/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * File contents: support functions for PCI/PCIe */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include "types.h" #include "pub.h" #include "pmu.h" #include "srom.h" #include "nicpci.h" #include "aiutils.h" /* slow_clk_ctl */ /* slow clock source mask */ #define SCC_SS_MASK 0x00000007 /* source of slow clock is LPO */ #define SCC_SS_LPO 0x00000000 /* source of slow clock is crystal */ #define SCC_SS_XTAL 0x00000001 /* source of slow clock is PCI */ #define SCC_SS_PCI 0x00000002 /* LPOFreqSel, 1: 160Khz, 0: 32KHz */ #define SCC_LF 0x00000200 /* LPOPowerDown, 1: LPO is disabled, 0: LPO is enabled */ #define SCC_LP 0x00000400 /* ForceSlowClk, 1: sb/cores running on slow clock, 0: power logic control */ #define SCC_FS 0x00000800 /* IgnorePllOffReq, 1/0: * power logic ignores/honors PLL clock disable requests from core */ #define SCC_IP 0x00001000 /* XtalControlEn, 1/0: * power logic does/doesn't disable crystal when appropriate */ #define SCC_XC 0x00002000 /* XtalPU (RO), 1/0: crystal running/disabled */ #define SCC_XP 0x00004000 /* ClockDivider (SlowClk = 1/(4+divisor)) */ #define SCC_CD_MASK 0xffff0000 #define SCC_CD_SHIFT 16 /* system_clk_ctl */ /* ILPen: Enable Idle Low Power */ #define SYCC_IE 0x00000001 /* ALPen: Enable Active Low Power */ #define SYCC_AE 0x00000002 /* ForcePLLOn */ #define SYCC_FP 0x00000004 /* Force ALP (or HT if ALPen is not set */ #define SYCC_AR 0x00000008 /* Force HT */ #define SYCC_HR 0x00000010 /* ClkDiv (ILP = 1/(4 * (divisor + 1)) */ #define SYCC_CD_MASK 0xffff0000 #define SYCC_CD_SHIFT 16 #define CST4329_SPROM_OTP_SEL_MASK 0x00000003 /* OTP is powered up, use def. CIS, no SPROM */ #define CST4329_DEFCIS_SEL 0 /* OTP is powered up, SPROM is present */ #define CST4329_SPROM_SEL 1 /* OTP is powered up, no SPROM */ #define CST4329_OTP_SEL 2 /* OTP is powered down, SPROM is present */ #define CST4329_OTP_PWRDN 3 #define CST4329_SPI_SDIO_MODE_MASK 0x00000004 #define CST4329_SPI_SDIO_MODE_SHIFT 2 /* 43224 chip-specific ChipControl register bits */ #define CCTRL43224_GPIO_TOGGLE 0x8000 /* 12 mA drive strength */ #define CCTRL_43224A0_12MA_LED_DRIVE 0x00F000F0 /* 12 mA drive strength for later 43224s */ #define CCTRL_43224B0_12MA_LED_DRIVE 0xF0 /* 43236 Chip specific ChipStatus register bits */ #define CST43236_SFLASH_MASK 0x00000040 #define CST43236_OTP_MASK 0x00000080 #define CST43236_HSIC_MASK 0x00000100 /* USB/HSIC */ #define CST43236_BP_CLK 0x00000200 /* 120/96Mbps */ #define CST43236_BOOT_MASK 0x00001800 #define CST43236_BOOT_SHIFT 11 #define CST43236_BOOT_FROM_SRAM 0 /* boot from SRAM, ARM in reset */ #define CST43236_BOOT_FROM_ROM 1 /* boot from ROM */ #define CST43236_BOOT_FROM_FLASH 2 /* boot from FLASH */ #define CST43236_BOOT_FROM_INVALID 3 /* 4331 chip-specific ChipControl register bits */ /* 0 disable */ #define CCTRL4331_BT_COEXIST (1<<0) /* 0 SECI is disabled (JTAG functional) */ #define CCTRL4331_SECI (1<<1) /* 0 disable */ #define CCTRL4331_EXT_LNA (1<<2) /* sprom/gpio13-15 mux */ #define CCTRL4331_SPROM_GPIO13_15 (1<<3) /* 0 ext pa disable, 1 ext pa enabled */ #define CCTRL4331_EXTPA_EN (1<<4) /* set drive out GPIO_CLK on sprom_cs pin */ #define CCTRL4331_GPIOCLK_ON_SPROMCS (1<<5) /* use sprom_cs pin as PCIE mdio interface */ #define CCTRL4331_PCIE_MDIO_ON_SPROMCS (1<<6) /* aband extpa will be at gpio2/5 and sprom_dout */ #define CCTRL4331_EXTPA_ON_GPIO2_5 (1<<7) /* override core control on pipe_AuxClkEnable */ #define CCTRL4331_OVR_PIPEAUXCLKEN (1<<8) /* override core control on pipe_AuxPowerDown */ #define CCTRL4331_OVR_PIPEAUXPWRDOWN (1<<9) /* pcie_auxclkenable */ #define CCTRL4331_PCIE_AUXCLKEN (1<<10) /* pcie_pipe_pllpowerdown */ #define CCTRL4331_PCIE_PIPE_PLLDOWN (1<<11) /* enable bt_shd0 at gpio4 */ #define CCTRL4331_BT_SHD0_ON_GPIO4 (1<<16) /* enable bt_shd1 at gpio5 */ #define CCTRL4331_BT_SHD1_ON_GPIO5 (1<<17) /* 4331 Chip specific ChipStatus register bits */ /* crystal frequency 20/40Mhz */ #define CST4331_XTAL_FREQ 0x00000001 #define CST4331_SPROM_PRESENT 0x00000002 #define CST4331_OTP_PRESENT 0x00000004 #define CST4331_LDO_RF 0x00000008 #define CST4331_LDO_PAR 0x00000010 /* 4319 chip-specific ChipStatus register bits */ #define CST4319_SPI_CPULESSUSB 0x00000001 #define CST4319_SPI_CLK_POL 0x00000002 #define CST4319_SPI_CLK_PH 0x00000008 /* gpio [7:6], SDIO CIS selection */ #define CST4319_SPROM_OTP_SEL_MASK 0x000000c0 #define CST4319_SPROM_OTP_SEL_SHIFT 6 /* use default CIS, OTP is powered up */ #define CST4319_DEFCIS_SEL 0x00000000 /* use SPROM, OTP is powered up */ #define CST4319_SPROM_SEL 0x00000040 /* use OTP, OTP is powered up */ #define CST4319_OTP_SEL 0x00000080 /* use SPROM, OTP is powered down */ #define CST4319_OTP_PWRDN 0x000000c0 /* gpio [8], sdio/usb mode */ #define CST4319_SDIO_USB_MODE 0x00000100 #define CST4319_REMAP_SEL_MASK 0x00000600 #define CST4319_ILPDIV_EN 0x00000800 #define CST4319_XTAL_PD_POL 0x00001000 #define CST4319_LPO_SEL 0x00002000 #define CST4319_RES_INIT_MODE 0x0000c000 /* PALDO is configured with external PNP */ #define CST4319_PALDO_EXTPNP 0x00010000 #define CST4319_CBUCK_MODE_MASK 0x00060000 #define CST4319_CBUCK_MODE_BURST 