEEE80211_AUTHENTICATE) { if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) ieee80211_sta_start_scan(dev, NULL, 0); else ieee80211_sta_start_scan(dev, ifsta->ssid, ifsta->ssid_len); ifsta->state = IEEE80211_AUTHENTICATE; set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request); } else ifsta->state = IEEE80211_DISABLED; } return -1; } static int ieee80211_sta_join_ibss(struct net_device *dev, struct ieee80211_if_sta *ifsta, struct ieee80211_sta_bss *bss) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); int res, rates, i, j; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; struct ieee80211_tx_control control; struct ieee80211_hw_mode *mode; struct rate_selection ratesel; u8 *pos; struct ieee80211_sub_if_data *sdata; /* Remove possible STA entries from other IBSS networks. */ sta_info_flush(local, NULL); if (local->ops->reset_tsf) { /* Reset own TSF to allow time synchronization work. */ local->ops->reset_tsf(local_to_hw(local)); } memcpy(ifsta->bssid, bss->bssid, ETH_ALEN); res = ieee80211_if_config(dev); if (res) return res; local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10; sdata = IEEE80211_DEV_TO_SUB_IF(dev); sdata->drop_unencrypted = bss->capability & WLAN_CAPABILITY_PRIVACY ? 1 : 0; res = ieee80211_set_channel(local, -1, bss->freq); if (!(local->oper_channel->flag & IEEE80211_CHAN_W_IBSS)) { printk(KERN_DEBUG "%s: IBSS not allowed on channel %d " "(%d MHz)\n", dev->name, local->hw.conf.channel, local->hw.conf.freq); return -1; } /* Set beacon template based on scan results */ skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400); do { if (!skb) break; skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + sizeof(mgmt->u.beacon)); memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT, IEEE80211_STYPE_BEACON); memset(mgmt->da, 0xff, ETH_ALEN); memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN); memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN); mgmt->u.beacon.beacon_int = cpu_to_le16(local->hw.conf.beacon_int); mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability); pos = skb_put(skb, 2 + ifsta->ssid_len); *pos++ = WLAN_EID_SSID; *pos++ = ifsta->ssid_len; memcpy(pos, ifsta->ssid, ifsta->ssid_len); rates = bss->supp_rates_len; if (rates > 8) rates = 8; pos = skb_put(skb, 2 + rates); *pos++ = WLAN_EID_SUPP_RATES; *pos++ = rates; memcpy(pos, bss->supp_rates, rates); pos = skb_put(skb, 2 + 1); *pos++ = WLAN_EID_DS_PARAMS; *pos++ = 1; *pos++ = bss->channel; pos = skb_put(skb, 2 + 2); *pos++ = WLAN_EID_IBSS_PARAMS; *pos++ = 2; /* FIX: set ATIM window based on scan results */ *pos++ = 0; *pos++ = 0; if (bss->supp_rates_len > 8) { rates = bss->supp_rates_len - 8; pos = skb_put(skb, 2 + rates); *pos++ = WLAN_EID_EXT_SUPP_RATES; *pos++ = rates; memcpy(pos, &bss->supp_rates[8], rates); } memset(&control, 0, sizeof(control)); rate_control_get_rate(dev, local->oper_hw_mode, skb, &ratesel); if (!ratesel.rate) { printk(KERN_DEBUG "%s: Failed to determine TX rate " "for IBSS beacon\n", dev->name); break; } control.tx_rate = ((sdata->flags & IEEE80211_SDATA_SHORT_PREAMBLE) && (ratesel.rate->flags & IEEE80211_RATE_PREAMBLE2)) ? ratesel.rate->val2 : ratesel.rate->val; control.antenna_sel_tx = local->hw.conf.antenna_sel_tx; control.power_level = local->hw.conf.power_level; control.flags |= IEEE80211_TXCTL_NO_ACK; control.retry_limit = 1; ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC); if (ifsta->probe_resp) { mgmt = (struct ieee80211_mgmt *) ifsta->probe_resp->data; mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT, IEEE80211_STYPE_PROBE_RESP); } else { printk(KERN_DEBUG "%s: Could not allocate ProbeResp " "template for IBSS\n", dev->name); } if (local->ops->beacon_update && local->ops->beacon_update(local_to_hw(local), skb, &control) == 0) { printk(KERN_DEBUG "%s: Configured IBSS beacon " "template based on scan results\n", dev->name); skb = NULL; } rates = 0; mode = local->oper_hw_mode; for (i = 0; i < bss->supp_rates_len; i++) { int