/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eugeni Dodonov * */ #include #include #include "i915_drv.h" #include "intel_drv.h" #include "../../../platform/x86/intel_ips.h" #include #include /** * DOC: RC6 * * RC6 is a special power stage which allows the GPU to enter an very * low-voltage mode when idle, using down to 0V while at this stage. This * stage is entered automatically when the GPU is idle when RC6 support is * enabled, and as soon as new workload arises GPU wakes up automatically as well. * * There are different RC6 modes available in Intel GPU, which differentiate * among each other with the latency required to enter and leave RC6 and * voltage consumed by the GPU in different states. * * The combination of the following flags define which states GPU is allowed * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and * RC6pp is deepest RC6. Their support by hardware varies according to the * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one * which brings the most power savings; deeper states save more power, but * require higher latency to switch to and wake up. */ #define INTEL_RC6_ENABLE (1<<0) #define INTEL_RC6p_ENABLE (1<<1) #define INTEL_RC6pp_ENABLE (1<<2) static void gen9_init_clock_gating(struct drm_i915_private *dev_priv) { /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */ I915_WRITE(CHICKEN_PAR1_1, I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP); I915_WRITE(GEN8_CONFIG0, I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES); /* WaEnableChickenDCPR:skl,bxt,kbl,glk */ I915_WRITE(GEN8_CHICKEN_DCPR_1, I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM); /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */ /* WaFbcWakeMemOn:skl,bxt,kbl,glk */ I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS | DISP_FBC_MEMORY_WAKE); /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */ I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | ILK_DPFC_DISABLE_DUMMY0); } static void bxt_init_clock_gating(struct drm_i915_private *dev_priv) { gen9_init_clock_gating(dev_priv); /* WaDisableSDEUnitClockGating:bxt */ I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | GEN8_SDEUNIT_CLOCK_GATE_DISABLE); /* * FIXME: * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only. */ I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ); /* * Wa: Backlight PWM may stop in the asserted state, causing backlight * to stay fully on. */ I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | PWM1_GATING_DIS | PWM2_GATING_DIS); } static void glk_init_clock_gating(struct drm_i915_private *dev_priv) { gen9_init_clock_gating(dev_priv); /* * WaDisablePWMClockGating:glk * Backlight PWM may stop in the asserted state, causing backlight * to stay fully on. */ I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | PWM1_GATING_DIS | PWM2_GATING_DIS); /* WaDDIIOTimeout:glk */ if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) { u32 val = I915_READ(CHICKEN_MISC_2); val &= ~(GLK_CL0_PWR_DOWN | GLK_CL1_PWR_DOWN | GLK_CL2_PWR_DOWN); I915_WRITE(CHICKEN_MISC_2, val); } } static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv) { u32 tmp; tmp = I915_READ(CLKCFG); switch (tmp & CLKCFG_FSB_MASK) { case CLKCFG_FSB_533: dev_priv->fsb_freq = 533; /* 133*4 */ break; case CLKCFG_FSB_800: dev_priv->fsb_freq = 800; /* 200*4 */ break; case CLKCFG_FSB_667: dev_priv->fsb_freq = 667; /* 167*4 */ break; case CLKCFG_FSB_400: dev_priv->fsb_freq = 400; /* 100*4 */ break; } switch (tmp & CLKCFG_MEM_MASK) { case CLKCFG_MEM_533: dev_priv->mem_freq = 533; break; case CLKCFG_MEM_667: dev_priv->mem_freq = 667; break; case CLKCFG_MEM_800: dev_priv->mem_freq = 800; break; } /* detect pineview DDR3 setting */ tmp = I915_READ(CSHRDDR3CTL); dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0; } static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv) { u16 ddrpll, csipll; ddrpll = I915_READ16(DDRMPLL1); csipll = I915_READ16(CSIPLL0); switch (ddrpll & 0xff) { case 0xc: dev_priv->mem_freq = 800; break; case 0x10: dev_priv->mem_freq = 1066; break; case 0x14: dev_priv->mem_freq = 1333; break; case 0x18: dev_priv->mem_freq = 1600; break; default: DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n", ddrpll & 0xff); dev_priv->mem_freq = 0; break; } dev_priv->ips.r_t = dev_priv->mem_freq; switch (csipll & 0x3ff) { case 0x00c: dev_priv->fsb_freq = 3200; break; case 0x00e: dev_priv->fsb_freq = 3733; break; case 0x010: dev_priv->fsb_freq = 4266; break; case 0x012: dev_priv->fsb_freq = 4800; break; case 0x014: dev_priv->fsb_freq = 5333; break; case 0x016: dev_priv->fsb_freq = 5866; break; case 0x018: dev_priv->fsb_freq = 6400; break; default: DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n", csipll & 0x3ff); dev_priv->fsb_freq = 0; break; } if (dev_priv->fsb_freq == 3200) { dev_priv->ips.c_m = 0; } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) { dev_priv->ips.c_m = 1; } else { dev_priv->ips.c_m = 2; } } static const struct cxsr_latency cxsr_latency_table[] = { {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ }; static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop, bool is_ddr3, int fsb, int mem) { const struct cxsr_latency *latency; int i; if (fsb == 0 || mem == 0) return NULL; for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { latency = &cxsr_latency_table[i]; if (is_desktop == latency->is_desktop && is_ddr3 == latency->is_ddr3 && fsb == latency->fsb_freq && mem == latency->mem_freq) return latency; } DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); return NULL; } static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable) { u32 val; mutex_lock(&dev_priv->rps.hw_lock); val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); if (enable) val &= ~FORCE_DDR_HIGH_FREQ; else val |= FORCE_DDR_HIGH_FREQ; val &= ~FORCE_DDR_LOW_FREQ; val |= FORCE_DDR_FREQ_REQ_ACK; vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) DRM_ERROR("timed out waiting for Punit DDR DVFS request\n"); mutex_unlock(&dev_priv->rps.hw_lock); } static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable) { u32 val; mutex_lock(&dev_priv->rps.hw_lock); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); if (enable) val |= DSP_MAXFIFO_PM5_ENABLE; else val &= ~DSP_MAXFIFO_PM5_ENABLE; vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); mutex_unlock(&dev_priv->rps.hw_lock); } #define FW_WM(value, plane) \ (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK) static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) { bool was_enabled; u32 val; if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0); POSTING_READ(FW_BLC_SELF_VLV); } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) { was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0); POSTING_READ(FW_BLC_SELF); } else if (IS_PINEVIEW(dev_priv)) { val = I915_READ(DSPFW3); was_enabled = val & PINEVIEW_SELF_REFRESH_EN; if (enable) val |= PINEVIEW_SELF_REFRESH_EN; else val &= ~PINEVIEW_SELF_REFRESH_EN; I915_WRITE(DSPFW3, val); POSTING_READ(DSPFW3); } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) { was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) : _MASKED_BIT_DISABLE(FW_BLC_SELF_EN); I915_WRITE(FW_BLC_SELF, val); POSTING_READ(FW_BLC_SELF); } else if (IS_I915GM(dev_priv)) { /* * FIXME can't find a bit like this for 915G, and * and yet it does have the related watermark in * FW_BLC_SELF. What's going on? */ was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN; val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) : _MASKED_BIT_DISABLE(INSTPM_SELF_EN); I915_WRITE(INSTPM, val); POSTING_READ(INSTPM); } else { return false; } trace_intel_memory_cxsr(dev_priv, was_enabled, enable); DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n", enableddisabled(enable), enableddisabled(was_enabled)); return was_enabled; } /** * intel_set_memory_cxsr - Configure CxSR state * @dev_priv: i915 device * @enable: Allow vs. disallow CxSR * * Allow or disallow the system to enter a special CxSR * (C-state self refresh) state. What typically happens in CxSR mode * is that several display FIFOs may get combined into a single larger * FIFO for a particular plane (so called max FIFO mode) to allow the * system to defer memory fetches longer, and the memory will enter * self refresh. * * Note that enabling CxSR does not guarantee that the system enter * this special mode, nor does it guarantee that the system stays * in that mode once entered. So this just allows/disallows the system * to autonomously utilize the CxSR mode. Other factors such as core * C-states will affect when/if the system actually enters/exits the * CxSR mode. * * Note that on VLV/CHV this actually only controls the max FIFO mode, * and the system is free to enter/exit memory self refresh at any time * even when the use of CxSR has been disallowed. * * While the system is actually in the CxSR/max FIFO mode, some plane * control registers will not get latched on vblank. Thus in order to * guarantee the system will respond to changes in the plane registers * we must always disallow CxSR prior to making changes to those registers. * Unfortunately the system will re-evaluate the CxSR conditions at * frame start which happens after vblank start (which is when the plane * registers would get latched), so we can't proceed with the plane update * during the same frame where we disallowed CxSR. * * Certain platforms also have a deeper HPLL SR mode. Fortunately the * HPLL SR mode depends on CxSR itself, so we don't have to hand hold * the hardware w.r.t. HPLL SR when writing to plane registers. * Disallowing just CxSR is sufficient. */ bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) { bool ret; mutex_lock(&dev_priv->wm.wm_mutex); ret = _intel_set_memory_cxsr(dev_priv, enable); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) dev_priv->wm.vlv.cxsr = enable; else if (IS_G4X(dev_priv)) dev_priv->wm.g4x.cxsr = enable; mutex_unlock(&dev_priv->wm.wm_mutex); return ret; } /* * Latency for FIFO fetches is dependent on several factors: * - memory configuration (speed, channels) * - chipset * - current MCH state * It can be fairly high in some situations, so here we assume a fairly * pessimal value. It's a tradeoff between extra memory fetches (if we * set this value too high, the FIFO will fetch frequently to stay full) * and power consumption (set it too low to save power and we might see * FIFO underruns and display "flicker"). * * A value of 5us seems to be a good balance; safe for very low end * platforms but not overly aggressive on lower latency configs. */ static const int pessimal_latency_ns = 5000; #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \ ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8)) static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; enum pipe pipe = crtc->pipe; int sprite0_start, sprite1_start; switch (pipe) { uint32_t dsparb, dsparb2, dsparb3; case PIPE_A: dsparb = I915_READ(DSPARB); dsparb2 = I915_READ(DSPARB2); sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0); sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4); break; case PIPE_B: dsparb = I915_READ(DSPARB); dsparb2 = I915_READ(DSPARB2); sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8); sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12); break; case PIPE_C: dsparb2 = I915_READ(DSPARB2); dsparb3 = I915_READ(DSPARB3); sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16); sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20); break; default: MISSING_CASE(pipe); return; } fifo_state->plane[PLANE_PRIMARY] = sprite0_start; fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start; fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start; fifo_state->plane[PLANE_CURSOR] = 63; } static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane) { uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x7f; if (plane) size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane) { uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x1ff; if (plane) size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; size >>= 1; /* Convert to cachelines */ DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane) { uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x7f; size >>= 2; /* Convert to cachelines */ DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } /* Pineview has different values for various configs */ static const struct intel_watermark_params pineview_display_wm = { .fifo_size = PINEVIEW_DISPLAY_FIFO, .max_wm = PINEVIEW_MAX_WM, .default_wm = PINEVIEW_DFT_WM, .guard_size = PINEVIEW_GUARD_WM, .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params pineview_display_hplloff_wm = { .fifo_size = PINEVIEW_DISPLAY_FIFO, .max_wm = PINEVIEW_MAX_WM, .default_wm = PINEVIEW_DFT_HPLLOFF_WM, .guard_size = PINEVIEW_GUARD_WM, .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params pineview_cursor_wm = { .fifo_size = PINEVIEW_CURSOR_FIFO, .max_wm = PINEVIEW_CURSOR_MAX_WM, .default_wm = PINEVIEW_CURSOR_DFT_WM, .guard_size = PINEVIEW_CURSOR_GUARD_WM, .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params pineview_cursor_hplloff_wm = { .fifo_size = PINEVIEW_CURSOR_FIFO, .max_wm = PINEVIEW_CURSOR_MAX_WM, .default_wm = PINEVIEW_CURSOR_DFT_WM, .guard_size = PINEVIEW_CURSOR_GUARD_WM, .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i965_cursor_wm_info = { .fifo_size = I965_CURSOR_FIFO, .max_wm = I965_CURSOR_MAX_WM, .default_wm = I965_CURSOR_DFT_WM, .guard_size = 2, .cacheline_size = I915_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i945_wm_info = { .fifo_size = I945_FIFO_SIZE, .max_wm = I915_MAX_WM, .default_wm = 1, .guard_size = 2, .cacheline_size = I915_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i915_wm_info = { .fifo_size = I915_FIFO_SIZE, .max_wm = I915_MAX_WM, .default_wm = 1, .guard_size = 2, .cacheline_size = I915_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i830_a_wm_info = { .fifo_size = I855GM_FIFO_SIZE, .max_wm = I915_MAX_WM, .default_wm = 1, .guard_size = 2, .cacheline_size = I830_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i830_bc_wm_info = { .fifo_size = I855GM_FIFO_SIZE, .max_wm = I915_MAX_WM/2, .default_wm = 1, .guard_size = 2, .cacheline_size = I830_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i845_wm_info = { .fifo_size = I830_FIFO_SIZE, .max_wm = I915_MAX_WM, .default_wm = 1, .guard_size = 2, .cacheline_size = I830_FIFO_LINE_SIZE, }; /** * intel_wm_method1 - Method 1 / "small buffer" watermark formula * @pixel_rate: Pipe pixel rate in kHz * @cpp: Plane bytes per pixel * @latency: Memory wakeup latency in 0.1us units * * Compute the watermark using the method 1 or "small buffer" * formula. The caller may additonally add extra cachelines * to account for TLB misses and clock crossings. * * This method is concerned with the short term drain rate * of the FIFO, ie. it does not account for blanking periods * which would effectively reduce the average drain rate across * a longer period. The name "small" refers to the fact the * FIFO is relatively small compared to the amount of data * fetched. * * The FIFO level vs. time graph might look something like: * * |\ |\ * | \ | \ * __---__---__ (- plane active, _ blanking) * -> time * * or perhaps like this: * * |\|\ |\|\ * __----__----__ (- plane active, _ blanking) * -> time * * Returns: * The watermark in bytes */ static unsigned int intel_wm_method1(unsigned int pixel_rate, unsigned int cpp, unsigned int latency) { uint64_t ret; ret = (uint64_t) pixel_rate * cpp * latency; ret = DIV_ROUND_UP_ULL(ret, 10000); return ret; } /** * intel_wm_method2 - Method 2 / "large buffer" watermark formula * @pixel_rate: Pipe pixel rate in kHz * @htotal: Pipe horizontal total * @width: Plane width in pixels * @cpp: Plane bytes per pixel * @latency: Memory wakeup latency in 0.1us units * * Compute the watermark using the method 2 or "large buffer" * formula. The caller may additonally add extra cachelines * to account for TLB misses and clock crossings. * * This method is concerned with the long term drain rate * of the FIFO, ie. it does account for blanking periods * which effectively reduce the average drain rate across * a longer period. The name "large" refers to the fact the * FIFO is relatively large compared to the amount of data * fetched. * * The FIFO level vs. time graph might look something like: * * |\___ |\___ * | \___ | \___ * | \ | \ * __ --__--__--__--__--__--__ (- plane active, _ blanking) * -> time * * Returns: * The watermark in bytes */ static unsigned int intel_wm_method2(unsigned int pixel_rate, unsigned int htotal, unsigned int width, unsigned int cpp, unsigned int latency) { unsigned int ret; /* * FIXME remove once all users are computing * watermarks in the correct place. */ if (WARN_ON_ONCE(htotal == 0)) htotal = 1; ret = (latency * pixel_rate) / (htotal * 10000); ret = (ret + 1) * width * cpp; return ret; } /** * intel_calculate_wm - calculate watermark level * @pixel_rate: pixel clock * @wm: chip FIFO params * @cpp: bytes per pixel * @latency_ns: memory latency for the platform * * Calculate the watermark level (the level at which the display plane will * start fetching from memory again). Each chip has a different display * FIFO size and allocation, so the caller needs to figure that out and pass * in the correct intel_watermark_params structure. * * As the pixel clock runs, the FIFO will be drained at a rate that depends * on the pixel size. When it reaches the watermark level, it'll start * fetching FIFO line sized based chunks from memory until the FIFO fills * past the watermark point. If the FIFO drains completely, a FIFO underrun * will occur, and a display engine hang could result. */ static unsigned int intel_calculate_wm(int pixel_rate, const struct intel_watermark_params *wm, int fifo_size, int cpp, unsigned int latency_ns) { int entries, wm_size; /* * Note: we need to make sure we don't overflow for various clock & * latency values. * clocks go from a few thousand to several hundred thousand. * latency is usually a few thousand */ entries = intel_wm_method1(pixel_rate, cpp, latency_ns / 100); entries = DIV_ROUND_UP(entries, wm->cacheline_size) + wm->guard_size; DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries); wm_size = fifo_size - entries; DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size); /* Don't promote wm_size to unsigned... */ if (wm_size > wm->max_wm) wm_size = wm->max_wm; if (wm_size <= 0) wm_size = wm->default_wm; /* * Bspec seems to indicate that the value shouldn't be lower than * 'burst size + 1'. Certainly 830 is quite unhappy with low values. * Lets go for 8 which is the burst size since certain platforms * already use a hardcoded 8 (which is what the spec says should be * done). */ if (wm_size <= 8) wm_size = 8; return wm_size; } static bool is_disabling(int old, int new, int threshold) { return old >= threshold && new < threshold; } static bool is_enabling(int old, int new, int threshold) { return old < threshold && new >= threshold; } static int intel_wm_num_levels(struct drm_i915_private *dev_priv) { return dev_priv->wm.max_level + 1; } static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->base.plane); /* FIXME check the 'enable' instead */ if (!crtc_state->base.active) return false; /* * Treat cursor with fb as always visible since cursor updates * can happen faster than the vrefresh rate, and the current * watermark code doesn't handle that correctly. Cursor updates * which set/clear the fb or change the cursor size are going * to get throttled by intel_legacy_cursor_update() to work * around this problem with the watermark code. */ if (plane->id == PLANE_CURSOR) return plane_state->base.fb != NULL; else return plane_state->base.visible; } static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv) { struct intel_crtc *crtc, *enabled = NULL; for_each_intel_crtc(&dev_priv->drm, crtc) { if (intel_crtc_active(crtc)) { if (enabled) return NULL; enabled = crtc; } } return enabled; } static void pineview_update_wm(struct intel_crtc *unused_crtc) { struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); struct intel_crtc *crtc; const struct cxsr_latency *latency; u32 reg; unsigned int wm; latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv), dev_priv->is_ddr3, dev_priv->fsb_freq, dev_priv->mem_freq); if (!latency) { DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); intel_set_memory_cxsr(dev_priv, false); return; } crtc = single_enabled_crtc(dev_priv); if (crtc) { const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode; const struct drm_framebuffer *fb = crtc->base.primary->state->fb; int cpp = fb->format->cpp[0]; int clock = adjusted_mode->crtc_clock; /* Display SR */ wm = intel_calculate_wm(clock, &pineview_display_wm, pineview_display_wm.fifo_size, cpp, latency->display_sr); reg = I915_READ(DSPFW1); reg &= ~DSPFW_SR_MASK; reg |= FW_WM(wm, SR); I915_WRITE(DSPFW1, reg); DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg); /* cursor SR */ wm = intel_calculate_wm(clock, &pineview_cursor_wm, pineview_display_wm.fifo_size, 4, latency->cursor_sr); reg = I915_READ(DSPFW3); reg &= ~DSPFW_CURSOR_SR_MASK; reg |= FW_WM(wm, CURSOR_SR); I915_WRITE(DSPFW3, reg); /* Display HPLL off SR */ wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm, pineview_display_hplloff_wm.fifo_size, cpp, latency->display_hpll_disable); reg = I915_READ(DSPFW3); reg &= ~DSPFW_HPLL_SR_MASK; reg |= FW_WM(wm, HPLL_SR); I915_WRITE(DSPFW3, reg); /* cursor HPLL off SR */ wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, pineview_display_hplloff_wm.fifo_size, 4, latency->cursor_hpll_disable); reg = I915_READ(DSPFW3); reg &= ~DSPFW_HPLL_CURSOR_MASK; reg |= FW_WM(wm, HPLL_CURSOR); I915_WRITE(DSPFW3, reg); DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg); intel_set_memory_cxsr(dev_priv, true); } else { intel_set_memory_cxsr(dev_priv, false); } } /* * Documentation says: * "If the line size is small, the TLB fetches can get in the way of the * data fetches, causing some lag in the pixel data return which is not * accounted for in the above formulas. The following adjustment only * needs to be applied if eight whole lines fit in the buffer at once. * The WM is adjusted upwards by the difference between the FIFO size * and the size of 8 whole lines. This adjustment is always performed * in the actual pixel depth regardless of whether FBC is enabled or not." */ static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp) { int tlb_miss = fifo_size * 64 - width * cpp * 8; return max(0, tlb_miss); } static void g4x_write_wm_values(struct drm_i915_private *dev_priv, const struct g4x_wm_values *wm) { enum pipe pipe; for_each_pipe(dev_priv, pipe) trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm); I915_WRITE(DSPFW1, FW_WM(wm->sr.plane, SR) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); I915_WRITE(DSPFW2, (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) | FW_WM(wm->sr.fbc, FBC_SR) | FW_WM(wm->hpll.fbc, FBC_HPLL_SR) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); I915_WRITE(DSPFW3, (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) | FW_WM(wm->sr.cursor, CURSOR_SR) | FW_WM(wm->hpll.cursor, HPLL_CURSOR) | FW_WM(wm->hpll.plane, HPLL_SR)); POSTING_READ(DSPFW1); } #define FW_WM_VLV(value, plane) \ (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV) static void vlv_write_wm_values(struct drm_i915_private *dev_priv, const struct vlv_wm_values *wm) { enum pipe pipe; for_each_pipe(dev_priv, pipe) { trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm); I915_WRITE(VLV_DDL(pipe), (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) | (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) | (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) | (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT)); } /* * Zero the (unused) WM1 watermarks, and also clear all the * high order bits so that there are no out of bounds values * present in the registers during the reprogramming. */ I915_WRITE(DSPHOWM, 0); I915_WRITE(DSPHOWM1, 0); I915_WRITE(DSPFW4, 0); I915_WRITE(DSPFW5, 0); I915_WRITE(DSPFW6, 0); I915_WRITE(DSPFW1, FW_WM(wm->sr.plane, SR) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); I915_WRITE(DSPFW2, FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); I915_WRITE(DSPFW3, FW_WM(wm->sr.cursor, CURSOR_SR)); if (IS_CHERRYVIEW(dev_priv)) { I915_WRITE(DSPFW7_CHV, FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); I915_WRITE(DSPFW8_CHV, FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) | FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE)); I915_WRITE(DSPFW9_CHV, FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) | FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC)); I915_WRITE(DSPHOWM, FW_WM(wm->sr.plane >> 9, SR_HI) | FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) | FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) | FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); } else { I915_WRITE(DSPFW7, FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); I915_WRITE(DSPHOWM, FW_WM(wm->sr.plane >> 9, SR_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); } POSTING_READ(DSPFW1); } #undef FW_WM_VLV static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv) { /* all latencies in usec */ dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5; dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12; dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35; dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL; } static int g4x_plane_fifo_size(enum plane_id plane_id, int level) { /* * DSPCNTR[13] supposedly controls whether the * primary plane can use the FIFO space otherwise * reserved for the sprite plane. It's not 100% clear * what the actual FIFO size is, but it looks like we * can happily set both primary and sprite watermarks * up to 127 cachelines. So that would seem to mean * that either DSPCNTR[13] doesn't do anything, or that * the total FIFO is >= 256 cachelines in size. Either * way, we don't seem to have to worry about this * repartitioning as the maximum watermark value the * register can hold for each plane is lower than the * minimum FIFO size. */ switch (plane_id) { case PLANE_CURSOR: return 63; case PLANE_PRIMARY: return level == G4X_WM_LEVEL_NORMAL ? 127 : 511; case PLANE_SPRITE0: return level == G4X_WM_LEVEL_NORMAL ? 127 : 0; default: MISSING_CASE(plane_id); return 0; } } static int g4x_fbc_fifo_size(int level) { switch (level) { case G4X_WM_LEVEL_SR: return 7; case G4X_WM_LEVEL_HPLL: return 15; default: MISSING_CASE(level); return 0; } } static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, int level) { struct intel_plane *plane = to_intel_plane(plane_state->base.