/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_debug.h" #include #include #include #include "atom-types.h" #include "atombios.h" #include "processpptables.h" #include "cgs_common.h" #include "smu/smu_8_0_d.h" #include "smu8_fusion.h" #include "smu/smu_8_0_sh_mask.h" #include "smumgr.h" #include "hwmgr.h" #include "hardwaremanager.h" #include "cz_ppsmc.h" #include "smu8_hwmgr.h" #include "power_state.h" #include "pp_thermal.h" #define ixSMUSVI_NB_CURRENTVID 0xD8230044 #define CURRENT_NB_VID_MASK 0xff000000 #define CURRENT_NB_VID__SHIFT 24 #define ixSMUSVI_GFX_CURRENTVID 0xD8230048 #define CURRENT_GFX_VID_MASK 0xff000000 #define CURRENT_GFX_VID__SHIFT 24 static const unsigned long smu8_magic = (unsigned long) PHM_Cz_Magic; static struct smu8_power_state *cast_smu8_power_state(struct pp_hw_power_state *hw_ps) { if (smu8_magic != hw_ps->magic) return NULL; return (struct smu8_power_state *)hw_ps; } static const struct smu8_power_state *cast_const_smu8_power_state( const struct pp_hw_power_state *hw_ps) { if (smu8_magic != hw_ps->magic) return NULL; return (struct smu8_power_state *)hw_ps; } static uint32_t smu8_get_eclk_level(struct pp_hwmgr *hwmgr, uint32_t clock, uint32_t msg) { int i = 0; struct phm_vce_clock_voltage_dependency_table *ptable = hwmgr->dyn_state.vce_clock_voltage_dependency_table; switch (msg) { case PPSMC_MSG_SetEclkSoftMin: case PPSMC_MSG_SetEclkHardMin: for (i = 0; i < (int)ptable->count; i++) { if (clock <= ptable->entries[i].ecclk) break; } break; case PPSMC_MSG_SetEclkSoftMax: case PPSMC_MSG_SetEclkHardMax: for (i = ptable->count - 1; i >= 0; i--) { if (clock >= ptable->entries[i].ecclk) break; } break; default: break; } return i; } static uint32_t smu8_get_sclk_level(struct pp_hwmgr *hwmgr, uint32_t clock, uint32_t msg) { int i = 0; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; switch (msg) { case PPSMC_MSG_SetSclkSoftMin: case PPSMC_MSG_SetSclkHardMin: for (i = 0; i < (int)table->count; i++) { if (clock <= table->entries[i].clk) break; } break; case PPSMC_MSG_SetSclkSoftMax: case PPSMC_MSG_SetSclkHardMax: for (i = table->count - 1; i >= 0; i--) { if (clock >= table->entries[i].clk) break; } break; default: break; } return i; } static uint32_t smu8_get_uvd_level(struct pp_hwmgr *hwmgr, uint32_t clock, uint32_t msg) { int i = 0; struct phm_uvd_clock_voltage_dependency_table *ptable = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; switch (msg) { case PPSMC_MSG_SetUvdSoftMin: case PPSMC_MSG_SetUvdHardMin: for (i = 0; i < (int)ptable->count; i++) { if (clock <= ptable->entries[i].vclk) break; } break; case PPSMC_MSG_SetUvdSoftMax: case PPSMC_MSG_SetUvdHardMax: for (i = ptable->count - 1; i >= 0; i--) { if (clock >= ptable->entries[i].vclk) break; } break; default: break; } return i; } static uint32_t smu8_get_max_sclk_level(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; if (data->max_sclk_level == 0) { smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxSclkLevel); data->max_sclk_level = smum_get_argument(hwmgr) + 1; } return data->max_sclk_level; } static int smu8_initialize_dpm_defaults(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct amdgpu_device *adev = hwmgr->adev; data->gfx_ramp_step = 256*25/100; data->gfx_ramp_delay = 1; /* by default, we delay 1us */ data->mgcg_cgtt_local0 = 0x00000000; data->mgcg_cgtt_local1 = 0x00000000; data->clock_slow_down_freq = 25000; data->skip_clock_slow_down = 1; data->enable_nb_ps_policy = 1; /* disable until UNB is ready, Enabled */ data->voltage_drop_in_dce_power_gating = 0; /* disable until fully verified */ data->voting_rights_clients = 0x00C00033; data->static_screen_threshold = 8; data->ddi_power_gating_disabled = 0; data->bapm_enabled = 1; data->voltage_drop_threshold = 0; data->gfx_power_gating_threshold = 500; data->vce_slow_sclk_threshold = 20000; data->dce_slow_sclk_threshold = 30000; data->disable_driver_thermal_policy = 1; data->disable_nb_ps3_in_battery = 0; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ABM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_NonABMSupportInPPLib); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicM3Arbiter); data->override_dynamic_mgpg = 1; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPatchPowerState); data->thermal_auto_throttling_treshold = 0; data->tdr_clock = 0; data->disable_gfx_power_gating_in_uvd = 0; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicUVDState); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEDPM); data->cc6_settings.cpu_cc6_disable = false; data->cc6_settings.cpu_pstate_disable = false; data->cc6_settings.nb_pstate_switch_disable = false; data->cc6_settings.cpu_pstate_separation_time = 0; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableVoltageIsland); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); if (adev->pg_flags & AMD_PG_SUPPORT_UVD) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); if (adev->pg_flags & AMD_PG_SUPPORT_VCE) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); return 0; } static uint32_t smu8_convert_8Bit_index_to_voltage( struct pp_hwmgr *hwmgr, uint16_t voltage) { return 6200 - (voltage * 25); } static int smu8_construct_max_power_limits_table(struct pp_hwmgr *hwmgr, struct phm_clock_and_voltage_limits *table) { struct smu8_hwmgr *data = hwmgr->backend; struct smu8_sys_info *sys_info = &data->sys_info; struct phm_clock_voltage_dependency_table *dep_table = hwmgr->dyn_state.vddc_dependency_on_sclk; if (dep_table->count > 0) { table->sclk = dep_table->entries[dep_table->count-1].clk; table->vddc = smu8_convert_8Bit_index_to_voltage(hwmgr, (uint16_t)dep_table->entries[dep_table->count-1].v); } table->mclk = sys_info->nbp_memory_clock[0]; return 0; } static int smu8_init_dynamic_state_adjustment_rule_settings( struct pp_hwmgr *hwmgr, ATOM_CLK_VOLT_CAPABILITY *disp_voltage_table) { uint32_t table_size = sizeof(struct phm_clock_voltage_dependency_table) + (7 * sizeof(struct phm_clock_voltage_dependency_record)); struct phm_clock_voltage_dependency_table *table_clk_vlt = kzalloc(table_size, GFP_KERNEL); if (NULL == table_clk_vlt) { pr_err("Can not allocate memory!