0x00020000 #define CST4319_CBUCK_MODE_LPBURST 0x00060000 #define CST4319_RCAL_VALID 0x01000000 #define CST4319_RCAL_VALUE_MASK 0x3e000000 #define CST4319_RCAL_VALUE_SHIFT 25 /* 4336 chip-specific ChipStatus register bits */ #define CST4336_SPI_MODE_MASK 0x00000001 #define CST4336_SPROM_PRESENT 0x00000002 #define CST4336_OTP_PRESENT 0x00000004 #define CST4336_ARMREMAP_0 0x00000008 #define CST4336_ILPDIV_EN_MASK 0x00000010 #define CST4336_ILPDIV_EN_SHIFT 4 #define CST4336_XTAL_PD_POL_MASK 0x00000020 #define CST4336_XTAL_PD_POL_SHIFT 5 #define CST4336_LPO_SEL_MASK 0x00000040 #define CST4336_LPO_SEL_SHIFT 6 #define CST4336_RES_INIT_MODE_MASK 0x00000180 #define CST4336_RES_INIT_MODE_SHIFT 7 #define CST4336_CBUCK_MODE_MASK 0x00000600 #define CST4336_CBUCK_MODE_SHIFT 9 /* 4313 chip-specific ChipStatus register bits */ #define CST4313_SPROM_PRESENT 1 #define CST4313_OTP_PRESENT 2 #define CST4313_SPROM_OTP_SEL_MASK 0x00000002 #define CST4313_SPROM_OTP_SEL_SHIFT 0 /* 4313 Chip specific ChipControl register bits */ /* 12 mA drive strengh for later 4313 */ #define CCTRL_4313_12MA_LED_DRIVE 0x00000007 /* Manufacturer Ids */ #define MFGID_ARM 0x43b #define MFGID_BRCM 0x4bf #define MFGID_MIPS 0x4a7 /* Enumeration ROM registers */ #define ER_EROMENTRY 0x000 #define ER_REMAPCONTROL 0xe00 #define ER_REMAPSELECT 0xe04 #define ER_MASTERSELECT 0xe10 #define ER_ITCR 0xf00 #define ER_ITIP 0xf04 /* Erom entries */ #define ER_TAG 0xe #define ER_TAG1 0x6 #define ER_VALID 1 #define ER_CI 0 #define ER_MP 2 #define ER_ADD 4 #define ER_END 0xe #define ER_BAD 0xffffffff /* EROM CompIdentA */ #define CIA_MFG_MASK 0xfff00000 #define CIA_MFG_SHIFT 20 #define CIA_CID_MASK 0x000fff00 #define CIA_CID_SHIFT 8 #define CIA_CCL_MASK 0x000000f0 #define CIA_CCL_SHIFT 4 /* EROM CompIdentB */ #define CIB_REV_MASK 0xff000000 #define CIB_REV_SHIFT 24 #define CIB_NSW_MASK 0x00f80000 #define CIB_NSW_SHIFT 19 #define CIB_NMW_MASK 0x0007c000 #define CIB_NMW_SHIFT 14 #define CIB_NSP_MASK 0x00003e00 #define CIB_NSP_SHIFT 9 #define CIB_NMP_MASK 0x000001f0 #define CIB_NMP_SHIFT 4 /* EROM AddrDesc */ #define AD_ADDR_MASK 0xfffff000 #define AD_SP_MASK 0x00000f00 #define AD_SP_SHIFT 8 #define AD_ST_MASK 0x000000c0 #define AD_ST_SHIFT 6 #define AD_ST_SLAVE 0x00000000 #define AD_ST_BRIDGE 0x00000040 #define AD_ST_SWRAP 0x00000080 #define AD_ST_MWRAP 0x000000c0 #define AD_SZ_MASK 0x00000030 #define AD_SZ_SHIFT 4 #define AD_SZ_4K 0x00000000 #define AD_SZ_8K 0x00000010 #define AD_SZ_16K 0x00000020 #define AD_SZ_SZD 0x00000030 #define AD_AG32 0x00000008 #define AD_ADDR_ALIGN 0x00000fff #define AD_SZ_BASE 0x00001000 /* 4KB */ /* EROM SizeDesc */ #define SD_SZ_MASK 0xfffff000 #define SD_SG32 0x00000008 #define SD_SZ_ALIGN 0x00000fff /* PCI config space bit 4 for 4306c0 slow clock source */ #define PCI_CFG_GPIO_SCS 0x10 /* PCI config space GPIO 14 for Xtal power-up */ #define PCI_CFG_GPIO_XTAL 0x40 /* PCI config space GPIO 15 for PLL power-down */ #define PCI_CFG_GPIO_PLL 0x80 /* power control defines */ #define PLL_DELAY 150 /* us pll on delay */ #define FREF_DELAY 200 /* us fref change delay */ #define XTAL_ON_DELAY 1000 /* us crystal power-on delay */ /* resetctrl */ #define AIRC_RESET 1 #define NOREV -1 /* Invalid rev */ /* GPIO Based LED powersave defines */ #define DEFAULT_GPIO_ONTIME 10 /* Default: 10% on */ #define DEFAULT_GPIO_OFFTIME 90 /* Default: 10% on */ /* When Srom support present, fields in sromcontrol */ #define SRC_START 0x80000000 #define SRC_BUSY 0x80000000 #define SRC_OPCODE 0x60000000 #define SRC_OP_READ 0x00000000 #define SRC_OP_WRITE 0x20000000 #define SRC_OP_WRDIS 0x40000000 #define SRC_OP_WREN 0x60000000 #define SRC_OTPSEL 0x00000010 #define SRC_LOCK 0x00000008 #define SRC_SIZE_MASK 0x00000006 #define SRC_SIZE_1K 0x00000000 #define SRC_SIZE_4K 0x00000002 #define SRC_SIZE_16K 0x00000004 #define SRC_SIZE_SHIFT 1 #define SRC_PRESENT 0x00000001 /* External PA enable mask */ #define GPIO_CTRL_EPA_EN_MASK 0x40 #define DEFAULT_GPIOTIMERVAL \ ((DEFAULT_GPIO_ONTIME << GPIO_ONTIME_SHIFT) | DEFAULT_GPIO_OFFTIME) #define BADIDX (SI_MAXCORES + 1) #define IS_SIM(chippkg) \ ((chippkg == HDLSIM_PKG_ID) || (chippkg == HWSIM_PKG_ID)) /* * Macros to disable/restore function core(D11, ENET, ILINE20, etc) interrupts * before after core switching to avoid invalid register accesss inside ISR. */ #define INTR_OFF(si, intr_val) \ if ((si)->intrsoff_fn && \ (si)->coreid[(si)->curidx] == (si)->dev_coreid) \ intr_val = (*(si)->intrsoff_fn)((si)->intr_arg) #define INTR_RESTORE(si, intr_val) \ if ((si)->intrsrestore_fn && \ (si)->coreid[(si)->curidx] == (si)->dev_coreid) \ (*(si)->intrsrestore_fn)((si)->intr_arg, intr_val) #define PCI(sih) (ai_get_buscoretype(sih) == PCI_CORE_ID) #define PCIE(sih) (ai_get_buscoretype(sih) == PCIE_CORE_ID) #define PCI_FORCEHT(sih) (PCIE(sih) && (ai_get_chip_id(sih) == BCM4716_CHIP_ID)) #ifdef BCMDBG #define SI_MSG(fmt, ...) pr_debug(fmt, ##__VA_ARGS__) #else #define SI_MSG(fmt, ...) no_printk(fmt, ##__VA_ARGS__) #endif /* BCMDBG */ #define GOODCOREADDR(x, b) \ (((x) >= (b)) && ((x) < ((b) + SI_MAXCORES * SI_CORE_SIZE)) && \ IS_ALIGNED((x), SI_CORE_SIZE)) struct aidmp { u32 oobselina30; /* 0x000 */ u32 oobselina74; /* 