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; int clock, htotal, cpp, width, wm; int latency = dev_priv->wm.pri_latency[level] * 10; if (latency == 0) return USHRT_MAX; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; /* * Not 100% sure which way ELK should go here as the * spec only says CL/CTG should assume 32bpp and BW * doesn't need to. But as these things followed the * mobile vs. desktop lines on gen3 as well, let's * assume ELK doesn't need this. * * The spec also fails to list such a restriction for * the HPLL watermark, which seems a little strange. * Let's use 32bpp for the HPLL watermark as well. */ if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY && level != G4X_WM_LEVEL_NORMAL) cpp = 4; else cpp = plane_state->base.fb->format->cpp[0]; clock = adjusted_mode->crtc_clock; htotal = adjusted_mode->crtc_htotal; if (plane->id == PLANE_CURSOR) width = plane_state->base.crtc_w; else width = drm_rect_width(&plane_state->base.dst); if (plane->id == PLANE_CURSOR) { wm = intel_wm_method2(clock, htotal, width, cpp, latency); } else if (plane->id == PLANE_PRIMARY && level == G4X_WM_LEVEL_NORMAL) { wm = intel_wm_method1(clock, cpp, latency); } else { int small, large; small = intel_wm_method1(clock, cpp, latency); large = intel_wm_method2(clock, htotal, width, cpp, latency); wm = min(small, large); } wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level), width, cpp); wm = DIV_ROUND_UP(wm, 64) + 2; return min_t(int, wm, USHRT_MAX); } static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state, int level, enum plane_id plane_id, u16 value) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); bool dirty = false; for (; level < intel_wm_num_levels(dev_priv); level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; dirty |= raw->plane[plane_id] != value; raw->plane[plane_id] = value; } return dirty; } static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state, int level, u16 value) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); bool dirty = false; /* NORMAL level doesn't have an FBC watermark */ level = max(level, G4X_WM_LEVEL_SR); for (; level < intel_wm_num_levels(dev_priv); level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; dirty |= raw->fbc != value; raw->fbc = value; } return dirty; } static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate, const struct intel_plane_state *pstate, uint32_t pri_val); static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->base.plane); int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); enum plane_id plane_id = plane->id; bool dirty = false; int level; if (!intel_wm_plane_visible(crtc_state, plane_state)) { dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0); if (plane_id == PLANE_PRIMARY) dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0); goto out; } for (level = 0; level < num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; int wm, max_wm; wm = g4x_compute_wm(crtc_state, plane_state, level); max_wm = g4x_plane_fifo_size(plane_id, level); if (wm > max_wm) break; dirty |= raw->plane[plane_id] != wm; raw->plane[plane_id] = wm; if (plane_id != PLANE_PRIMARY || level == G4X_WM_LEVEL_NORMAL) continue; wm = ilk_compute_fbc_wm(crtc_state, plane_state, raw->plane[plane_id]); max_wm = g4x_fbc_fifo_size(level); /* * FBC wm is not mandatory as we * can always just disable its use. */ if (wm > max_wm) wm = USHRT_MAX; dirty |= raw->fbc != wm; raw->fbc = wm; } /* mark watermarks as invalid */ dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); if (plane_id == PLANE_PRIMARY) dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); out: if (dirty) { DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n", plane->base.name, crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id], crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id], crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]); if (plane_id == PLANE_PRIMARY) DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n", crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc, crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc); } return dirty; } static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, enum plane_id plane_id, int level) { const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level); } static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); if (level > dev_priv->wm.max_level) return false; return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); } /* mark all levels starting from 'level' as invalid */ static void g4x_invalidate_wms(struct intel_crtc *crtc, struct g4x_wm_state *wm_state, int level) { if (level <= G4X_WM_LEVEL_NORMAL) { enum plane_id plane_id; for_each_plane_id_on_crtc(crtc, plane_id) wm_state->wm.plane[plane_id] = USHRT_MAX; } if (level <= G4X_WM_LEVEL_SR) { wm_state->cxsr = false; wm_state->sr.cursor = USHRT_MAX; wm_state->sr.plane = USHRT_MAX; wm_state->sr.fbc = USHRT_MAX; } if (level <= G4X_WM_LEVEL_HPLL) { wm_state->hpll_en = false; wm_state->hpll.cursor = USHRT_MAX; wm_state->hpll.plane = USHRT_MAX; wm_state->hpll.fbc = USHRT_MAX; } } static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state); struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; int num_active_planes = hweight32(crtc_state->active_planes & ~BIT(PLANE_CURSOR)); const struct g4x_pipe_wm *raw; struct intel_plane_state *plane_state; struct intel_plane *plane; enum plane_id plane_id; int i, level; unsigned int dirty = 0; for_each_intel_plane_in_state(state, plane, plane_state, i) { const struct intel_plane_state *old_plane_state = to_intel_plane_state(plane->base.state); if (plane_state->base.crtc != &crtc->base && old_plane_state->base.crtc != &crtc->base) continue; if (g4x_raw_plane_wm_compute(crtc_state, plane_state)) dirty |= BIT(plane->id); } if (!dirty) return 0; level = G4X_WM_LEVEL_NORMAL; if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) goto out; raw = &crtc_state->wm.g4x.raw[level]; for_each_plane_id_on_crtc(crtc, plane_id) wm_state->wm.plane[plane_id] = raw->plane[plane_id]; level = G4X_WM_LEVEL_SR; if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) goto out; raw = &crtc_state->wm.g4x.raw[level]; wm_state->sr.plane = raw->plane[PLANE_PRIMARY]; wm_state->sr.cursor = raw->plane[PLANE_CURSOR]; wm_state->sr.fbc = raw->fbc; wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY); level = G4X_WM_LEVEL_HPLL; if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) goto out; raw = &crtc_state->wm.g4x.raw[level]; wm_state->hpll.plane = raw->plane[PLANE_PRIMARY]; wm_state->hpll.cursor = raw->plane[PLANE_CURSOR]; wm_state->hpll.fbc = raw->fbc; wm_state->hpll_en = wm_state->cxsr; level++; out: if (level == G4X_WM_LEVEL_NORMAL) return -EINVAL; /* invalidate the higher levels */ g4x_invalidate_wms(crtc, wm_state, level); /* * Determine if the FBC watermark(s) can be used. IF * this isn't the case we prefer to disable the FBC ( watermark(s) rather than disable the SR/HPLL * level(s) entirely. */ wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL; if (level >= G4X_WM_LEVEL_SR && wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR)) wm_state->fbc_en = false; else if (level >= G4X_WM_LEVEL_HPLL && wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL)) wm_state->fbc_en = false; return 0; } static int g4x_compute_intermediate_wm(struct drm_device *dev, struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate; const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal; const struct g4x_wm_state *active = &crtc->wm.active.g4x; enum plane_id plane_id; intermediate->cxsr = optimal->cxsr && active->cxsr && !crtc_state->disable_cxsr; intermediate->hpll_en = optimal->hpll_en && active->hpll_en && !crtc_state->disable_cxsr; intermediate->fbc_en = optimal->fbc_en && active->fbc_en; for_each_plane_id_on_crtc(crtc, plane_id) { intermediate->wm.plane[plane_id] = max(optimal->wm.plane[plane_id], active->wm.plane[plane_id]); WARN_ON(intermediate->wm.plane[plane_id] > g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL)); } intermediate->sr.plane = max(optimal->sr.plane, active->sr.plane); intermediate->sr.cursor = max(optimal->sr.cursor, active->sr.cursor); intermediate->sr.fbc = max(optimal->sr.fbc, active->sr.fbc); intermediate->hpll.plane = max(optimal->hpll.plane, active->hpll.plane); intermediate->hpll.cursor = max(optimal->hpll.cursor, active->hpll.cursor); intermediate->hpll.fbc = max(optimal->hpll.fbc, active->hpll.fbc); WARN_ON((intermediate->sr.plane > g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) || intermediate->sr.cursor > g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) && intermediate->cxsr); WARN_ON((intermediate->sr.plane > g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) || intermediate->sr.cursor > g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) && intermediate->hpll_en); WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) && intermediate->fbc_en && intermediate->cxsr); WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) && intermediate->fbc_en && intermediate->hpll_en); /* * If our intermediate WM are identical to the final WM, then we can * omit the post-vblank programming; only update if it's different. */ if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) crtc_state->wm.need_postvbl_update = true; return 0; } static void g4x_merge_wm(struct drm_i915_private *dev_priv, struct g4x_wm_values *wm) { struct intel_crtc *crtc; int num_active_crtcs = 0; wm->cxsr = true; wm->hpll_en = true; wm->fbc_en = true; for_each_intel_crtc(&dev_priv->drm, crtc) { const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; if (!crtc->active) continue; if (!wm_state->cxsr) wm->cxsr = false; if (!wm_state->hpll_en) wm->hpll_en = false; if (!wm_state->fbc_en) wm->fbc_en = false; num_active_crtcs++; } if (num_active_crtcs != 1) { wm->cxsr = false; wm->hpll_en = false; wm->fbc_en = false; } for_each_intel_crtc(&dev_priv->drm, crtc) { const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; enum pipe pipe = crtc->pipe; wm->pipe[pipe] = wm_state->wm; if (crtc->active && wm->cxsr) wm->sr = wm_state->sr; if (crtc->active && wm->hpll_en) wm->hpll = wm_state->hpll; } } static void g4x_program_watermarks(struct drm_i915_private *dev_priv) { struct g4x_wm_values *old_wm = &dev_priv->wm.g4x; struct g4x_wm_values new_wm = {}; g4x_merge_wm(dev_priv, &new_wm); if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) return; if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) _intel_set_memory_cxsr(dev_priv, false); g4x_write_wm_values(dev_priv, &new_wm); if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) _intel_set_memory_cxsr(dev_priv, true); *old_wm = new_wm; } static void g4x_initial_watermarks(struct intel_atomic_state *state, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); mutex_lock(&dev_priv->wm.wm_mutex); crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate; g4x_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } static void g4x_optimize_watermarks(struct intel_atomic_state *state, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); if (!crtc_state->wm.need_postvbl_update) return; mutex_lock(&dev_priv->wm.wm_mutex); intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; g4x_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } /* latency must be in 0.1us units. */ static unsigned int vlv_wm_method2(unsigned int pixel_rate, unsigned int htotal, unsigned int width, unsigned int cpp, unsigned int latency) { unsigned int ret; ret = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); ret = DIV_ROUND_UP(ret, 64); return ret; } static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv) { /* all latencies in usec */ dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3; dev_priv->wm.max_level = VLV_WM_LEVEL_PM2; if (IS_CHERRYVIEW(dev_priv)) { dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12; dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33; dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS; } } static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, int level) { struct intel_plane *plane = to_intel_plane(plane_state->base.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; int clock, htotal, cpp, width, wm; if (dev_priv->wm.pri_latency[level] == 0) return USHRT_MAX; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; cpp = plane_state->base.fb->format->cpp[0]; clock = adjusted_mode->crtc_clock; htotal = adjusted_mode->crtc_htotal; width = crtc_state->pipe_src_w; if (plane->id == PLANE_CURSOR) { /* * FIXME the formula gives values that are * too big for the cursor FIFO, and hence we * would never be able to use cursors. For * now just hardcode the watermark. */ wm = 63; } else { wm = vlv_wm_method2(clock, htotal, width, cpp, dev_priv->wm.pri_latency[level] * 10); } return min_t(int, wm, USHRT_MAX); } static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes) { return (active_planes & (BIT(PLANE_SPRITE0) | BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1); } static int vlv_compute_fifo(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2]; struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); int num_active_planes = hweight32(active_planes); const int fifo_size = 511; int fifo_extra, fifo_left = fifo_size; int sprite0_fifo_extra = 0; unsigned int total_rate; enum plane_id plane_id; /* * When enabling sprite0 after sprite1 has already been enabled * we tend to get an underrun unless sprite0 already has some * FIFO space allcoated. Hence we always allocate at least one * cacheline for sprite0 whenever sprite1 is enabled. * * All other plane enable sequences appear immune to this problem. */ if (vlv_need_sprite0_fifo_workaround(active_planes)) sprite0_fifo_extra = 1; total_rate = raw->plane[PLANE_PRIMARY] + raw->plane[PLANE_SPRITE0] + raw->plane[PLANE_SPRITE1] + sprite0_fifo_extra; if (total_rate > fifo_size) return -EINVAL; if (total_rate == 0) total_rate = 1; for_each_plane_id_on_crtc(crtc, plane_id) { unsigned int rate; if ((active_planes & BIT(plane_id)) == 0) { fifo_state->plane[plane_id] = 0; continue; } rate = raw->plane[plane_id]; fifo_state->plane[plane_id] = fifo_size * rate / total_rate; fifo_left -= fifo_state->plane[plane_id]; } fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra; fifo_left -= sprite0_fifo_extra; fifo_state->plane[PLANE_CURSOR] = 63; fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1); /* spread the remainder evenly */ for_each_plane_id_on_crtc(crtc, plane_id) { int plane_extra; if (fifo_left == 0) break; if ((active_planes & BIT(plane_id)) == 0) continue; plane_extra = min(fifo_extra, fifo_left); fifo_state->plane[plane_id] += plane_extra; fifo_left -= plane_extra; } WARN_ON(active_planes != 0 && fifo_left != 0); /* give it all to the first plane if none are active */ if (active_planes == 0) { WARN_ON(fifo_left != fifo_size); fifo_state->plane[PLANE_PRIMARY] = fifo_left; } return 0; } /* mark all levels starting from 'level' as invalid */ static void vlv_invalidate_wms(struct intel_crtc *crtc, struct vlv_wm_state *wm_state, int level) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); for (; level < intel_wm_num_levels(dev_priv); level++) { enum plane_id plane_id; for_each_plane_id_on_crtc(crtc, plane_id) wm_state->wm[level].plane[plane_id] = USHRT_MAX; wm_state->sr[level].cursor = USHRT_MAX; wm_state->sr[level].plane = USHRT_MAX; } } static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size) { if (wm > fifo_size) return USHRT_MAX; else return fifo_size - wm; } /* * Starting from 'level' set all higher * levels to 'value' in the "raw" watermarks. */ static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state, int level, enum plane_id plane_id, u16 value) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); int num_levels = intel_wm_num_levels(dev_priv); bool dirty = false; for (; level < num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; dirty |= raw->plane[plane_id] != value; raw->plane[plane_id] = value; } return dirty; } static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->base.plane); enum plane_id plane_id = plane->id; int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); int level; bool dirty = false; if (!intel_wm_plane_visible(crtc_state, plane_state)) { dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0); goto out; } for (level = 0; level < num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; int wm = vlv_compute_wm_level(crtc_state, plane_state, level); int max_wm = plane_id == PLANE_CURSOR ? 63 : 511; if (wm > max_wm) break; dirty |= raw->plane[plane_id] != wm; raw->plane[plane_id] = wm; } /* mark all higher levels as invalid */ dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); out: if (dirty) DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n", plane->base.name, crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id], crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id], crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]); return dirty; } static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, enum plane_id plane_id, int level) { const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; return raw->plane[plane_id] <= fifo_state->plane[plane_id]; } static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level) { return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) && vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); } static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state); struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; int num_active_planes = hweight32(crtc_state->active_planes & ~BIT(PLANE_CURSOR)); bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base); struct intel_plane_state *plane_state; struct intel_plane *plane; enum plane_id plane_id; int level, ret, i; unsigned int dirty = 0; for_each_intel_plane_in_state(state, plane, plane_state, i) { const struct intel_plane_state *old_plane_state = to_intel_plane_state(plane->base.state); if (plane_state->base.crtc != &crtc->base && old_plane_state->base.crtc != &crtc->base) continue; if (vlv_raw_plane_wm_compute(crtc_state, plane_state)) dirty |= BIT(plane->id); } /* * DSPARB registers may have been reset due to the * power well being turned off. Make sure we restore * them to a consistent state even if no primary/sprite * planes are initially active. */ if (needs_modeset) crtc_state->fifo_changed = true; if (!dirty) return 0; /* cursor changes don't warrant a FIFO recompute */ if (dirty & ~BIT(PLANE_CURSOR)) { const struct intel_crtc_state *old_crtc_state = to_intel_crtc_state(crtc->base.state); const struct vlv_fifo_state *old_fifo_state = &old_crtc_state->wm.vlv.fifo_state; ret = vlv_compute_fifo(crtc_state); if (ret) return ret; if (needs_modeset || memcmp(old_fifo_state, fifo_state, sizeof(*fifo_state)) != 0) crtc_state->fifo_changed = true; } /* initially allow all levels */ wm_state->num_levels = intel_wm_num_levels(dev_priv); /* * Note that enabling cxsr with no primary/sprite planes * enabled can wedge the pipe. Hence we only allow cxsr * with exactly one enabled primary/sprite plane. */ wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1; for (level = 0; level < wm_state->num_levels; level++) { const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1; if (!vlv_raw_crtc_wm_is_valid(crtc_state, level)) break; for_each_plane_id_on_crtc(crtc, plane_id) { wm_state->wm[level].plane[plane_id] = vlv_invert_wm_value(raw->plane[plane_id], fifo_state->plane[plane_id]); } wm_state->sr[level].plane = vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY], raw->plane[PLANE_SPRITE0], raw->plane[PLANE_SPRITE1]), sr_fifo_size); wm_state->sr[level].cursor = vlv_invert_wm_value(raw->plane[PLANE_CURSOR], 63); } if (level == 0) return -EINVAL; /* limit to only levels we can actually handle */ wm_state->num_levels = level; /* invalidate the higher levels */ vlv_invalidate_wms(crtc, wm_state, level); return 0; } #define VLV_FIFO(plane, value) \ (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV) static void vlv_atomic_update_fifo(struct intel_atomic_state *state, struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; int sprite0_start, sprite1_start, fifo_size; if (!crtc_state->fifo_changed) return; sprite0_start = fifo_state->plane[PLANE_PRIMARY]; sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start; fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start; WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63); WARN_ON(fifo_size != 511); trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size); /* * uncore.lock serves a double purpose here. It allows us to * use the less expensive I915_{READ,WRITE}_FW() functions, and * it protects the DSPARB registers from getting clobbered by * parallel updates from multiple pipes. * * intel_pipe_update_start() has already disabled interrupts * for us, so a plain spin_lock() is sufficient here. */ spin_lock(&dev_priv->uncore.lock); switch (crtc->pipe) { uint32_t dsparb, dsparb2, dsparb3; case PIPE_A: dsparb = I915_READ_FW(DSPARB); dsparb2 = I915_READ_FW(DSPARB2); dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) | VLV_FIFO(SPRITEB, 0xff)); dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) | VLV_FIFO(SPRITEB, sprite1_start)); dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) | VLV_FIFO(SPRITEB_HI, 0x1)); dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) | VLV_FIFO(SPRITEB_HI, sprite1_start >> 8)); I915_WRITE_FW(DSPARB, dsparb); I915_WRITE_FW(DSPARB2, dsparb2); break; case PIPE_B: dsparb = I915_READ_FW(DSPARB); dsparb2 = I915_READ_FW(DSPARB2); dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) | VLV_FIFO(SPRITED, 0xff)); dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) | VLV_FIFO(SPRITED, sprite1_start)); dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) | VLV_FIFO(SPRITED_HI, 0xff)); dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) | VLV_FIFO(SPRITED_HI, sprite1_start >> 8)); I915_WRITE_FW(DSPARB, dsparb); I915_WRITE_FW(DSPARB2, dsparb2); break; case PIPE_C: dsparb3 = I915_READ_FW(DSPARB3); dsparb2 = I915_READ_FW(DSPARB2); dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) | VLV_FIFO(SPRITEF, 0xff)); dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) | VLV_FIFO(SPRITEF, sprite1_start)); dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) | VLV_FIFO(SPRITEF_HI, 0xff)); dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) | VLV_FIFO(SPRITEF_HI, sprite1_start >> 8)); I915_WRITE_FW(DSPARB3, dsparb3); I915_WRITE_FW(DSPARB2, dsparb2); break; default: break; } POSTING_READ_FW(DSPARB); spin_unlock(&dev_priv->uncore.lock); } #undef VLV_FIFO static int vlv_compute_intermediate_wm(struct drm_device *dev, struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate; const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal; const struct vlv_wm_state *active = &crtc->wm.active.vlv; int level; intermediate->num_levels = min(optimal->num_levels, active->num_levels); intermediate->cxsr = optimal->cxsr && active->cxsr && !crtc_state->disable_cxsr; for (level = 0; level < intermediate->num_levels; level++) { enum plane_id plane_id; for_each_plane_id_on_crtc(crtc, plane_id) { intermediate->wm[level].plane[plane_id] = min(optimal->wm[level].plane[plane_id], active->wm[level].plane[plane_id]); } intermediate->sr[level].plane = min(optimal->sr[level].plane, active->sr[level].plane); intermediate->sr[level].cursor = min(optimal->sr[level].cursor, active->sr[level].cursor); } vlv_invalidate_wms(crtc, intermediate, level); /* * If our intermediate WM are identical to the final WM, then we can * omit the post-vblank programming; only update if it's different. */ if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) crtc_state->wm.need_postvbl_update = true; return 0; } static void vlv_merge_wm(struct drm_i915_private *dev_priv, struct vlv_wm_values *wm) { struct intel_crtc *crtc; int num_active_crtcs = 0; wm->level = dev_priv->wm.max_level; wm->cxsr = true; for_each_intel_crtc(&dev_priv->drm, crtc) { const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; if (!crtc->active) continue; if (!wm_state->cxsr) wm->cxsr = false; num_active_crtcs++; wm->level = min_t(int, wm->level, wm_state->num_levels - 1); } if (num_active_crtcs != 1) wm->cxsr = false; if (num_active_crtcs > 1) wm->level = VLV_WM_LEVEL_PM2; for_each_intel_crtc(&dev_priv->drm, crtc) { const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; enum pipe pipe = crtc->pipe; wm->pipe[pipe] = wm_state->wm[wm->level]; if (crtc->active && wm->cxsr) wm->sr = wm_state->sr[wm->level]; wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2; wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2; wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2; wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2; } } static void vlv_program_watermarks(struct drm_i915_private *dev_priv) { struct vlv_wm_values *old_wm = &dev_priv->wm.vlv; struct vlv_wm_values new_wm = {}; vlv_merge_wm(dev_priv, &new_wm); if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) return; if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) chv_set_memory_dvfs(dev_priv, false); if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) chv_set_memory_pm5(dev_priv, false); if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) _intel_set_memory_cxsr(dev_priv, false); vlv_write_wm_values(dev_priv, &new_wm); if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) _intel_set_memory_cxsr(dev_priv, true); if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) chv_set_memory_pm5(dev_priv, true); if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) chv_set_memory_dvfs(dev_priv, true); *old_wm = new_wm; } static void vlv_initial_watermarks(struct intel_atomic_state *state, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); mutex_lock(&dev_priv->wm.wm_mutex); crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate; vlv_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } static void vlv_optimize_watermarks(struct intel_atomic_state *state, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); if (!crtc_state->wm.need_postvbl_update) return; mutex_lock(&dev_priv->wm.wm_mutex); intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; vlv_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } static void i965_update_wm(struct intel_crtc *unused_crtc) { struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); struct intel_crtc *crtc; int srwm = 1; int cursor_sr = 16; bool cxsr_enabled; /* Calc sr entries for one plane configs */ crtc = single_enabled_crtc(dev_priv); if (crtc) { /* self-refresh has much higher latency */ static const int sr_latency_ns = 12000; const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode; const struct drm_framebuffer *fb = crtc->base.primary->state->fb; int clock = adjusted_mode->crtc_clock; int htotal = adjusted_mode->crtc_htotal; int hdisplay = crtc->config->pipe_src_w; int cpp = fb->format->cpp[0]; int entries; entries = intel_wm_method2(clock, htotal, hdisplay, cpp, sr_latency_ns / 100); entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); srwm = I965_FIFO_SIZE - entries; if (srwm < 0) srwm = 1; srwm &= 0x1ff; DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n", entries, srwm); entries = intel_wm_method2(clock, htotal, crtc->base.cursor->state->crtc_w, 4, sr_latency_ns / 100); entries = DIV_ROUND_UP(entries, i965_cursor_wm_info.cacheline_size) + i965_cursor_wm_info.guard_size; cursor_sr = i965_cursor_wm_info.fifo_size - entries; if (cursor_sr > i965_cursor_wm_info.max_wm) cursor_sr = i965_cursor_wm_info.max_wm; DRM_DEBUG_KMS("self-refresh watermark: display plane %d " "cursor %d\n", srwm, cursor_sr); cxsr_enabled = true; } else { cxsr_enabled = false; /* Turn off self refresh if both pipes are enabled */ intel_set_memory_cxsr(dev_priv, false); } DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", srwm); /* 965 has limitations... */ I915_WRITE(DSPFW1, FW_WM(srwm, SR) | FW_WM(8, CURSORB) | FW_WM(8, PLANEB) | FW_WM(8, PLANEA)); I915_WRITE(DSPFW2, FW_WM(8, CURSORA) | FW_WM(8, PLANEC_OLD)); /* update cursor SR watermark */ I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR)); if (cxsr_enabled) intel_set_memory_cxsr(dev_priv, true); } #undef FW_WM static void i9xx_update_wm(struct intel_crtc *unused_crtc) { struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); const struct intel_watermark_params *wm_info; uint32_t fwater_lo; uint32_t fwater_hi; int cwm, srwm = 1; int fifo_size; int planea_wm, planeb_wm; struct intel_crtc *crtc, *enabled = NULL; if (IS_I945GM(dev_priv)) wm_info = &i945_wm_info; else if (!IS_GEN2(dev_priv)) wm_info = &i915_wm_info; else wm_info = &i830_a_wm_info; fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0); crtc = intel_get_crtc_for_plane(dev_priv, 0); if (intel_crtc_active(crtc)) { const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode; const struct drm_framebuffer *fb = crtc->base.primary->state->fb; int cpp; if (IS_GEN2(dev_priv)) cpp = 4; else cpp = fb->format->cpp[0]; planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock, wm_info, fifo_size, cpp, pessimal_latency_ns); enabled = crtc; } else { planea_wm = fifo_size - wm_info->guard_size; if (planea_wm > (long)wm_info->max_wm) planea_wm = wm_info->max_wm; } if (IS_GEN2(dev_priv)) wm_info = &i830_bc_wm_info; fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1); crtc = intel_get_crtc_for_plane(dev_priv, 1); if (intel_crtc_active(crtc)) { const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode; const struct drm_framebuffer *fb = crtc->base.primary->state->fb; int cpp; if (IS_GEN2(dev_priv)) cpp = 4; else cpp = fb->format->cpp[0]; planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock, wm_info, fifo_size, cpp, pessimal_latency_ns); if (enabled == NULL) enabled = crtc; else enabled = NULL; } else { planeb_wm = fifo_size - wm_info->guard_size; if (planeb_wm > (long)wm_info->max_wm) planeb_wm = wm_info->max_wm; } DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); if (IS_I915GM(dev_priv) && enabled) { struct drm_i915_gem_object *obj; obj = intel_fb_obj(enabled->base.primary->state->fb); /* self-refresh seems busted with untiled */ if (!i915_gem_object_is_tiled(obj)) enabled = NULL; } /* * Overlay gets an aggressive default since video jitter is bad. */ cwm = 2; /* Play safe and disable self-refresh before adjusting watermarks. */ intel_set_memory_cxsr(dev_priv, false); /* Calc sr entries for one plane configs */ if (HAS_FW_BLC(dev_priv) && enabled) { /* self-refresh has much higher latency */ static const int sr_latency_ns = 6000; const struct drm_display_mode *adjusted_mode = &enabled->config->base.adjusted_mode; const struct drm_framebuffer *fb = enabled->base.primary->state->fb; int clock = adjusted_mode->crtc_clock; int htotal = adjusted_mode->crtc_htotal; int hdisplay = enabled->config->pipe_src_w; int cpp; int entries; if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv)) cpp = 4; else cpp = fb->format->cpp[0]; entries = intel_wm_method2(clock, htotal, hdisplay, cpp, sr_latency_ns / 100); entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); DRM_DEBUG_KMS("self-refresh entries: %d\n", entries); srwm = wm_info->fifo_size - entries; if (srwm < 0) srwm = 1; if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); else I915_WRITE(FW_BLC_SELF, srwm & 0x3f); } DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", planea_wm, planeb_wm, cwm, srwm); fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); fwater_hi = (cwm & 0x1f); /* Set request length to 8 cachelines per fetch */ fwater_lo = fwater_lo | (1 << 24) | (1 << 8); fwater_hi = fwater_hi | (1 << 8); I915_WRITE(FW_BLC, fwater_lo); I915_WRITE(FW_BLC2, fwater_hi); if (enabled) intel_set_memory_cxsr(dev_priv, true); } static void i845_update_wm(struct intel_crtc *unused_crtc) { struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); struct intel_crtc *crtc; const struct drm_display_mode *adjusted_mode; uint32_t fwater_lo; int planea_wm; crtc = single_enabled_crtc(dev_priv); if (crtc == NULL) return; adjusted_mode = &crtc->config->base.adjusted_mode; planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock, &i845_wm_info, dev_priv->display.get_fifo_size(dev_priv, 0), 4, pessimal_latency_ns); fwater_lo = I915_READ(FW_BLC) & ~0xfff; fwater_lo |= (3<<8) | planea_wm; DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm); I915_WRITE(FW_BLC, fwater_lo); } /* latency must be in 0.1us units. */ static unsigned int ilk_wm_method1(unsigned int pixel_rate, unsigned int cpp, unsigned int latency) { unsigned int ret; ret = intel_wm_method1(pixel_rate, cpp, latency); ret = DIV_ROUND_UP(ret, 64) + 2; return ret; } /* latency must be in 0.1us units. */ static unsigned int ilk_wm_method2(unsigned int pixel_rate, unsigned int htotal, unsigned int width, unsigned int cpp, unsigned int latency) { unsigned int ret; ret = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); ret = DIV_ROUND_UP(ret, 64) + 2; return ret; } static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels, uint8_t cpp) { /* * Neither of these should be possible since this function shouldn't be * called if the CRTC is off or the plane is invisible. But let's be * extra paranoid to avoid a potential divide-by-zero if we screw up * elsewhere in the driver. */ if (WARN_ON(!cpp)) return 0; if (WARN_ON(!horiz_pixels)) return 0; return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2; } struct ilk_wm_maximums { uint16_t pri; uint16_t spr; uint16_t cur; uint16_t fbc; }; /* * For both WM_PIPE and WM_LP. * mem_value must be in 0.1us units. */ static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate, const struct intel_plane_state *pstate, uint32_t mem_value, bool is_lp) { uint32_t method1, method2; int cpp; if (!intel_wm_plane_visible(cstate, pstate)) return 0; cpp = pstate->base.fb->format->cpp[0]; method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value); if (!is_lp) return method1; method2 = ilk_wm_method2(cstate->pixel_rate, cstate->base.adjusted_mode.crtc_htotal, drm_rect_width(&pstate->base.dst), cpp, mem_value); return min(method1, method2); } /* * For both WM_PIPE and WM_LP. * mem_value must be in 0.1us units. */ static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate, const struct intel_plane_state *pstate, uint32_t mem_value) { uint32_t method1, method2; int cpp; if (!intel_wm_plane_visible(cstate, pstate)) return 0; cpp = pstate->base.fb->format->cpp[0]; method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value); method2 = ilk_wm_method2(cstate->pixel_rate, cstate->base.adjusted_mode.crtc_htotal, drm_rect_width(&pstate->base.dst), cpp, mem_value); return min(method1, method2); } /* * For both WM_PIPE and WM_LP. * mem_value must be in 0.1us units. */ static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate, const struct intel_plane_state *pstate, uint32_t mem_value) { int cpp; if (!intel_wm_plane_visible(cstate, pstate)) return 0; cpp = pstate->base.fb->format->cpp[0]; return ilk_wm_method2(cstate->pixel_rate, cstate->base.adjusted_mode.crtc_htotal, pstate->base.crtc_w, cpp, mem_value); } /* Only for WM_LP. */ static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate, const struct intel_plane_state *pstate, uint32_t pri_val) { int cpp; if (!intel_wm_plane_visible(cstate, pstate)) return 0; cpp = pstate->base.fb->format->cpp[0]; return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp); } static unsigned int ilk_display_fifo_size(const struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) >= 8) return 3072; else if (INTEL_GEN(dev_priv) >= 7) return 768; else return 512; } static unsigned int ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv, int level, bool is_sprite) { if (INTEL_GEN(dev_priv) >= 8) /* BDW primary/sprite plane watermarks */ return level == 0 ? 