\n"); return -ENOMEM; } table_clk_vlt->count = 8; table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_0; table_clk_vlt->entries[0].v = 0; table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_1; table_clk_vlt->entries[1].v = 1; table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_2; table_clk_vlt->entries[2].v = 2; table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_3; table_clk_vlt->entries[3].v = 3; table_clk_vlt->entries[4].clk = PP_DAL_POWERLEVEL_4; table_clk_vlt->entries[4].v = 4; table_clk_vlt->entries[5].clk = PP_DAL_POWERLEVEL_5; table_clk_vlt->entries[5].v = 5; table_clk_vlt->entries[6].clk = PP_DAL_POWERLEVEL_6; table_clk_vlt->entries[6].v = 6; table_clk_vlt->entries[7].clk = PP_DAL_POWERLEVEL_7; table_clk_vlt->entries[7].v = 7; hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt; return 0; } static int smu8_get_system_info_data(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; ATOM_INTEGRATED_SYSTEM_INFO_V1_9 *info = NULL; uint32_t i; int result = 0; uint8_t frev, crev; uint16_t size; info = (ATOM_INTEGRATED_SYSTEM_INFO_V1_9 *)smu_atom_get_data_table(hwmgr->adev, GetIndexIntoMasterTable(DATA, IntegratedSystemInfo), &size, &frev, &crev); if (info == NULL) { pr_err("Could not retrieve the Integrated System Info Table!\n"); return -EINVAL; } if (crev != 9) { pr_err("Unsupported IGP table: %d %d\n", frev, crev); return -EINVAL; } data->sys_info.bootup_uma_clock = le32_to_cpu(info->ulBootUpUMAClock); data->sys_info.bootup_engine_clock = le32_to_cpu(info->ulBootUpEngineClock); data->sys_info.dentist_vco_freq = le32_to_cpu(info->ulDentistVCOFreq); data->sys_info.system_config = le32_to_cpu(info->ulSystemConfig); data->sys_info.bootup_nb_voltage_index = le16_to_cpu(info->usBootUpNBVoltage); data->sys_info.htc_hyst_lmt = (info->ucHtcHystLmt == 0) ? 5 : info->ucHtcHystLmt; data->sys_info.htc_tmp_lmt = (info->ucHtcTmpLmt == 0) ? 203 : info->ucHtcTmpLmt; if (data->sys_info.htc_tmp_lmt <= data->sys_info.htc_hyst_lmt) { pr_err("The htcTmpLmt should be larger than htcHystLmt.\n"); return -EINVAL; } data->sys_info.nb_dpm_enable = data->enable_nb_ps_policy && (le32_to_cpu(info->ulSystemConfig) >> 3 & 0x1); for (i = 0; i < SMU8_NUM_NBPSTATES; i++) { if (i < SMU8_NUM_NBPMEMORYCLOCK) { data->sys_info.nbp_memory_clock[i] = le32_to_cpu(info->ulNbpStateMemclkFreq[i]); } data->sys_info.nbp_n_clock[i] = le32_to_cpu(info->ulNbpStateNClkFreq[i]); } for (i = 0; i < MAX_DISPLAY_CLOCK_LEVEL; i++) { data->sys_info.display_clock[i] = le32_to_cpu(info->sDispClkVoltageMapping[i].ulMaximumSupportedCLK); } /* Here use 4 levels, make sure not exceed */ for (i = 0; i < SMU8_NUM_NBPSTATES; i++) { data->sys_info.nbp_voltage_index[i] = le16_to_cpu(info->usNBPStateVoltage[i]); } if (!data->sys_info.nb_dpm_enable) { for (i = 1; i < SMU8_NUM_NBPSTATES; i++) { if (i < SMU8_NUM_NBPMEMORYCLOCK) { data->sys_info.nbp_memory_clock[i] = data->sys_info.nbp_memory_clock[0]; } data->sys_info.nbp_n_clock[i] = data->sys_info.nbp_n_clock[0]; data->sys_info.nbp_voltage_index[i] = data->sys_info.nbp_voltage_index[0]; } } if (le32_to_cpu(info->ulGPUCapInfo) & SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableDFSBypass); } data->sys_info.uma_channel_number = info->ucUMAChannelNumber; smu8_construct_max_power_limits_table (hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac); smu8_init_dynamic_state_adjustment_rule_settings(hwmgr, &info->sDISPCLK_Voltage[0]); return result; } static int smu8_construct_boot_state(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; data->boot_power_level.engineClock = data->sys_info.bootup_engine_clock; data->boot_power_level.vddcIndex = (uint8_t)data->sys_info.bootup_nb_voltage_index; data->boot_power_level.dsDividerIndex = 0; data->boot_power_level.ssDividerIndex = 0; data->boot_power_level.allowGnbSlow = 1; data->boot_power_level.forceNBPstate = 0; data->boot_power_level.hysteresis_up = 0; data->boot_power_level.numSIMDToPowerDown = 0; data->boot_power_level.display_wm = 0; data->boot_power_level.vce_wm = 0; return 0; } static int smu8_upload_pptable_to_smu(struct pp_hwmgr *hwmgr) { struct SMU8_Fusion_ClkTable *clock_table; int ret; uint32_t i; void *table = NULL; pp_atomctrl_clock_dividers_kong dividers; struct phm_clock_voltage_dependency_table *vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk; struct phm_clock_voltage_dependency_table *vdd_gfx_table = hwmgr->dyn_state.vdd_gfx_dependency_on_sclk; struct phm_acp_clock_voltage_dependency_table *acp_table = hwmgr->dyn_state.acp_clock_voltage_dependency_table; struct phm_uvd_clock_voltage_dependency_table *uvd_table = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; struct phm_vce_clock_voltage_dependency_table *vce_table = hwmgr->dyn_state.vce_clock_voltage_dependency_table; if (!hwmgr->need_pp_table_upload) return 0; ret = smum_download_powerplay_table(hwmgr, &table); PP_ASSERT_WITH_CODE((0 == ret && NULL != table), "Fail to get clock table from SMU!", return -EINVAL;); clock_table = (struct SMU8_Fusion_ClkTable *)table; /* patch clock table */ PP_ASSERT_WITH_CODE((vddc_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); PP_ASSERT_WITH_CODE((vdd_gfx_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); PP_ASSERT_WITH_CODE((acp_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); PP_ASSERT_WITH_CODE((uvd_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); PP_ASSERT_WITH_CODE((vce_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); for (i = 0; i < SMU8_MAX_HARDWARE_POWERLEVELS; i++) { /* vddc_sclk */ clock_table->SclkBreakdownTable.ClkLevel[i].GnbVid = (i < vddc_table->count) ? (uint8_t)vddc_table->entries[i].v : 0; clock_table->SclkBreakdownTable.ClkLevel[i].Frequency = (i < vddc_table->count) ? vddc_table->entries[i].clk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->SclkBreakdownTable.ClkLevel[i].Frequency, ÷rs); clock_table->SclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; /* vddgfx_sclk */ clock_table->SclkBreakdownTable.ClkLevel[i].GfxVid = (i < vdd_gfx_table->count) ? (uint8_t)vdd_gfx_table->entries[i].v : 0; /* acp breakdown */ clock_table->AclkBreakdownTable.ClkLevel[i].GfxVid = (i < acp_table->count) ? (uint8_t)acp_table->entries[i].v : 0; clock_table->AclkBreakdownTable.ClkLevel[i].Frequency = (i < acp_table->count) ? acp_table->entries[i].acpclk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->AclkBreakdownTable.ClkLevel[i].Frequency, ÷rs); clock_table->AclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; /* uvd breakdown */ clock_table->VclkBreakdownTable.ClkLevel[i].GfxVid = (i < uvd_table->count) ? (uint8_t)uvd_table->entries[i].v : 0; clock_table->VclkBreakdownTable.ClkLevel[i].Frequency = (i < uvd_table->count) ? uvd_table->entries[i].vclk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->VclkBreakdownTable.ClkLevel[i].Frequency, ÷rs); clock_table->VclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; clock_table->DclkBreakdownTable.ClkLevel[i].GfxVid = (i < uvd_table->count) ? (uint8_t)uvd_table->entries[i].v : 0; clock_table->DclkBreakdownTable.ClkLevel[i].Frequency = (i < uvd_table->count) ? uvd_table->entries[i].dclk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->DclkBreakdownTable.ClkLevel[i].Frequency, ÷rs); clock_table->DclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; /* vce breakdown */ clock_table->EclkBreakdownTable.ClkLevel[i].GfxVid = (i < vce_table->count) ? (uint8_t)vce_table->entries[i].v : 0; clock_table->EclkBreakdownTable.ClkLevel[i].Frequency = (i < vce_table->count) ? vce_table->entries[i].ecclk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->EclkBreakdownTable.ClkLevel[i].Frequency, ÷rs); clock_table->EclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; } ret = smum_upload_powerplay_table(hwmgr); return ret; } static int smu8_init_sclk_limit(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; unsigned long clock = 0, level; if (NULL == table || table->count <= 0) return -EINVAL; data->sclk_dpm.soft_min_clk = table->entries[0].clk; data->sclk_dpm.hard_min_clk = table->entries[0].clk; level = smu8_get_max_sclk_level(hwmgr) - 1; if (level < table->count) clock = table->entries[level].clk; else clock = table->entries[table->count - 1].clk; data->sclk_dpm.soft_max_clk = clock; data->sclk_dpm.hard_max_clk = clock; return 0; } static int smu8_init_uvd_limit(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_uvd_clock_voltage_dependency_table *table = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; unsigned long clock = 0, level; if (NULL == table || table->count <= 0) return -EINVAL; data->uvd_dpm.soft_min_clk = 0; data->uvd_dpm.hard_min_clk = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxUvdLevel); level = smum_get_argument(hwmgr); if (level < table->count) clock = table->entries[level].vclk; else clock = table->entries[table->count - 1].vclk; data->uvd_dpm.soft_max_clk = clock; data->uvd_dpm.hard_max_clk = clock; return 0; } static int smu8_init_vce_limit(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_vce_clock_voltage_dependency_table *table = hwmgr->dyn_state.vce_clock_voltage_dependency_table; unsigned long clock = 0, level; if (NULL == table || table->count <= 0) return -EINVAL; data->vce_dpm.soft_min_clk = 0; data->vce_dpm.hard_min_clk = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxEclkLevel); level = smum_get_argument(hwmgr); if (level < table->count) clock = table->entries[level].ecclk; else clock = table->entries[table->count - 1].ecclk; data->vce_dpm.soft_max_clk = clock; data->vce_dpm.hard_max_clk = clock; return 0; } static int smu8_init_acp_limit(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_acp_clock_voltage_dependency_table *table = hwmgr->dyn_state.acp_clock_voltage_dependency_table; unsigned long clock = 0, level; if (NULL == table || table->count <= 0) return -EINVAL; data->acp_dpm.soft_min_clk = 0; data->acp_dpm.hard_min_clk = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxAclkLevel); level = smum_get_argument(hwmgr); if (level < table->count) clock = table->entries[level].acpclk; else clock = table->entries[table->count - 1].acpclk; data->acp_dpm.soft_max_clk = clock; data->acp_dpm.hard_max_clk = clock; return 0; } static void smu8_init_power_gate_state(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; data->uvd_power_gated = false; data->vce_power_gated = false; data->samu_power_gated = false; data->acp_power_gated = false; data->pgacpinit = true; } static void smu8_init_sclk_threshold(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; data->low_sclk_interrupt_threshold = 0; } static int smu8_update_sclk_limit(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; unsigned long clock = 0; unsigned long level; unsigned long stable_pstate_sclk; unsigned long percentage; data->sclk_dpm.soft_min_clk = table->entries[0].clk; level = smu8_get_max_sclk_level(hwmgr) - 1; if (level < table->count) data->sclk_dpm.soft_max_clk = table->entries[level].clk; else data->sclk_dpm.soft_max_clk = table->entries[table->count - 1].clk; clock = hwmgr->display_config.min_core_set_clock; if (clock == 0) pr_debug("min_core_set_clock not set\n"); if (data->sclk_dpm.hard_min_clk != clock) { data->sclk_dpm.hard_min_clk = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkHardMin, smu8_get_sclk_level(hwmgr, data->sclk_dpm.hard_min_clk, PPSMC_MSG_SetSclkHardMin)); } clock = data->sclk_dpm.soft_min_clk; /* update minimum clocks for Stable P-State feature */ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { percentage = 75; /*Sclk - calculate sclk value based on percentage and find FLOOR sclk from VddcDependencyOnSCLK table */ stable_pstate_sclk = (hwmgr->dyn_state.max_clock_voltage_on_ac.mclk * percentage) / 100; if (clock < stable_pstate_sclk) clock = stable_pstate_sclk; } if (data->sclk_dpm.soft_min_clk != clock) { data->sclk_dpm.soft_min_clk = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMin, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_min_clk, PPSMC_MSG_SetSclkSoftMin)); } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState) && data->sclk_dpm.soft_max_clk != clock) { data->sclk_dpm.soft_max_clk = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMax, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMax)); } return 0; } static int smu8_set_deep_sleep_sclk_threshold(struct pp_hwmgr *hwmgr) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { uint32_t clks = hwmgr->display_config.min_core_set_clock_in_sr; if (clks == 0) clks = SMU8_MIN_DEEP_SLEEP_SCLK; PP_DBG_LOG("Setting Deep Sleep Clock: %d\n", clks); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetMinDeepSleepSclk, clks); } return 0; } static int smu8_set_watermark_threshold(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWatermarkFrequency, data->sclk_dpm.soft_max_clk); return 0; } static int smu8_nbdpm_pstate_enable_disable(struct pp_hwmgr *hwmgr, bool enable, bool lock) { struct smu8_hwmgr *hw_data = hwmgr->backend; if (hw_data->is_nb_dpm_enabled) { if (enable) { PP_DBG_LOG("enable Low Memory PState.