0x004 */ u32 PAD[6]; u32 oobselinb30; /* 0x020 */ u32 oobselinb74; /* 0x024 */ u32 PAD[6]; u32 oobselinc30; /* 0x040 */ u32 oobselinc74; /* 0x044 */ u32 PAD[6]; u32 oobselind30; /* 0x060 */ u32 oobselind74; /* 0x064 */ u32 PAD[38]; u32 oobselouta30; /* 0x100 */ u32 oobselouta74; /* 0x104 */ u32 PAD[6]; u32 oobseloutb30; /* 0x120 */ u32 oobseloutb74; /* 0x124 */ u32 PAD[6]; u32 oobseloutc30; /* 0x140 */ u32 oobseloutc74; /* 0x144 */ u32 PAD[6]; u32 oobseloutd30; /* 0x160 */ u32 oobseloutd74; /* 0x164 */ u32 PAD[38]; u32 oobsynca; /* 0x200 */ u32 oobseloutaen; /* 0x204 */ u32 PAD[6]; u32 oobsyncb; /* 0x220 */ u32 oobseloutben; /* 0x224 */ u32 PAD[6]; u32 oobsyncc; /* 0x240 */ u32 oobseloutcen; /* 0x244 */ u32 PAD[6]; u32 oobsyncd; /* 0x260 */ u32 oobseloutden; /* 0x264 */ u32 PAD[38]; u32 oobaextwidth; /* 0x300 */ u32 oobainwidth; /* 0x304 */ u32 oobaoutwidth; /* 0x308 */ u32 PAD[5]; u32 oobbextwidth; /* 0x320 */ u32 oobbinwidth; /* 0x324 */ u32 oobboutwidth; /* 0x328 */ u32 PAD[5]; u32 oobcextwidth; /* 0x340 */ u32 oobcinwidth; /* 0x344 */ u32 oobcoutwidth; /* 0x348 */ u32 PAD[5]; u32 oobdextwidth; /* 0x360 */ u32 oobdinwidth; /* 0x364 */ u32 oobdoutwidth; /* 0x368 */ u32 PAD[37]; u32 ioctrlset; /* 0x400 */ u32 ioctrlclear; /* 0x404 */ u32 ioctrl; /* 0x408 */ u32 PAD[61]; u32 iostatus; /* 0x500 */ u32 PAD[127]; u32 ioctrlwidth; /* 0x700 */ u32 iostatuswidth; /* 0x704 */ u32 PAD[62]; u32 resetctrl; /* 0x800 */ u32 resetstatus; /* 0x804 */ u32 resetreadid; /* 0x808 */ u32 resetwriteid; /* 0x80c */ u32 PAD[60]; u32 errlogctrl; /* 0x900 */ u32 errlogdone; /* 0x904 */ u32 errlogstatus; /* 0x908 */ u32 errlogaddrlo; /* 0x90c */ u32 errlogaddrhi; /* 0x910 */ u32 errlogid; /* 0x914 */ u32 errloguser; /* 0x918 */ u32 errlogflags; /* 0x91c */ u32 PAD[56]; u32 intstatus; /* 0xa00 */ u32 PAD[127]; u32 config; /* 0xe00 */ u32 PAD[63]; u32 itcr; /* 0xf00 */ u32 PAD[3]; u32 itipooba; /* 0xf10 */ u32 itipoobb; /* 0xf14 */ u32 itipoobc; /* 0xf18 */ u32 itipoobd; /* 0xf1c */ u32 PAD[4]; u32 itipoobaout; /* 0xf30 */ u32 itipoobbout; /* 0xf34 */ u32 itipoobcout; /* 0xf38 */ u32 itipoobdout; /* 0xf3c */ u32 PAD[4]; u32 itopooba; /* 0xf50 */ u32 itopoobb; /* 0xf54 */ u32 itopoobc; /* 0xf58 */ u32 itopoobd; /* 0xf5c */ u32 PAD[4]; u32 itopoobain; /* 0xf70 */ u32 itopoobbin; /* 0xf74 */ u32 itopoobcin; /* 0xf78 */ u32 itopoobdin; /* 0xf7c */ u32 PAD[4]; u32 itopreset; /* 0xf90 */ u32 PAD[15]; u32 peripherialid4; /* 0xfd0 */ u32 peripherialid5; /* 0xfd4 */ u32 peripherialid6; /* 0xfd8 */ u32 peripherialid7; /* 0xfdc */ u32 peripherialid0; /* 0xfe0 */ u32 peripherialid1; /* 0xfe4 */ u32 peripherialid2; /* 0xfe8 */ u32 peripherialid3; /* 0xfec */ u32 componentid0; /* 0xff0 */ u32 componentid1; /* 0xff4 */ u32 componentid2; /* 0xff8 */ u32 componentid3; /* 0xffc */ }; /* parse the enumeration rom to identify all cores */ static void ai_scan(struct si_pub *sih, struct bcma_bus *bus) { struct si_info *sii = (struct si_info *)sih; struct bcma_device *core; uint idx; list_for_each_entry(core, &bus->cores, list) { idx = core->core_index; sii->cia[idx] = core->id.manuf << CIA_MFG_SHIFT; sii->cia[idx] |= core->id.id << CIA_CID_SHIFT; sii->cia[idx] |= core->id.class << CIA_CCL_SHIFT; sii->cib[idx] = core->id.rev << CIB_REV_SHIFT; sii->coreid[idx] = core->id.id; sii->coresba[idx] = core->addr; sii->coresba_size[idx] = 0x1000; sii->coresba2[idx] = 0; sii->coresba2_size[idx] = 0; sii->wrapba[idx] = core->wrap; sii->numcores++; } } static struct bcma_device *ai_find_bcma_core(struct si_pub *sih, uint coreidx) { struct si_info *sii = (struct si_info *)sih; struct bcma_device *core; list_for_each_entry(core, &sii->icbus->cores, list) { if (core->core_index == coreidx) return core; } return NULL; } /* * This function changes the logical "focus" to the indicated core. * Return the current core's virtual address. Since each core starts with the * same set of registers (BIST, clock control, etc), the returned address * contains the first register of this 'common' register block (not to be * confused with 'common core'). */ void __iomem *ai_setcoreidx(struct si_pub *sih, uint coreidx) { struct si_info *sii = (struct si_info *)sih; struct bcma_device *core; if (sii->curidx != coreidx) { core = ai_find_bcma_core(sih, coreidx); if (core == NULL) return NULL; (void)bcma_aread32(core, BCMA_IOST); sii->curidx = coreidx; } return sii->curmap; } /* Return the number of address spaces in current core */ int ai_numaddrspaces(struct si_pub *sih) { return 2; } /* Return the address of the nth address space in the current core */ u32 ai_addrspace(struct si_pub *sih, uint asidx) { struct si_info *sii; uint cidx; sii = (struct si_info *)sih; cidx = sii->curidx; if (asidx == 0) return sii->coresba[cidx]; else if (asidx == 1) return sii->coresba2[cidx]; else { /* Need to parse the erom again to find addr space */ return 0; } } /* Return the size of the nth address space in the current core */ u32 ai_addrspacesize(struct si_pub *sih, uint asidx) { struct si_info *sii; uint cidx; sii = (struct si_info *)sih; cidx = sii->curidx; if (asidx == 0) return sii->coresba_size[cidx]; else if (asidx == 1) return sii->coresba2_size[cidx]; else { /* Need to parse the erom again to find addr */ return 0; } } uint ai_flag(struct si_pub *sih) { struct si_info *sii; struct aidmp *ai; sii = (struct si_info *)sih; ai = sii->curwrap; return R_REG(&ai->oobselouta30) & 0x1f; } void ai_setint(struct si_pub *sih, int siflag) { } uint ai_corevendor(struct si_pub *sih) { struct si_info *sii; u32 cia; sii = (struct si_info *)sih; cia = sii->cia[sii->curidx]; return (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT; } uint ai_corerev(struct si_pub *sih) { struct si_info *sii; u32 cib; sii = (struct si_info *)sih; cib = sii->cib[sii->curidx]; return (cib & CIB_REV_MASK) >> CIB_REV_SHIFT; } bool ai_iscoreup(struct si_pub *sih) { struct si_info *sii; struct aidmp *ai; sii = (struct si_info *)sih; ai = sii->curwrap; return (((R_REG(&ai->ioctrl) & (SICF_FGC | SICF_CLOCK_EN)) == SICF_CLOCK_EN) && ((R_REG(&ai->resetctrl) & AIRC_RESET) == 0)); } void ai_core_cflags_wo(struct si_pub *sih, u32 mask, u32 val) { struct si_info *sii; struct aidmp *ai; u32 w; sii = (struct si_info *)sih; ai = sii->curwrap; if (mask || val) { w = ((R_REG(&ai->ioctrl) & ~mask) | val); W_REG(&ai->ioctrl, w); } } u32 ai_core_cflags(struct si_pub *sih, u32 mask, u32 val) { struct si_info *sii; struct aidmp *ai; u32 w; sii = (struct si_info *)sih; ai = sii->curwrap; if (mask || val) { w = ((R_REG(&ai->ioctrl) & ~mask) | val); W_REG(&ai->ioctrl, w); } return R_REG(&ai->ioctrl); } /* return true if PCIE capability exists in the pci config space */ static bool ai_ispcie(struct si_info *sii) { u8 cap_ptr; cap_ptr = pcicore_find_pci_capability(sii->pcibus, PCI_CAP_ID_EXP, NULL, NULL); if (!cap_ptr) return false; return true; } static bool ai_buscore_prep(struct si_info *sii) { /* kludge to enable the clock on the 4306 which lacks a slowclock */ if (!ai_ispcie(sii)) ai_clkctl_xtal(&sii->pub, XTAL | PLL, ON); return true; } u32 ai_core_sflags(struct si_pub *sih, u32 mask, u32 val) { struct si_info *sii; struct aidmp *ai; u32 w; sii = (struct si_info *)sih; ai = sii->curwrap; if (mask || val) { w = ((R_REG(&ai->iostatus) & ~mask) | val); W_REG(&ai->iostatus, w); } return R_REG(&ai->iostatus); } static bool ai_buscore_setup(struct si_info *sii, u32 savewin, uint *origidx) { bool pci, pcie; uint i; uint pciidx, pcieidx, pcirev, pcierev; struct chipcregs __iomem *cc; cc = ai_setcoreidx(&sii->pub, SI_CC_IDX); /* get chipcommon rev */ sii->pub.ccrev = (int)ai_corerev(&sii->pub); /* get chipcommon chipstatus */ if (ai_get_ccrev(&sii->pub) >= 11) sii->chipst = R_REG(&cc->chipstatus); /* get chipcommon capabilites */ sii->pub.cccaps = R_REG(&cc->capabilities); /* get pmu rev and caps */ if (ai_get_cccaps(&sii->pub) & CC_CAP_PMU) { sii->pub.pmucaps = R_REG(&cc->pmucapabilities); sii->pub.pmurev = sii->pub.pmucaps & PCAP_REV_MASK; } /* figure out bus/orignal core idx */ sii->pub.buscoretype = NODEV_CORE_ID; sii->pub.buscorerev = NOREV; sii->buscoreidx = BADIDX; pci = pcie = false; pcirev = pcierev = NOREV; pciidx = pcieidx = BADIDX; for (i = 0; i < sii->numcores; i++) { uint cid, crev; ai_setcoreidx(&sii->pub, i); cid = ai_coreid(&sii->pub); crev = ai_corerev(&sii->pub); if (cid == PCI_CORE_ID) { pciidx = i; pcirev = crev; pci = true; } else if (cid == PCIE_CORE_ID) { pcieidx = i; pcierev = crev; pcie = true; } /* find the core idx before entering this func. */ if ((savewin && (savewin == sii->coresba[i])) || (cc == sii->regs[i])) *origidx = i; } if (pci && pcie) { if (ai_ispcie(sii)) pci = false; else pcie = false; } if (pci) { sii->pub.buscoretype = PCI_CORE_ID; sii->pub.buscorerev = pcirev; sii->buscoreidx = pciidx; } else if (pcie) { sii->pub.buscoretype = PCIE_CORE_ID; sii->pub.buscorerev = pcierev; sii->buscoreidx = pcieidx; } /* fixup necessary chip/core configurations */ if (!sii->pch) { sii->pch = pcicore_init(&sii->pub, sii->pcibus, sii->curmap + PCI_16KB0_PCIREGS_OFFSET); if (sii->pch == NULL) return false; } if (ai_pci_fixcfg(&sii->pub)) { /* si_doattach: si_pci_fixcfg failed */ return false; } /* return to the original core */ ai_setcoreidx(&sii->pub, *origidx); return true; } /* * get boardtype and boardrev */ static __used void ai_nvram_process(struct si_info *sii) { uint w = 0; /* do a pci config read to get subsystem id and subvendor id */ pci_read_config_dword(sii->pcibus, PCI_SUBSYSTEM_VENDOR_ID, &w); sii->pub.boardvendor = w & 0xffff; sii->pub.boardtype = (w >> 16) & 0xffff; } static struct si_info *ai_doattach(struct si_info *sii, struct bcma_bus *pbus) { void __iomem *regs = pbus->mmio; struct si_pub *sih = &sii->pub; u32 w, savewin; struct chipcregs __iomem *cc; uint socitype; uint origidx; memset((unsigned char *) sii, 0, sizeof(struct si_info)); savewin = 0; sii->icbus = pbus; sii->buscoreidx = BADIDX; sii->pcibus = pbus->host_pci; sii->curmap = regs; sii->curwrap = sii->curmap + SI_CORE_SIZE; /* switch to Chipcommon core */ bcma_read32(pbus->drv_cc.core, 0); savewin = SI_ENUM_BASE; cc = (struct chipcregs __iomem *) regs; /* bus/core/clk setup for register access */ if (!ai_buscore_prep(sii)) return NULL; /* * ChipID recognition. * We assume we can read chipid at offset 0 from the regs arg. * If we add other chiptypes (or if we need to support old sdio * hosts w/o chipcommon), some way of recognizing them needs to * be added here. */ w = R_REG(&cc->chipid); socitype = (w & CID_TYPE_MASK) >> CID_TYPE_SHIFT; /* Might as wll fill in chip id rev & pkg */ sih->chip = w & CID_ID_MASK; sih->chiprev = (w & CID_REV_MASK) >> CID_REV_SHIFT; sih->chippkg = (w & CID_PKG_MASK) >> CID_PKG_SHIFT; /* scan for cores */ if (socitype == SOCI_AI) { SI_MSG("Found chip type AI (0x%08x)\n", w); /* pass chipc address instead of original core base */ ai_scan(&sii->pub, pbus); } else { /* Found chip of unknown type */ return NULL; } /* no cores found, bail out */ if (sii->numcores == 0) return NULL; /* bus/core/clk setup */ origidx = SI_CC_IDX; if (!ai_buscore_setup(sii, savewin, &origidx)) goto exit; /* Init nvram from sprom/otp if they exist */ if (srom_var_init(&sii->pub, cc)) goto exit; ai_nvram_process(sii); /* === NVRAM, clock is ready === */ cc = (struct chipcregs __iomem *) ai_setcore(sih, CC_CORE_ID, 0); W_REG(&cc->gpiopullup, 0); W_REG(&cc->gpiopulldown, 0); ai_setcoreidx(sih, origidx); /* PMU specific initializations */ if (ai_get_cccaps(sih) & CC_CAP_PMU) { u32 xtalfreq; si_pmu_init(sih); si_pmu_chip_init(sih); xtalfreq = si_pmu_measure_alpclk(sih); si_pmu_pll_init(sih, xtalfreq); si_pmu_res_init(sih); si_pmu_swreg_init(sih); } /* setup the GPIO based LED powersave register */ w = getintvar(sih, BRCMS_SROM_LEDDC); if (w == 0) w = DEFAULT_GPIOTIMERVAL; ai_corereg(sih, SI_CC_IDX, offsetof(struct chipcregs, gpiotimerval), ~0, w); if (PCIE(sih)) pcicore_attach(sii->pch, SI_DOATTACH); if (ai_get_chip_id(sih) == BCM43224_CHIP_ID) { /* * enable 12 mA drive strenth for 43224 and * set chipControl register bit 15 */ if (ai_get_chiprev(sih) == 0) { SI_MSG("Applying 43224A0 WARs\n"); ai_corereg(sih, SI_CC_IDX, offsetof(struct chipcregs, chipcontrol), CCTRL43224_GPIO_TOGGLE, CCTRL43224_GPIO_TOGGLE); si_pmu_chipcontrol(sih, 0, CCTRL_43224A0_12MA_LED_DRIVE, CCTRL_43224A0_12MA_LED_DRIVE); } if (ai_get_chiprev(sih) >= 1) { SI_MSG("Applying 43224B0+ WARs\n"); si_pmu_chipcontrol(sih, 0, CCTRL_43224B0_12MA_LED_DRIVE, CCTRL_43224B0_12MA_LED_DRIVE); } } if (ai_get_chip_id(sih) == BCM4313_CHIP_ID) { /* * enable 12 mA drive strenth for 4313 and * set chipControl register bit 1 */ SI_MSG("Applying 4313 WARs\n"); si_pmu_chipcontrol(sih, 0, CCTRL_4313_12MA_LED_DRIVE, CCTRL_4313_12MA_LED_DRIVE); } return sii; exit: if (sii->pch) pcicore_deinit(sii->pch); sii->pch = NULL; return NULL; } /* * Allocate a si handle and do the attach. */ struct si_pub * ai_attach(struct bcma_bus *pbus) { struct si_info *sii; /* alloc struct si_info */ sii = kmalloc(sizeof(struct si_info), GFP_ATOMIC); if (sii == NULL) return NULL; if (ai_doattach(sii, pbus) == NULL) { kfree(sii); return NULL; } return (struct si_pub *) sii; } /* may be called with core in reset */ void ai_detach(struct si_pub *sih) { struct si_info *sii; struct si_pub *si_local = NULL; memcpy(&si_local, &sih, sizeof(struct si_pub **)); sii = (struct si_info *)sih; if (sii == NULL) return; if (sii->pch) pcicore_deinit(sii->pch); sii->pch = NULL; srom_free_vars(sih); kfree(sii); } /* register driver interrupt disabling and restoring callback functions */ void ai_register_intr_callback(struct si_pub *sih, void *intrsoff_fn, void *intrsrestore_fn, void *intrsenabled_fn, void *intr_arg) { struct si_info *sii; sii = (struct si_info *)sih; sii->intr_arg = intr_arg; sii->intrsoff_fn = (u32 (*)(void *)) intrsoff_fn; sii->intrsrestore_fn = (void (*) (void *, u32)) intrsrestore_fn; sii->intrsenabled_fn = (bool (*)(void *)) intrsenabled_fn; /* save current core id. when this function called, the current core * must be the core which provides driver functions(il, et, wl, etc.) */ sii->dev_coreid = sii->coreid[sii->curidx]; } void ai_deregister_intr_callback(struct si_pub *sih) { struct si_info *sii; sii = (struct si_info *)sih; sii->intrsoff_fn = NULL; } uint ai_coreid(struct si_pub *sih) { struct si_info *sii; sii = (struct si_info *)sih; return sii->coreid[sii->curidx]; } uint ai_coreidx(struct si_pub *sih) { struct si_info *sii; sii = (struct si_info *)sih; return sii->curidx; } bool ai_backplane64(struct si_pub *sih) { return (ai_get_cccaps(sih) & CC_CAP_BKPLN64) != 0; } /* return index of coreid or BADIDX if not found */ uint ai_findcoreidx(struct si_pub *sih, uint coreid, uint coreunit) { struct bcma_device *core; struct si_info *sii; uint found; sii = (struct si_info *)sih; found = 0; list_for_each_entry(core, &sii->icbus->cores, list) if (core->id.id == coreid) { if (found == coreunit) return core->core_index; found++; } return BADIDX; } /* * This function changes logical "focus" to the indicated core; * must be called with interrupts off. * Moreover, callers should keep interrupts off during switching * out of and back to d11 core. */ void __iomem *ai_setcore(struct si_pub *sih, uint coreid, uint coreunit) { uint idx; idx = ai_findcoreidx(sih, coreid, coreunit); if (idx >= SI_MAXCORES) return NULL; return ai_setcoreidx(sih, idx); } /* Turn off interrupt as required by ai_setcore, before switch core */ void __iomem *ai_switch_core(struct si_pub *sih, uint coreid, uint *origidx, uint *intr_val) { void __iomem *cc; struct