255 : 2047; else if (INTEL_GEN(dev_priv) >= 7) /* IVB/HSW primary/sprite plane watermarks */ return level == 0 ? 127 : 1023; else if (!is_sprite) /* ILK/SNB primary plane watermarks */ return level == 0 ? 127 : 511; else /* ILK/SNB sprite plane watermarks */ return level == 0 ? 63 : 255; } static unsigned int ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level) { if (INTEL_GEN(dev_priv) >= 7) return level == 0 ? 63 : 255; else return level == 0 ? 31 : 63; } static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) >= 8) return 31; else return 15; } /* Calculate the maximum primary/sprite plane watermark */ static unsigned int ilk_plane_wm_max(const struct drm_device *dev, int level, const struct intel_wm_config *config, enum intel_ddb_partitioning ddb_partitioning, bool is_sprite) { struct drm_i915_private *dev_priv = to_i915(dev); unsigned int fifo_size = ilk_display_fifo_size(dev_priv); /* if sprites aren't enabled, sprites get nothing */ if (is_sprite && !config->sprites_enabled) return 0; /* HSW allows LP1+ watermarks even with multiple pipes */ if (level == 0 || config->num_pipes_active > 1) { fifo_size /= INTEL_INFO(dev_priv)->num_pipes; /* * For some reason the non self refresh * FIFO size is only half of the self * refresh FIFO size on ILK/SNB. */ if (INTEL_GEN(dev_priv) <= 6) fifo_size /= 2; } if (config->sprites_enabled) { /* level 0 is always calculated with 1:1 split */ if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) { if (is_sprite) fifo_size *= 5; fifo_size /= 6; } else { fifo_size /= 2; } } /* clamp to max that the registers can hold */ return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite)); } /* Calculate the maximum cursor plane watermark */ static unsigned int ilk_cursor_wm_max(const struct drm_device *dev, int level, const struct intel_wm_config *config) { /* HSW LP1+ watermarks w/ multiple pipes */ if (level > 0 && config->num_pipes_active > 1) return 64; /* otherwise just report max that registers can hold */ return ilk_cursor_wm_reg_max(to_i915(dev), level); } static void ilk_compute_wm_maximums(const struct drm_device *dev, int level, const struct intel_wm_config *config, enum intel_ddb_partitioning ddb_partitioning, struct ilk_wm_maximums *max) { max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false); max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true); max->cur = ilk_cursor_wm_max(dev, level, config); max->fbc = ilk_fbc_wm_reg_max(to_i915(dev)); } static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv, int level, struct ilk_wm_maximums *max) { max->pri = ilk_plane_wm_reg_max(dev_priv, level, false); max->spr = ilk_plane_wm_reg_max(dev_priv, level, true); max->cur = ilk_cursor_wm_reg_max(dev_priv, level); max->fbc = ilk_fbc_wm_reg_max(dev_priv); } static bool ilk_validate_wm_level(int level, const struct ilk_wm_maximums *max, struct intel_wm_level *result) { bool ret; /* already determined to be invalid? */ if (!result->enable) return false; result->enable = result->pri_val <= max->pri && result->spr_val <= max->spr && result->cur_val <= max->cur; ret = result->enable; /* * HACK until we can pre-compute everything, * and thus fail gracefully if LP0 watermarks * are exceeded... */ if (level == 0 && !result->enable) { if (result->pri_val > max->pri) DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n", level, result->pri_val, max->pri); if (result->spr_val > max->spr) DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n", level, result->spr_val, max->spr); if (result->cur_val > max->cur) DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n", level, result->cur_val, max->cur); result->pri_val = min_t(uint32_t, result->pri_val, max->pri); result->spr_val = min_t(uint32_t, result->spr_val, max->spr); result->cur_val = min_t(uint32_t, result->cur_val, max->cur); result->enable = true; } return ret; } static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv, const struct intel_crtc *intel_crtc, int level, struct intel_crtc_state *cstate, struct intel_plane_state *pristate, struct intel_plane_state *sprstate, struct intel_plane_state *curstate, struct intel_wm_level *result) { uint16_t pri_latency = dev_priv->wm.pri_latency[level]; uint16_t spr_latency = dev_priv->wm.spr_latency[level]; uint16_t cur_latency = dev_priv->wm.cur_latency[level]; /* WM1+ latency values stored in 0.5us units */ if (level > 0) { pri_latency *= 5; spr_latency *= 5; cur_latency *= 5; } if (pristate) { result->pri_val = ilk_compute_pri_wm(cstate, pristate, pri_latency, level); result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val); } if (sprstate) result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency); if (curstate) result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency); result->enable = true; } static uint32_t hsw_compute_linetime_wm(const struct intel_crtc_state *cstate) { const struct intel_atomic_state *intel_state = to_intel_atomic_state(cstate->base.state); const struct drm_display_mode *adjusted_mode = &cstate->base.adjusted_mode; u32 linetime, ips_linetime; if (!cstate->base.active) return 0; if (WARN_ON(adjusted_mode->crtc_clock == 0)) return 0; if (WARN_ON(intel_state->cdclk.logical.cdclk == 0)) return 0; /* The WM are computed with base on how long it takes to fill a single * row at the given clock rate, multiplied by 8. * */ linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, adjusted_mode->crtc_clock); ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, intel_state->cdclk.logical.cdclk); return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) | PIPE_WM_LINETIME_TIME(linetime); } static void intel_read_wm_latency(struct drm_i915_private *dev_priv, uint16_t wm[8]) { if (IS_GEN9(dev_priv)) { uint32_t val; int ret, i; int level, max_level = ilk_wm_max_level(dev_priv); /* read the first set of memory latencies[0:3] */ val = 0; /* data0 to be programmed to 0 for first set */ mutex_lock(&dev_priv->rps.hw_lock); ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_READ_MEM_LATENCY, &val); mutex_unlock(&dev_priv->rps.hw_lock); if (ret) { DRM_ERROR("SKL Mailbox read error = %d\n", ret); return; } wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK; wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & GEN9_MEM_LATENCY_LEVEL_MASK; wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & GEN9_MEM_LATENCY_LEVEL_MASK; wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & GEN9_MEM_LATENCY_LEVEL_MASK; /* read the second set of memory latencies[4:7] */ val = 1; /* data0 to be programmed to 1 for second set */ mutex_lock(&dev_priv->rps.hw_lock); ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_READ_MEM_LATENCY, &val); mutex_unlock(&dev_priv->rps.hw_lock); if (ret) { DRM_ERROR("SKL Mailbox read error = %d\n", ret); return; } wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK; wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & GEN9_MEM_LATENCY_LEVEL_MASK; wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & GEN9_MEM_LATENCY_LEVEL_MASK; wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & GEN9_MEM_LATENCY_LEVEL_MASK; /* * If a level n (n > 1) has a 0us latency, all levels m (m >= n) * need to be disabled. We make sure to sanitize the values out * of the punit to satisfy this requirement. */ for (level = 1; level <= max_level; level++) { if (wm[level] == 0) { for (i = level + 1; i <= max_level; i++) wm[i] = 0; break; } } /* * WaWmMemoryReadLatency:skl,glk * * punit doesn't take into account the read latency so we need * to add 2us to the various latency levels we retrieve from the * punit when level 0 response data us 0us. */ if (wm[0] == 0) { wm[0] += 2; for (level = 1; level <= max_level; level++) { if (wm[level] == 0) break; wm[level] += 2; } } } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { uint64_t sskpd = I915_READ64(MCH_SSKPD); wm[0] = (sskpd >> 56) & 0xFF; if (wm[0] == 0) wm[0] = sskpd & 0xF; wm[1] = (sskpd >> 4) & 0xFF; wm[2] = (sskpd >> 12) & 0xFF; wm[3] = (sskpd >> 20) & 0x1FF; wm[4] = (sskpd >> 32) & 0x1FF; } else if (INTEL_GEN(dev_priv) >= 6) { uint32_t sskpd = I915_READ(MCH_SSKPD); wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK; wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK; wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK; wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK; } else if (INTEL_GEN(dev_priv) >= 5) { uint32_t mltr = I915_READ(MLTR_ILK); /* ILK primary LP0 latency is 700 ns */ wm[0] = 7; wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK; wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK; } } static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv, uint16_t wm[5]) { /* ILK sprite LP0 latency is 1300 ns */ if (IS_GEN5(dev_priv)) wm[0] = 13; } static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv, uint16_t wm[5]) { /* ILK cursor LP0 latency is 1300 ns */ if (IS_GEN5(dev_priv)) wm[0] = 13; /* WaDoubleCursorLP3Latency:ivb */ if (IS_IVYBRIDGE(dev_priv)) wm[3] *= 2; } int ilk_wm_max_level(const struct drm_i915_private *dev_priv) { /* how many WM levels are we expecting */ if (INTEL_GEN(dev_priv) >= 9) return 7; else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) return 4; else if (INTEL_GEN(dev_priv) >= 6) return 3; else return 2; } static void intel_print_wm_latency(struct drm_i915_private *dev_priv, const char *name, const uint16_t wm[8]) { int level, max_level = ilk_wm_max_level(dev_priv); for (level = 0; level <= max_level; level++) { unsigned int latency = wm[level]; if (latency == 0) { DRM_ERROR("%s WM%d latency not provided\n", name, level); continue; } /* * - latencies are in us on gen9. * - before then, WM1+ latency values are in 0.5us units */ if (IS_GEN9(dev_priv)) latency *= 10; else if (level > 0) latency *= 5; DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n", name, level, wm[level], latency / 10, latency % 10); } } static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv, uint16_t wm[5], uint16_t min) { int level, max_level = ilk_wm_max_level(dev_priv); if (wm[0] >= min) return false; wm[0] = max(wm[0], min); for (level = 1; level <= max_level; level++) wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5)); return true; } static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv) { bool changed; /* * The BIOS provided WM memory latency values are often * inadequate for high resolution displays. Adjust them. */ changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) | ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) | ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12); if (!changed) return; DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n"); intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); } static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv) { intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency); memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency, sizeof(dev_priv->wm.pri_latency)); memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency, sizeof(dev_priv->wm.pri_latency)); intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency); intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency); intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); if (IS_GEN6(dev_priv)) snb_wm_latency_quirk(dev_priv); } static void skl_setup_wm_latency(struct drm_i915_private *dev_priv) { intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency); intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency); } static bool ilk_validate_pipe_wm(struct drm_device *dev, struct intel_pipe_wm *pipe_wm) { /* LP0 watermark maximums depend on this pipe alone */ const struct intel_wm_config config = { .num_pipes_active = 1, .sprites_enabled = pipe_wm->sprites_enabled, .sprites_scaled = pipe_wm->sprites_scaled, }; struct ilk_wm_maximums max; /* LP0 watermarks always use 1/2 DDB partitioning */ ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max); /* At least LP0 must be valid */ if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) { DRM_DEBUG_KMS("LP0 watermark invalid\n"); return false; } return true; } /* Compute new watermarks for the pipe */ static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate) { struct drm_atomic_state *state = cstate->base.state; struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); struct intel_pipe_wm *pipe_wm; struct drm_device *dev = state->dev; const struct drm_i915_private *dev_priv = to_i915(dev); struct intel_plane *intel_plane; struct intel_plane_state *pristate = NULL; struct intel_plane_state *sprstate = NULL; struct intel_plane_state *curstate = NULL; int level, max_level = ilk_wm_max_level(dev_priv), usable_level; struct ilk_wm_maximums max; pipe_wm = &cstate->wm.ilk.optimal; for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) { struct intel_plane_state *ps; ps = intel_atomic_get_existing_plane_state(state, intel_plane); if (!ps) continue; if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY) pristate = ps; else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) sprstate = ps; else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR) curstate = ps; } pipe_wm->pipe_enabled = cstate->base.active; if (sprstate) { pipe_wm->sprites_enabled = sprstate->base.visible; pipe_wm->sprites_scaled = sprstate->base.visible && (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 || drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16); } usable_level = max_level; /* ILK/SNB: LP2+ watermarks only w/o sprites */ if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled) usable_level = 1; /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */ if (pipe_wm->sprites_scaled) usable_level = 0; ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, pristate, sprstate, curstate, &pipe_wm->raw_wm[0]); memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm)); pipe_wm->wm[0] = pipe_wm->raw_wm[0]; if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) pipe_wm->linetime = hsw_compute_linetime_wm(cstate); if (!ilk_validate_pipe_wm(dev, pipe_wm)) return -EINVAL; ilk_compute_wm_reg_maximums(dev_priv, 1, &max); for (level = 1; level <= max_level; level++) { struct intel_wm_level *wm = &pipe_wm->raw_wm[level]; ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, pristate, sprstate, curstate, wm); /* * Disable any watermark level that exceeds the * register maximums since such watermarks are * always invalid. */ if (level > usable_level) continue; if (ilk_validate_wm_level(level, &max, wm)) pipe_wm->wm[level] = *wm; else usable_level = level; } return 0; } /* * Build a set of 'intermediate' watermark values that satisfy both the old * state and the new state. These can be programmed to the hardware * immediately. */ static int ilk_compute_intermediate_wm(struct drm_device *dev, struct intel_crtc *intel_crtc, struct intel_crtc_state *newstate) { struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate; struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk; int level, max_level = ilk_wm_max_level(to_i915(dev)); /* * Start with the final, target watermarks, then combine with the * currently active watermarks to get values that are safe both before * and after the vblank. */ *a = newstate->wm.ilk.optimal; a->pipe_enabled |= b->pipe_enabled; a->sprites_enabled |= b->sprites_enabled; a->sprites_scaled |= b->sprites_scaled; for (level = 0; level <= max_level; level++) { struct intel_wm_level *a_wm = &a->wm[level]; const struct intel_wm_level *b_wm = &b->wm[level]; a_wm->enable &= b_wm->enable; a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val); a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val); a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val); a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val); } /* * We need to make sure that these merged watermark values are * actually a valid configuration themselves. If they're not, * there's no safe way to transition from the old state to * the new state, so we need to fail the atomic transaction. */ if (!ilk_validate_pipe_wm(dev, a)) return -EINVAL; /* * If our intermediate WM are identical to the final WM, then we can * omit the post-vblank programming; only update if it's different. */ if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0) newstate->wm.need_postvbl_update = true; return 0; } /* * Merge the watermarks from all active pipes for a specific level. */ static void ilk_merge_wm_level(struct drm_device *dev, int level, struct intel_wm_level *ret_wm) { const struct intel_crtc *intel_crtc; ret_wm->enable = true; for_each_intel_crtc(dev, intel_crtc) { const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk; const struct intel_wm_level *wm = &active->wm[level]; if (!active->pipe_enabled) continue; /* * The watermark values may have been used in the past, * so we must maintain them in the registers for some * time even if the level is now disabled. */ if (!wm->enable) ret_wm->enable = false; ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val); ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val); ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val); ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val); } } /* * Merge all low power watermarks for all active pipes. */ static void ilk_wm_merge(struct drm_device *dev, const struct intel_wm_config *config, const struct ilk_wm_maximums *max, struct intel_pipe_wm *merged) { struct drm_i915_private *dev_priv = to_i915(dev); int level, max_level = ilk_wm_max_level(dev_priv); int last_enabled_level = max_level; /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */ if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) && config->num_pipes_active > 1) last_enabled_level = 0; /* ILK: FBC WM must be disabled always */ merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6; /* merge each WM1+ level */ for (level = 1; level <= max_level; level++) { struct intel_wm_level *wm = &merged->wm[level]; ilk_merge_wm_level(dev, level, wm); if (level > last_enabled_level) wm->enable = false; else if (!ilk_validate_wm_level(level, max, wm)) /* make sure all following levels get disabled */ last_enabled_level = level - 1; /* * The spec says it is preferred to disable * FBC WMs instead of disabling a WM level. */ if (wm->fbc_val > max->fbc) { if (wm->enable) merged->fbc_wm_enabled = false; wm->fbc_val = 0; } } /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */ /* * FIXME this is racy. FBC might get enabled later. * What we should check here is whether FBC can be * enabled sometime later. */ if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled && intel_fbc_is_active(dev_priv)) { for (level = 2; level <= max_level; level++) { struct intel_wm_level *wm = &merged->wm[level]; wm->enable = false; } } } static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm) { /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */ return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable); } /* The value we need to program into the WM_LPx latency field */ static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level) { struct drm_i915_private *dev_priv = to_i915(dev); if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) return 2 * level; else return dev_priv->wm.pri_latency[level]; } static void ilk_compute_wm_results(struct drm_device *dev, const struct intel_pipe_wm *merged, enum intel_ddb_partitioning partitioning, struct ilk_wm_values *results) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc; int level, wm_lp; results->enable_fbc_wm = merged->fbc_wm_enabled; results->partitioning = partitioning; /* LP1+ register values */ for (wm_lp = 1; wm_lp <= 3; wm_lp++) { const struct intel_wm_level *r; level = ilk_wm_lp_to_level(wm_lp, merged); r = &merged->wm[level]; /* * Maintain the watermark values even if the level is * disabled. Doing otherwise could cause underruns. */ results->wm_lp[wm_lp - 1] = (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) | (r->pri_val << WM1_LP_SR_SHIFT) | r->cur_val; if (r->enable) results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN; if (INTEL_GEN(dev_priv) >= 8) results->wm_lp[wm_lp - 1] |= r->fbc_val << WM1_LP_FBC_SHIFT_BDW; else results->wm_lp[wm_lp - 1] |= r->fbc_val << WM1_LP_FBC_SHIFT; /* * Always set WM1S_LP_EN when spr_val != 0, even if the * level is disabled. Doing otherwise could cause underruns. */ if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) { WARN_ON(wm_lp != 1); results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val; } else results->wm_lp_spr[wm_lp - 1] = r->spr_val; } /* LP0 register values */ for_each_intel_crtc(dev, intel_crtc) { enum pipe pipe = intel_crtc->pipe; const struct intel_wm_level *r = &intel_crtc->wm.active.ilk.wm[0]; if (WARN_ON(!r->enable)) continue; results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime; results->wm_pipe[pipe] = (r->pri_val << WM0_PIPE_PLANE_SHIFT) | (r->spr_val << WM0_PIPE_SPRITE_SHIFT) | r->cur_val; } } /* Find the result with the highest level enabled. Check for enable_fbc_wm in * case both are at the same level. Prefer r1 in case they're the same. */ static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev, struct intel_pipe_wm *r1, struct intel_pipe_wm *r2) { int level, max_level = ilk_wm_max_level(to_i915(dev)); int level1 = 0, level2 = 0; for (level = 1; level <= max_level; level++) { if (r1->wm[level].enable) level1 = level; if (r2->wm[level].enable) level2 = level; } if (level1 == level2) { if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled) return r2; else return r1; } else if (level1 > level2) { return r1; } else { return r2; } } /* dirty bits used to track which watermarks need changes */ #define WM_DIRTY_PIPE(pipe) (1 << (pipe)) #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe))) #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp))) #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3)) #define WM_DIRTY_FBC (1 << 24) #define WM_DIRTY_DDB (1 << 25) static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv, const struct ilk_wm_values *old, const struct ilk_wm_values *new) { unsigned int dirty = 0; enum pipe pipe; int wm_lp; for_each_pipe(dev_priv, pipe) { if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) { dirty |= WM_DIRTY_LINETIME(pipe); /* Must disable LP1+ watermarks too */ dirty |= WM_DIRTY_LP_ALL; } if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) { dirty |= WM_DIRTY_PIPE(pipe); /* Must disable LP1+ watermarks too */ dirty |= WM_DIRTY_LP_ALL; } } if (old->enable_fbc_wm != new->enable_fbc_wm) { dirty |= WM_DIRTY_FBC; /* Must disable LP1+ watermarks too */ dirty |= WM_DIRTY_LP_ALL; } if (old->partitioning != new->partitioning) { dirty |= WM_DIRTY_DDB; /* Must disable LP1+ watermarks too */ dirty |= WM_DIRTY_LP_ALL; } /* LP1+ watermarks already deemed dirty, no need to continue */ if (dirty & WM_DIRTY_LP_ALL) return dirty; /* Find the lowest numbered LP1+ watermark in need of an update... */ for (wm_lp = 1; wm_lp <= 3; wm_lp++) { if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] || old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1]) break; } /* ...and mark it and all higher numbered LP1+ watermarks as dirty */ for (; wm_lp <= 3; wm_lp++) dirty |= WM_DIRTY_LP(wm_lp); return dirty; } static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv, unsigned int dirty) { struct ilk_wm_values *previous = &dev_priv->wm.hw; bool changed = false; if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) { previous->wm_lp[2] &= ~WM1_LP_SR_EN; I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]); changed = true; } if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) { previous->wm_lp[1] &= ~WM1_LP_SR_EN; I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]); changed = true; } if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) { previous->wm_lp[0] &= ~WM1_LP_SR_EN; I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]); changed = true; } /* * Don't touch WM1S_LP_EN here. * Doing so could cause underruns. */ return changed; } /* * The spec says we shouldn't write when we don't need, because every write * causes WMs to be re-evaluated, expending some power. */ static void ilk_write_wm_values(struct drm_i915_private *dev_priv, struct ilk_wm_values *results) { struct ilk_wm_values *previous = &dev_priv->wm.hw; unsigned int dirty; uint32_t val; dirty = ilk_compute_wm_dirty(dev_priv, previous, results); if (!dirty) return; _ilk_disable_lp_wm(dev_priv, dirty); if (dirty & WM_DIRTY_PIPE(PIPE_A)) I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]); if (dirty & WM_DIRTY_PIPE(PIPE_B)) I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]); if (dirty & WM_DIRTY_PIPE(PIPE_C)) I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]); if (dirty & WM_DIRTY_LINETIME(PIPE_A)) I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]); if (dirty & WM_DIRTY_LINETIME(PIPE_B)) I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]); if (dirty & WM_DIRTY_LINETIME(PIPE_C)) I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]); if (dirty & WM_DIRTY_DDB) { if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { val = I915_READ(WM_MISC); if (results->partitioning == INTEL_DDB_PART_1_2) val &= ~WM_MISC_DATA_PARTITION_5_6; else val |= WM_MISC_DATA_PARTITION_5_6; I915_WRITE(WM_MISC, val); } else { val = I915_READ(DISP_ARB_CTL2); if (results->partitioning == INTEL_DDB_PART_1_2) val &= ~DISP_DATA_PARTITION_5_6; else val |= DISP_DATA_PARTITION_5_6; I915_WRITE(DISP_ARB_CTL2, val); } } if (dirty & WM_DIRTY_FBC) { val = I915_READ(DISP_ARB_CTL); if (results->enable_fbc_wm) val &= ~DISP_FBC_WM_DIS; else val |= DISP_FBC_WM_DIS; I915_WRITE(DISP_ARB_CTL, val); } if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0]) I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]); if (INTEL_GEN(dev_priv) >= 7) { if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1]) I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]); if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2]) I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]); } if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0]) I915_WRITE(WM1_LP_ILK, results->wm_lp[0]); if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1]) I915_WRITE(WM2_LP_ILK, results->wm_lp[1]); if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2]) I915_WRITE(WM3_LP_ILK, results->wm_lp[2]); dev_priv->wm.hw = *results; } bool ilk_disable_lp_wm(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL); } #define SKL_SAGV_BLOCK_TIME 30 /* µs */ /* * FIXME: We still don't have the proper code detect if we need to apply the WA, * so assume we'll always need it in order to avoid underruns. */ static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) return true; return false; } static bool intel_has_sagv(struct drm_i915_private *dev_priv) { if (IS_KABYLAKE(dev_priv)) return true; if (IS_SKYLAKE(dev_priv) && dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED) return true; return false; } /* * SAGV dynamically adjusts the system agent voltage and clock frequencies * depending on power and performance requirements. The display engine access * to system memory is blocked during the adjustment time. Because of the * blocking time, having this enabled can cause full system hangs and/or pipe * underruns if we don't meet all of the following requirements: * * - <= 1 pipe enabled * - All planes can enable watermarks for latencies >= SAGV engine block time * - We're not using an interlaced display configuration */ int intel_enable_sagv(struct drm_i915_private *dev_priv) { int ret; if (!intel_has_sagv(dev_priv)) return 0; if (dev_priv->sagv_status == I915_SAGV_ENABLED) return 0; DRM_DEBUG_KMS("Enabling the SAGV\n"); mutex_lock(&dev_priv->rps.hw_lock); ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL, GEN9_SAGV_ENABLE); /* We don't need to wait for the SAGV when enabling */ mutex_unlock(&dev_priv->rps.hw_lock); /* * Some skl systems, pre-release machines in particular, * don't actually have an SAGV. */ if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) { DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n"); dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED; return 0; } else if (ret < 0) { DRM_ERROR("Failed to enable the SAGV\n"); return ret; } dev_priv->sagv_status = I915_SAGV_ENABLED; return 0; } int intel_disable_sagv(struct drm_i915_private *dev_priv) { int ret; if (!intel_has_sagv(dev_priv)) return 0; if (dev_priv->sagv_status == I915_SAGV_DISABLED) return 0; DRM_DEBUG_KMS("Disabling the SAGV\n"); mutex_lock(&dev_priv->rps.hw_lock); /* bspec says to keep retrying for at least 1 ms */ ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL, GEN9_SAGV_DISABLE, GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED, 1); mutex_unlock(&dev_priv->rps.hw_lock); /* * Some skl systems, pre-release machines in particular, * don't actually have an SAGV. */ if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) { DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n"); dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED; return 0; } else if (ret < 0) { DRM_ERROR("Failed to disable the SAGV (%d)\n", ret); return ret; } dev_priv->sagv_status = I915_SAGV_DISABLED; return 0; } bool intel_can_enable_sagv(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_atomic_state *intel_state = to_intel_atomic_state(state); struct intel_crtc *crtc; struct intel_plane *plane; struct intel_crtc_state *cstate; enum pipe pipe; int level, latency; if (!intel_has_sagv(dev_priv)) return false; /* * SKL workaround: bspec recommends we disable the SAGV when we have * more then one pipe enabled * * If there are no active CRTCs, no additional checks need be performed */ if (hweight32(intel_state->active_crtcs) == 0) return true; else if (hweight32(intel_state->active_crtcs) > 1) return false; /* Since we're now guaranteed to only have one active CRTC... */ pipe = ffs(intel_state->active_crtcs) - 1; crtc = intel_get_crtc_for_pipe(dev_priv, pipe); cstate = to_intel_crtc_state(crtc->base.state); if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) return false; for_each_intel_plane_on_crtc(dev, crtc, plane) { struct skl_plane_wm *wm = &cstate->wm.skl.optimal.planes[plane->id]; /* Skip this plane if it's not enabled */ if (!wm->wm[0].plane_en) continue; /* Find the highest enabled wm level for this plane */ for (level = ilk_wm_max_level(dev_priv); !wm->wm[level].plane_en; --level) { } latency = dev_priv->wm.skl_latency[level]; if (skl_needs_memory_bw_wa(intel_state) && plane->base.state->fb->modifier == I915_FORMAT_MOD_X_TILED) latency += 15; /* * If any of the planes on this pipe don't enable wm levels * that incur memory latencies higher then 30µs we can't enable * the SAGV */ if (latency < SKL_SAGV_BLOCK_TIME) return false; } return true; } static void skl_ddb_get_pipe_allocation_limits(struct drm_device *dev, const struct intel_crtc_state *cstate, struct skl_ddb_entry *alloc, /* out */ int *num_active /* out */) { struct drm_atomic_state *state = cstate->base.state; struct intel_atomic_state *intel_state = to_intel_atomic_state(state); struct drm_i915_private *dev_priv = to_i915(dev); struct drm_crtc *for_crtc = cstate->base.crtc; unsigned int pipe_size, ddb_size; int nth_active_pipe; if (WARN_ON(!state) || !cstate->base.active) { alloc->start = 0; alloc->end = 0; *num_active = hweight32(dev_priv->active_crtcs); return; } if (intel_state->active_pipe_changes) *num_active = hweight32(intel_state->active_crtcs); else *num_active = hweight32(dev_priv->active_crtcs); ddb_size = INTEL_INFO(dev_priv)->ddb_size; WARN_ON(ddb_size == 0); ddb_size -= 4; /* 4 blocks for bypass path allocation */ /* * If the state doesn't change the active CRTC's, then there's * no need to recalculate; the existing pipe allocation limits * should remain unchanged. Note that we're safe from racing * commits since any racing commit that changes the active CRTC * list would need to grab _all_ crtc locks, including the one * we currently hold. */ if (!intel_state->active_pipe_changes) { /* * alloc may be cleared by clear_intel_crtc_state, * copy from old state to be sure */ *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb; return; } nth_active_pipe = hweight32(intel_state->active_crtcs & (drm_crtc_mask(for_crtc) - 1)); pipe_size = ddb_size / hweight32(intel_state->active_crtcs); alloc->start = nth_active_pipe * ddb_size / *num_active; alloc->end = alloc->start + pipe_size; } static unsigned int skl_cursor_allocation(int num_active) { if (num_active == 1) return 32; return 8; } static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg) { entry->start = reg & 0x3ff; entry->end = (reg >> 16) & 0x3ff; if (entry->end) entry->end += 1; } void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv, struct skl_ddb_allocation *ddb /* out */) { struct intel_crtc *crtc; memset(ddb, 0, sizeof(*ddb)); for_each_intel_crtc(&dev_priv->drm, crtc) { enum intel_display_power_domain power_domain; enum plane_id plane_id; enum pipe pipe = crtc->pipe; power_domain = POWER_DOMAIN_PIPE(pipe); if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) continue; for_each_plane_id_on_crtc(crtc, plane_id) { u32 val; if (plane_id != PLANE_CURSOR) val = I915_READ(PLANE_BUF_CFG(pipe, plane_id)); else val = I915_READ(CUR_BUF_CFG(pipe)); skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val); } intel_display_power_put(dev_priv, power_domain); } } /* * Determines the downscale amount of a plane for the purposes of watermark calculations. * The bspec defines downscale amount as: * * """ * Horizontal down scale amount = maximum[1, Horizontal source size / * Horizontal destination size] * Vertical down scale amount = maximum[1, Vertical source size / * Vertical destination size] * Total down scale amount = Horizontal down scale amount * * Vertical down scale amount * """ * * Return value is provided in 16.16 fixed point form to retain fractional part. * Caller should take care of dividing & rounding off the value. */ static uint32_t skl_plane_downscale_amount(const struct intel_crtc_state *cstate, const struct intel_plane_state *pstate) { struct intel_plane *plane = to_intel_plane(pstate->base.plane); uint32_t downscale_h, downscale_w; uint32_t src_w, src_h, dst_w, dst_h; if (WARN_ON(!intel_wm_plane_visible(cstate, pstate))) return DRM_PLANE_HELPER_NO_SCALING; /* n.b., src is 16.16 fixed point, dst is whole integer */ if (plane->id == PLANE_CURSOR) { src_w = pstate->base.src_w; src_h = pstate->base.src_h; dst_w = pstate->base.crtc_w; dst_h = pstate->base.crtc_h; } else { src_w = drm_rect_width(&pstate->base.src); src_h = drm_rect_height(&pstate->base.src); dst_w = drm_rect_width(&pstate->base.dst); dst_h = drm_rect_height(&pstate->base.dst); } if (drm_rotation_90_or_270(pstate->base.rotation)) swap(dst_w, dst_h); downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING); downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING); /* Provide result in 16.16 fixed point */ return (uint64_t)downscale_w * downscale_h >> 16; } static unsigned int skl_plane_relative_data_rate(const struct intel_crtc_state *cstate, const struct drm_plane_state *pstate, int y) { struct intel_plane *plane = to_intel_plane(pstate->plane); struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate); uint32_t down_scale_amount, data_rate; uint32_t width = 0, height = 0; struct drm_framebuffer *fb; u32 format; if (!intel_pstate->base.visible) return 0; fb = pstate->fb; format = fb->format->format; if (plane->id == PLANE_CURSOR) return 0; if (y && format != DRM_FORMAT_NV12) return 0; width = drm_rect_width(&intel_pstate->base.src) >> 16; height = drm_rect_height(&intel_pstate->base.src) >> 16; if (drm_rotation_90_or_270(pstate->rotation)) swap(width, height); /* for planar format */ if (format == DRM_FORMAT_NV12) { if (y) /* y-plane data rate */ data_rate = width * height * fb->format->cpp[0]; else /* uv-plane data rate */ data_rate = (width / 2) * (height / 2) * fb->format->cpp[1]; } else { /* for packed formats */ data_rate = width * height * fb->format->cpp[0]; } down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate); return (uint64_t)data_rate * down_scale_amount >> 16; } /* * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching * a 8192x4096@32bpp framebuffer: * 3 * 4096 * 8192 * 4 < 2^32 */ static unsigned int skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate, unsigned *plane_data_rate, unsigned *plane_y_data_rate) { struct drm_crtc_state *cstate = &intel_cstate->base; struct drm_atomic_state *state = cstate->state; struct drm_plane *plane; const struct drm_plane_state *pstate; unsigned int total_data_rate = 0; if (WARN_ON(!state)) return 0; /* Calculate and cache data rate for each plane */ drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) { enum plane_id plane_id = to_intel_plane(plane)->id; unsigned int rate; /* packed/uv */ rate = skl_plane_relative_data_rate(intel_cstate, pstate, 0); plane_data_rate[plane_id] = rate; total_data_rate += rate; /* y-plane */ rate = skl_plane_relative_data_rate(intel_cstate, pstate, 1); plane_y_data_rate[plane_id] = rate; total_data_rate += rate; } return total_data_rate; } static uint16_t skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int y) { struct drm_framebuffer *fb = pstate->fb; struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate); uint32_t src_w, src_h; uint32_t min_scanlines = 8; uint8_t plane_bpp; if (WARN_ON(!fb)) return 0; /* For packed formats, no y-plane, return 0 */ if (y && fb->format->format != DRM_FORMAT_NV12) return 0; /* For Non Y-tile return 8-blocks */ if (fb->modifier != I915_FORMAT_MOD_Y_TILED && fb->modifier != I915_FORMAT_MOD_Yf_TILED) return 8; src_w = drm_rect_width(&intel_pstate->base.src) >> 16; src_h = drm_rect_height(&intel_pstate->base.src) >> 16; if (drm_rotation_90_or_270(pstate->rotation)) swap(src_w, src_h); /* Halve UV plane width and height for NV12 */ if (fb->format->format == DRM_FORMAT_NV12 && !y) { src_w /= 2; src_h /= 2; } if (fb->format->format == DRM_FORMAT_NV12 && !y) plane_bpp = fb->format->cpp[1]; else plane_bpp = fb->format->cpp[0]; if (drm_rotation_90_or_270(pstate->rotation)) { switch (plane_bpp) { case 1: min_scanlines = 32; break; case 2: min_scanlines = 16; break; case 4: min_scanlines = 8; break; case 8: min_scanlines = 4; break; default: WARN(1, "Unsupported pixel depth %u for rotation", plane_bpp); min_scanlines = 32; } } return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3; } static void skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active, uint16_t *minimum, uint16_t *y_minimum) { const struct drm_plane_state *pstate; struct drm_plane *plane; drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) { enum plane_id plane_id = to_intel_plane(plane)->id; if (plane_id == PLANE_CURSOR) continue; if (!pstate->visible) continue; minimum[plane_id] = skl_ddb_min_alloc(pstate, 0); y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1); } minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active); } static int skl_allocate_pipe_ddb(struct intel_crtc_state *cstate, struct skl_ddb_allocation *ddb /* out */) { struct drm_atomic_state *state = cstate->base.state; struct drm_crtc *crtc = cstate->base.crtc; struct drm_device *dev = crtc->dev; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum pipe pipe = intel_crtc->pipe; struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb; uint16_t alloc_size, start; uint16_t minimum[I915_MAX_PLANES] = {}; uint16_t y_minimum[I915_MAX_PLANES] = {}; unsigned int total_data_rate; enum plane_id plane_id; int num_active; unsigned plane_data_rate[I915_MAX_PLANES] = {}; unsigned plane_y_data_rate[I915_MAX_PLANES] = {}; /* Clear the partitioning for disabled planes. */ memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe])); memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe])); if (WARN_ON(!state)) return 0; if (!cstate->base.active) { alloc->start = alloc->end = 0; return 0; } skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active); alloc_size = skl_ddb_entry_size(alloc); if (alloc_size == 0) { memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe])); return 0; } skl_ddb_calc_min(cstate, num_active, minimum, y_minimum); /* * 1. Allocate the mininum required blocks for each active plane * and allocate the cursor, it doesn't require extra allocation * proportional to the data rate. */ for_each_plane_id_on_crtc(intel_crtc, plane_id) { alloc_size -= minimum[plane_id]; alloc_size -= y_minimum[plane_id]; } ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR]; ddb->plane[pipe][PLANE_CURSOR].end = alloc->end; /* * 2. Distribute the remaining space in proportion to the amount of * data each plane needs to fetch from memory. * * FIXME: we may not allocate every single block here. */ total_data_rate = skl_get_total_relative_data_rate(cstate, plane_data_rate, plane_y_data_rate); if (total_data_rate == 0) return 0; start = alloc->start; for_each_plane_id_on_crtc(intel_crtc, plane_id) { unsigned int data_rate, y_data_rate; uint16_t plane_blocks, y_plane_blocks = 0; if (plane_id == PLANE_CURSOR) continue; data_rate = plane_data_rate[plane_id]; /* * allocation for (packed formats) or (uv-plane part of planar format): * promote the expression to 64 bits to avoid overflowing, the * result is < available as data_rate / total_data_rate < 1 */ plane_blocks = minimum[plane_id]; plane_blocks += div_u64((uint64_t)alloc_size * data_rate, total_data_rate); /* Leave disabled planes at (0,0) */ if (data_rate) { ddb->plane[pipe][plane_id].start = start; ddb->plane[pipe][plane_id].end = start + plane_blocks; } start += plane_blocks; /* * allocation for y_plane part of planar format: */ y_data_rate = plane_y_data_rate[plane_id]; y_plane_blocks = y_minimum[plane_id]; y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate, total_data_rate); if (y_data_rate) { ddb->y_plane[pipe][plane_id].start = start; ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks; } start += y_plane_blocks; } return 0; } /* * The max latency should be 257 (max the punit can code is 255 and we add 2us * for the read latency) and cpp should always be <= 8, so that * should allow pixel_rate up to ~2 GHz which seems sufficient since max * 2xcdclk is 1350 MHz and the pixel rate should never exceed that. */ static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency) { uint32_t wm_intermediate_val; uint_fixed_16_16_t ret; if (latency == 0) return FP_16_16_MAX; wm_intermediate_val = latency * pixel_rate * cpp; ret = fixed_16_16_div_u64(wm_intermediate_val, 1000 * 512); return ret; } static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal, uint32_t latency, uint_fixed_16_16_t plane_blocks_per_line) { uint32_t wm_intermediate_val; uint_fixed_16_16_t ret; if (latency == 0) return FP_16_16_MAX; wm_intermediate_val = latency * pixel_rate; wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000); ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line); return ret; } static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate, struct intel_plane_state *pstate) { uint64_t adjusted_pixel_rate; uint64_t downscale_amount; uint64_t pixel_rate; /* Shouldn't reach here on disabled planes... */ if (WARN_ON(!intel_wm_plane_visible(cstate, pstate))) return 0; /* * Adjusted plane pixel rate is just the pipe's adjusted pixel rate * with additional adjustments for plane-specific scaling. */ adjusted_pixel_rate = cstate->pixel_rate; downscale_amount = skl_plane_downscale_amount(cstate, pstate); pixel_rate = adjusted_pixel_rate * downscale_amount >> 16; WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0)); return pixel_rate; } static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv, struct intel_crtc_state *cstate, struct intel_plane_state *intel_pstate, uint16_t ddb_allocation, int level, uint16_t *out_blocks, /* out */ uint8_t *out_lines, /* out */ bool *enabled /* out */) { struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane); struct drm_plane_state *pstate = &intel_pstate->base; struct drm_framebuffer *fb = pstate->fb; uint32_t latency = dev_priv->wm.skl_latency[level]; uint_fixed_16_16_t method1, method2; uint_fixed_16_16_t plane_blocks_per_line; uint_fixed_16_16_t selected_result; uint32_t interm_pbpl; uint32_t plane_bytes_per_line; uint32_t res_blocks, res_lines; uint8_t cpp; uint32_t width = 0, height = 0; uint32_t plane_pixel_rate; uint_fixed_16_16_t y_tile_minimum; uint32_t y_min_scanlines; struct intel_atomic_state *state = to_intel_atomic_state(cstate->base.state); bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state); bool y_tiled, x_tiled; if (latency == 0 || !intel_wm_plane_visible(cstate, intel_pstate)) { *enabled = false; return 0; } y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED || fb->modifier == I915_FORMAT_MOD_Yf_TILED; x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED; /* Display WA #1141: kbl. */ if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled) latency += 4; if (apply_memory_bw_wa && x_tiled) latency += 15; if (plane->id == PLANE_CURSOR) { width = intel_pstate->base.crtc_w; height = intel_pstate->base.crtc_h; } else { width = drm_rect_width(&intel_pstate->base.src) >> 16; height = drm_rect_height(&intel_pstate->base.src) >> 16; } if (drm_rotation_90_or_270(pstate->rotation)) swap(width, height); cpp = fb->format->cpp[0]; plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate); if (drm_rotation_90_or_270(pstate->rotation)) { int cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] : fb->format->cpp[0]; switch (cpp) { case 1: y_min_scanlines = 16; break; case 2: y_min_scanlines = 8; break; case 4: y_min_scanlines = 4; break; default: MISSING_CASE(cpp); return -EINVAL; } } else { y_min_scanlines = 4; } if (apply_memory_bw_wa) y_min_scanlines *= 2; plane_bytes_per_line = width * cpp; if (y_tiled) { interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512); plane_blocks_per_line = fixed_16_16_div(interm_pbpl, y_min_scanlines); } else if (x_tiled) { interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512); plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl); } else { interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1; plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl); } method1 = skl_wm_method1(plane_pixel_rate, cpp, latency); method2 = skl_wm_method2(plane_pixel_rate, cstate->base.adjusted_mode.crtc_htotal, latency, plane_blocks_per_line); y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines, plane_blocks_per_line); if (y_tiled) { selected_result = max_fixed_16_16(method2, y_tile_minimum); } else { if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) && (plane_bytes_per_line / 512 < 1)) selected_result = method2; else if ((ddb_allocation / fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1) selected_result = min_fixed_16_16(method1, method2); else selected_result = method1; } res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1; res_lines = DIV_ROUND_UP(selected_result.val, plane_blocks_per_line.val); if (level >= 1 && level <= 7) { if (y_tiled) { res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum); res_lines += y_min_scanlines; } else { res_blocks++; } } if (res_blocks >= ddb_allocation || res_lines > 31) { *enabled = false; /* * If there are no valid level 0 watermarks, then we can't * support this display configuration. */ if (level) { return 0; } else { struct drm_plane *plane = pstate->plane; DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n"); DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n", plane->base.id, plane->name, res_blocks, ddb_allocation, res_lines); return -EINVAL; } } *out_blocks = res_blocks; *out_lines = res_lines; *enabled = true; return 0; } static int skl_compute_wm_level(const struct drm_i915_private *dev_priv, struct skl_ddb_allocation *ddb, struct intel_crtc_state *cstate, struct intel_plane *intel_plane, int level, struct skl_wm_level *result) { struct drm_atomic_state *state = cstate->base.state; struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); struct drm_plane *plane = &intel_plane->base; struct intel_plane_state *intel_pstate = NULL; uint16_t ddb_blocks; enum pipe pipe = intel_crtc->pipe; int ret; if (state) intel_pstate = intel_atomic_get_existing_plane_state(state, intel_plane); /* * Note: If we start supporting multiple pending atomic commits against * the same planes/CRTC's in the future, plane->state will no longer be * the correct pre-state to use for the calculations here and we'll * need to change where we get the 'unchanged' plane data from. * * For now this is fine because we only allow one queued commit against * a CRTC. Even if the plane isn't modified by this transaction and we * don't have a plane lock, we still have the CRTC's lock, so we know * that no other transactions are racing with us to update it. */ if (!intel_pstate) intel_pstate = to_intel_plane_state(plane->state); WARN_ON(!intel_pstate->base.fb); ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]); ret = skl_compute_plane_wm(dev_priv, cstate, intel_pstate, ddb_blocks, level, &result->plane_res_b, &result->plane_res_l, &result->plane_en); if (ret) return ret; return 0; } static uint32_t skl_compute_linetime_wm(struct intel_crtc_state *cstate) { struct drm_atomic_state *state = cstate->base.state; struct drm_i915_private *dev_priv = to_i915(state->dev); uint32_t pixel_rate; uint32_t linetime_wm; if (!cstate->base.active) return 0; pixel_rate = cstate->pixel_rate; if (WARN_ON(pixel_rate == 0)) return 0; linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000, pixel_rate); /* Display WA #1135: bxt. */ if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled) linetime_wm = DIV_ROUND_UP(linetime_wm, 2); return linetime_wm; } static void skl_compute_transition_wm(struct intel_crtc_state *cstate, struct skl_wm_level *trans_wm /* out */) { if (!cstate->base.active) return; /* Until we know more, just disable transition WMs */ trans_wm->plane_en = false; } static int skl_build_pipe_wm(struct intel_crtc_state *cstate, struct skl_ddb_allocation *ddb, struct skl_pipe_wm *pipe_wm) { struct drm_device *dev = cstate->base.crtc->dev; const struct drm_i915_private *dev_priv = to_i915(dev); struct intel_plane *intel_plane; struct skl_plane_wm *wm; int level, max_level = ilk_wm_max_level(dev_priv); int ret; /* * We'll only calculate watermarks for planes that are actually * enabled, so make sure all other planes are set as disabled. */ memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes)); for_each_intel_plane_mask(&dev_priv->drm, intel_plane, cstate->base.plane_mask) { wm = &pipe_wm->planes[intel_plane->id]; for (level = 0; level <= max_level; level++) { ret = skl_compute_wm_level(dev_priv, ddb, cstate, intel_plane, level, &wm->wm[level]); if (ret) return ret; } skl_compute_transition_wm(cstate, &wm->trans_wm); } pipe_wm->linetime = skl_compute_linetime_wm(cstate); return 0; } static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, i915_reg_t reg, const struct skl_ddb_entry *entry) { if (entry->end) I915_WRITE(reg, (entry->end - 1) << 16 | entry->start); else I915_WRITE(reg, 0); } static void skl_write_wm_level(struct drm_i915_private *dev_priv, i915_reg_t reg, const struct skl_wm_level *level) { uint32_t val = 0; if (level->plane_en) { val |= PLANE_WM_EN; val |= level->plane_res_b; val |= level->plane_res_l << PLANE_WM_LINES_SHIFT; } I915_WRITE(reg, val); } static void skl_write_plane_wm(struct intel_crtc *intel_crtc, const struct skl_plane_wm *wm, const struct skl_ddb_allocation *ddb, enum plane_id plane_id) { struct drm_crtc *crtc = &intel_crtc->base; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); int level, max_level = ilk_wm_max_level(dev_priv); enum pipe pipe = intel_crtc->pipe; for (level = 0; level <= max_level; level++) { skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level), &wm->wm[level]); } skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id), &wm->trans_wm); skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id), &ddb->plane[pipe][plane_id]); skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id), &ddb->y_plane[pipe][plane_id]); } static void skl_write_cursor_wm(struct intel_crtc *intel_crtc, const struct skl_plane_wm *wm, const struct skl_ddb_allocation *ddb) { struct drm_crtc *crtc = &intel_crtc->base; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); int level, max_level = ilk_wm_max_level(dev_priv); enum pipe pipe = intel_crtc->pipe; for (level = 0; level <= max_level; level++) { skl_write_wm_level(dev_priv, CUR_WM(pipe, level), &wm->wm[level]); } skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm); skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), &ddb->plane[pipe][PLANE_CURSOR]); } bool skl_wm_level_equals(const struct skl_wm_level *l1, const struct skl_wm_level *l2) { if (l1->plane_en != l2->plane_en) return false; /* If both planes aren't enabled, the rest shouldn't matter */ if (!l1->plane_en) return true; return (l1->plane_res_l == l2->plane_res_l && l1->plane_res_b == l2->plane_res_b); } static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a, const struct skl_ddb_entry *b) { return a->start < b->end && b->start < a->end; } bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries, const struct skl_ddb_entry *ddb, int ignore) { int i; for (i = 0; i < I915_MAX_PIPES; i++) if (i != ignore && entries[i] && skl_ddb_entries_overlap(ddb, entries[i])) return true; return false; } static int skl_update_pipe_wm(struct drm_crtc_state *cstate, const struct skl_pipe_wm *old_pipe_wm, struct skl_pipe_wm *pipe_wm, /* out */ struct skl_ddb_allocation *ddb, /* out */ bool *changed /* out */) { struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate); int ret; ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm); if (ret) return ret; if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm))) *changed = false; else *changed = true; return 0; } static uint32_t pipes_modified(struct drm_atomic_state *state) { struct drm_crtc *crtc; struct drm_crtc_state *cstate; uint32_t i, ret = 0; for_each_new_crtc_in_state(state, crtc, cstate, i) ret |= drm_crtc_mask(crtc); return ret; } static int skl_ddb_add_affected_planes(struct intel_crtc_state *cstate) { struct drm_atomic_state *state = cstate->base.state; struct