\n"); return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_EnableLowMemoryPstate, (lock ? 1 : 0)); } else { PP_DBG_LOG("disable Low Memory PState.\n"); return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DisableLowMemoryPstate, (lock ? 1 : 0)); } } return 0; } static int smu8_disable_nb_dpm(struct pp_hwmgr *hwmgr) { int ret = 0; struct smu8_hwmgr *data = hwmgr->backend; unsigned long dpm_features = 0; if (data->is_nb_dpm_enabled) { smu8_nbdpm_pstate_enable_disable(hwmgr, true, true); dpm_features |= NB_DPM_MASK; ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_DisableAllSmuFeatures, dpm_features); if (ret == 0) data->is_nb_dpm_enabled = false; } return ret; } static int smu8_enable_nb_dpm(struct pp_hwmgr *hwmgr) { int ret = 0; struct smu8_hwmgr *data = hwmgr->backend; unsigned long dpm_features = 0; if (!data->is_nb_dpm_enabled) { PP_DBG_LOG("enabling ALL SMU features.\n"); dpm_features |= NB_DPM_MASK; ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_EnableAllSmuFeatures, dpm_features); if (ret == 0) data->is_nb_dpm_enabled = true; } return ret; } static int smu8_update_low_mem_pstate(struct pp_hwmgr *hwmgr, const void *input) { bool disable_switch; bool enable_low_mem_state; struct smu8_hwmgr *hw_data = hwmgr->backend; const struct phm_set_power_state_input *states = (struct phm_set_power_state_input *)input; const struct smu8_power_state *pnew_state = cast_const_smu8_power_state(states->pnew_state); if (hw_data->sys_info.nb_dpm_enable) { disable_switch = hw_data->cc6_settings.nb_pstate_switch_disable ? true : false; enable_low_mem_state = hw_data->cc6_settings.nb_pstate_switch_disable ? false : true; if (pnew_state->action == FORCE_HIGH) smu8_nbdpm_pstate_enable_disable(hwmgr, false, disable_switch); else if (pnew_state->action == CANCEL_FORCE_HIGH) smu8_nbdpm_pstate_enable_disable(hwmgr, true, disable_switch); else smu8_nbdpm_pstate_enable_disable(hwmgr, enable_low_mem_state, disable_switch); } return 0; } static int smu8_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) { int ret = 0; smu8_update_sclk_limit(hwmgr); smu8_set_deep_sleep_sclk_threshold(hwmgr); smu8_set_watermark_threshold(hwmgr); ret = smu8_enable_nb_dpm(hwmgr); if (ret) return ret; smu8_update_low_mem_pstate(hwmgr, input); return 0; }; static int smu8_setup_asic_task(struct pp_hwmgr *hwmgr) { int ret; ret = smu8_upload_pptable_to_smu(hwmgr); if (ret) return ret; ret = smu8_init_sclk_limit(hwmgr); if (ret) return ret; ret = smu8_init_uvd_limit(hwmgr); if (ret) return ret; ret = smu8_init_vce_limit(hwmgr); if (ret) return ret; ret = smu8_init_acp_limit(hwmgr); if (ret) return ret; smu8_init_power_gate_state(hwmgr); smu8_init_sclk_threshold(hwmgr); return 0; } static void smu8_power_up_display_clock_sys_pll(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *hw_data = hwmgr->backend; hw_data->disp_clk_bypass_pending = false; hw_data->disp_clk_bypass = false; } static void smu8_clear_nb_dpm_flag(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *hw_data = hwmgr->backend; hw_data->is_nb_dpm_enabled = false; } static void smu8_reset_cc6_data(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *hw_data = hwmgr->backend; hw_data->cc6_settings.cc6_setting_changed = false; hw_data->cc6_settings.cpu_pstate_separation_time = 0; hw_data->cc6_settings.cpu_cc6_disable = false; hw_data->cc6_settings.cpu_pstate_disable = false; } static int smu8_power_off_asic(struct pp_hwmgr *hwmgr) { smu8_power_up_display_clock_sys_pll(hwmgr); smu8_clear_nb_dpm_flag(hwmgr); smu8_reset_cc6_data(hwmgr); return 0; }; static void smu8_program_voting_clients(struct pp_hwmgr *hwmgr) { cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_0, SMU8_VOTINGRIGHTSCLIENTS_DFLT0); } static void smu8_clear_voting_clients(struct pp_hwmgr *hwmgr) { cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_0, 0); } static int smu8_start_dpm(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; data->dpm_flags |= DPMFlags_SCLK_Enabled; return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_EnableAllSmuFeatures, SCLK_DPM_MASK); } static int smu8_stop_dpm(struct pp_hwmgr *hwmgr) { int ret = 0; struct smu8_hwmgr *data = hwmgr->backend; unsigned long dpm_features = 0; if (data->dpm_flags & DPMFlags_SCLK_Enabled) { dpm_features |= SCLK_DPM_MASK; data->dpm_flags &= ~DPMFlags_SCLK_Enabled; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DisableAllSmuFeatures, dpm_features); } return ret; } static int smu8_program_bootup_state(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; data->sclk_dpm.soft_min_clk = data->sys_info.bootup_engine_clock; data->sclk_dpm.soft_max_clk = data->sys_info.bootup_engine_clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMin, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_min_clk, PPSMC_MSG_SetSclkSoftMin)); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMax, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMax)); return 0; } static void smu8_reset_acp_boot_level(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; data->acp_boot_level = 0xff; } static int smu8_disable_dpm_tasks(struct pp_hwmgr *hwmgr) { smu8_disable_nb_dpm(hwmgr); smu8_clear_voting_clients(hwmgr); if (smu8_stop_dpm(hwmgr)) return -EINVAL; return 0; }; static int smu8_enable_dpm_tasks(struct pp_hwmgr *hwmgr) { smu8_program_voting_clients(hwmgr); if (smu8_start_dpm(hwmgr)) return -EINVAL; smu8_program_bootup_state(hwmgr); smu8_reset_acp_boot_level(hwmgr); return 