bitrate = (bss->supp_rates[i] & 0x7f) * 5; for (j = 0; j < mode->num_rates; j++) if (mode->rates[j].rate == bitrate) rates |= BIT(j); } ifsta->supp_rates_bits = rates; } while (0); if (skb) { printk(KERN_DEBUG "%s: Failed to configure IBSS beacon " "template\n", dev->name); dev_kfree_skb(skb); } ifsta->state = IEEE80211_IBSS_JOINED; mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL); ieee80211_rx_bss_put(dev, bss); return res; } static int ieee80211_sta_create_ibss(struct net_device *dev, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sta_bss *bss; struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_hw_mode *mode; u8 bssid[ETH_ALEN], *pos; int i; DECLARE_MAC_BUF(mac); #if 0 /* Easier testing, use fixed BSSID. */ memset(bssid, 0xfe, ETH_ALEN); #else /* Generate random, not broadcast, locally administered BSSID. Mix in * own MAC address to make sure that devices that do not have proper * random number generator get different BSSID. */ get_random_bytes(bssid, ETH_ALEN); for (i = 0; i < ETH_ALEN; i++) bssid[i] ^= dev->dev_addr[i]; bssid[0] &= ~0x01; bssid[0] |= 0x02; #endif printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n", dev->name, print_mac(mac, bssid)); bss = ieee80211_rx_bss_add(dev, bssid, local->hw.conf.channel, sdata->u.sta.ssid, sdata->u.sta.ssid_len); if (!bss) return -ENOMEM; mode = local->oper_hw_mode; if (local->hw.conf.beacon_int == 0) local->hw.conf.beacon_int = 100; bss->beacon_int = local->hw.conf.beacon_int; bss->hw_mode = local->hw.conf.phymode; bss->freq = local->hw.conf.freq; bss->last_update = jiffies; bss->capability = WLAN_CAPABILITY_IBSS; if (sdata->default_key) { bss->capability |= WLAN_CAPABILITY_PRIVACY; } else sdata->drop_unencrypted = 0; bss->supp_rates_len = mode->num_rates; pos = bss->supp_rates; for (i = 0; i < mode->num_rates; i++) { int rate = mode->rates[i].rate; *pos++ = (u8) (rate / 5); } return ieee80211_sta_join_ibss(dev, ifsta, bss); } static int ieee80211_sta_find_ibss(struct net_device *dev, struct ieee80211_if_sta *ifsta) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sta_bss *bss; int found = 0; u8 bssid[ETH_ALEN]; int active_ibss; DECLARE_MAC_BUF(mac); DECLARE_MAC_BUF(mac2); if (ifsta->ssid_len == 0) return -EINVAL; active_ibss = ieee80211_sta_active_ibss(dev); #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n", dev->name, active_ibss); #endif /* CONFIG_MAC80211_IBSS_DEBUG */ spin_lock_bh(&local->sta_bss_lock); list_for_each_entry(bss, &local->sta_bss_list, list) { if (ifsta->ssid_len != bss->ssid_len || memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0 || !(bss->capability & WLAN_CAPABILITY_IBSS)) continue; #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG " bssid=%s found\n", print_mac(mac, bss->bssid)); #endif /* CONFIG_MAC80211_IBSS_DEBUG */ memcpy(bssid, bss->bssid, ETH_ALEN); found = 1; if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0) break; } spin_unlock_bh(&local->sta_bss_lock); #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG " sta_find_ibss: selected %s current " "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid)); #endif /* CONFIG_MAC80211_IBSS_DEBUG */ if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 && (bss = ieee80211_rx_bss_get(dev, bssid, local->hw.conf.channel, ifsta->ssid, ifsta->ssid_len))) { printk(KERN_DEBUG "%s: Selected IBSS BSSID %s" " based on configured SSID\n", dev->name, print_mac(mac, bssid)); return ieee80211_sta_join_ibss(dev, ifsta, bss); } #ifdef CONFIG_MAC80211_IBSS_DEBUG printk(KERN_DEBUG " did not try to join ibss\n"); #endif /* CONFIG_MAC80211_IBSS_DEBUG */ /* Selected IBSS not found in current scan results - try to scan */ if (ifsta->state == IEEE80211_IBSS_JOINED && !ieee80211_sta_active_ibss(dev)) { mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL); } else if (time_after(jiffies, local->last_scan_completed + IEEE80211_SCAN_INTERVAL)) { printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to " "join\n", dev->name); return ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len); } else if (ifsta->state != IEEE80211_IBSS_JOINED) { int interval = IEEE80211_SCAN_INTERVAL; if (time_after(jiffies, ifsta->ibss_join_req + IEEE80211_IBSS_JOIN_TIMEOUT)) { if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) && local->oper_channel->flag & IEEE80211_CHAN_W_IBSS) return ieee80211_sta_create_ibss(dev, ifsta); if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) { printk(KERN_DEBUG "%s: IBSS not allowed on the" " configured channel %d (%d MHz)\n", dev->name, local->hw.conf.channel, local->hw.conf.freq); } /* No IBSS found - decrease scan interval and continue * scanning. */ interval = IEEE80211_SCAN_INTERVAL_SLOW; } ifsta->state = IEEE80211_IBSS_SEARCH; mod_timer(&ifsta->timer, jiffies + interval); return 0; } return 0; } int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len) { struct ieee80211_sub_if_data *sdata; struct ieee80211_if_sta *ifsta; struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); if (len > IEEE80211_MAX_SSID_LEN) return -EINVAL; /* TODO: This should always be done for IBSS, even if IEEE80211_QOS is * not defined. */ if (local->ops->conf_tx) { struct ieee80211_tx_queue_params qparam; int i; memset(&qparam, 0, sizeof(qparam)); /* TODO: are these ok defaults for all hw_modes? */ qparam.aifs = 2; qparam.cw_min = local->hw.conf.phymode == MODE_IEEE80211B ? 31 : 15; qparam.cw_max = 1023; qparam.burst_time = 0; for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++) { local->ops->conf_tx(local_to_hw(local), i + IEEE80211_TX_QUEUE_DATA0, &qparam); } /* IBSS uses different parameters for Beacon sending */ qparam.cw_min++; qparam.cw_min *= 2; qparam.cw_min--; local->ops->conf_tx(local_to_hw(local), IEEE80211_TX_QUEUE_BEACON, &qparam); } sdata = IEEE80211_DEV_TO_SUB_IF(dev); ifsta = &sdata->u.sta; if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0) ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET; memcpy(ifsta->ssid, ssid, len); memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len); ifsta->ssid_len = len; if (len) ifsta->flags |= IEEE80211_STA_SSID_SET; else ifsta->flags &= ~IEEE80211_STA_SSID_SET; if (sdata->type == IEEE80211_IF_TYPE_IBSS && !(ifsta->flags & IEEE80211_STA_BSSID_SET)) { ifsta->ibss_join_req = jiffies; ifsta->state = IEEE80211_IBSS_SEARCH; return ieee80211_sta_find_ibss(dev, ifsta); } return 0; } int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_if_sta *ifsta = &sdata->u.sta; memcpy(ssid, ifsta->ssid, ifsta->ssid_len); *len = ifsta->ssid_len; return 0; } int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid) { struct ieee80211_sub_if_data *sdata; struct ieee80211_if_sta *ifsta; int res; sdata = IEEE80211_DEV_TO_SUB_IF(dev); ifsta = &sdata->u.sta; if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) { memcpy(ifsta->bssid, bssid, ETH_ALEN); res = ieee80211_if_config(dev); if (res) { printk(KERN_DEBUG "%s: Failed to config new BSSID to " "the low-level driver\n", dev->name); return res; } } if (is_valid_ether_addr(bssid)) ifsta->flags |= IEEE80211_STA_BSSID_SET; else ifsta->flags &= ~IEEE80211_STA_BSSID_SET; return 0; } static void ieee80211_send_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, int powersave) { struct sk_buff *skb; struct ieee80211_hdr *nullfunc; u16 fc; skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24); if (!skb) { printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc " "frame\n", sdata->dev->name); return; } skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24); memset(nullfunc, 0, 24); fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_TODS; if (powersave) fc |= IEEE80211_FCTL_PM; nullfunc->frame_control = cpu_to_le16(fc); memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN); memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN); memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN); ieee80211_sta_tx(sdata->dev, skb, 0); } void