si_info *sii; sii = (struct si_info *)sih; INTR_OFF(sii, *intr_val); *origidx = sii->curidx; cc = ai_setcore(sih, coreid, 0); return cc; } /* restore coreidx and restore interrupt */ void ai_restore_core(struct si_pub *sih, uint coreid, uint intr_val) { struct si_info *sii; sii = (struct si_info *)sih; ai_setcoreidx(sih, coreid); INTR_RESTORE(sii, intr_val); } void ai_write_wrapperreg(struct si_pub *sih, u32 offset, u32 val) { struct si_info *sii = (struct si_info *)sih; u32 *w = (u32 *) sii->curwrap; W_REG(w + (offset / 4), val); return; } /* * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set * operation, switch back to the original core, and return the new value. * * When using the silicon backplane, no fiddling with interrupts or core * switches is needed. * * Also, when using pci/pcie, we can optimize away the core switching for pci * registers and (on newer pci cores) chipcommon registers. */ uint ai_corereg(struct si_pub *sih, uint coreidx, uint regoff, uint mask, uint val) { uint origidx = 0; u32 __iomem *r = NULL; uint w; uint intr_val = 0; struct si_info *sii; sii = (struct si_info *)sih; if (coreidx >= SI_MAXCORES) return 0; INTR_OFF(sii, intr_val); /* save current core index */ origidx = ai_coreidx(&sii->pub); /* switch core */ r = (u32 __iomem *) ((unsigned char __iomem *) ai_setcoreidx(&sii->pub, coreidx) + regoff); /* mask and set */ if (mask || val) { w = (R_REG(r) & ~mask) | val; W_REG(r, w); } /* readback */ w = R_REG(r); /* restore core index */ if (origidx != coreidx) ai_setcoreidx(&sii->pub, origidx); INTR_RESTORE(sii, intr_val); return w; } void ai_core_disable(struct si_pub *sih, u32 bits) { struct si_info *sii; u32 dummy; struct aidmp *ai; sii = (struct si_info *)sih; ai = sii->curwrap; /* if core is already in reset, just return */ if (R_REG(&ai->resetctrl) & AIRC_RESET) return; W_REG(&ai->ioctrl, bits); dummy = R_REG(&ai->ioctrl); udelay(10); W_REG(&ai->resetctrl, AIRC_RESET); udelay(1); } /* reset and re-enable a core * inputs: * bits - core specific bits that are set during and after reset sequence * resetbits - core specific bits that are set only during reset sequence */ void ai_core_reset(struct si_pub *sih, u32 bits, u32 resetbits) { struct si_info *sii; struct aidmp *ai; u32 dummy; sii = (struct si_info *)sih; ai = sii->curwrap; /* * Must do the disable sequence first to work * for arbitrary current core state. */ ai_core_disable(sih, (bits | resetbits)); /* * Now do the initialization sequence. */ W_REG(&ai->ioctrl, (bits | SICF_FGC | SICF_CLOCK_EN)); dummy = R_REG(&ai->ioctrl); W_REG(&ai->resetctrl, 0); udelay(1); W_REG(&ai->ioctrl, (bits | SICF_CLOCK_EN)); dummy = R_REG(&ai->ioctrl); udelay(1); } /* return the slow clock source - LPO, XTAL, or PCI */ static uint ai_slowclk_src(struct si_info *sii) { struct chipcregs __iomem *cc; u32 val; if (ai_get_ccrev(&sii->pub) < 6) { pci_read_config_dword(sii->pcibus, PCI_GPIO_OUT, &val); if (val & PCI_CFG_GPIO_SCS) return SCC_SS_PCI; return SCC_SS_XTAL; } else if (ai_get_ccrev(&sii->pub) < 10) { cc = (struct chipcregs __iomem *) ai_setcoreidx(&sii->pub, sii->curidx); return R_REG(&cc->slow_clk_ctl) & SCC_SS_MASK; } else /* Insta-clock */ return SCC_SS_XTAL; } /* * return the ILP (slowclock) min or max frequency * precondition: we've established the chip has dynamic clk control */ static uint ai_slowclk_freq(struct si_info *sii, bool max_freq, struct chipcregs __iomem *cc) { u32 slowclk; uint div; slowclk = ai_slowclk_src(sii); if (ai_get_ccrev(&sii->pub) < 6) { if (slowclk == SCC_SS_PCI) return max_freq ? (PCIMAXFREQ / 64) : (PCIMINFREQ / 64); else return max_freq ? (XTALMAXFREQ / 32) : (XTALMINFREQ / 32); } else if (ai_get_ccrev(&sii->pub) < 10) { div = 4 * (((R_REG(&cc->slow_clk_ctl) & SCC_CD_MASK) >> SCC_CD_SHIFT) + 1); if (slowclk == SCC_SS_LPO) return max_freq ? LPOMAXFREQ : LPOMINFREQ; else if (slowclk == SCC_SS_XTAL) return max_freq ? (XTALMAXFREQ / div) : (XTALMINFREQ / div); else if (slowclk == SCC_SS_PCI) return max_freq ? (PCIMAXFREQ / div) : (PCIMINFREQ / div); } else { /* Chipc rev 10 is InstaClock */ div = R_REG(&cc->system_clk_ctl) >> SYCC_CD_SHIFT; div = 4 * (div + 1); return max_freq ? XTALMAXFREQ : (XTALMINFREQ / div); } return 0; } static void ai_clkctl_setdelay(struct si_info *sii, struct chipcregs __iomem *cc) { uint slowmaxfreq, pll_delay, slowclk; uint pll_on_delay, fref_sel_delay; pll_delay = PLL_DELAY; /* * If the slow clock is not sourced by the xtal then * add the xtal_on_delay since the xtal will also be * powered down by dynamic clk control logic. */ slowclk = ai_slowclk_src(sii); if (slowclk != SCC_SS_XTAL) pll_delay += XTAL_ON_DELAY; /* Starting with 4318 it is ILP that is used for the delays */ slowmaxfreq = ai_slowclk_freq(sii, (ai_get_ccrev(&sii->pub) >= 10) ? false : true, cc); pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000; fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000; W_REG(&cc->pll_on_delay, pll_on_delay); W_REG(&cc->fref_sel_delay, fref_sel_delay); } /* initialize power control delay registers */ void ai_clkctl_init(struct si_pub *sih) { struct si_info *sii; uint origidx = 0; struct chipcregs __iomem *cc; if (!