0; }; static int smu8_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, struct pp_power_state *prequest_ps, const struct pp_power_state *pcurrent_ps) { struct smu8_power_state *smu8_ps = cast_smu8_power_state(&prequest_ps->hardware); const struct smu8_power_state *smu8_current_ps = cast_const_smu8_power_state(&pcurrent_ps->hardware); struct smu8_hwmgr *data = hwmgr->backend; struct PP_Clocks clocks = {0, 0, 0, 0}; bool force_high; uint32_t num_of_active_displays = 0; struct cgs_display_info info = {0}; smu8_ps->need_dfs_bypass = true; data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label); clocks.memoryClock = hwmgr->display_config.min_mem_set_clock != 0 ? hwmgr->display_config.min_mem_set_clock : data->sys_info.nbp_memory_clock[1]; cgs_get_active_displays_info(hwmgr->device, &info); num_of_active_displays = info.display_count; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) clocks.memoryClock = hwmgr->dyn_state.max_clock_voltage_on_ac.mclk; force_high = (clocks.memoryClock > data->sys_info.nbp_memory_clock[SMU8_NUM_NBPMEMORYCLOCK - 1]) || (num_of_active_displays >= 3); smu8_ps->action = smu8_current_ps->action; if (hwmgr->request_dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) smu8_nbdpm_pstate_enable_disable(hwmgr, false, false); else if (hwmgr->request_dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) smu8_nbdpm_pstate_enable_disable(hwmgr, false, true); else if (!force_high && (smu8_ps->action == FORCE_HIGH)) smu8_ps->action = CANCEL_FORCE_HIGH; else if (force_high && (smu8_ps->action != FORCE_HIGH)) smu8_ps->action = FORCE_HIGH; else smu8_ps->action = DO_NOTHING; return 0; } static int smu8_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { int result = 0; struct smu8_hwmgr *data; data = kzalloc(sizeof(struct smu8_hwmgr), GFP_KERNEL); if (data == NULL) return -ENOMEM; hwmgr->backend = data; result = smu8_initialize_dpm_defaults(hwmgr); if (result != 0) { pr_err("smu8_initialize_dpm_defaults failed\n"); return result; } result = smu8_get_system_info_data(hwmgr); if (result != 0) { pr_err("smu8_get_system_info_data failed\n"); return result; } smu8_construct_boot_state(hwmgr); hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = SMU8_MAX_HARDWARE_POWERLEVELS; return result; } static int smu8_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { if (hwmgr != NULL) { kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; kfree(hwmgr->backend); hwmgr->backend = NULL; } return 0; } static int smu8_phm_force_dpm_highest(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMin, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMin)); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMax, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMax)); return 0; } static int smu8_phm_unforce_dpm_levels(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; unsigned long clock = 0, level; if (NULL == table || table->count <= 0) return -EINVAL; data->sclk_dpm.soft_min_clk = table->entries[0].clk; data->sclk_dpm.hard_min_clk = table->entries[0].clk; hwmgr->pstate_sclk = table->entries[0].clk; hwmgr->pstate_mclk = 0; level = smu8_get_max_sclk_level(hwmgr) - 1; if (level < table->count) clock = table->entries[level].clk; else clock = table->entries[table->count - 1].clk; data->sclk_dpm.soft_max_clk = clock; data->sclk_dpm.hard_max_clk = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMin, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_min_clk, PPSMC_MSG_SetSclkSoftMin)); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMax, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMax)); return 0; } static int smu8_phm_force_dpm_lowest(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMax, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_min_clk, PPSMC_MSG_SetSclkSoftMax)); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMin, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_min_clk, PPSMC_MSG_SetSclkSoftMin)); return 0; } static int smu8_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { int ret = 0; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: ret = smu8_phm_force_dpm_highest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_LOW: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: ret = smu8_phm_force_dpm_lowest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_AUTO: ret = smu8_phm_unforce_dpm_levels(hwmgr); break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: default: break; } return ret; } static int smu8_dpm_powerdown_uvd(struct pp_hwmgr *hwmgr) { if (PP_CAP(PHM_PlatformCaps_UVDPowerGating)) return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UVDPowerOFF); return 0; } static int smu8_dpm_powerup_uvd(struct pp_hwmgr *hwmgr) { if (PP_CAP(PHM_PlatformCaps_UVDPowerGating)) { return smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_UVDPowerON, PP_CAP(PHM_PlatformCaps_UVDDynamicPowerGating) ? 1 : 0); } return 0; } static int smu8_dpm_update_vce_dpm(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_vce_clock_voltage_dependency_table *ptable = hwmgr->dyn_state.vce_clock_voltage_dependency_table; /* Stable Pstate is enabled and we need to set the VCE DPM to highest level */ if (PP_CAP(PHM_PlatformCaps_StablePState) || hwmgr->en_umd_pstate) { data->vce_dpm.hard_min_clk = ptable->entries[ptable->count - 1].ecclk; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetEclkHardMin, smu8_get_eclk_level(hwmgr, data->vce_dpm.hard_min_clk, PPSMC_MSG_SetEclkHardMin)); } else { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetEclkHardMin, 0); /* disable ECLK DPM 0. Otherwise VCE could hang if * switching SCLK from DPM 0 to 6/7 */ smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetEclkSoftMin, 1); } return 0; } static int smu8_dpm_powerdown_vce(struct pp_hwmgr *hwmgr) { if (PP_CAP(PHM_PlatformCaps_VCEPowerGating)) return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_VCEPowerOFF); return 0; } static int smu8_dpm_powerup_vce(struct pp_hwmgr *hwmgr) { if (PP_CAP(PHM_PlatformCaps_VCEPowerGating)) return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_VCEPowerON); return 0; } static uint32_t