ieee80211_scan_completed(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); struct net_device *dev = local->scan_dev; struct ieee80211_sub_if_data *sdata; union iwreq_data wrqu; local->last_scan_completed = jiffies; memset(&wrqu, 0, sizeof(wrqu)); wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL); if (local->sta_hw_scanning) { local->sta_hw_scanning = 0; goto done; } local->sta_sw_scanning = 0; if (ieee80211_hw_config(local)) printk(KERN_DEBUG "%s: failed to restore operational " "channel after scan\n", dev->name); netif_tx_lock_bh(local->mdev); local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC; local->ops->configure_filter(local_to_hw(local), FIF_BCN_PRBRESP_PROMISC, &local->filter_flags, local->mdev->mc_count, local->mdev->mc_list); netif_tx_unlock_bh(local->mdev); rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { /* No need to wake the master device. */ if (sdata->dev == local->mdev) continue; if (sdata->type == IEEE80211_IF_TYPE_STA) { if (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED) ieee80211_send_nullfunc(local, sdata, 0); ieee80211_sta_timer((unsigned long)sdata); } netif_wake_queue(sdata->dev); } rcu_read_unlock(); done: sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (sdata->type == IEEE80211_IF_TYPE_IBSS) { struct ieee80211_if_sta *ifsta = &sdata->u.sta; if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) || (!ifsta->state == IEEE80211_IBSS_JOINED && !ieee80211_sta_active_ibss(dev))) ieee80211_sta_find_ibss(dev, ifsta); } } EXPORT_SYMBOL(ieee80211_scan_completed); void ieee80211_sta_scan_work(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, scan_work.work); struct net_device *dev = local->scan_dev; struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_hw_mode *mode; struct ieee80211_channel *chan; int skip; unsigned long next_delay = 0; if (!local->sta_sw_scanning) return; switch (local->scan_state) { case SCAN_SET_CHANNEL: mode = local->scan_hw_mode; if (local->scan_hw_mode->list.next == &local->modes_list && local->scan_channel_idx >= mode->num_channels) { ieee80211_scan_completed(local_to_hw(local)); return; } skip = !(local->enabled_modes & (1 << mode->mode)); chan = &mode->channels[local->scan_channel_idx]; if (!(chan->flag & IEEE80211_CHAN_W_SCAN) || (sdata->type == IEEE80211_IF_TYPE_IBSS && !(chan->flag & IEEE80211_CHAN_W_IBSS)) || (local->hw_modes & local->enabled_modes & (1 << MODE_IEEE80211G) && mode->mode == MODE_IEEE80211B)) skip = 1; if (!skip) { #if 0 printk(KERN_DEBUG "%s: scan channel %d (%d MHz)\n", dev->name, chan->chan, chan->freq); #endif local->scan_channel = chan; if (ieee80211_hw_config(local)) { printk(KERN_DEBUG "%s: failed to set channel " "%d (%d MHz) for scan\n", dev->name, chan->chan, chan->freq); skip = 1; } } local->scan_channel_idx++; if (local->scan_channel_idx >= local->scan_hw_mode->num_channels) { if (local->scan_hw_mode->list.next != &local->modes_list) { local->scan_hw_mode = list_entry(local->scan_hw_mode->list.next, struct ieee80211_hw_mode, list); local->scan_channel_idx = 0; } } if (skip) break; next_delay = IEEE80211_PROBE_DELAY + usecs_to_jiffies(local->hw.channel_change_time); local->scan_state = SCAN_SEND_PROBE; break; case SCAN_SEND_PROBE: if (local->scan_channel->flag & IEEE80211_CHAN_W_ACTIVE_SCAN) { ieee80211_send_probe_req(dev, NULL, local->scan_ssid, local->scan_ssid_len); next_delay = IEEE80211_CHANNEL_TIME; } else next_delay = IEEE80211_PASSIVE_CHANNEL_TIME; local->scan_state = SCAN_SET_CHANNEL; break; } if (local->sta_sw_scanning) queue_delayed_work(local->hw.workqueue, &local->scan_work, next_delay); } static int ieee80211_sta_start_scan(struct net_device *dev, u8 *ssid, size_t ssid_len) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata; if (ssid_len > IEEE80211_MAX_SSID_LEN) return -EINVAL; /* MLME-SCAN.request (page 118) page 144 (11.1.3.1) * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS * BSSID: MACAddress * SSID * ScanType: ACTIVE, PASSIVE * ProbeDelay: delay (in microseconds) to