(ai_get_cccaps(sih) & CC_CAP_PWR_CTL)) return; sii = (struct si_info *)sih; origidx = sii->curidx; cc = (struct chipcregs __iomem *) ai_setcore(sih, CC_CORE_ID, 0); if (cc == NULL) return; /* set all Instaclk chip ILP to 1 MHz */ if (ai_get_ccrev(sih) >= 10) SET_REG(&cc->system_clk_ctl, SYCC_CD_MASK, (ILP_DIV_1MHZ << SYCC_CD_SHIFT)); ai_clkctl_setdelay(sii, cc); ai_setcoreidx(sih, origidx); } /* * return the value suitable for writing to the * dot11 core FAST_PWRUP_DELAY register */ u16 ai_clkctl_fast_pwrup_delay(struct si_pub *sih) { struct si_info *sii; uint origidx = 0; struct chipcregs __iomem *cc; uint slowminfreq; u16 fpdelay; uint intr_val = 0; sii = (struct si_info *)sih; if (ai_get_cccaps(sih) & CC_CAP_PMU) { INTR_OFF(sii, intr_val); fpdelay = si_pmu_fast_pwrup_delay(sih); INTR_RESTORE(sii, intr_val); return fpdelay; } if (!(ai_get_cccaps(sih) & CC_CAP_PWR_CTL)) return 0; fpdelay = 0; origidx = sii->curidx; INTR_OFF(sii, intr_val); cc = (struct chipcregs __iomem *) ai_setcore(sih, CC_CORE_ID, 0); if (cc == NULL) goto done; slowminfreq = ai_slowclk_freq(sii, false, cc); fpdelay = (((R_REG(&cc->pll_on_delay) + 2) * 1000000) + (slowminfreq - 1)) / slowminfreq; done: ai_setcoreidx(sih, origidx); INTR_RESTORE(sii, intr_val); return fpdelay; } /* turn primary xtal and/or pll off/on */ int ai_clkctl_xtal(struct si_pub *sih, uint what, bool on) { struct si_info *sii; u32 in, out, outen; sii = (struct si_info *)sih; /* pcie core doesn't have any mapping to control the xtal pu */ if (PCIE(sih)) return -1; pci_read_config_dword(sii->pcibus, PCI_GPIO_IN, &in); pci_read_config_dword(sii->pcibus, PCI_GPIO_OUT, &out); pci_read_config_dword(sii->pcibus, PCI_GPIO_OUTEN, &outen); /* * Avoid glitching the clock if GPRS is already using it. * We can't actually read the state of the PLLPD so we infer it * by the value of XTAL_PU which *is* readable via gpioin. */ if (on && (in & PCI_CFG_GPIO_XTAL)) return 0; if (what & XTAL) outen |= PCI_CFG_GPIO_XTAL; if (what & PLL) outen |= PCI_CFG_GPIO_PLL; if (on) { /* turn primary xtal on */ if (what & XTAL) { out |= PCI_CFG_GPIO_XTAL; if (what & PLL) out |= PCI_CFG_GPIO_PLL; pci_write_config_dword(sii->pcibus, PCI_GPIO_OUT, out); pci_write_config_dword(sii->pcibus, PCI_GPIO_OUTEN, outen); udelay(XTAL_ON_DELAY); } /* turn pll on */ if (what & PLL) { out &= ~PCI_CFG_GPIO_PLL; pci_write_config_dword(sii->pcibus, PCI_GPIO_OUT, out); mdelay(2); } } else { if (what & XTAL) out &= ~PCI_CFG_GPIO_XTAL; if (what & PLL) out |= PCI_CFG_GPIO_PLL; pci_write_config_dword(sii->pcibus, PCI_GPIO_OUT, out); pci_write_config_dword(sii->pcibus, PCI_GPIO_OUTEN, outen); } return 0; } /* clk control mechanism through chipcommon, no policy checking */ static bool _ai_clkctl_cc(struct si_info *sii, uint mode) { uint origidx = 0; struct chipcregs __iomem *cc; u32 scc; uint intr_val = 0; /* chipcommon cores prior to rev6 don't support dynamic clock control */ if (ai_get_ccrev(&sii->pub) < 6) return false; INTR_OFF(sii, intr_val); origidx = sii->curidx; cc = (struct chipcregs __iomem *) ai_setcore(&sii->pub, CC_CORE_ID, 0); if (!(ai_get_cccaps(&sii->pub) & CC_CAP_PWR_CTL) && (ai_get_ccrev(&sii->pub) < 20)) goto done; switch (mode) { case CLK_FAST: /* FORCEHT, fast (pll) clock */ if (ai_get_ccrev(&sii->pub) < 10) { /* * don't forget to force xtal back * on before we clear SCC_DYN_XTAL.. */ ai_clkctl_xtal(&sii->pub, XTAL, ON); SET_REG(&cc->slow_clk_ctl, (SCC_XC | SCC_FS | SCC_IP), SCC_IP); } else if (ai_get_ccrev(&sii->pub) < 20) { OR_REG(&cc->system_clk_ctl, SYCC_HR); } else { OR_REG(&cc->clk_ctl_st, CCS_FORCEHT); } /* wait for the PLL */ if (ai_get_cccaps(&sii->pub) & CC_CAP_PMU) { u32 htavail = CCS_HTAVAIL; SPINWAIT(((R_REG(&cc->clk_ctl_st) & htavail) == 0), PMU_MAX_TRANSITION_DLY); } else { udelay(PLL_DELAY); } break; case CLK_DYNAMIC: /* enable dynamic clock control */ if (ai_get_ccrev(&sii->pub) < 10) { scc = R_REG(&cc->slow_clk_ctl); scc &= ~(SCC_FS | SCC_IP | SCC_XC); if ((scc & SCC_SS_MASK) != SCC_SS_XTAL) scc |= SCC_XC; W_REG(&cc->slow_clk_ctl, scc); /* * for dynamic control, we have to * release our xtal_pu "force on" */ if (scc & SCC_XC) ai_clkctl_xtal(&sii->pub, XTAL, OFF); } else if (ai_get_ccrev(&sii->pub) < 20) { /* Instaclock */ AND_REG(&cc->system_clk_ctl, ~SYCC_HR); } else { AND_REG(&cc->clk_ctl_st, ~CCS_FORCEHT); } break; default: break; } done: ai_setcoreidx(&sii->pub, origidx); INTR_RESTORE(sii, intr_val); return mode == CLK_FAST; } /* * clock control policy function throught chipcommon * * set dynamic clk control mode (forceslow, forcefast, dynamic) * returns true if we are forcing fast clock * this is a wrapper over the next internal function * to allow flexible policy settings for outside caller */ bool ai_clkctl_cc(struct si_pub *sih, uint mode) { struct si_info *sii; sii = (struct si_info *)sih; /* chipcommon cores prior to rev6 don't support dynamic clock control */ if (ai_get_ccrev(sih) < 6) return false; if (PCI_FORCEHT(sih)) return mode == CLK_FAST; return _ai_clkctl_cc(sii, mode); } /* Build device path */ int ai_devpath(struct si_pub *sih, char *path, int size) { int slen; if (!path || size <= 0) return -1; slen = snprintf(path, (size_t) size, "pci/%u/%u/", ((struct