smu8_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { struct smu8_hwmgr *data = hwmgr->backend; return data->sys_info.bootup_uma_clock; } static uint32_t smu8_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { struct pp_power_state *ps; struct smu8_power_state *smu8_ps; if (hwmgr == NULL) return -EINVAL; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; smu8_ps = cast_smu8_power_state(&ps->hardware); if (low) return smu8_ps->levels[0].engineClock; else return smu8_ps->levels[smu8_ps->level-1].engineClock; } static int smu8_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps) { struct smu8_hwmgr *data = hwmgr->backend; struct smu8_power_state *smu8_ps = cast_smu8_power_state(hw_ps); smu8_ps->level = 1; smu8_ps->nbps_flags = 0; smu8_ps->bapm_flags = 0; smu8_ps->levels[0] = data->boot_power_level; return 0; } static int smu8_dpm_get_pp_table_entry_callback( struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps, unsigned int index, const void *clock_info) { struct smu8_power_state *smu8_ps = cast_smu8_power_state(hw_ps); const ATOM_PPLIB_CZ_CLOCK_INFO *smu8_clock_info = clock_info; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; uint8_t clock_info_index = smu8_clock_info->index; if (clock_info_index > (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1)) clock_info_index = (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1); smu8_ps->levels[index].engineClock = table->entries[clock_info_index].clk; smu8_ps->levels[index].vddcIndex = (uint8_t)table->entries[clock_info_index].v; smu8_ps->level = index + 1; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { smu8_ps->levels[index].dsDividerIndex = 5; smu8_ps->levels[index].ssDividerIndex = 5; } return 0; } static int smu8_dpm_get_num_of_pp_table_entries(struct pp_hwmgr *hwmgr) { int result; unsigned long ret = 0; result = pp_tables_get_num_of_entries(hwmgr, &ret); return result ? 0 : ret; } static int smu8_dpm_get_pp_table_entry(struct pp_hwmgr *hwmgr, unsigned long entry, struct pp_power_state *ps) { int result; struct smu8_power_state *smu8_ps; ps->hardware.magic = smu8_magic; smu8_ps = cast_smu8_power_state(&(ps->hardware)); result = pp_tables_get_entry(hwmgr, entry, ps, smu8_dpm_get_pp_table_entry_callback); smu8_ps->uvd_clocks.vclk = ps->uvd_clocks.VCLK; smu8_ps->uvd_clocks.dclk = ps->uvd_clocks.DCLK; return result; } static int smu8_get_power_state_size(struct pp_hwmgr *hwmgr) { return sizeof(struct smu8_power_state); } static void smu8_hw_print_display_cfg( const struct cc6_settings *cc6_settings) { PP_DBG_LOG("New Display Configuration:\n"); PP_DBG_LOG(" cpu_cc6_disable: %d\n", cc6_settings->cpu_cc6_disable); PP_DBG_LOG(" cpu_pstate_disable: %d\n", cc6_settings->cpu_pstate_disable); PP_DBG_LOG(" nb_pstate_switch_disable: %d\n", cc6_settings->nb_pstate_switch_disable); PP_DBG_LOG(" cpu_pstate_separation_time: %d\n\n", cc6_settings->cpu_pstate_separation_time); } static int smu8_set_cpu_power_state(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *hw_data = hwmgr->backend; uint32_t data = 0; if (hw_data->cc6_settings.cc6_setting_changed) { hw_data->cc6_settings.cc6_setting_changed = false; smu8_hw_print_display_cfg(&hw_data->cc6_settings); data |= (hw_data->cc6_settings.cpu_pstate_separation_time & PWRMGT_SEPARATION_TIME_MASK) << PWRMGT_SEPARATION_TIME_SHIFT; data |= (hw_data->cc6_settings.cpu_cc6_disable ? 0x1 : 0x0) << PWRMGT_DISABLE_CPU_CSTATES_SHIFT; data |= (hw_data->cc6_settings.cpu_pstate_disable ? 0x1 : 0x0) << PWRMGT_DISABLE_CPU_PSTATES_SHIFT; PP_DBG_LOG("SetDisplaySizePowerParams data: 0x%X\n", data); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetDisplaySizePowerParams, data); } return 0; } static int smu8_store_cc6_data(struct pp_hwmgr *hwmgr, uint32_t separation_time, bool cc6_disable, bool pstate_disable, bool pstate_switch_disable) { struct smu8_hwmgr *hw_data = hwmgr->backend; if (separation_time != hw_data->cc6_settings.cpu_pstate_separation_time || cc6_disable != hw_data->cc6_settings.cpu_cc6_disable || pstate_disable != hw_data->cc6_settings.cpu_pstate_disable || pstate_switch_disable != hw_data->cc6_settings.nb_pstate_switch_disable) { hw_data->cc6_settings.cc6_setting_changed = true; hw_data->cc6_settings.cpu_pstate_separation_time = separation_time; hw_data->cc6_settings.cpu_cc6_disable = cc6_disable; hw_data->cc6_settings.cpu_pstate_disable = pstate_disable; hw_data->cc6_settings.nb_pstate_switch_disable = pstate_switch_disable; } return 0; } static int smu8_get_dal_power_level(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *info) { uint32_t i; const struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dep_on_dal_pwrl; const struct phm_clock_and_voltage_limits *limits = &hwmgr->dyn_state.max_clock_voltage_on_ac; info->engine_max_clock = limits->sclk; info->memory_max_clock = limits->mclk; for (i = table->count - 1; i > 0; i--) { if (limits->vddc >= table->entries[i].v) { info->level = table->entries[i].clk; return 0; } } return -EINVAL; } static int smu8_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask) { switch (type) { case PP_SCLK: smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMin, mask); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMax, mask); break; default: break; } return 0; } static int smu8_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_clock_voltage_dependency_table *sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk; int i, now, size = 0; switch (type) { case PP_SCLK: now = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX), TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX); for (i = 0; i < sclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, sclk_table->entries[i].clk / 100, (i == now) ? "*" : ""); break; case PP_MCLK: now = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX), TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX); for (i = SMU8_NUM_NBPMEMORYCLOCK; i > 0; i--) size += sprintf(buf + size, "%d: %uMhz %s\n", SMU8_NUM_NBPMEMORYCLOCK-i, data->sys_info.nbp_memory_clock[i-1] / 100, (SMU8_NUM_NBPMEMORYCLOCK-i == now) ? "*" : ""); break; default: break; } return size; } static int