drm_device *dev = state->dev; struct drm_crtc *crtc = cstate->base.crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_i915_private *dev_priv = to_i915(dev); struct intel_atomic_state *intel_state = to_intel_atomic_state(state); struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb; struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb; struct drm_plane_state *plane_state; struct drm_plane *plane; enum pipe pipe = intel_crtc->pipe; WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc)); drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) { enum plane_id plane_id = to_intel_plane(plane)->id; if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id], &new_ddb->plane[pipe][plane_id]) && skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id], &new_ddb->y_plane[pipe][plane_id])) continue; plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); } return 0; } static int skl_compute_ddb(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_atomic_state *intel_state = to_intel_atomic_state(state); struct intel_crtc *intel_crtc; struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb; uint32_t realloc_pipes = pipes_modified(state); int ret; /* * If this is our first atomic update following hardware readout, * we can't trust the DDB that the BIOS programmed for us. Let's * pretend that all pipes switched active status so that we'll * ensure a full DDB recompute. */ if (dev_priv->wm.distrust_bios_wm) { ret = drm_modeset_lock(&dev->mode_config.connection_mutex, state->acquire_ctx); if (ret) return ret; intel_state->active_pipe_changes = ~0; /* * We usually only initialize intel_state->active_crtcs if we * we're doing a modeset; make sure this field is always * initialized during the sanitization process that happens * on the first commit too. */ if (!intel_state->modeset) intel_state->active_crtcs = dev_priv->active_crtcs; } /* * If the modeset changes which CRTC's are active, we need to * recompute the DDB allocation for *all* active pipes, even * those that weren't otherwise being modified in any way by this * atomic commit. Due to the shrinking of the per-pipe allocations * when new active CRTC's are added, it's possible for a pipe that * we were already using and aren't changing at all here to suddenly * become invalid if its DDB needs exceeds its new allocation. * * Note that if we wind up doing a full DDB recompute, we can't let * any other display updates race with this transaction, so we need * to grab the lock on *all* CRTC's. */ if (intel_state->active_pipe_changes) { realloc_pipes = ~0; intel_state->wm_results.dirty_pipes = ~0; } /* * We're not recomputing for the pipes not included in the commit, so * make sure we start with the current state. */ memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb)); for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) { struct intel_crtc_state *cstate; cstate = intel_atomic_get_crtc_state(state, intel_crtc); if (IS_ERR(cstate)) return PTR_ERR(cstate); ret = skl_allocate_pipe_ddb(cstate, ddb); if (ret) return ret; ret = skl_ddb_add_affected_planes(cstate); if (ret) return ret; } return 0; } static void skl_copy_wm_for_pipe(struct skl_wm_values *dst, struct skl_wm_values *src, enum pipe pipe) { memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe], sizeof(dst->ddb.y_plane[pipe])); memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe], sizeof(dst->ddb.plane[pipe])); } static void skl_print_wm_changes(const struct drm_atomic_state *state) { const struct drm_device *dev = state->dev; const struct drm_i915_private *dev_priv = to_i915(dev); const struct intel_atomic_state *intel_state = to_intel_atomic_state(state); const struct drm_crtc *crtc; const struct drm_crtc_state *cstate; const struct intel_plane *intel_plane; const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb; const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb; int i; for_each_new_crtc_in_state(state, crtc, cstate, i) { const struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum pipe pipe = intel_crtc->pipe; for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) { enum plane_id plane_id = intel_plane->id; const struct skl_ddb_entry *old, *new; old = &old_ddb->plane[pipe][plane_id]; new = &new_ddb->plane[pipe][plane_id]; if (skl_ddb_entry_equal(old, new)) continue; DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n", intel_plane->base.base.id, intel_plane->base.name, old->start, old->end, new->start, new->end); } } } static int skl_compute_wm(struct drm_atomic_state *state) { struct drm_crtc *crtc; struct drm_crtc_state *cstate; struct intel_atomic_state *intel_state = to_intel_atomic_state(state); struct skl_wm_values *results = &intel_state->wm_results; struct skl_pipe_wm *pipe_wm; bool changed = false; int ret, i; /* * If this transaction isn't actually touching any CRTC's, don't * bother with watermark calculation. Note that if we pass this * test, we're guaranteed to hold at least one CRTC state mutex, * which means we can safely use values like dev_priv->active_crtcs * since any racing commits that want to update them would need to * hold _all_ CRTC state mutexes. */ for_each_new_crtc_in_state(state, crtc, cstate, i) changed = true; if (!changed) return 0; /* Clear all dirty flags */ results->dirty_pipes = 0; ret = skl_compute_ddb(state); if (ret) return ret; /* * Calculate WM's for all pipes that are part of this transaction. * Note that the DDB allocation above may have added more CRTC's that * weren't otherwise being modified (and set bits in dirty_pipes) if * pipe allocations had to change. * * FIXME: Now that we're doing this in the atomic check phase, we * should allow skl_update_pipe_wm() to return failure in cases where * no suitable watermark values can be found. */ for_each_new_crtc_in_state(state, crtc, cstate, i) { struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate); const struct skl_pipe_wm *old_pipe_wm = &to_intel_crtc_state(crtc->state)->wm.skl.optimal; pipe_wm = &intel_cstate->wm.skl.optimal; ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm, &results->ddb, &changed); if (ret) return ret; if (changed) results->dirty_pipes |= drm_crtc_mask(crtc); if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0) /* This pipe's WM's did not change */ continue; intel_cstate->update_wm_pre = true; } skl_print_wm_changes(state); return 0; } static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state, struct intel_crtc_state *cstate) { struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc); struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal; const struct skl_ddb_allocation *ddb = &state->wm_results.ddb; enum pipe pipe = crtc->pipe; enum plane_id plane_id; if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base))) return; I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime); for_each_plane_id_on_crtc(crtc, plane_id) { if (plane_id != PLANE_CURSOR) skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id], ddb, plane_id); else skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id], ddb); } } static void skl_initial_wm(struct intel_atomic_state *state, struct intel_crtc_state *cstate) { struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct skl_wm_values *results = &state->wm_results; struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw; enum pipe pipe = intel_crtc->pipe; if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0) return; mutex_lock(&dev_priv->wm.wm_mutex); if (cstate->base.active_changed) skl_atomic_update_crtc_wm(state, cstate); skl_copy_wm_for_pipe(hw_vals, results, pipe); mutex_unlock(&dev_priv->wm.wm_mutex); } static void ilk_compute_wm_config(struct drm_device *dev, struct intel_wm_config *config) { struct intel_crtc *crtc; /* Compute the currently _active_ config */ for_each_intel_crtc(dev, crtc) { const struct intel_pipe_wm *wm = &crtc->wm.active.ilk; if (!wm->pipe_enabled) continue; config->sprites_enabled |= wm->sprites_enabled; config->sprites_scaled |= wm->sprites_scaled; config->num_pipes_active++; } } static void ilk_program_watermarks(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm; struct ilk_wm_maximums max; struct intel_wm_config config = {}; struct ilk_wm_values results = {}; enum intel_ddb_partitioning partitioning; ilk_compute_wm_config(dev, &config); ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max); ilk_wm_merge(dev, &config, &max, &lp_wm_1_2); /* 5/6 split only in single pipe config on IVB+ */ if (INTEL_GEN(dev_priv) >= 7 && config.num_pipes_active == 1 && config.sprites_enabled) { ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max); ilk_wm_merge(dev, &config, &max, &lp_wm_5_6); best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6); } else { best_lp_wm = &lp_wm_1_2; } partitioning = (best_lp_wm == &lp_wm_1_2) ? INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6; ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results); ilk_write_wm_values(dev_priv, &results); } static void ilk_initial_watermarks(struct intel_atomic_state *state, struct intel_crtc_state *cstate) { struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev); struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); mutex_lock(&dev_priv->wm.wm_mutex); intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate; ilk_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } static void ilk_optimize_watermarks(struct intel_atomic_state *state, struct intel_crtc_state *cstate) { struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev); struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); mutex_lock(&dev_priv->wm.wm_mutex); if (cstate->wm.need_postvbl_update) { intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal; ilk_program_watermarks(dev_priv); } mutex_unlock(&dev_priv->wm.wm_mutex); } static inline void skl_wm_level_from_reg_val(uint32_t val, struct skl_wm_level *level) { level->plane_en = val & PLANE_WM_EN; level->plane_res_b = val & PLANE_WM_BLOCKS_MASK; level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) & PLANE_WM_LINES_MASK; } void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc, struct skl_pipe_wm *out) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum pipe pipe = intel_crtc->pipe; int level, max_level; enum plane_id plane_id; uint32_t val; max_level = ilk_wm_max_level(dev_priv); for_each_plane_id_on_crtc(intel_crtc, plane_id) { struct skl_plane_wm *wm = &out->planes[plane_id]; for (level = 0; level <= max_level; level++) { if (plane_id != PLANE_CURSOR) val = I915_READ(PLANE_WM(pipe, plane_id, level)); else val = I915_READ(CUR_WM(pipe, level)); skl_wm_level_from_reg_val(val, &wm->wm[level]); } if (plane_id != PLANE_CURSOR) val = I915_READ(PLANE_WM_TRANS(pipe, plane_id)); else val = I915_READ(CUR_WM_TRANS(pipe)); skl_wm_level_from_reg_val(val, &wm->trans_wm); } if (!intel_crtc->active) return; out->linetime = I915_READ(PIPE_WM_LINETIME(pipe)); } void skl_wm_get_hw_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct skl_wm_values *hw = &dev_priv->wm.skl_hw; struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb; struct drm_crtc *crtc; struct intel_crtc *intel_crtc; struct intel_crtc_state *cstate; skl_ddb_get_hw_state(dev_priv, ddb); list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { intel_crtc = to_intel_crtc(crtc); cstate = to_intel_crtc_state(crtc->state); skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal); if (intel_crtc->active) hw->dirty_pipes |= drm_crtc_mask(crtc); } if (dev_priv->active_crtcs) { /* Fully recompute DDB on first atomic commit */ dev_priv->wm.distrust_bios_wm = true; } else { /* Easy/common case; just sanitize DDB now if everything off */ memset(ddb, 0, sizeof(*ddb)); } } static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct ilk_wm_values *hw = &dev_priv->wm.hw; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state); struct intel_pipe_wm *active = &cstate->wm.ilk.optimal; enum pipe pipe = intel_crtc->pipe; static const i915_reg_t wm0_pipe_reg[] = { [PIPE_A] = WM0_PIPEA_ILK, [PIPE_B] = WM0_PIPEB_ILK, [PIPE_C] = WM0_PIPEC_IVB, }; hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]); if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe)); memset(active, 0, sizeof(*active)); active->pipe_enabled = intel_crtc->active; if (active->pipe_enabled) { u32 tmp = hw->wm_pipe[pipe]; /* * For active pipes LP0 watermark is marked as * enabled, and LP1+ watermaks as disabled since * we can't really reverse compute them in case * multiple pipes are active. */ active->wm[0].enable = true; active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT; active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT; active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK; active->linetime = hw->wm_linetime[pipe]; } else { int level, max_level = ilk_wm_max_level(dev_priv); /* * For inactive pipes, all watermark levels * should be marked as enabled but zeroed, * which is what we'd compute them to. */ for (level = 0; level <= max_level; level++) active->wm[level].enable = true; } intel_crtc->wm.active.ilk = *active; } #define _FW_WM(value, plane) \ (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT) #define _FW_WM_VLV(value, plane) \ (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT) static void g4x_read_wm_values(struct drm_i915_private *dev_priv, struct g4x_wm_values *wm) { uint32_t tmp; tmp = I915_READ(DSPFW1); wm->sr.plane = _FW_WM(tmp, SR); wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB); wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA); tmp = I915_READ(DSPFW2); wm->fbc_en = tmp & DSPFW_FBC_SR_EN; wm->sr.fbc = _FW_WM(tmp, FBC_SR); wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR); wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB); wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA); tmp = I915_READ(DSPFW3); wm->hpll_en = tmp & DSPFW_HPLL_SR_EN; wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR); wm->hpll.plane = _FW_WM(tmp, HPLL_SR); } static void vlv_read_wm_values(struct drm_i915_private *dev_priv, struct vlv_wm_values *wm) { enum pipe pipe; uint32_t tmp; for_each_pipe(dev_priv, pipe) { tmp = I915_READ(VLV_DDL(pipe)); wm->ddl[pipe].plane[PLANE_PRIMARY] = (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); wm->ddl[pipe].plane[PLANE_CURSOR] = (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); wm->ddl[pipe].plane[PLANE_SPRITE0] = (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); wm->ddl[pipe].plane[PLANE_SPRITE1] = (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); } tmp = I915_READ(DSPFW1); wm->sr.plane = _FW_WM(tmp, SR); wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB); wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA); tmp = I915_READ(DSPFW2); wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB); wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA); tmp = I915_READ(DSPFW3); wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); if (IS_CHERRYVIEW(dev_priv)) { tmp = I915_READ(DSPFW7_CHV); wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); tmp = I915_READ(DSPFW8_CHV); wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF); wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE); tmp = I915_READ(DSPFW9_CHV); wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC); wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC); tmp = I915_READ(DSPHOWM); wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8; wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8; wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; } else { tmp = I915_READ(DSPFW7); wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); tmp = I915_READ(DSPHOWM); wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; } } #undef _FW_WM #undef _FW_WM_VLV void g4x_wm_get_hw_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct g4x_wm_values *wm = &dev_priv->wm.g4x; struct intel_crtc *crtc; g4x_read_wm_values(dev_priv, wm); wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; for_each_intel_crtc(dev, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct g4x_wm_state *active = &crtc->wm.active.g4x; struct g4x_pipe_wm *raw; enum pipe pipe = crtc->pipe; enum plane_id plane_id; int level, max_level; active->cxsr = wm->cxsr; active->hpll_en = wm->hpll_en; active->fbc_en = wm->fbc_en; active->sr = wm->sr; active->hpll = wm->hpll; for_each_plane_id_on_crtc(crtc, plane_id) { active->wm.plane[plane_id] = wm->pipe[pipe].plane[plane_id]; } if (wm->cxsr && wm->hpll_en) max_level = G4X_WM_LEVEL_HPLL; else if (wm->cxsr) max_level = G4X_WM_LEVEL_SR; else max_level = G4X_WM_LEVEL_NORMAL; level = G4X_WM_LEVEL_NORMAL; raw = &crtc_state->wm.g4x.raw[level]; for_each_plane_id_on_crtc(crtc, plane_id) raw->plane[plane_id] = active->wm.plane[plane_id]; if (++level > max_level) goto out; raw = &crtc_state->wm.g4x.raw[level]; raw->plane[PLANE_PRIMARY] = active->sr.plane; raw->plane[PLANE_CURSOR] = active->sr.cursor; raw->plane[PLANE_SPRITE0] = 0; raw->fbc = active->sr.fbc; if (++level > max_level) goto out; raw = &crtc_state->wm.g4x.raw[level]; raw->plane[PLANE_PRIMARY] = active->hpll.plane; raw->plane[PLANE_CURSOR] = active->hpll.cursor; raw->plane[PLANE_SPRITE0] = 0; raw->fbc = active->hpll.fbc; out: for_each_plane_id_on_crtc(crtc, plane_id) g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); crtc_state->wm.g4x.optimal = *active; crtc_state->wm.g4x.intermediate = *active; DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n", pipe_name(pipe), wm->pipe[pipe].plane[PLANE_PRIMARY], wm->pipe[pipe].plane[PLANE_CURSOR], wm->pipe[pipe].plane[PLANE_SPRITE0]); } DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n", wm->sr.plane, wm->sr.cursor, wm->sr.fbc); DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n", wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc); DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n", yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en)); } void g4x_wm_sanitize(struct drm_i915_private *dev_priv) { struct intel_plane *plane; struct intel_crtc *crtc; mutex_lock(&dev_priv->wm.wm_mutex); for_each_intel_plane(&dev_priv->drm, plane) { struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, plane->pipe); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; enum plane_id plane_id = plane->id; int level; if (plane_state->base.visible) continue; for (level = 0; level < 3; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; raw->plane[plane_id] = 0; wm_state->wm.plane[plane_id] = 0; } if (plane_id == PLANE_PRIMARY) { for (level = 0; level < 3; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; raw->fbc = 0; } wm_state->sr.fbc = 0; wm_state->hpll.fbc = 0; wm_state->fbc_en = false; } } for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); crtc_state->wm.g4x.intermediate = crtc_state->wm.g4x.optimal; crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; } g4x_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } void vlv_wm_get_hw_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct vlv_wm_values *wm = &dev_priv->wm.vlv; struct intel_crtc *crtc; u32 val; vlv_read_wm_values(dev_priv, wm); wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; wm->level = VLV_WM_LEVEL_PM2; if (IS_CHERRYVIEW(dev_priv)) { mutex_lock(&dev_priv->rps.hw_lock); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); if (val & DSP_MAXFIFO_PM5_ENABLE) wm->level = VLV_WM_LEVEL_PM5; /* * If DDR DVFS is disabled in the BIOS, Punit * will never ack the request. So if that happens * assume we don't have to enable/disable DDR DVFS * dynamically. To test that just set the REQ_ACK * bit to poke the Punit, but don't change the * HIGH/LOW bits so that we don't actually change * the current state. */ val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); val |= FORCE_DDR_FREQ_REQ_ACK; vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) { DRM_DEBUG_KMS("Punit not acking DDR DVFS request, " "assuming DDR DVFS is disabled\n"); dev_priv->wm.max_level = VLV_WM_LEVEL_PM5; } else { val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); if ((val & FORCE_DDR_HIGH_FREQ) == 0) wm->level = VLV_WM_LEVEL_DDR_DVFS; } mutex_unlock(&dev_priv->rps.hw_lock); } for_each_intel_crtc(dev, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct vlv_wm_state *active = &crtc->wm.active.vlv; const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; enum pipe pipe = crtc->pipe; enum plane_id plane_id; int level; vlv_get_fifo_size(crtc_state); active->num_levels = wm->level + 1; active->cxsr = wm->cxsr; for (level = 0; level < active->num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; active->sr[level].plane = wm->sr.plane; active->sr[level].cursor = wm->sr.cursor; for_each_plane_id_on_crtc(crtc, plane_id) { active->wm[level].plane[plane_id] = wm->pipe[pipe].plane[plane_id]; raw->plane[plane_id] = vlv_invert_wm_value(active->wm[level].plane[plane_id], fifo_state->plane[plane_id]); } } for_each_plane_id_on_crtc(crtc, plane_id) vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); vlv_invalidate_wms(crtc, active, level); crtc_state->wm.vlv.optimal = *active; crtc_state->wm.vlv.intermediate = *active; DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n", pipe_name(pipe), wm->pipe[pipe].plane[PLANE_PRIMARY], wm->pipe[pipe].plane[PLANE_CURSOR], wm->pipe[pipe].plane[PLANE_SPRITE0], wm->pipe[pipe].plane[PLANE_SPRITE1]); } DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n", wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr); } void vlv_wm_sanitize(struct drm_i915_private *dev_priv) { struct intel_plane *plane; struct intel_crtc *crtc; mutex_lock(&dev_priv->wm.wm_mutex); for_each_intel_plane(&dev_priv->drm, plane) { struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, plane->pipe); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; enum plane_id plane_id = plane->id; int level; if (plane_state->base.visible) continue; for (level = 0; level < wm_state->num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; raw->plane[plane_id] = 0; wm_state->wm[level].plane[plane_id] = vlv_invert_wm_value(raw->plane[plane_id], fifo_state->plane[plane_id]); } } for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); crtc_state->wm.vlv.intermediate = crtc_state->wm.vlv.optimal; crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; } vlv_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } void ilk_wm_get_hw_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct ilk_wm_values *hw = &dev_priv->wm.hw; struct drm_crtc *crtc; for_each_crtc(dev, crtc) ilk_pipe_wm_get_hw_state(crtc); hw->wm_lp[0] = I915_READ(WM1_LP_ILK); hw->wm_lp[1] = I915_READ(WM2_LP_ILK); hw->wm_lp[2] = I915_READ(WM3_LP_ILK); hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK); if (INTEL_GEN(dev_priv) >= 7) { hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB); hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB); } if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ? INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; else if (IS_IVYBRIDGE(dev_priv)) hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ? INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; hw->enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS); } /** * intel_update_watermarks - update FIFO watermark values based on current modes * * Calculate watermark values for the various WM regs based on current mode * and plane configuration. * * There are several cases to deal with here: * - normal (i.e. non-self-refresh) * - self-refresh (SR) mode * - lines are large relative to FIFO size (buffer can hold up to 2) * - lines are small relative to FIFO size (buffer can hold more than 2 * lines), so need to account for TLB latency * * The normal calculation is: * watermark = dotclock * bytes per pixel * latency * where latency is platform & configuration dependent (we assume pessimal * values here). * * The SR calculation is: * watermark = (trunc(latency/line time)+1) * surface width * * bytes per pixel * where * line time = htotal / dotclock * surface width = hdisplay for normal plane and 64 for cursor * and latency is assumed to be high, as above. * * The final value programmed to the register should always be rounded up, * and include an extra 2 entries to account for clock crossings. * * We don't use the sprite, so we can ignore that. And on Crestline we have * to set the non-SR watermarks to 8. */ void intel_update_watermarks(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (dev_priv->display.update_wm) dev_priv->display.update_wm(crtc); } /* * Lock protecting IPS related data structures */ DEFINE_SPINLOCK(mchdev_lock); /* Global for IPS driver to get at the current i915 device. Protected by * mchdev_lock. */ static struct drm_i915_private *i915_mch_dev; bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val) { u16 rgvswctl; lockdep_assert_held(&mchdev_lock); rgvswctl = I915_READ16(MEMSWCTL); if (rgvswctl & MEMCTL_CMD_STS) { DRM_DEBUG("gpu busy, RCS change rejected\n"); return false; /* still busy with another command */ } rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM; I915_WRITE16(MEMSWCTL, rgvswctl); POSTING_READ16(MEMSWCTL); rgvswctl |= MEMCTL_CMD_STS; I915_WRITE16(MEMSWCTL, rgvswctl); return true; } static void ironlake_enable_drps(struct drm_i915_private *dev_priv) { u32 rgvmodectl; u8 fmax, fmin, fstart, vstart; spin_lock_irq(&mchdev_lock); rgvmodectl = I915_READ(MEMMODECTL); /* Enable temp reporting */ I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN); I915_WRITE16(TSC1, I915_READ(TSC1) | TSE); /* 100ms RC evaluation intervals */ I915_WRITE(RCUPEI, 100000); I915_WRITE(RCDNEI, 100000); /* Set max/min thresholds to 90ms and 80ms respectively */ I915_WRITE(RCBMAXAVG, 90000); I915_WRITE(RCBMINAVG, 80000); I915_WRITE(MEMIHYST, 1); /* Set up min, max, and cur for interrupt handling */ fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT; fmin = (rgvmodectl & MEMMODE_FMIN_MASK); fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT; vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; dev_priv->ips.fmax = fmax; /* IPS callback will increase this */ dev_priv->ips.fstart = fstart; dev_priv->ips.max_delay = fstart; dev_priv->ips.min_delay = fmin; dev_priv->ips.cur_delay = fstart; DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin, fstart); I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN); /* * Interrupts will be enabled in ironlake_irq_postinstall */ I915_WRITE(VIDSTART, vstart); POSTING_READ(VIDSTART); rgvmodectl |= MEMMODE_SWMODE_EN; I915_WRITE(MEMMODECTL, rgvmodectl); if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10)) DRM_ERROR("stuck trying to change perf mode\n"); mdelay(1); ironlake_set_drps(dev_priv, fstart); dev_priv->ips.last_count1 = I915_READ(DMIEC) + I915_READ(DDREC) + I915_READ(CSIEC); dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies); dev_priv->ips.last_count2 = I915_READ(GFXEC); dev_priv->ips.last_time2 = ktime_get_raw_ns(); spin_unlock_irq(&mchdev_lock); } static void ironlake_disable_drps(struct drm_i915_private *dev_priv) { u16 rgvswctl; spin_lock_irq(&mchdev_lock); rgvswctl = I915_READ16(MEMSWCTL); /* Ack interrupts, disable EFC interrupt */ I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN); I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG); I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT); I915_WRITE(DEIIR, DE_PCU_EVENT); I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT); /* Go back to the starting frequency */ ironlake_set_drps(dev_priv, dev_priv->ips.fstart); mdelay(1); rgvswctl |= MEMCTL_CMD_STS; I915_WRITE(MEMSWCTL, rgvswctl); mdelay(1); spin_unlock_irq(&mchdev_lock); } /* There's a funny hw issue where the hw returns all 0 when reading from * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value * ourselves, instead of doing a rmw cycle (which might result in us clearing * all limits and the gpu stuck at whatever frequency it is at atm). */ static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val) { u32 limits; /* Only set the down limit when we've reached the lowest level to avoid * getting more interrupts, otherwise leave this clear. This prevents a * race in the hw when coming out of rc6: There's a tiny window where * the hw runs at the minimal clock before selecting the desired * frequency, if the down threshold expires in that window we will not * receive a down interrupt. */ if (IS_GEN9(dev_priv)) { limits = (dev_priv->rps.max_freq_softlimit) << 23; if (val <= dev_priv->rps.min_freq_softlimit) limits |= (dev_priv->rps.min_freq_softlimit) << 14; } else { limits = dev_priv->rps.max_freq_softlimit << 24; if (val <= dev_priv->rps.min_freq_softlimit) limits |= dev_priv->rps.min_freq_softlimit << 16; } return limits; } static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val) { int new_power; u32 threshold_up = 0, threshold_down = 0; /* in % */ u32 ei_up = 0, ei_down = 0; new_power = dev_priv->rps.power; switch (dev_priv->rps.power) { case LOW_POWER: if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq) new_power = BETWEEN; break; case BETWEEN: if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq) new_power = LOW_POWER; else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq) new_power = HIGH_POWER; break; case HIGH_POWER: if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq) new_power = BETWEEN; break; } /* Max/min bins are special */ if (val <= dev_priv->rps.min_freq_softlimit) new_power = LOW_POWER; if (val >= dev_priv->rps.max_freq_softlimit) new_power = HIGH_POWER; if (new_power == dev_priv->rps.power) return; /* Note the units here are not exactly 1us, but 1280ns. */ switch (new_power) { case LOW_POWER: /* Upclock if more than 95% busy over 16ms */ ei_up = 16000; threshold_up = 95; /* Downclock if less than 85% busy over 32ms */ ei_down = 32000; threshold_down = 85; break; case BETWEEN: /* Upclock if more than 90% busy over 13ms */ ei_up = 13000; threshold_up = 90; /* Downclock if less than 75% busy over 32ms */ ei_down = 32000; threshold_down = 75; break; case HIGH_POWER: /* Upclock if more than 85% busy over 10ms */ ei_up = 10000; threshold_up = 85; /* Downclock if less than 60% busy over 32ms */ ei_down = 32000; threshold_down = 60; break; } /* When byt can survive without system hang with dynamic * sw freq adjustments, this restriction can be lifted. */ if (IS_VALLEYVIEW(dev_priv)) goto skip_hw_write; I915_WRITE(GEN6_RP_UP_EI, GT_INTERVAL_FROM_US(dev_priv, ei_up)); I915_WRITE(GEN6_RP_UP_THRESHOLD, GT_INTERVAL_FROM_US(dev_priv, ei_up * threshold_up / 100)); I915_WRITE(GEN6_RP_DOWN_EI, GT_INTERVAL_FROM_US(dev_priv, ei_down)); I915_WRITE(GEN6_RP_DOWN_THRESHOLD, GT_INTERVAL_FROM_US(dev_priv, ei_down * threshold_down / 100)); I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO | GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | GEN6_RP_DOWN_IDLE_AVG); skip_hw_write: dev_priv->rps.power = new_power; dev_priv->rps.up_threshold = threshold_up; dev_priv->rps.down_threshold = threshold_down; dev_priv->rps.last_adj = 0; } static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val) { u32 mask = 0; /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */ if (val > dev_priv->rps.min_freq_softlimit) mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT; if (val < dev_priv->rps.max_freq_softlimit) mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD; mask &= dev_priv->pm_rps_events; return gen6_sanitize_rps_pm_mask(dev_priv, ~mask); } /* gen6_set_rps is called to update the frequency request, but should also be * called when the range (min_delay and max_delay) is modified so that we can * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */ static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val) { /* min/max delay may still have been modified so be sure to * write the limits value. */ if (val != dev_priv->rps.cur_freq) { gen6_set_rps_thresholds(dev_priv, val); if (IS_GEN9(dev_priv)) I915_WRITE(GEN6_RPNSWREQ, GEN9_FREQUENCY(val)); else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(val)); else I915_WRITE(GEN6_RPNSWREQ, GEN6_FREQUENCY(val) | GEN6_OFFSET(0) | GEN6_AGGRESSIVE_TURBO); } /* Make sure we continue to get interrupts * until we hit the minimum or maximum frequencies. */ I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val)); I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val)); dev_priv->rps.cur_freq = val; trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val)); return 0; } static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val) { int err; if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1), "Odd GPU freq value\n")) val &= ~1; I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val)); if (val != dev_priv->rps.cur_freq) { err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val); if (err) return err; gen6_set_rps_thresholds(dev_priv, val); } dev_priv->rps.cur_freq = val; trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val)); return 0; } /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down * * * If Gfx is Idle, then * 1. Forcewake Media well. * 2. Request idle freq. * 3. Release Forcewake of Media well. */ static void vlv_set_rps_idle(struct drm_i915_private *dev_priv) { u32 val = dev_priv->rps.idle_freq; int err; if (dev_priv->rps.cur_freq <= val) return; /* The punit delays the write of the frequency and voltage until it * determines the GPU is awake. During normal usage we don't want to * waste power changing the frequency if the GPU is sleeping (rc6). * However, the GPU and driver is now idle and we do not want to delay * switching to minimum voltage (reducing power whilst idle) as we do * not expect to be woken in the near future and so must flush the * change by waking the device. * * We choose to take the media powerwell (either would do to trick the * punit into committing the voltage change) as that takes a lot less * power than the render powerwell. */ intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA); err = valleyview_set_rps(dev_priv, val); intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA); if (err) DRM_ERROR("Failed to set RPS for idle\n"); } void gen6_rps_busy(struct drm_i915_private *dev_priv) { mutex_lock(&dev_priv->rps.hw_lock); if (dev_priv->rps.enabled) { u8 freq; if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED) gen6_rps_reset_ei(dev_priv); I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq)); gen6_enable_rps_interrupts(dev_priv); /* Use the user's desired frequency as a guide, but for better * performance, jump directly to RPe as our starting frequency. */ freq = max(dev_priv->rps.cur_freq, dev_priv->rps.efficient_freq); if (intel_set_rps(dev_priv, clamp(freq, dev_priv->rps.min_freq_softlimit, dev_priv->rps.max_freq_softlimit))) DRM_DEBUG_DRIVER("Failed to set idle frequency\n"); } mutex_unlock(&dev_priv->rps.hw_lock); } void gen6_rps_idle(struct drm_i915_private *dev_priv) { /* Flush our bottom-half so that it does not race with us * setting the idle frequency and so that it is bounded by * our rpm wakeref. And then disable the interrupts to stop any * futher RPS reclocking whilst we are asleep. */ gen6_disable_rps_interrupts(dev_priv); mutex_lock(&dev_priv->rps.hw_lock); if (dev_priv->rps.enabled) { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) vlv_set_rps_idle(dev_priv); else gen6_set_rps(dev_priv, dev_priv->rps.idle_freq); dev_priv->rps.last_adj = 0; I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0)); } mutex_unlock(&dev_priv->rps.hw_lock); spin_lock(&dev_priv->rps.client_lock); while (!list_empty(&dev_priv->rps.clients)) list_del_init(dev_priv->rps.clients.next); spin_unlock(&dev_priv->rps.client_lock); } void gen6_rps_boost(struct drm_i915_private *dev_priv, struct intel_rps_client *rps, unsigned long submitted) { /* This is intentionally racy! We peek at the state here, then * validate inside the RPS worker. */ if (!(dev_priv->gt.awake && dev_priv->rps.enabled && dev_priv->rps.cur_freq < dev_priv->rps.boost_freq)) return; /* Force a RPS boost (and don't count it against the client) if * the GPU is severely congested. */ if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES)) rps = NULL; spin_lock(&dev_priv->rps.client_lock); if (rps == NULL || list_empty(&rps->link)) { spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->rps.interrupts_enabled) { dev_priv->rps.client_boost = true; schedule_work(&dev_priv->rps.work); } spin_unlock_irq(&dev_priv->irq_lock); if (rps != NULL) { list_add(&rps->link, &dev_priv->rps.clients); rps->boosts++; } else dev_priv->rps.boosts++; } spin_unlock(&dev_priv->rps.client_lock); } int intel_set_rps(struct drm_i915_private *dev_priv, u8 val) { int err; lockdep_assert_held(&dev_priv->rps.hw_lock); GEM_BUG_ON(val > dev_priv->rps.max_freq); GEM_BUG_ON(val < dev_priv->rps.min_freq); if (!dev_priv->rps.enabled) { dev_priv->rps.cur_freq = val; return 0; } if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) err = valleyview_set_rps(dev_priv, val); else err = gen6_set_rps(dev_priv, val); return err; } static void gen9_disable_rc6(struct drm_i915_private *dev_priv) { I915_WRITE(GEN6_RC_CONTROL, 0); I915_WRITE(GEN9_PG_ENABLE, 0); } static void gen9_disable_rps(struct drm_i915_private *dev_priv) { I915_WRITE(GEN6_RP_CONTROL, 0); } static void gen6_disable_rps(struct drm_i915_private *dev_priv) { I915_WRITE(GEN6_RC_CONTROL, 0); I915_WRITE(GEN6_RPNSWREQ, 1 << 31); I915_WRITE(GEN6_RP_CONTROL, 0); } static void cherryview_disable_rps(struct drm_i915_private *dev_priv) { I915_WRITE(GEN6_RC_CONTROL, 0); } static void valleyview_disable_rps(struct drm_i915_private *dev_priv) { /* we're doing forcewake before Disabling RC6, * This what the BIOS expects when going into suspend */ intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); I915_WRITE(GEN6_RC_CONTROL, 0); intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); } static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode) { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1))) mode = GEN6_RC_CTL_RC6_ENABLE; else mode = 0; } if (HAS_RC6p(dev_priv)) DRM_DEBUG_DRIVER("Enabling RC6 states: " "RC6 %s RC6p %s RC6pp %s\n", onoff(mode & GEN6_RC_CTL_RC6_ENABLE), onoff(mode & GEN6_RC_CTL_RC6p_ENABLE), onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE)); else DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n", onoff(mode & GEN6_RC_CTL_RC6_ENABLE)); } static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; bool enable_rc6 = true; unsigned long rc6_ctx_base; u32 rc_ctl; int rc_sw_target; rc_ctl = I915_READ(GEN6_RC_CONTROL); rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >> RC_SW_TARGET_STATE_SHIFT; DRM_DEBUG_DRIVER("BIOS enabled RC states: " "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n", onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE), onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE), rc_sw_target); if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) { DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n"); enable_rc6 = false; } /* * The exact context size is not known for BXT, so assume a page size * for this check. */ rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK; if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) && (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base + ggtt->stolen_reserved_size))) { DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n"); enable_rc6 = false; } if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) && ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) && ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) && ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) { DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n"); enable_rc6 = false; } if (!I915_READ(GEN8_PUSHBUS_CONTROL) || !I915_READ(GEN8_PUSHBUS_ENABLE) || !I915_READ(GEN8_PUSHBUS_SHIFT)) { DRM_DEBUG_DRIVER("Pushbus not setup properly.\n"); enable_rc6 = false; } if (!I915_READ(GEN6_GFXPAUSE)) { DRM_DEBUG_DRIVER("GFX pause not setup properly.\n"); enable_rc6 = false; } if (!I915_READ(GEN8_MISC_CTRL0)) { DRM_DEBUG_DRIVER("GPM control not setup properly.\n"); enable_rc6 = false; } return enable_rc6; } int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6) { /* No RC6 before Ironlake and code is gone for ilk. */ if (INTEL_INFO(dev_priv)->gen < 6) return 0; if (!enable_rc6) return 0; if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) { DRM_INFO("RC6 disabled by BIOS\n"); return 0; } /* Respect the kernel parameter if it is set */ if (enable_rc6 >= 0) { int mask; if (HAS_RC6p(dev_priv)) mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE | INTEL_RC6pp_ENABLE; else mask = INTEL_RC6_ENABLE; if ((enable_rc6 & mask) != enable_rc6) DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d " "(requested %d, valid %d)\n", enable_rc6 & mask, enable_rc6, mask); return enable_rc6 & mask; } if (IS_IVYBRIDGE(dev_priv)) return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE); return INTEL_RC6_ENABLE; } static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv) { /* All of these values are in units of 50MHz */ /* static values from HW: RP0 > RP1 > RPn (min_freq) */ if (IS_GEN9_LP(dev_priv)) { u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP); dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff; dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff; dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff; } else { u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff; dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff; dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff; } /* hw_max = RP0 until we check for overclocking */ dev_priv->rps.max_freq = dev_priv->rps.rp0_freq; dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq; if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) || IS_GEN9_BC(dev_priv)) { u32 ddcc_status = 0; if (sandybridge_pcode_read(dev_priv, HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL, &ddcc_status) == 0) dev_priv->rps.efficient_freq = clamp_t(u8, ((ddcc_status >> 8) & 0xff), dev_priv->rps.min_freq, dev_priv->rps.max_freq); } if (IS_GEN9_BC(dev_priv)) { /* Store the frequency values in 16.66 MHZ units, which is * the natural hardware unit for SKL */ dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER; dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER; dev_priv->rps.min_freq *= GEN9_FREQ_SCALER; dev_priv->rps.max_freq *= GEN9_FREQ_SCALER; dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER; } } static void reset_rps(struct drm_i915_private *dev_priv, int (*set)(struct drm_i915_private *, u8)) { u8 freq = dev_priv->rps.cur_freq; /* force a reset */ dev_priv->rps.power = -1; dev_priv->rps.cur_freq = -1; if (set(dev_priv, freq)) DRM_ERROR("Failed to reset RPS to initial values\n"); } /* See the Gen9_GT_PM_Programming_Guide doc for the below */ static void gen9_enable_rps(struct drm_i915_private *dev_priv) { intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); /* Program defaults and thresholds for RPS*/ I915_WRITE(GEN6_RC_VIDEO_FREQ, GEN9_FREQUENCY(dev_priv->rps.rp1_freq)); /* 1 second timeout*/ I915_WRITE(GEN6_RP_DOWN_TIMEOUT, GT_INTERVAL_FROM_US(dev_priv, 1000000)); I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa); /* Leaning on the below call to gen6_set_rps to program/setup the * Up/Down EI & threshold registers, as well as the RP_CONTROL, * RP_INTERRUPT_LIMITS & RPNSWREQ registers */ reset_rps(dev_priv, gen6_set_rps); intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); } static void gen9_enable_rc6(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; uint32_t rc6_mask = 0; /* 1a: Software RC state - RC0 */ I915_WRITE(GEN6_RC_STATE, 0); /* 1b: Get forcewake during program sequence. Although the driver * hasn't enabled a state yet where we need forcewake, BIOS may have.*/ intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); /* 2a: Disable RC states. */ I915_WRITE(GEN6_RC_CONTROL, 0); /* 2b: Program RC6 thresholds.*/ /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */ if (IS_SKYLAKE(dev_priv)) I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16); else I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16); I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ for_each_engine(engine, dev_priv, id) I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); if (HAS_GUC(dev_priv)) I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA); I915_WRITE(GEN6_RC_SLEEP, 0); /* 2c: Program Coarse Power Gating Policies. */ I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25); I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25); /* 3a: Enable RC6 */ if (intel_enable_rc6() & INTEL_RC6_ENABLE) rc6_mask = GEN6_RC_CTL_RC6_ENABLE; DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE)); I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */ I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask); /* * 3b: Enable Coarse Power Gating only when RC6 is enabled. * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6. */ if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv)) I915_WRITE(GEN9_PG_ENABLE, 0); else I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0); intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); } static void gen8_enable_rps(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; uint32_t rc6_mask = 0; /* 1a: Software RC state - RC0 */ I915_WRITE(GEN6_RC_STATE, 0); /* 1c & 1d: Get forcewake during program sequence. Although the driver * hasn't enabled a state yet where we need forcewake, BIOS may have.*/ intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); /* 2a: Disable RC states. */ I915_WRITE(GEN6_RC_CONTROL, 0); /* 2b: Program RC6 thresholds.*/ I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ for_each_engine(engine, dev_priv, id) I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); I915_WRITE(GEN6_RC_SLEEP, 0); if (IS_BROADWELL(dev_priv)) I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */ else I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */ /* 3: Enable RC6 */ if (intel_enable_rc6() & INTEL_RC6_ENABLE) rc6_mask = GEN6_RC_CTL_RC6_ENABLE; intel_print_rc6_info(dev_priv, rc6_mask); if (IS_BROADWELL(dev_priv)) I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE | GEN7_RC_CTL_TO_MODE | rc6_mask); else I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask); /* 4 Program defaults and thresholds for RPS*/ I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(dev_priv->rps.rp1_freq)); I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(dev_priv->rps.rp1_freq)); /* NB: Docs say 1s, and 1000000 - which aren't equivalent */ I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */ /* Docs recommend 900MHz, and 300 MHz respectively */ I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, dev_priv->rps.max_freq_softlimit << 24 | dev_priv->rps.min_freq_softlimit << 16); I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */ I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/ I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */ I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */ I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); /* 5: Enable RPS */ I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO | GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | GEN6_RP_DOWN_IDLE_AVG); /* 6: Ring frequency + overclocking (our driver does this later */ reset_rps(dev_priv, gen6_set_rps); intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); } static void gen6_enable_rps(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; u32 rc6vids, rc6_mask = 0; u32 gtfifodbg; int rc6_mode; int ret; WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); /* Here begins a magic sequence of register writes to enable * auto-downclocking. * * Perhaps there might be some value in exposing these to * userspace... */ I915_WRITE(GEN6_RC_STATE, 0); /* Clear the DBG now so we don't confuse earlier errors */ gtfifodbg = I915_READ(GTFIFODBG); if (gtfifodbg) { DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg); I915_WRITE(GTFIFODBG, gtfifodbg); } intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); /* disable the counters and set deterministic thresholds */ I915_WRITE(GEN6_RC_CONTROL, 0); I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16); I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30); I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30); I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); for_each_engine(engine, dev_priv, id) I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); I915_WRITE(GEN6_RC_SLEEP, 0); I915_WRITE(GEN6_RC1e_THRESHOLD, 1000); if (IS_IVYBRIDGE(dev_priv)) I915_WRITE(GEN6_RC6_THRESHOLD, 125000); else I915_WRITE(GEN6_RC6_THRESHOLD, 50000); I915_WRITE(GEN6_RC6p_THRESHOLD, 150000); I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */ /* Check if we are enabling RC6 */ rc6_mode = intel_enable_rc6(); if (rc6_mode & INTEL_RC6_ENABLE) rc6_mask |= GEN6_RC_CTL_RC6_ENABLE; /* We don't use those on Haswell */ if (!IS_HASWELL(dev_priv)) { if (rc6_mode & INTEL_RC6p_ENABLE) rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE; if (rc6_mode & INTEL_RC6pp_ENABLE) rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE; } intel_print_rc6_info(dev_priv, rc6_mask); I915_WRITE(GEN6_RC_CONTROL, rc6_mask | GEN6_RC_CTL_EI_MODE(1) | GEN6_RC_CTL_HW_ENABLE); /* Power down if completely idle for over 50ms */ I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000); I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); reset_rps(dev_priv, gen6_set_rps); rc6vids = 0; ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids); if (IS_GEN6(dev_priv) && ret) { DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n"); } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) { DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n", GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450); rc6vids &= 0xffff00; rc6vids |= GEN6_ENCODE_RC6_VID(450); ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids); if (ret) DRM_ERROR("Couldn't fix incorrect rc6 voltage\n"); } intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); } static void gen6_update_ring_freq(struct drm_i915_private *dev_priv) { int min_freq = 15; unsigned int gpu_freq; unsigned int max_ia_freq, min_ring_freq; unsigned int max_gpu_freq, min_gpu_freq; int scaling_factor = 180; struct cpufreq_policy *policy; WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); policy = cpufreq_cpu_get(0); if (policy) { max_ia_freq = policy->cpuinfo.max_freq; cpufreq_cpu_put(policy); } else { /* * Default to measured freq if none found, PCU will ensure we * don't go over */ max_ia_freq = tsc_khz; } /* Convert from kHz to MHz */ max_ia_freq /= 1000; min_ring_freq = I915_READ(DCLK) & 0xf; /* convert DDR frequency from units of 266.6MHz to bandwidth */ min_ring_freq = mult_frac(min_ring_freq, 8, 3); if (IS_GEN9_BC(dev_priv)) { /* Convert GT frequency to 50 HZ units */ min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER; max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER; } else { min_gpu_freq = dev_priv->rps.min_freq; max_gpu_freq = dev_priv->rps.max_freq; } /* * For each potential GPU frequency, load a ring frequency we'd like * to use for memory access. We do this by specifying the IA frequency * the PCU should use as a reference to determine the ring frequency. */ for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) { int diff = max_gpu_freq - gpu_freq; unsigned int ia_freq = 0, ring_freq = 0; if (IS_GEN9_BC(dev_priv)) { /* * ring_freq = 2 * GT. ring_freq is in 100MHz units * No floor required for ring frequency on SKL. */ ring_freq = gpu_freq; } else if (INTEL_INFO(dev_priv)->gen >= 8) { /* max(2 * GT, DDR). NB: GT is 50MHz units */ ring_freq = max(min_ring_freq, gpu_freq); } else if (IS_HASWELL(dev_priv)) { ring_freq = mult_frac(gpu_freq, 5, 4); ring_freq = max(min_ring_freq, ring_freq); /* leave ia_freq as the default, chosen by cpufreq */ } else { /* On older processors, there is no separate ring * clock domain, so in order to boost the bandwidth * of the ring, we need to upclock the CPU (ia_freq). * * For GPU frequencies less than 750MHz, * just use the lowest ring freq. */ if (gpu_freq < min_freq) ia_freq = 800; else ia_freq = max_ia_freq - ((diff * scaling_factor) / 2); ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100); } sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT | ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT | gpu_freq); } } static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv) { u32 val, rp0; val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE); switch (INTEL_INFO(dev_priv)->sseu.eu_total) { case 8: /* (2 * 4) config */ rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT); break; case 12: /* (2 * 6) config */ rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT); break; case 16: /* (2 * 8) config */ default: /* Setting (2 * 8) Min RP0 for any other combination */ rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT); break; } rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK); return rp0; } static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv) { u32 val, rpe; val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG); rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK; return rpe; } static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv) { u32 val, rp1; val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE); rp1 = (val & FB_GFX_FREQ_FUSE_MASK); return rp1; } static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv) { u32 val, rpn; val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE); rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) & FB_GFX_FREQ_FUSE_MASK); return rpn; } static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv) { u32 val, rp1; val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE); rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT; return rp1; } static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv) { u32 val, rp0; val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE); rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT; /* Clamp to max */ rp0 = min_t(u32, rp0, 0xea); return rp0; } static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv) { u32 val, rpe; val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO); rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT; val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI); rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5; return rpe; } static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv) { u32 val; val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff; /* * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on * a BYT-M B0 the above register contains 0xbf. Moreover when setting * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0 * to make sure it matches what Punit accepts. */ return max_t(u32, val, 0xc0); } /* Check that the pctx buffer wasn't move under us. */ static void valleyview_check_pctx(struct drm_i915_private *dev_priv) { unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095; WARN_ON(pctx_addr != dev_priv->mm.stolen_base + dev_priv->vlv_pctx->stolen->start); } /* Check that the pcbr address is not empty. */ static void cherryview_check_pctx(struct drm_i915_private *dev_priv) { unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095; WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0); } static void cherryview_setup_pctx(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; unsigned long pctx_paddr, paddr; u32 pcbr; int pctx_size = 32*1024; pcbr = I915_READ(VLV_PCBR); if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) { DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n"); paddr = (dev_priv->mm.stolen_base + (ggtt->stolen_size - pctx_size)); pctx_paddr = (paddr & (~4095)); I915_WRITE(VLV_PCBR, pctx_paddr); } DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR)); } static void valleyview_setup_pctx(struct drm_i915_private *dev_priv) { struct drm_i915_gem_object *pctx; unsigned long pctx_paddr; u32 pcbr; int pctx_size = 24*1024; pcbr = I915_READ(VLV_PCBR); if (pcbr) { /* BIOS set it up already, grab the pre-alloc'd space */ int pcbr_offset; pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base; pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv, pcbr_offset, I915_GTT_OFFSET_NONE, pctx_size); goto out; } DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n"); /* * From the Gunit register HAS: * The Gfx driver is expected to program this register and ensure * proper allocation within Gfx stolen memory. For example, this * register should be programmed such than the PCBR range does not * overlap with other ranges, such as the frame buffer, protected * memory, or any other relevant ranges. */ pctx = i915_gem_object_create_stolen(dev_priv, pctx_size); if (!pctx) { DRM_DEBUG("not enough stolen space for PCTX, disabling\n"); goto out; } pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start; I915_WRITE(VLV_PCBR, pctx_paddr); out: DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR)); dev_priv->vlv_pctx = pctx; } static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv) { if (WARN_ON(!dev_priv->vlv_pctx)) return; i915_gem_object_put(dev_priv->vlv_pctx); dev_priv->vlv_pctx = NULL; } static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv) { dev_priv->rps.gpll_ref_freq = vlv_get_cck_clock(dev_priv, "GPLL ref", CCK_GPLL_CLOCK_CONTROL, dev_priv->czclk_freq); DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n", dev_priv->rps.gpll_ref_freq); } static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv) { u32 val; valleyview_setup_pctx(dev_priv); vlv_init_gpll_ref_freq(dev_priv); val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); switch ((val >> 6) & 3) { case 0: case 1: dev_priv->mem_freq = 800; break; case 2: dev_priv->mem_freq = 1066; break; case 3: dev_priv->mem_freq = 1333; break; } DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq); dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv); dev_priv->rps.rp0_freq = dev_priv->rps.max_freq; DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n", intel_gpu_freq(dev_priv, dev_priv->rps.max_freq), dev_priv->rps.max_freq); dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv); DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n", intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq), dev_priv->rps.efficient_freq); dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv); DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n", intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq), dev_priv->rps.rp1_freq); dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv); DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n", intel_gpu_freq(dev_priv, dev_priv->rps.min_freq), dev_priv->rps.min_freq); } static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv) { u32 val; cherryview_setup_pctx(dev_priv); vlv_init_gpll_ref_freq(dev_priv); mutex_lock(&dev_priv->sb_lock); val = vlv_cck_read(dev_priv, CCK_FUSE_REG); mutex_unlock(&dev_priv->sb_lock); switch ((val >> 2) & 0x7) { case 3: dev_priv->mem_freq = 2000; break; default: dev_priv->mem_freq = 1600; break; } DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq); dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv); dev_priv->rps.rp0_freq = dev_priv->rps.max_freq; DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n", intel_gpu_freq(dev_priv, dev_priv->rps.max_freq), dev_priv->rps.max_freq); dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv); DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n", intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq), dev_priv->rps.efficient_freq); dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv); DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n", intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq), dev_priv->rps.rp1_freq); dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv); DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n", intel_gpu_freq(dev_priv, dev_priv->rps.min_freq), dev_priv->rps.min_freq); WARN_ONCE((dev_priv->rps.max_freq | dev_priv->rps.efficient_freq | dev_priv->rps.rp1_freq | dev_priv->rps.min_freq) & 1, "Odd GPU freq values\n"); } static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv) { valleyview_cleanup_pctx(dev_priv); } static void cherryview_enable_rps(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; u32 gtfifodbg, val, rc6_mode = 0, pcbr; WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV | GT_FIFO_FREE_ENTRIES_CHV); if (gtfifodbg) { DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n", gtfifodbg); I915_WRITE(GTFIFODBG, gtfifodbg); } cherryview_check_pctx(dev_priv); /* 1a & 1b: Get forcewake during program sequence. Although the driver * hasn't enabled a state yet where we need forcewake, BIOS may have.