si_info *)sih)->pcibus->bus->number, PCI_SLOT(((struct pci_dev *) (((struct si_info *)(sih))->pcibus))->devfn)); if (slen < 0 || slen >= size) { path[0] = '\0'; return -1; } return 0; } void ai_pci_up(struct si_pub *sih) { struct si_info *sii; sii = (struct si_info *)sih; if (PCI_FORCEHT(sih)) _ai_clkctl_cc(sii, CLK_FAST); if (PCIE(sih)) pcicore_up(sii->pch, SI_PCIUP); } /* Unconfigure and/or apply various WARs when system is going to sleep mode */ void ai_pci_sleep(struct si_pub *sih) { struct si_info *sii; sii = (struct si_info *)sih; pcicore_sleep(sii->pch); } /* Unconfigure and/or apply various WARs when going down */ void ai_pci_down(struct si_pub *sih) { struct si_info *sii; sii = (struct si_info *)sih; /* release FORCEHT since chip is going to "down" state */ if (PCI_FORCEHT(sih)) _ai_clkctl_cc(sii, CLK_DYNAMIC); pcicore_down(sii->pch, SI_PCIDOWN); } /* * Configure the pci core for pci client (NIC) action * coremask is the bitvec of cores by index to be enabled. */ void ai_pci_setup(struct si_pub *sih, uint coremask) { struct si_info *sii; struct sbpciregs __iomem *regs = NULL; u32 siflag = 0, w; uint idx = 0; sii = (struct si_info *)sih; if (PCI(sih)) { /* get current core index */ idx = sii->curidx; /* we interrupt on this backplane flag number */ siflag = ai_flag(sih); /* switch over to pci core */ regs = ai_setcoreidx(sih, sii->buscoreidx); } /* * Enable sb->pci interrupts. Assume * PCI rev 2.3 support was added in pci core rev 6 and things changed.. */ if (PCIE(sih) || (PCI(sih) && (ai_get_buscorerev(sih) >= 6))) { /* pci config write to set this core bit in PCIIntMask */ pci_read_config_dword(sii->pcibus, PCI_INT_MASK, &w); w |= (coremask << PCI_SBIM_SHIFT); pci_write_config_dword(sii->pcibus, PCI_INT_MASK, w); } else { /* set sbintvec bit for our flag number */ ai_setint(sih, siflag); } if (PCI(sih)) { pcicore_pci_setup(sii->pch, regs); /* switch back to previous core */ ai_setcoreidx(sih, idx); } } /* * Fixup SROMless PCI device's configuration. * The current core may be changed upon return. */ int ai_pci_fixcfg(struct si_pub *sih) { uint origidx; void __iomem *regs = NULL; struct si_info *sii = (struct si_info *)sih; /* Fixup PI in SROM shadow area to enable the correct PCI core access */ /* save the current index */ origidx = ai_coreidx(&sii->pub); /* check 'pi' is correct and fix it if not */ regs = ai_setcore(&sii->pub, ai_get_buscoretype(sih), 0); if (ai_get_buscoretype(sih) == PCIE_CORE_ID) pcicore_fixcfg_pcie(sii->pch, (struct sbpcieregs __iomem *)regs); else if (ai_get_buscoretype(sih) == PCI_CORE_ID) pcicore_fixcfg_pci(sii->pch, (struct sbpciregs __iomem *)regs); /* restore the original index */ ai_setcoreidx(&sii->pub, origidx); pcicore_hwup(sii->pch); return 0; } /* mask&set gpiocontrol bits */ u32 ai_gpiocontrol(struct si_pub *sih, u32 mask, u32 val, u8 priority) { uint regoff; regoff = offsetof(struct chipcregs, gpiocontrol); return ai_corereg(sih, SI_CC_IDX, regoff, mask, val); } void ai_chipcontrl_epa4331(struct si_pub *sih, bool on) { struct si_info *sii; struct chipcregs __iomem *cc; uint origidx; u32 val; sii = (struct si_info *)sih; origidx = ai_coreidx(sih); cc = (struct chipcregs __iomem *) ai_setcore(sih, CC_CORE_ID, 0); val = R_REG(&cc->chipcontrol); if (on) { if (ai_get_chippkg(sih) == 9 || ai_get_chippkg(sih) == 0xb) /* Ext PA Controls for 4331 12x9 Package */ W_REG(&cc->chipcontrol, val | CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_ON_GPIO2_5); else /* Ext PA Controls for 4331 12x12 Package */ W_REG(&cc->chipcontrol, val | CCTRL4331_EXTPA_EN); } else { val &= ~(CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_ON_GPIO2_5); W_REG(&cc->chipcontrol, val); } ai_setcoreidx(sih, origidx); } /* Enable BT-COEX & Ex-PA for 4313 */ void ai_epa_4313war(struct si_pub *sih) { struct si_info *sii; struct chipcregs __iomem *cc; uint origidx; sii = (struct si_info *)sih; origidx = ai_coreidx(sih); cc = ai_setcore(sih, CC_CORE_ID, 0); /* EPA Fix */ W_REG(&cc->gpiocontrol, R_REG(&cc->gpiocontrol) | GPIO_CTRL_EPA_EN_MASK); ai_setcoreidx(sih, origidx); } /* check if the device is removed */ bool ai_deviceremoved(struct si_pub *sih) { u32 w; struct si_info *sii; sii = (struct si_info *)sih; pci_read_config_dword(sii->pcibus, PCI_VENDOR_ID, &w); if ((w & 0xFFFF) != PCI_VENDOR_ID_BROADCOM) return true; return false; } bool ai_is_sprom_available(struct si_pub *sih) { struct si_info *sii = (struct si_info *)sih; if (ai_get_ccrev(sih) >= 31) { uint origidx; struct chipcregs __iomem *cc; u32 sromctrl; if ((ai_get_cccaps(sih) & CC_CAP_SROM) == 0) return false; origidx = sii->curidx; cc = ai_setcoreidx(sih, SI_CC_IDX); sromctrl = R_REG(&cc->sromcontrol); ai_setcoreidx(sih, origidx); return sromctrl & SRC_PRESENT; } switch (ai_get_chip_id(sih)) { case BCM4313_CHIP_ID: return (sii->chipst & CST4313_SPROM_PRESENT) != 0; default: return true; } } bool ai_is_otp_disabled(struct si_pub *sih) { struct si_info *sii = (struct si_info *)sih; switch (ai_get_chip_id(sih)) { case BCM4313_CHIP_ID: return (sii->chipst & CST4313_OTP_PRESENT) == 0; /* These chips always have their OTP on */ case BCM43224_CHIP_ID: case BCM43225_CHIP_ID: default: return false; } }