smu8_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, PHM_PerformanceLevelDesignation designation, uint32_t index, PHM_PerformanceLevel *level) { const struct smu8_power_state *ps; struct smu8_hwmgr *data; uint32_t level_index; uint32_t i; if (level == NULL || hwmgr == NULL || state == NULL) return -EINVAL; data = hwmgr->backend; ps = cast_const_smu8_power_state(state); level_index = index > ps->level - 1 ? ps->level - 1 : index; level->coreClock = ps->levels[level_index].engineClock; if (designation == PHM_PerformanceLevelDesignation_PowerContainment) { for (i = 1; i < ps->level; i++) { if (ps->levels[i].engineClock > data->dce_slow_sclk_threshold) { level->coreClock = ps->levels[i].engineClock; break; } } } if (level_index == 0) level->memory_clock = data->sys_info.nbp_memory_clock[SMU8_NUM_NBPMEMORYCLOCK - 1]; else level->memory_clock = data->sys_info.nbp_memory_clock[0]; level->vddc = (smu8_convert_8Bit_index_to_voltage(hwmgr, ps->levels[level_index].vddcIndex) + 2) / 4; level->nonLocalMemoryFreq = 0; level->nonLocalMemoryWidth = 0; return 0; } static int smu8_get_current_shallow_sleep_clocks(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, struct pp_clock_info *clock_info) { const struct smu8_power_state *ps = cast_const_smu8_power_state(state); clock_info->min_eng_clk = ps->levels[0].engineClock / (1 << (ps->levels[0].ssDividerIndex)); clock_info->max_eng_clk = ps->levels[ps->level - 1].engineClock / (1 << (ps->levels[ps->level - 1].ssDividerIndex)); return 0; } static int smu8_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct amd_pp_clocks *clocks) { struct smu8_hwmgr *data = hwmgr->backend; int i; struct phm_clock_voltage_dependency_table *table; clocks->count = smu8_get_max_sclk_level(hwmgr); switch (type) { case amd_pp_disp_clock: for (i = 0; i < clocks->count; i++) clocks->clock[i] = data->sys_info.display_clock[i]; break; case amd_pp_sys_clock: table = hwmgr->dyn_state.vddc_dependency_on_sclk; for (i = 0; i < clocks->count; i++) clocks->clock[i] = table->entries[i].clk; break; case amd_pp_mem_clock: clocks->count = SMU8_NUM_NBPMEMORYCLOCK; for (i = 0; i < clocks->count; i++) clocks->clock[i] = data->sys_info.nbp_memory_clock[clocks->count - 1 - i]; break; default: return -1; } return 0; } static int smu8_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks) { struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; unsigned long level; const struct phm_clock_and_voltage_limits *limits = &hwmgr->dyn_state.max_clock_voltage_on_ac; if ((NULL == table) || (table->count <= 0) || (clocks == NULL)) return -EINVAL; level = smu8_get_max_sclk_level(hwmgr) - 1; if (level < table->count) clocks->engine_max_clock = table->entries[level].clk; else clocks->engine_max_clock = table->entries[table->count - 1].clk; clocks->memory_max_clock = limits->mclk; return 0; } static int smu8_thermal_get_temperature(struct pp_hwmgr *hwmgr) { int actual_temp = 0; uint32_t val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTHM_TCON_CUR_TMP); uint32_t temp = PHM_GET_FIELD(val, THM_TCON_CUR_TMP, CUR_TEMP); if (PHM_GET_FIELD(val, THM_TCON_CUR_TMP, CUR_TEMP_RANGE_SEL)) actual_temp = ((temp / 8) - 49) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; else actual_temp = (temp / 8) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return actual_temp; } static int smu8_read_sensor(struct pp_hwmgr *hwmgr, int idx, void *value, int *size) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; struct phm_vce_clock_voltage_dependency_table *vce_table = hwmgr->dyn_state.vce_clock_voltage_dependency_table; struct phm_uvd_clock_voltage_dependency_table *uvd_table = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; uint32_t sclk_index = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX), TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX); uint32_t uvd_index = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX_2), TARGET_AND_CURRENT_PROFILE_INDEX_2, CURR_UVD_INDEX); uint32_t vce_index = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX_2), TARGET_AND_CURRENT_PROFILE_INDEX_2, CURR_VCE_INDEX); uint32_t sclk, vclk, dclk, ecclk, tmp, activity_percent; uint16_t vddnb, vddgfx; int result; /* size must be at least 4 bytes for all sensors */ if (*size < 4) return -EINVAL; *size = 4; switch (idx) { case AMDGPU_PP_SENSOR_GFX_SCLK: if (sclk_index < NUM_SCLK_LEVELS) { sclk = table->entries[sclk_index].clk; *((uint32_t *)value) = sclk; return 0; } return -EINVAL; case AMDGPU_PP_SENSOR_VDDNB: tmp = (cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMUSVI_NB_CURRENTVID) & CURRENT_NB_VID_MASK) >> CURRENT_NB_VID__SHIFT; vddnb = smu8_convert_8Bit_index_to_voltage(hwmgr, tmp); *((uint32_t *)value) = vddnb; return 0; case AMDGPU_PP_SENSOR_VDDGFX: tmp = (cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMUSVI_GFX_CURRENTVID) & CURRENT_GFX_VID_MASK) >> CURRENT_GFX_VID__SHIFT; vddgfx = smu8_convert_8Bit_index_to_voltage(hwmgr, (u16)tmp); *((uint32_t *)value) = vddgfx; return 0; case AMDGPU_PP_SENSOR_UVD_VCLK: if (!data->uvd_power_gated) { if (uvd_index >= SMU8_MAX_HARDWARE_POWERLEVELS) { return -EINVAL; } else { vclk = uvd_table->entries[uvd_index].vclk; *((uint32_t *)value) = vclk; return 0; } } *((uint32_t *)value) = 0; return 0; case AMDGPU_PP_SENSOR_UVD_DCLK: if (!data->uvd_power_gated) { if (uvd_index >= SMU8_MAX_HARDWARE_POWERLEVELS) { return -EINVAL; } else { dclk = uvd_table->entries[uvd_index].dclk; *((uint32_t *)value) = dclk; return 0; } } *((uint32_t *)value) = 0; return 0; case AMDGPU_PP_SENSOR_VCE_ECCLK: if (!data->vce_power_gated) { if (vce_index >= SMU8_MAX_HARDWARE_POWERLEVELS) { return -EINVAL; } else { ecclk = vce_table->entries[vce_index].ecclk; *((uint32_t *)value) = ecclk; return 0; } } *((uint32_t *)value) = 0; return 0; case AMDGPU_PP_SENSOR_GPU_LOAD: result = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGraphicsActivity); if (0 == result) { activity_percent = cgs_read_register(hwmgr->device, mmSMU_MP1_SRBM2P_ARG_0); activity_percent = activity_percent > 100 ? 