*/ intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); /* Disable RC states. */ I915_WRITE(GEN6_RC_CONTROL, 0); /* 2a: Program RC6 thresholds.*/ I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ for_each_engine(engine, dev_priv, id) I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); I915_WRITE(GEN6_RC_SLEEP, 0); /* TO threshold set to 500 us ( 0x186 * 1.28 us) */ I915_WRITE(GEN6_RC6_THRESHOLD, 0x186); /* allows RC6 residency counter to work */ I915_WRITE(VLV_COUNTER_CONTROL, _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | VLV_MEDIA_RC6_COUNT_EN | VLV_RENDER_RC6_COUNT_EN)); /* For now we assume BIOS is allocating and populating the PCBR */ pcbr = I915_READ(VLV_PCBR); /* 3: Enable RC6 */ if ((intel_enable_rc6() & INTEL_RC6_ENABLE) && (pcbr >> VLV_PCBR_ADDR_SHIFT)) rc6_mode = GEN7_RC_CTL_TO_MODE; I915_WRITE(GEN6_RC_CONTROL, rc6_mode); /* 4 Program defaults and thresholds for RPS*/ I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000); I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400); I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000); I915_WRITE(GEN6_RP_UP_EI, 66000); I915_WRITE(GEN6_RP_DOWN_EI, 350000); I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); /* 5: Enable RPS */ I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | GEN6_RP_DOWN_IDLE_AVG); /* Setting Fixed Bias */ val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50; vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val); val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); /* RPS code assumes GPLL is used */ WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n"); DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE)); DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val); reset_rps(dev_priv, valleyview_set_rps); intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); } static void valleyview_enable_rps(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; u32 gtfifodbg, val, rc6_mode = 0; WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); valleyview_check_pctx(dev_priv); gtfifodbg = I915_READ(GTFIFODBG); if (gtfifodbg) { DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n", gtfifodbg); I915_WRITE(GTFIFODBG, gtfifodbg); } /* If VLV, Forcewake all wells, else re-direct to regular path */ intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); /* Disable RC states. */ I915_WRITE(GEN6_RC_CONTROL, 0); I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000); I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400); I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000); I915_WRITE(GEN6_RP_UP_EI, 66000); I915_WRITE(GEN6_RP_DOWN_EI, 350000); I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO | GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | GEN6_RP_DOWN_IDLE_CONT); I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000); I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); for_each_engine(engine, dev_priv, id) I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); I915_WRITE(GEN6_RC6_THRESHOLD, 0x557); /* allows RC6 residency counter to work */ I915_WRITE(VLV_COUNTER_CONTROL, _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | VLV_MEDIA_RC0_COUNT_EN | VLV_RENDER_RC0_COUNT_EN | VLV_MEDIA_RC6_COUNT_EN | VLV_RENDER_RC6_COUNT_EN)); if (intel_enable_rc6() & INTEL_RC6_ENABLE) rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL; intel_print_rc6_info(dev_priv, rc6_mode); I915_WRITE(GEN6_RC_CONTROL, rc6_mode); /* Setting Fixed Bias */ val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875; vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val); val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); /* RPS code assumes GPLL is used */ WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n"); DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE)); DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val); reset_rps(dev_priv, valleyview_set_rps); intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); } static unsigned long intel_pxfreq(u32 vidfreq) { unsigned long freq; int div = (vidfreq & 0x3f0000) >> 16; int post = (vidfreq & 0x3000) >> 12; int pre = (vidfreq & 0x7); if (!pre) return 0; freq = ((div * 133333) / ((1<ips.last_time1; /* Prevent division-by-zero if we are asking too fast. * Also, we don't get interesting results if we are polling * faster than once in 10ms, so just return the saved value * in such cases. */ if (diff1 <= 10) return dev_priv->ips.chipset_power; count1 = I915_READ(DMIEC); count2 = I915_READ(DDREC); count3 = I915_READ(CSIEC); total_count = count1 + count2 + count3; /* FIXME: handle per-counter overflow */ if (total_count < dev_priv->ips.last_count1) { diff = ~0UL - dev_priv->ips.last_count1; diff += total_count; } else { diff = total_count - dev_priv->ips.last_count1; } for (i = 0; i < ARRAY_SIZE(cparams); i++) { if (cparams[i].i == dev_priv->ips.c_m && cparams[i].t == dev_priv->ips.r_t) { m = cparams[i].m; c = cparams[i].c; break; } } diff = div_u64(diff, diff1); ret = ((m * diff) + c); ret = div_u64(ret, 10); dev_priv->ips.last_count1 = total_count; dev_priv->ips.last_time1 = now; dev_priv->ips.chipset_power = ret; return ret; } unsigned long i915_chipset_val(struct drm_i915_private *dev_priv) { unsigned long val; if (INTEL_INFO(dev_priv)->gen != 5) return 0; spin_lock_irq(&mchdev_lock); val = __i915_chipset_val(dev_priv); spin_unlock_irq(&mchdev_lock); return val; } unsigned long i915_mch_val(struct drm_i915_private *dev_priv) { unsigned long m, x, b; u32 tsfs; tsfs = I915_READ(TSFS); m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT); x = I915_READ8(TR1); b = tsfs & TSFS_INTR_MASK; return ((m * x) / 127) - b; } static int _pxvid_to_vd(u8 pxvid) { if (pxvid == 0) return 0; if (pxvid >= 8 && pxvid < 31) pxvid = 31; return (pxvid + 2) * 125; } static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid) { const int vd = _pxvid_to_vd(pxvid); const int vm = vd - 1125; if (INTEL_INFO(dev_priv)->is_mobile) return vm > 0 ? vm : 0; return vd; } static void __i915_update_gfx_val(struct drm_i915_private *dev_priv) { u64 now, diff, diffms; u32 count; lockdep_assert_held(&mchdev_lock); now = ktime_get_raw_ns(); diffms = now - dev_priv->ips.last_time2; do_div(diffms, NSEC_PER_MSEC); /* Don't divide by 0 */ if (!diffms) return; count = I915_READ(GFXEC); if (count < dev_priv->ips.last_count2) { diff = ~0UL - dev_priv->ips.last_count2; diff += count; } else { diff = count - dev_priv->ips.last_count2; } dev_priv->ips.last_count2 = count; dev_priv->ips.last_time2 = now; /* More magic constants... */ diff = diff * 1181; diff = div_u64(diff, diffms * 10); dev_priv->ips.gfx_power = diff; } void i915_update_gfx_val(struct drm_i915_private *dev_priv) { if (INTEL_INFO(dev_priv)->gen != 5) return; spin_lock_irq(&mchdev_lock); __i915_update_gfx_val(dev_priv); spin_unlock_irq(&mchdev_lock); } static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv) { unsigned long t, corr, state1, corr2, state2; u32 pxvid, ext_v; lockdep_assert_held(&mchdev_lock); pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq)); pxvid = (pxvid >> 24) & 0x7f; ext_v = pvid_to_extvid(dev_priv, pxvid); state1 = ext_v; t = i915_mch_val(dev_priv); /* Revel in the empirically derived constants */ /* Correction factor in 1/100000 units */ if (t > 80) corr = ((t * 2349) + 135940); else if (t >= 50) corr = ((t * 964) + 29317); else /* < 50 */ corr = ((t * 301) + 1004); corr = corr * ((150142 * state1) / 10000 - 78642); corr /= 100000; corr2 = (corr * dev_priv->ips.corr); state2 = (corr2 * state1) / 10000; state2 /= 100; /* convert to mW */ __i915_update_gfx_val(dev_priv); return dev_priv->ips.gfx_power + state2; } unsigned long i915_gfx_val(struct drm_i915_private *dev_priv) { unsigned long val; if (INTEL_INFO(dev_priv)->gen != 5) return 0; spin_lock_irq(&mchdev_lock); val = __i915_gfx_val(dev_priv); spin_unlock_irq(&mchdev_lock); return val; } /** * i915_read_mch_val - return value for IPS use * * Calculate and return a value for the IPS driver to use when deciding whether * we have thermal and power headroom to increase CPU or GPU power budget. */ unsigned long i915_read_mch_val(void) { struct drm_i915_private *dev_priv; unsigned long chipset_val, graphics_val, ret = 0; spin_lock_irq(&mchdev_lock); if (!i915_mch_dev) goto out_unlock; dev_priv = i915_mch_dev; chipset_val = __i915_chipset_val(dev_priv); graphics_val = __i915_gfx_val(dev_priv); ret = chipset_val + graphics_val; out_unlock: spin_unlock_irq(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_read_mch_val); /** * i915_gpu_raise - raise GPU frequency limit * * Raise the limit; IPS indicates we have thermal headroom. */ bool i915_gpu_raise(void) { struct drm_i915_private *dev_priv; bool ret = true; spin_lock_irq(&mchdev_lock); if (!i915_mch_dev) { ret = false; goto out_unlock; } dev_priv = i915_mch_dev; if (dev_priv->ips.max_delay > dev_priv->ips.fmax) dev_priv->ips.max_delay--; out_unlock: spin_unlock_irq(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_raise); /** * i915_gpu_lower - lower GPU frequency limit * * IPS indicates we're close to a thermal limit, so throttle back the GPU * frequency maximum. */ bool i915_gpu_lower(void) { struct drm_i915_private *dev_priv; bool ret = true; spin_lock_irq(&mchdev_lock); if (!i915_mch_dev) { ret = false; goto out_unlock; } dev_priv = i915_mch_dev; if (dev_priv->ips.max_delay < dev_priv->ips.min_delay) dev_priv->ips.max_delay++; out_unlock: spin_unlock_irq(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_lower); /** * i915_gpu_busy - indicate GPU business to IPS * * Tell the IPS driver whether or not the GPU is busy. */ bool i915_gpu_busy(void) { bool ret = false; spin_lock_irq(&mchdev_lock); if (i915_mch_dev) ret = i915_mch_dev->gt.awake; spin_unlock_irq(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_busy); /** * i915_gpu_turbo_disable - disable graphics turbo * * Disable graphics turbo by resetting the max frequency and setting the * current frequency to the default. */ bool i915_gpu_turbo_disable(void) { struct drm_i915_private *dev_priv; bool ret = true; spin_lock_irq(&mchdev_lock); if (!i915_mch_dev) { ret = false; goto out_unlock; } dev_priv = i915_mch_dev; dev_priv->ips.max_delay = dev_priv->ips.fstart; if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart)) ret = false; out_unlock: spin_unlock_irq(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable); /** * Tells the intel_ips driver that the i915 driver is now loaded, if * IPS got loaded first. * * This awkward dance is so that neither module has to depend on the * other in order for IPS to do the appropriate communication of * GPU turbo limits to i915. */ static void ips_ping_for_i915_load(void) { void (*link)(void); link = symbol_get(ips_link_to_i915_driver); if (link) { link(); symbol_put(ips_link_to_i915_driver); } } void intel_gpu_ips_init(struct drm_i915_private *dev_priv) { /* We only register the i915 ips part with intel-ips once everything is * set up, to avoid intel-ips sneaking in and reading bogus values. */ spin_lock_irq(&mchdev_lock); i915_mch_dev = dev_priv; spin_unlock_irq(&mchdev_lock); ips_ping_for_i915_load(); } void intel_gpu_ips_teardown(void) { spin_lock_irq(&mchdev_lock); i915_mch_dev = NULL; spin_unlock_irq(&mchdev_lock); } static void intel_init_emon(struct drm_i915_private *dev_priv) { u32 lcfuse; u8 pxw[16]; int i; /* Disable to program */ I915_WRITE(ECR, 0); POSTING_READ(ECR); /* Program energy weights for various events */ I915_WRITE(SDEW, 0x15040d00); I915_WRITE(CSIEW0, 0x007f0000); I915_WRITE(CSIEW1, 0x1e220004); I915_WRITE(CSIEW2, 0x04000004); for (i = 0; i < 5; i++) I915_WRITE(PEW(i), 0); for (i = 0; i < 3; i++) I915_WRITE(DEW(i), 0); /* Program P-state weights to account for frequency power adjustment */ for (i = 0; i < 16; i++) { u32 pxvidfreq = I915_READ(PXVFREQ(i)); unsigned long freq = intel_pxfreq(pxvidfreq); unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; unsigned long val; val = vid * vid; val *= (freq / 1000); val *= 255; val /= (127*127*900); if (val > 0xff) DRM_ERROR("bad pxval: %ld\n", val); pxw[i] = val; } /* Render standby states get 0 weight */ pxw[14] = 0; pxw[15] = 0; for (i = 0; i < 4; i++) { u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) | (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]); I915_WRITE(PXW(i), val); } /* Adjust magic regs to magic values (more experimental results) */ I915_WRITE(OGW0, 0); I915_WRITE(OGW1, 0); I915_WRITE(EG0, 0x00007f00); I915_WRITE(EG1, 0x0000000e); I915_WRITE(EG2, 0x000e0000); I915_WRITE(EG3, 0x68000300); I915_WRITE(EG4, 0x42000000); I915_WRITE(EG5, 0x00140031); I915_WRITE(EG6, 0); I915_WRITE(EG7, 0); for (i = 0; i < 8; i++) I915_WRITE(PXWL(i), 0); /* Enable PMON + select events */ I915_WRITE(ECR, 0x80000019); lcfuse = I915_READ(LCFUSE02); dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK); } void intel_init_gt_powersave(struct drm_i915_private *dev_priv) { /* * RPM depends on RC6 to save restore the GT HW context, so make RC6 a * requirement. */ if (!i915.enable_rc6) { DRM_INFO("RC6 disabled, disabling runtime PM support\n"); intel_runtime_pm_get(dev_priv); } mutex_lock(&dev_priv->drm.struct_mutex); mutex_lock(&dev_priv->rps.hw_lock); /* Initialize RPS limits (for userspace) */ if (IS_CHERRYVIEW(dev_priv)) cherryview_init_gt_powersave(dev_priv); else if (IS_VALLEYVIEW(dev_priv)) valleyview_init_gt_powersave(dev_priv); else if (INTEL_GEN(dev_priv) >= 6) gen6_init_rps_frequencies(dev_priv); /* Derive initial user preferences/limits from the hardware limits */ dev_priv->rps.idle_freq = dev_priv->rps.min_freq; dev_priv->rps.cur_freq = dev_priv->rps.idle_freq; dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq; dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq; if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) dev_priv->rps.min_freq_softlimit = max_t(int, dev_priv->rps.efficient_freq, intel_freq_opcode(dev_priv, 450)); /* After setting max-softlimit, find the overclock max freq */ if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) { u32 params = 0; sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, ¶ms); if (params & BIT(31)) { /* OC supported */ DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n", (dev_priv->rps.max_freq & 0xff) * 50, (params & 0xff) * 50); dev_priv->rps.max_freq = params & 0xff; } } /* Finally allow us to boost to max by default */ dev_priv->rps.boost_freq = dev_priv->rps.max_freq; mutex_unlock(&dev_priv->rps.hw_lock); mutex_unlock(&dev_priv->drm.struct_mutex); intel_autoenable_gt_powersave(dev_priv); } void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv) { if (IS_VALLEYVIEW(dev_priv)) valleyview_cleanup_gt_powersave(dev_priv); if (!i915.enable_rc6) intel_runtime_pm_put(dev_priv); } /** * intel_suspend_gt_powersave - suspend PM work and helper threads * @dev_priv: i915 device * * We don't want to disable RC6 or other features here, we just want * to make sure any work we've queued has finished and won't bother * us while we're suspended. */ void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) < 6) return; if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work)) intel_runtime_pm_put(dev_priv); /* gen6_rps_idle() will be called later to disable interrupts */ } void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv) { dev_priv->rps.enabled = true; /* force disabling */ intel_disable_gt_powersave(dev_priv); gen6_reset_rps_interrupts(dev_priv); } void intel_disable_gt_powersave(struct drm_i915_private *dev_priv) { if (!READ_ONCE(dev_priv->rps.enabled)) return; mutex_lock(&dev_priv->rps.hw_lock); if (INTEL_GEN(dev_priv) >= 9) { gen9_disable_rc6(dev_priv); gen9_disable_rps(dev_priv); } else if (IS_CHERRYVIEW(dev_priv)) { cherryview_disable_rps(dev_priv); } else if (IS_VALLEYVIEW(dev_priv)) { valleyview_disable_rps(dev_priv); } else if (INTEL_GEN(dev_priv) >= 6) { gen6_disable_rps(dev_priv); } else if (IS_IRONLAKE_M(dev_priv)) { ironlake_disable_drps(dev_priv); } dev_priv->rps.enabled = false; mutex_unlock(&dev_priv->rps.hw_lock); } void intel_enable_gt_powersave(struct drm_i915_private *dev_priv) { /* We shouldn't be disabling as we submit, so this should be less * racy than it appears! */ if (READ_ONCE(dev_priv->rps.enabled)) return; /* Powersaving is controlled by the host when inside a VM */ if (intel_vgpu_active(dev_priv)) return; mutex_lock(&dev_priv->rps.hw_lock); if (IS_CHERRYVIEW(dev_priv)) { cherryview_enable_rps(dev_priv); } else if (IS_VALLEYVIEW(dev_priv)) { valleyview_enable_rps(dev_priv); } else if (INTEL_GEN(dev_priv) >= 9) { gen9_enable_rc6(dev_priv); gen9_enable_rps(dev_priv); if (IS_GEN9_BC(dev_priv)) gen6_update_ring_freq(dev_priv); } else if (IS_BROADWELL(dev_priv)) { gen8_enable_rps(dev_priv); gen6_update_ring_freq(dev_priv); } else if (INTEL_GEN(dev_priv) >= 6) { gen6_enable_rps(dev_priv); gen6_update_ring_freq(dev_priv); } else if (IS_IRONLAKE_M(dev_priv)) { ironlake_enable_drps(dev_priv); intel_init_emon(dev_priv); } WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq); WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq); WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq); WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq); dev_priv->rps.enabled = true; mutex_unlock(&dev_priv->rps.hw_lock); } static void __intel_autoenable_gt_powersave(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), rps.autoenable_work.work); struct intel_engine_cs *rcs; struct drm_i915_gem_request *req; if (READ_ONCE(dev_priv->rps.enabled)) goto out; rcs = dev_priv->engine[RCS]; if (rcs->last_retired_context) goto out; if (!rcs->init_context) goto out; mutex_lock(&dev_priv->drm.struct_mutex); req = i915_gem_request_alloc(rcs, dev_priv->kernel_context); if (IS_ERR(req)) goto unlock; if (!i915.enable_execlists && i915_switch_context(req) == 0) rcs->init_context(req); /* Mark the device busy, calling intel_enable_gt_powersave() */ i915_add_request(req); unlock: mutex_unlock(&dev_priv->drm.struct_mutex); out: intel_runtime_pm_put(dev_priv); } void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv) { if (READ_ONCE(dev_priv->rps.enabled)) return; if (IS_IRONLAKE_M(dev_priv)) { ironlake_enable_drps(dev_priv); intel_init_emon(dev_priv); } else if (INTEL_INFO(dev_priv)->gen >= 6) { /* * PCU communication is slow and this doesn't need to be * done at any specific time, so do this out of our fast path * to make resume and init faster. * * We depend on the HW RC6 power context save/restore * mechanism when entering D3 through runtime PM suspend. So * disable RPM until RPS/RC6 is properly setup. We can only * get here via the driver load/system resume/runtime resume * paths, so the _noresume version is enough (and in case of * runtime resume it's necessary). */ if (queue_delayed_work(dev_priv->wq, &dev_priv->rps.autoenable_work, round_jiffies_up_relative(HZ))) intel_runtime_pm_get_noresume(dev_priv); } } static void ibx_init_clock_gating(struct drm_i915_private *dev_priv) { /* * On Ibex Peak and Cougar Point, we need to disable clock * gating for the panel power sequencer or it will fail to * start up when no ports are active. */ I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE); } static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv) { enum pipe pipe; for_each_pipe(dev_priv, pipe) { I915_WRITE(DSPCNTR(pipe), I915_READ(DSPCNTR(pipe)) | DISPPLANE_TRICKLE_FEED_DISABLE); I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe))); POSTING_READ(DSPSURF(pipe)); } } static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv) { I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN); I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN); I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN); /* * Don't touch WM1S_LP_EN here. * Doing so could cause underruns. */ } static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv) { uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; /* * Required for FBC * WaFbcDisableDpfcClockGating:ilk */ dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE | ILK_DPFCUNIT_CLOCK_GATE_DISABLE | ILK_DPFDUNIT_CLOCK_GATE_ENABLE; I915_WRITE(PCH_3DCGDIS0, MARIUNIT_CLOCK_GATE_DISABLE | SVSMUNIT_CLOCK_GATE_DISABLE); I915_WRITE(PCH_3DCGDIS1, VFMUNIT_CLOCK_GATE_DISABLE); /* * According to the spec the following bits should be set in * order to enable memory self-refresh * The bit 22/21 of 0x42004 * The bit 5 of 0x42020 * The bit 15 of 0x45000 */ I915_WRITE(ILK_DISPLAY_CHICKEN2, (I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_DPARB_GATE | ILK_VSDPFD_FULL)); dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE; I915_WRITE(DISP_ARB_CTL, (I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS)); ilk_init_lp_watermarks(dev_priv); /* * Based on the document from hardware guys the following bits * should be set unconditionally in order to enable FBC. * The bit 22 of 0x42000 * The bit 22 of 0x42004 * The bit 7,8,9 of 0x42020. */ if (IS_IRONLAKE_M(dev_priv)) { /* WaFbcAsynchFlipDisableFbcQueue:ilk */ I915_WRITE(ILK_DISPLAY_CHICKEN1, I915_READ(ILK_DISPLAY_CHICKEN1) | ILK_FBCQ_DIS); I915_WRITE(ILK_DISPLAY_CHICKEN2, I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_DPARB_GATE); } I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate); I915_WRITE(ILK_DISPLAY_CHICKEN2, I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_ELPIN_409_SELECT); I915_WRITE(_3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED << 16 | _3D_CHICKEN2_WM_READ_PIPELINED); /* WaDisableRenderCachePipelinedFlush:ilk */ I915_WRITE(CACHE_MODE_0, _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE)); /* WaDisable_RenderCache_OperationalFlush:ilk */ I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); g4x_disable_trickle_feed(dev_priv); ibx_init_clock_gating(dev_priv); } static void cpt_init_clock_gating(struct drm_i915_private *dev_priv) { int pipe; uint32_t val; /* * On Ibex Peak and Cougar Point, we need to disable clock * gating for the panel power sequencer or it will fail to * start up when no ports are active. */ I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE | PCH_DPLUNIT_CLOCK_GATE_DISABLE | PCH_CPUNIT_CLOCK_GATE_DISABLE); I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) | DPLS_EDP_PPS_FIX_DIS); /* The below fixes the weird display corruption, a few pixels shifted * downward, on (only) LVDS of some HP laptops with IVY. */ for_each_pipe(dev_priv, pipe) { val = I915_READ(TRANS_CHICKEN2(pipe)); val |= TRANS_CHICKEN2_TIMING_OVERRIDE; val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED; if (dev_priv->vbt.fdi_rx_polarity_inverted) val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED; val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER; val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH; I915_WRITE(TRANS_CHICKEN2(pipe), val); } /* WADP0ClockGatingDisable */ for_each_pipe(dev_priv, pipe) { I915_WRITE(TRANS_CHICKEN1(pipe), TRANS_CHICKEN1_DP0UNIT_GC_DISABLE); } } static void gen6_check_mch_setup(struct drm_i915_private *dev_priv) { uint32_t tmp; tmp = I915_READ(MCH_SSKPD); if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n", tmp); } static void gen6_init_clock_gating(struct drm_i915_private *dev_priv) { uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate); I915_WRITE(ILK_DISPLAY_CHICKEN2, I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_ELPIN_409_SELECT); /* WaDisableHiZPlanesWhenMSAAEnabled:snb */ I915_WRITE(_3D_CHICKEN, _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB)); /* WaDisable_RenderCache_OperationalFlush:snb */ I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); /* * BSpec recoomends 8x4 when MSAA is used, * however in practice 16x4 seems fastest. * * Note that PS/WM thread counts depend on the WIZ hashing * disable bit, which we don't touch here, but it's good * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). */ I915_WRITE(GEN6_GT_MODE, _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4)); ilk_init_lp_watermarks(dev_priv); I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB)); I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) | GEN6_BLBUNIT_CLOCK_GATE_DISABLE | GEN6_CSUNIT_CLOCK_GATE_DISABLE); /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock * gating disable must be set. Failure to set it results in * flickering pixels due to Z write ordering failures after * some amount of runtime in the Mesa "fire" demo, and Unigine * Sanctuary and Tropics, and apparently anything else with * alpha test or pixel discard. * * According to the spec, bit 11 (RCCUNIT) must also be set, * but we didn't debug actual testcases to find it out. * * WaDisableRCCUnitClockGating:snb * WaDisableRCPBUnitClockGating:snb */ I915_WRITE(GEN6_UCGCTL2, GEN6_RCPBUNIT_CLOCK_GATE_DISABLE | GEN6_RCCUNIT_CLOCK_GATE_DISABLE); /* WaStripsFansDisableFastClipPerformanceFix:snb */ I915_WRITE(_3D_CHICKEN3, _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL)); /* * Bspec says: * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and * 3DSTATE_SF number of SF output attributes is more than 16." */ I915_WRITE(_3D_CHICKEN3, _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH)); /* * According to the spec the following bits should be * set in order to enable memory self-refresh and fbc: * The bit21 and bit22 of 0x42000 * The bit21 and bit22 of 0x42004 * The bit5 and bit7 of 0x42020 * The bit14 of 0x70180 * The bit14 of 0x71180 * * WaFbcAsynchFlipDisableFbcQueue:snb */ I915_WRITE(ILK_DISPLAY_CHICKEN1, I915_READ(ILK_DISPLAY_CHICKEN1) | ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS); I915_WRITE(ILK_DISPLAY_CHICKEN2, I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_DPARB_GATE | ILK_VSDPFD_FULL); I915_WRITE(ILK_DSPCLK_GATE_D, I915_READ(ILK_DSPCLK_GATE_D) | ILK_DPARBUNIT_CLOCK_GATE_ENABLE | ILK_DPFDUNIT_CLOCK_GATE_ENABLE); g4x_disable_trickle_feed(dev_priv); cpt_init_clock_gating(dev_priv); gen6_check_mch_setup(dev_priv); } static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv) { uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE); /* * WaVSThreadDispatchOverride:ivb,vlv * * This actually overrides the dispatch * mode for all thread types. */ reg &= ~GEN7_FF_SCHED_MASK; reg |= GEN7_FF_TS_SCHED_HW; reg |= GEN7_FF_VS_SCHED_HW; reg |= GEN7_FF_DS_SCHED_HW; I915_WRITE(GEN7_FF_THREAD_MODE, reg); } static void lpt_init_clock_gating(struct drm_i915_private *dev_priv) { /* * TODO: this bit should only be enabled when really needed, then * disabled when not needed anymore in order to save power. */ if (HAS_PCH_LPT_LP(dev_priv)) I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) | PCH_LP_PARTITION_LEVEL_DISABLE); /* WADPOClockGatingDisable:hsw */ I915_WRITE(TRANS_CHICKEN1(PIPE_A), I915_READ(TRANS_CHICKEN1(PIPE_A)) | TRANS_CHICKEN1_DP0UNIT_GC_DISABLE); } static void lpt_suspend_hw(struct drm_i915_private *dev_priv) { if (HAS_PCH_LPT_LP(dev_priv)) { uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D); val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; I915_WRITE(SOUTH_DSPCLK_GATE_D, val); } } static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv, int general_prio_credits, int high_prio_credits) { u32 misccpctl; /* WaTempDisableDOPClkGating:bdw */ misccpctl = I915_READ(GEN7_MISCCPCTL); I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(general_prio_credits) | L3_HIGH_PRIO_CREDITS(high_prio_credits)); /* * Wait at least 100 clocks before re-enabling clock gating. * See the definition of L3SQCREG1 in BSpec. */ POSTING_READ(GEN8_L3SQCREG1); udelay(1); I915_WRITE(GEN7_MISCCPCTL, misccpctl); } static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv) { gen9_init_clock_gating(dev_priv); /* WaDisableSDEUnitClockGating:kbl */ if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0)) I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | GEN8_SDEUNIT_CLOCK_GATE_DISABLE); /* WaDisableGamClockGating:kbl */ if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0)) I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) | GEN6_GAMUNIT_CLOCK_GATE_DISABLE); /* WaFbcNukeOnHostModify:kbl */ I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | ILK_DPFC_NUKE_ON_ANY_MODIFICATION); } static void skylake_init_clock_gating(struct drm_i915_private *dev_priv) { gen9_init_clock_gating(dev_priv); /* WAC6entrylatency:skl */ I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) | FBC_LLC_FULLY_OPEN); /* WaFbcNukeOnHostModify:skl */ I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | ILK_DPFC_NUKE_ON_ANY_MODIFICATION); } static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv) { enum pipe pipe; ilk_init_lp_watermarks(dev_priv); /* WaSwitchSolVfFArbitrationPriority:bdw */ I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL); /* WaPsrDPAMaskVBlankInSRD:bdw */ I915_WRITE(CHICKEN_PAR1_1, I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD); /* WaPsrDPRSUnmaskVBlankInSRD:bdw */ for_each_pipe(dev_priv, pipe) { I915_WRITE(CHICKEN_PIPESL_1(pipe), I915_READ(CHICKEN_PIPESL_1(pipe)) | BDW_DPRS_MASK_VBLANK_SRD); } /* WaVSRefCountFullforceMissDisable:bdw */ /* WaDSRefCountFullforceMissDisable:bdw */ I915_WRITE(GEN7_FF_THREAD_MODE, I915_READ(GEN7_FF_THREAD_MODE) & ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME)); I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL, _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE)); /* WaDisableSDEUnitClockGating:bdw */ I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | GEN8_SDEUNIT_CLOCK_GATE_DISABLE); /* WaProgramL3SqcReg1Default:bdw */ gen8_set_l3sqc_credits(dev_priv, 30, 2); /* * WaGttCachingOffByDefault:bdw * GTT cache may not work with big pages, so if those * are ever enabled GTT cache may need to be disabled. */ I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL); /* WaKVMNotificationOnConfigChange:bdw */ I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1) | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT); lpt_init_clock_gating(dev_priv); /* WaDisableDopClockGating:bdw * * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP * clock gating. */ I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE); } static void haswell_init_clock_gating(struct drm_i915_private *dev_priv) { ilk_init_lp_watermarks(dev_priv); /* L3 caching of data atomics doesn't work -- disable it. */ I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE); I915_WRITE(HSW_ROW_CHICKEN3, _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE)); /* This is required by WaCatErrorRejectionIssue:hsw */ I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); /* WaVSRefCountFullforceMissDisable:hsw */ I915_WRITE(GEN7_FF_THREAD_MODE, I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME); /* WaDisable_RenderCache_OperationalFlush:hsw */ I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); /* enable HiZ Raw Stall Optimization */ I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE)); /* WaDisable4x2SubspanOptimization:hsw */ I915_WRITE(CACHE_MODE_1, _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); /* * BSpec recommends 8x4 when MSAA is used, * however in practice 16x4 seems fastest. * * Note that PS/WM thread counts depend on the WIZ hashing * disable bit, which we don't touch here, but it's good * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). */ I915_WRITE(GEN7_GT_MODE, _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4)); /* WaSampleCChickenBitEnable:hsw */ I915_WRITE(HALF_SLICE_CHICKEN3, _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE)); /* WaSwitchSolVfFArbitrationPriority:hsw */ I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL); /* WaRsPkgCStateDisplayPMReq:hsw */ I915_WRITE(CHICKEN_PAR1_1, I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); lpt_init_clock_gating(dev_priv); } static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv) { uint32_t snpcr; ilk_init_lp_watermarks(dev_priv); I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE); /* WaDisableEarlyCull:ivb */ I915_WRITE(_3D_CHICKEN3, _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL)); /* WaDisableBackToBackFlipFix:ivb */ I915_WRITE(IVB_CHICKEN3, CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | CHICKEN3_DGMG_DONE_FIX_DISABLE); /* WaDisablePSDDualDispatchEnable:ivb */ if (IS_IVB_GT1(dev_priv)) I915_WRITE(GEN7_HALF_SLICE_CHICKEN1, _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE)); /* WaDisable_RenderCache_OperationalFlush:ivb */ I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */ I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1, GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); /* WaApplyL3ControlAndL3ChickenMode:ivb */ I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL); I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE); if (IS_IVB_GT1(dev_priv)) I915_WRITE(GEN7_ROW_CHICKEN2, _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); else { /* must write both registers */ I915_WRITE(GEN7_ROW_CHICKEN2, _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); I915_WRITE(GEN7_ROW_CHICKEN2_GT2, _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); } /* WaForceL3Serialization:ivb */ I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) & ~L3SQ_URB_READ_CAM_MATCH_DISABLE); /* * According to the spec, bit 13 (RCZUNIT) must be set on IVB. * This implements the WaDisableRCZUnitClockGating:ivb workaround. */ I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE); /* This is required by WaCatErrorRejectionIssue:ivb */ I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); g4x_disable_trickle_feed(dev_priv); gen7_setup_fixed_func_scheduler(dev_priv); if (0) { /* causes HiZ corruption on ivb:gt1 */ /* enable HiZ Raw Stall Optimization */ I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE)); } /* WaDisable4x2SubspanOptimization:ivb */ I915_WRITE(CACHE_MODE_1, _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); /* * BSpec recommends 8x4 when MSAA is used, * however in practice 16x4 seems fastest. * * Note that PS/WM thread counts depend on the WIZ hashing * disable bit, which we don't touch here, but it's good * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). */ I915_WRITE(GEN7_GT_MODE, _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4)); snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); snpcr &= ~GEN6_MBC_SNPCR_MASK; snpcr |= GEN6_MBC_SNPCR_MED; I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr); if (!HAS_PCH_NOP(dev_priv)) cpt_init_clock_gating(dev_priv); gen6_check_mch_setup(dev_priv); } static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv) { /* WaDisableEarlyCull:vlv */ I915_WRITE(_3D_CHICKEN3, _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL)); /* WaDisableBackToBackFlipFix:vlv */ I915_WRITE(IVB_CHICKEN3, CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | CHICKEN3_DGMG_DONE_FIX_DISABLE); /* WaPsdDispatchEnable:vlv */ /* WaDisablePSDDualDispatchEnable:vlv */ I915_WRITE(GEN7_HALF_SLICE_CHICKEN1, _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP | GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE)); /* WaDisable_RenderCache_OperationalFlush:vlv */ I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); /* WaForceL3Serialization:vlv */ I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) & ~L3SQ_URB_READ_CAM_MATCH_DISABLE); /* WaDisableDopClockGating:vlv */ I915_WRITE(GEN7_ROW_CHICKEN2, _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); /* This is required by WaCatErrorRejectionIssue:vlv */ I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); gen7_setup_fixed_func_scheduler(dev_priv); /* * According to the spec, bit 13 (RCZUNIT) must be set on IVB. * This implements the WaDisableRCZUnitClockGating:vlv workaround. */ I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE); /* WaDisableL3Bank2xClockGate:vlv * Disabling L3 clock gating- MMIO 940c[25] = 1 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */ I915_WRITE(GEN7_UCGCTL4, I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE); /* * BSpec says this must be set, even though * WaDisable4x2SubspanOptimization isn't listed for VLV. */ I915_WRITE(CACHE_MODE_1, _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); /* * BSpec recommends 8x4 when MSAA is used, * however in practice 16x4 seems fastest. * * Note that PS/WM thread counts depend on the WIZ hashing * disable bit, which we don't touch here, but it's good * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). */ I915_WRITE(GEN7_GT_MODE, _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4)); /* * WaIncreaseL3CreditsForVLVB0:vlv * This is the hardware default actually. */ I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE); /* * WaDisableVLVClockGating_VBIIssue:vlv * Disable clock gating on th GCFG unit to prevent a delay * in the reporting of vblank events. */ I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS); } static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv) { /* WaVSRefCountFullforceMissDisable:chv */ /* WaDSRefCountFullforceMissDisable:chv */ I915_WRITE(GEN7_FF_THREAD_MODE, I915_READ(GEN7_FF_THREAD_MODE) & ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME)); /* WaDisableSemaphoreAndSyncFlipWait:chv */ I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL, _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE)); /* WaDisableCSUnitClockGating:chv */ I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) | GEN6_CSUNIT_CLOCK_GATE_DISABLE); /* WaDisableSDEUnitClockGating:chv */ I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | GEN8_SDEUNIT_CLOCK_GATE_DISABLE); /* * WaProgramL3SqcReg1Default:chv * See gfxspecs/Related Documents/Performance Guide/ * LSQC Setting Recommendations. */ gen8_set_l3sqc_credits(dev_priv, 38, 2); /* * GTT cache may not work with big pages, so if those * are ever enabled GTT cache may need to be disabled. */ I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL); } static void g4x_init_clock_gating(struct drm_i915_private *dev_priv) { uint32_t dspclk_gate; I915_WRITE(RENCLK_GATE_D1, 0); I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE | GS_UNIT_CLOCK_GATE_DISABLE | CL_UNIT_CLOCK_GATE_DISABLE); I915_WRITE(RAMCLK_GATE_D, 0); dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE | OVRUNIT_CLOCK_GATE_DISABLE | OVCUNIT_CLOCK_GATE_DISABLE; if (IS_GM45(dev_priv)) dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE; I915_WRITE(DSPCLK_GATE_D, dspclk_gate); /* WaDisableRenderCachePipelinedFlush */ I915_WRITE(CACHE_MODE_0, _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE)); /* WaDisable_RenderCache_OperationalFlush:g4x */ I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); g4x_disable_trickle_feed(dev_priv); } static void crestline_init_clock_gating(struct drm_i915_private *dev_priv) { I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE); I915_WRITE(RENCLK_GATE_D2, 0); I915_WRITE(DSPCLK_GATE_D, 0); I915_WRITE(RAMCLK_GATE_D, 0); I915_WRITE16(DEUC, 0); I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); /* WaDisable_RenderCache_OperationalFlush:gen4 */ I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); } static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv) { I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE | I965_RCC_CLOCK_GATE_DISABLE | I965_RCPB_CLOCK_GATE_DISABLE | I965_ISC_CLOCK_GATE_DISABLE | I965_FBC_CLOCK_GATE_DISABLE); I915_WRITE(RENCLK_GATE_D2, 0); I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); /* WaDisable_RenderCache_OperationalFlush:gen4 */ I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); } static void gen3_init_clock_gating(struct drm_i915_private *dev_priv) { u32 dstate = I915_READ(D_STATE); dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING | DSTATE_DOT_CLOCK_GATING; I915_WRITE(D_STATE, dstate); if (IS_PINEVIEW(dev_priv)) I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY)); /* IIR "flip pending" means done if this bit is set */ I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE)); /* interrupts should cause a wake up from C3 */ I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN)); /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); } static void i85x_init_clock_gating(struct drm_i915_private *dev_priv) { I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE); /* interrupts should cause a wake up from C3 */ I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) | _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE)); I915_WRITE(MEM_MODE, _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE)); } static void i830_init_clock_gating(struct drm_i915_private *dev_priv) { I915_WRITE(MEM_MODE, _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) | _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE)); } void intel_init_clock_gating(struct drm_i915_private *dev_priv) { dev_priv->display.init_clock_gating(dev_priv); } void intel_suspend_hw(struct drm_i915_private *dev_priv) { if (HAS_PCH_LPT(dev_priv)) lpt_suspend_hw(dev_priv); } static void nop_init_clock_gating(struct drm_i915_private *dev_priv) { DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n"); } /** * intel_init_clock_gating_hooks - setup the clock gating hooks * @dev_priv: device private * * Setup the hooks that configure which clocks of a given platform can be * gated and also apply various GT and display specific workarounds for these * platforms. Note that some GT specific workarounds are applied separately * when GPU contexts or batchbuffers start their execution. */ void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv) { if (IS_SKYLAKE(dev_priv)) dev_priv->display.init_clock_gating = skylake_init_clock_gating; else if (IS_KABYLAKE(dev_priv)) dev_priv->display.init_clock_gating = kabylake_init_clock_gating; else if (IS_BROXTON(dev_priv)) dev_priv->display.init_clock_gating = bxt_init_clock_gating; else if (IS_GEMINILAKE(dev_priv)) dev_priv->display.init_clock_gating = glk_init_clock_gating; else if (IS_BROADWELL(dev_priv)) dev_priv->display.init_clock_gating = broadwell_init_clock_gating; else if (IS_CHERRYVIEW(dev_priv)) dev_priv->display.init_clock_gating = cherryview_init_clock_gating; else if (IS_HASWELL(dev_priv)) dev_priv->display.init_clock_gating = haswell_init_clock_gating; else if (IS_IVYBRIDGE(dev_priv)) dev_priv->display.init_clock_gating = ivybridge_init_clock_gating; else if (IS_VALLEYVIEW(dev_priv)) dev_priv->display.init_clock_gating = valleyview_init_clock_gating; else if (IS_GEN6(dev_priv)) dev_priv->display.init_clock_gating = gen6_init_clock_gating; else if (IS_GEN5(dev_priv)) dev_priv->display.init_clock_gating = ironlake_init_clock_gating; else if (IS_G4X(dev_priv)) dev_priv->display.init_clock_gating = g4x_init_clock_gating; else if (IS_I965GM(dev_priv)) dev_priv->display.init_clock_gating = crestline_init_clock_gating; else if (IS_I965G(dev_priv)) dev_priv->display.init_clock_gating = broadwater_init_clock_gating; else if (IS_GEN3(dev_priv)) dev_priv->display.init_clock_gating = gen3_init_clock_gating; else if (IS_I85X(dev_priv) || IS_I865G(dev_priv)) dev_priv->display.init_clock_gating = i85x_init_clock_gating; else if (IS_GEN2(dev_priv)) dev_priv->display.init_clock_gating = i830_init_clock_gating; else { MISSING_CASE(INTEL_DEVID(dev_priv)); dev_priv->display.init_clock_gating = nop_init_clock_gating; } } /* Set up chip specific power management-related functions */ void intel_init_pm(struct drm_i915_private *dev_priv) { intel_fbc_init(dev_priv); /* For cxsr */ if (IS_PINEVIEW(dev_priv)) i915_pineview_get_mem_freq(dev_priv); else if (IS_GEN5(dev_priv)) i915_ironlake_get_mem_freq(dev_priv); /* For FIFO watermark updates */ if (INTEL_GEN(dev_priv) >= 9) { skl_setup_wm_latency(dev_priv); dev_priv->display.initial_watermarks = skl_initial_wm; dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm; dev_priv->display.compute_global_watermarks = skl_compute_wm; } else if (HAS_PCH_SPLIT(dev_priv)) { ilk_setup_wm_latency(dev_priv); if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] && dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) || (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] && dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) { dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm; dev_priv->display.compute_intermediate_wm = ilk_compute_intermediate_wm; dev_priv->display.initial_watermarks = ilk_initial_watermarks; dev_priv->display.optimize_watermarks = ilk_optimize_watermarks; } else { DRM_DEBUG_KMS("Failed to read display plane latency. " "Disable CxSR\n"); } } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { vlv_setup_wm_latency(dev_priv); dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm; dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm; dev_priv->display.initial_watermarks = vlv_initial_watermarks; dev_priv->display.optimize_watermarks = vlv_optimize_watermarks; dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo; } else if (IS_G4X(dev_priv)) { g4x_setup_wm_latency(dev_priv); dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm; dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm; dev_priv->display.initial_watermarks = g4x_initial_watermarks; dev_priv->display.optimize_watermarks = g4x_optimize_watermarks; } else if (IS_PINEVIEW(dev_priv)) { if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv), dev_priv->is_ddr3, dev_priv->fsb_freq, dev_priv->mem_freq)) { DRM_INFO("failed to find known CxSR latency " "(found ddr%s fsb freq %d, mem freq %d), " "disabling CxSR\n", (dev_priv->is_ddr3 == 1) ? "3" : "2", dev_priv->fsb_freq, dev_priv->mem_freq); /* Disable CxSR and never update its watermark again */ intel_set_memory_cxsr(dev_priv, false); dev_priv->display.update_wm = NULL; } else dev_priv->display.update_wm = pineview_update_wm; } else if (IS_GEN4(dev_priv)) { dev_priv->display.update_wm = i965_update_wm; } else if (IS_GEN3(dev_priv)) { dev_priv->display.update_wm = i9xx_update_wm; dev_priv->display.get_fifo_size = i9xx_get_fifo_size; } else if (IS_GEN2(dev_priv)) { if (INTEL_INFO(dev_priv)->num_pipes == 1) { dev_priv->display.update_wm = i845_update_wm; dev_priv->display.get_fifo_size = i845_get_fifo_size; } else { dev_priv->display.update_wm = i9xx_update_wm; dev_priv->display.get_fifo_size = i830_get_fifo_size; } } else { DRM_ERROR("unexpected fall-through in intel_init_pm\n"); } } static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv) { uint32_t flags = I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK; switch (flags) { case GEN6_PCODE_SUCCESS: return 0; case GEN6_PCODE_UNIMPLEMENTED_CMD: case GEN6_PCODE_ILLEGAL_CMD: return -ENXIO; case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE: case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE: return -EOVERFLOW; case GEN6_PCODE_TIMEOUT: return -ETIMEDOUT; default: MISSING_CASE(flags); return 0; } } static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv) { uint32_t flags = I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK; switch (flags) { case GEN6_PCODE_SUCCESS: return 0; case GEN6_PCODE_ILLEGAL_CMD: return -ENXIO; case GEN7_PCODE_TIMEOUT: return -ETIMEDOUT; case GEN7_PCODE_ILLEGAL_DATA: return -EINVAL; case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE: return -EOVERFLOW; default: MISSING_CASE(flags); return 0; } } int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val) { int status; WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); /* GEN6_PCODE_* are outside of the forcewake domain, we can * use te fw I915_READ variants to reduce the amount of work * required when reading/writing. */ if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) { DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n"); return -EAGAIN; } I915_WRITE_FW(GEN6_PCODE_DATA, *val); I915_WRITE_FW(GEN6_PCODE_DATA1, 0); I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox); if (__intel_wait_for_register_fw(dev_priv, GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0, 500, 0, NULL)) { DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox); return -ETIMEDOUT; } *val = I915_READ_FW(GEN6_PCODE_DATA); I915_WRITE_FW(GEN6_PCODE_DATA, 0); if (INTEL_GEN(dev_priv) > 6) status = gen7_check_mailbox_status(dev_priv); else status = gen6_check_mailbox_status(dev_priv); if (status) { DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n", status); return status; } return 0; } int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val) { int status; WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); /* GEN6_PCODE_* are outside of the forcewake domain, we can * use te fw I915_READ variants to reduce the amount of work * required when reading/writing. */ if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) { DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n"); return -EAGAIN; } I915_WRITE_FW(GEN6_PCODE_DATA, val); I915_WRITE_FW(GEN6_PCODE_DATA1, 0); I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox); if (__intel_wait_for_register_fw(dev_priv, GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0, 500, 0, NULL)) { DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox); return -ETIMEDOUT; } I915_WRITE_FW(GEN6_PCODE_DATA, 0); if (INTEL_GEN(dev_priv) > 6) status = gen7_check_mailbox_status(dev_priv); else status = gen6_check_mailbox_status(dev_priv); if (status) { DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n", status); return status; } return 0; } static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, u32 reply_mask, u32 reply, u32 *status) { u32 val = request; *status = sandybridge_pcode_read(dev_priv, mbox, &val); return *status || ((val & reply_mask) == reply); } /** * skl_pcode_request - send PCODE request until acknowledgment * @dev_priv: device private * @mbox: PCODE mailbox ID the request is targeted for * @request: request ID * @reply_mask: mask used to check for request acknowledgment * @reply: value used to check for request acknowledgment * @timeout_base_ms: timeout for polling with preemption enabled * * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE * reports an error or an overall timeout of @timeout_base_ms+50 ms expires. * The request is acknowledged once the PCODE reply dword equals @reply after * applying @reply_mask. Polling is first attempted with preemption enabled * for @timeout_base_ms and if this times out for another 50 ms with * preemption disabled. * * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some * other error as reported by PCODE. */ int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, u32 reply_mask, u32 reply, int timeout_base_ms) { u32 status; int ret; WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \ &status) /* * Prime the PCODE by doing a request first. Normally it guarantees * that a subsequent request, at most @timeout_base_ms later, succeeds. * _wait_for() doesn't guarantee when its passed condition is evaluated * first, so send the first request explicitly. */ if (COND) { ret = 0; goto out; } ret = _wait_for(COND, timeout_base_ms * 1000, 10); if (!ret) goto out; /* * The above can time out if the number of requests was low (2 in the * worst case) _and_ PCODE was busy for some reason even after a * (queued) request and @timeout_base_ms delay. As a workaround retry * the poll with preemption disabled to maximize the number of * requests. Increase the timeout from @timeout_base_ms to 50ms to * account for interrupts that could reduce the number of these * requests, and for any quirks of the PCODE firmware that delays * the request completion. */ DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n"); WARN_ON_ONCE(timeout_base_ms > 3); preempt_disable(); ret = wait_for_atomic(COND, 50); preempt_enable(); out: return ret ? ret : status; #undef COND } static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val) { /* * N = val - 0xb7 * Slow = Fast = GPLL ref * N */ return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000); } static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val) { return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7; } static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val) { /* * N = val / 2 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2 */ return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000); } static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val) { /* CHV needs even values */ return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2; } int intel_gpu_freq(struct drm_i915_private *dev_priv, int val) { if (IS_GEN9(dev_priv)) return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER, GEN9_FREQ_SCALER); else if (IS_CHERRYVIEW(dev_priv)) return chv_gpu_freq(dev_priv, val); else if (IS_VALLEYVIEW(dev_priv)) return byt_gpu_freq(dev_priv, val); else return val * GT_FREQUENCY_MULTIPLIER; } int intel_freq_opcode(struct drm_i915_private *dev_priv, int val) { if (IS_GEN9(dev_priv)) return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER, GT_FREQUENCY_MULTIPLIER); else if (IS_CHERRYVIEW(dev_priv)) return chv_freq_opcode(dev_priv, val); else if (IS_VALLEYVIEW(dev_priv)) return byt_freq_opcode(dev_priv, val); else return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER); } struct request_boost { struct work_struct work; struct drm_i915_gem_request *req; }; static void __intel_rps_boost_work(struct work_struct *work) { struct request_boost *boost = container_of(work, struct request_boost, work); struct drm_i915_gem_request *req = boost->req; if (!i915_gem_request_completed(req)) gen6_rps_boost(req->i915, NULL, req->emitted_jiffies); i915_gem_request_put(req); kfree(boost); } void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req) { struct request_boost *boost; if (req == NULL || INTEL_GEN(req->i915) < 6) return; if (i915_gem_request_completed(req)) return; boost = kmalloc(sizeof(*boost), GFP_ATOMIC); if (boost == NULL) return; boost->req = i915_gem_request_get(req); INIT_WORK(&boost->work, __intel_rps_boost_work); queue_work(req->i915->wq, &boost->work); } void intel_pm_setup(struct drm_i915_private *dev_priv) { mutex_init(&dev_priv->rps.hw_lock); spin_lock_init(&dev_priv->rps.client_lock); INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work, __intel_autoenable_gt_powersave); INIT_LIST_HEAD(&dev_priv->rps.clients); dev_priv->pm.suspended = false; atomic_set(&dev_priv->pm.wakeref_count, 0); } static u64 vlv_residency_raw(struct drm_i915_private *dev_priv, const i915_reg_t reg) { u32 lower, upper, tmp; int loop = 2; /* The register accessed do not need forcewake. We borrow * uncore lock to prevent concurrent access to range reg. */ spin_lock_irq(&dev_priv->uncore.lock); /* vlv and chv residency counters are 40 bits in width. * With a control bit, we can choose between upper or lower * 32bit window into this counter. * * Although we always use the counter in high-range mode elsewhere, * userspace may attempt to read the value before rc6 is initialised, * before we have set the default VLV_COUNTER_CONTROL value. So always * set the high bit to be safe. */ I915_WRITE_FW(VLV_COUNTER_CONTROL, _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); upper = I915_READ_FW(reg); do { tmp = upper; I915_WRITE_FW(VLV_COUNTER_CONTROL, _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH)); lower = I915_READ_FW(reg); I915_WRITE_FW(VLV_COUNTER_CONTROL, _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); upper = I915_READ_FW(reg); } while (upper != tmp && --loop); /* Everywhere else we always use VLV_COUNTER_CONTROL with the * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set * now. */ spin_unlock_irq(&dev_priv->uncore.lock); return lower | (u64)upper << 8; } u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, const i915_reg_t reg) { u64 time_hw, units, div; if (!intel_enable_rc6()) return 0; intel_runtime_pm_get(dev_priv); /* On VLV and CHV, residency time is in CZ units rather than 1.28us */ if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { units = 1000; div = dev_priv->czclk_freq; time_hw = vlv_residency_raw(dev_priv, reg); } else if (IS_GEN9_LP(dev_priv)) { units = 1000; div = 1200; /* 833.33ns */ time_hw = I915_READ(reg); } else { units = 128000; /* 1.28us */ div = 100000; time_hw = I915_READ(reg); } intel_runtime_pm_put(dev_priv); return DIV_ROUND_UP_ULL(time_hw * units, div); }