be used prior to transmitting * a Probe frame during active scanning * ChannelList * MinChannelTime (>= ProbeDelay), in TU * MaxChannelTime: (>= MinChannelTime), in TU */ /* MLME-SCAN.confirm * BSSDescriptionSet * ResultCode: SUCCESS, INVALID_PARAMETERS */ if (local->sta_sw_scanning || local->sta_hw_scanning) { if (local->scan_dev == dev) return 0; return -EBUSY; } if (local->ops->hw_scan) { int rc = local->ops->hw_scan(local_to_hw(local), ssid, ssid_len); if (!rc) { local->sta_hw_scanning = 1; local->scan_dev = dev; } return rc; } local->sta_sw_scanning = 1; rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { /* Don't stop the master interface, otherwise we can't transmit * probes! */ if (sdata->dev == local->mdev) continue; netif_stop_queue(sdata->dev); if (sdata->type == IEEE80211_IF_TYPE_STA && (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)) ieee80211_send_nullfunc(local, sdata, 1); } rcu_read_unlock(); if (ssid) { local->scan_ssid_len = ssid_len; memcpy(local->scan_ssid, ssid, ssid_len); } else local->scan_ssid_len = 0; local->scan_state = SCAN_SET_CHANNEL; local->scan_hw_mode = list_entry(local->modes_list.next, struct ieee80211_hw_mode, list); local->scan_channel_idx = 0; local->scan_dev = dev; netif_tx_lock_bh(local->mdev); local->filter_flags |= FIF_BCN_PRBRESP_PROMISC; local->ops->configure_filter(local_to_hw(local), FIF_BCN_PRBRESP_PROMISC, &local->filter_flags, local->mdev->mc_count, local->mdev->mc_list); netif_tx_unlock_bh(local->mdev); /* TODO: start scan as soon as all nullfunc frames are ACKed */ queue_delayed_work(local->hw.workqueue, &local->scan_work, IEEE80211_CHANNEL_TIME); return 0; } int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_if_sta *ifsta = &sdata->u.sta; struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); if (sdata->type != IEEE80211_IF_TYPE_STA) return ieee80211_sta_start_scan(dev, ssid, ssid_len); if (local->sta_sw_scanning || local->sta_hw_scanning) { if (local->scan_dev == dev) return 0; return -EBUSY; } ifsta->scan_ssid_len = ssid_len; if (ssid_len) memcpy(ifsta->scan_ssid, ssid, ssid_len); set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request); queue_work(local->hw.workqueue, &ifsta->work); return 0; } static char * ieee80211_sta_scan_result(struct net_device *dev, struct ieee80211_sta_bss *bss, char *current_ev, char *end_buf) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct iw_event iwe; if (time_after(jiffies, bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE)) return current_ev; if (!(local->enabled_modes & (1 << bss->hw_mode))) return current_ev; memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWAP; iwe.u.ap_addr.sa_family = ARPHRD_ETHER; memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN); current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe, IW_EV_ADDR_LEN); memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWESSID; iwe.u.data.length = bss->ssid_len; iwe.u.data.flags = 1; current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, bss->ssid); if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)) { memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWMODE; if (bss->capability & WLAN_CAPABILITY_ESS) iwe.u.mode = IW_MODE_MASTER; else iwe.u.mode = IW_MODE_ADHOC; current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe, IW_EV_UINT_LEN); } memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWFREQ; iwe.u.freq.m = bss->channel; iwe.u.freq.e = 0; current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe, IW_EV_FREQ_LEN); iwe.u.freq.m = bss->freq * 100000; iwe.u.freq.e = 1; current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe, IW_EV_FREQ_LEN); memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVQUAL; iwe.u.qual.qual = bss->signal; iwe.u.qual.level = bss->rssi; iwe.u.qual.noise = bss->noise; iwe.u.qual.updated = local->wstats_flags; current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe, IW_EV_QUAL_LEN); memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWENCODE; if (bss->capability & WLAN_CAPABILITY_PRIVACY) iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; else iwe.u.data.flags = IW_ENCODE_DISABLED; iwe.u.data.length = 0; current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, ""); if (bss && bss->wpa_ie) { memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVGENIE; iwe.u.data.length = bss->wpa_ie_len; current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, bss->wpa_ie); } if (bss && bss->rsn_ie) { memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVGENIE; iwe.u.data.length = bss->rsn_ie_len; current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, bss->rsn_ie); } if (bss && bss->supp_rates_len > 0) { /* display all supported rates in readable format */ char *p = current_ev + IW_EV_LCP_LEN; int i; memset(&iwe, 0, sizeof(iwe)); iwe.cmd = SIOCGIWRATE; /* Those two flags are ignored... */ iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; for (i = 0; i < bss->supp_rates_len; i++) { iwe.u.bitrate.value = ((bss->supp_rates[i] & 0x7f) * 500000); p = iwe_stream_add_value(current_ev, p, end_buf, &iwe, IW_EV_PARAM_LEN); } current_ev = p; } if (bss) { char *buf; buf = kmalloc(30, GFP_ATOMIC); if (buf) { memset(&iwe, 0, sizeof(iwe)); iwe.cmd = IWEVCUSTOM; sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp)); iwe.u.data.length = strlen(buf); current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, buf); kfree(buf); } } return current_ev; } int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); char *current_ev = buf; char *end_buf = buf + len; struct ieee80211_sta_bss *bss; spin_lock_bh(&local->sta_bss_lock); list_for_each_entry(bss, &local->sta_bss_list, list) { if (buf + len - current_ev <= IW_EV_ADDR_LEN) { spin_unlock_bh(&local->sta_bss_lock); return -E2BIG; } current_ev = ieee80211_sta_scan_result(dev, bss, current_ev, end_buf); } spin_unlock_bh(&local->sta_bss_lock); return current_ev - buf; } int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_if_sta *ifsta = &sdata->u.sta; kfree(ifsta->extra_ie); if (len == 0) { ifsta->extra_ie = NULL; ifsta->extra_ie_len = 0; return 0; } ifsta->extra_ie = kmalloc(len, GFP_KERNEL); if (!ifsta->extra_ie) { ifsta->extra_ie_len = 0; return -ENOMEM; } memcpy(ifsta->extra_ie, ie, len); ifsta->extra_ie_len = len; return 0; } struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev, struct sk_buff *skb, u8 *bssid, u8 *addr) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct sta_info *sta; struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); DECLARE_MAC_BUF(mac); /* TODO: Could consider removing the least recently used entry and * allow new one to be added. */ if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: No room for a new IBSS STA " "entry %s\n", dev->name, print_mac(mac, addr)); } return NULL; } printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n", wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name); sta = sta_info_add(local, dev, addr, GFP_ATOMIC); if (!sta) return NULL; sta->supp_rates = sdata->u.sta.supp_rates_bits; rate_control_rate_init(sta, local); return sta; /* caller will call sta_info_put() */ } int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_if_sta *ifsta = &sdata->u.sta; printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n", dev->name, reason); if (sdata->type != IEEE80211_IF_TYPE_STA && sdata->type != IEEE80211_IF_TYPE_IBSS) return -EINVAL; ieee80211_send_deauth(dev, ifsta, reason); ieee80211_set_disassoc(dev, ifsta, 1); return 0; } int ieee80211_sta_disassociate(struct net_device *dev, u16 reason) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_if_sta *ifsta = &sdata->u.sta; printk(KERN_DEBUG "%s: disassociate(reason=%d)\n", dev->name, reason); if (sdata->type != IEEE80211_IF_TYPE_STA) return -EINVAL; if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED)) return -1; ieee80211_send_disassoc(dev, ifsta, reason); ieee80211_set_disassoc(dev, ifsta, 0); return 0; }