100 : activity_percent; } else { activity_percent = 50; } *((uint32_t *)value) = activity_percent; return 0; case AMDGPU_PP_SENSOR_UVD_POWER: *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; return 0; case AMDGPU_PP_SENSOR_VCE_POWER: *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; return 0; case AMDGPU_PP_SENSOR_GPU_TEMP: *((uint32_t *)value) = smu8_thermal_get_temperature(hwmgr); return 0; default: return -EINVAL; } } static int smu8_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, uint32_t virtual_addr_low, uint32_t virtual_addr_hi, uint32_t mc_addr_low, uint32_t mc_addr_hi, uint32_t size) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramAddrHiVirtual, mc_addr_hi); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramAddrLoVirtual, mc_addr_low); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramAddrHiPhysical, virtual_addr_hi); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramAddrLoPhysical, virtual_addr_low); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramBufferSize, size); return 0; } static int smu8_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, struct PP_TemperatureRange *thermal_data) { struct smu8_hwmgr *data = hwmgr->backend; memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange)); thermal_data->max = (data->thermal_auto_throttling_treshold + data->sys_info.htc_hyst_lmt) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return 0; } static int smu8_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct smu8_hwmgr *data = hwmgr->backend; uint32_t dpm_features = 0; if (enable && phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM)) { data->dpm_flags |= DPMFlags_UVD_Enabled; dpm_features |= UVD_DPM_MASK; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_EnableAllSmuFeatures, dpm_features); } else { dpm_features |= UVD_DPM_MASK; data->dpm_flags &= ~DPMFlags_UVD_Enabled; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DisableAllSmuFeatures, dpm_features); } return 0; } int smu8_dpm_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_uvd_clock_voltage_dependency_table *ptable = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; if (!bgate) { /* Stable Pstate is enabled and we need to set the UVD DPM to highest level */ if (PP_CAP(PHM_PlatformCaps_StablePState) || hwmgr->en_umd_pstate) { data->uvd_dpm.hard_min_clk = ptable->entries[ptable->count - 1].vclk; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetUvdHardMin, smu8_get_uvd_level(hwmgr, data->uvd_dpm.hard_min_clk, PPSMC_MSG_SetUvdHardMin)); smu8_enable_disable_uvd_dpm(hwmgr, true); } else { smu8_enable_disable_uvd_dpm(hwmgr, true); } } else { smu8_enable_disable_uvd_dpm(hwmgr, false); } return 0; } static int smu8_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct smu8_hwmgr *data = hwmgr->backend; uint32_t dpm_features = 0; if (enable && phm_cap_enabled( hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEDPM)) { data->dpm_flags |= DPMFlags_VCE_Enabled; dpm_features |= VCE_DPM_MASK; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_EnableAllSmuFeatures, dpm_features); } else { dpm_features |= VCE_DPM_MASK; data->dpm_flags &= ~DPMFlags_VCE_Enabled; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DisableAllSmuFeatures, dpm_features); } return 0; } static void smu8_dpm_powergate_uvd(struct pp_hwmgr *hwmgr, bool bgate) { struct smu8_hwmgr *data = hwmgr->backend; data->uvd_power_gated = bgate; if (bgate) { cgs_set_powergating_state(hwmgr->device, AMD_IP_BLOCK_TYPE_UVD, AMD_PG_STATE_GATE); cgs_set_clockgating_state(hwmgr->device, AMD_IP_BLOCK_TYPE_UVD, AMD_CG_STATE_GATE); smu8_dpm_update_uvd_dpm(hwmgr, true); smu8_dpm_powerdown_uvd(hwmgr); } else { smu8_dpm_powerup_uvd(hwmgr); cgs_set_clockgating_state(hwmgr->device, AMD_IP_BLOCK_TYPE_UVD, AMD_CG_STATE_UNGATE); cgs_set_powergating_state(hwmgr->device, AMD_IP_BLOCK_TYPE_UVD, AMD_PG_STATE_UNGATE); smu8_dpm_update_uvd_dpm(hwmgr, false); } } static void smu8_dpm_powergate_vce(struct pp_hwmgr *hwmgr, bool bgate) { struct smu8_hwmgr *data = hwmgr->backend; if (bgate) { cgs_set_powergating_state( hwmgr->device, AMD_IP_BLOCK_TYPE_VCE, AMD_PG_STATE_GATE); cgs_set_clockgating_state( hwmgr->device, AMD_IP_BLOCK_TYPE_VCE, AMD_CG_STATE_GATE); smu8_enable_disable_vce_dpm(hwmgr, false); smu8_dpm_powerdown_vce(hwmgr); data->vce_power_gated = true; } else { smu8_dpm_powerup_vce(hwmgr); data->vce_power_gated = false; cgs_set_clockgating_state( hwmgr->device, AMD_IP_BLOCK_TYPE_VCE, AMD_CG_STATE_UNGATE); cgs_set_powergating_state( hwmgr->device, AMD_IP_BLOCK_TYPE_VCE, AMD_PG_STATE_UNGATE); smu8_dpm_update_vce_dpm(hwmgr); smu8_enable_disable_vce_dpm(hwmgr, true); } } static const struct pp_hwmgr_func smu8_hwmgr_funcs = { .backend_init = smu8_hwmgr_backend_init, .backend_fini = smu8_hwmgr_backend_fini, .apply_state_adjust_rules = smu8_apply_state_adjust_rules, .force_dpm_level = smu8_dpm_force_dpm_level, .get_power_state_size = smu8_get_power_state_size, .powerdown_uvd = smu8_dpm_powerdown_uvd, .powergate_uvd = smu8_dpm_powergate_uvd, .powergate_vce = smu8_dpm_powergate_vce, .get_mclk = smu8_dpm_get_mclk, .get_sclk = smu8_dpm_get_sclk, .patch_boot_state = smu8_dpm_patch_boot_state, .get_pp_table_entry = smu8_dpm_get_pp_table_entry, .get_num_of_pp_table_entries = smu8_dpm_get_num_of_pp_table_entries, .set_cpu_power_state = smu8_set_cpu_power_state, .store_cc6_data = smu8_store_cc6_data, .force_clock_level = smu8_force_clock_level, .print_clock_levels = smu8_print_clock_levels, .get_dal_power_level = smu8_get_dal_power_level, .get_performance_level = smu8_get_performance_level, .get_current_shallow_sleep_clocks = smu8_get_current_shallow_sleep_clocks, .get_clock_by_type = smu8_get_clock_by_type, .get_max_high_clocks = smu8_get_max_high_clocks, .read_sensor = smu8_read_sensor, .power_off_asic = smu8_power_off_asic, .asic_setup = smu8_setup_asic_task, .dynamic_state_management_enable = smu8_enable_dpm_tasks, .power_state_set = smu8_set_power_state_tasks, .dynamic_state_management_disable = smu8_disable_dpm_tasks, .notify_cac_buffer_info = smu8_notify_cac_buffer_info, .get_thermal_temperature_range = smu8_get_thermal_temperature_range, }; int smu8_init_function_pointers(struct pp_hwmgr *hwmgr) { hwmgr->hwmgr_func = &smu8_hwmgr_funcs; hwmgr->pptable_func = &pptable_funcs; return 0; }