/* This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Copyright (C) 2009-2016 John Crispin * Copyright (C) 2009-2016 Felix Fietkau * Copyright (C) 2013-2016 Michael Lee */ #include #include #include #include #include #include #include #include #include #include "mtk_eth_soc.h" static int mtk_msg_level = -1; module_param_named(msg_level, mtk_msg_level, int, 0); MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)"); #define MTK_ETHTOOL_STAT(x) { #x, \ offsetof(struct mtk_hw_stats, x) / sizeof(u64) } /* strings used by ethtool */ static const struct mtk_ethtool_stats { char str[ETH_GSTRING_LEN]; u32 offset; } mtk_ethtool_stats[] = { MTK_ETHTOOL_STAT(tx_bytes), MTK_ETHTOOL_STAT(tx_packets), MTK_ETHTOOL_STAT(tx_skip), MTK_ETHTOOL_STAT(tx_collisions), MTK_ETHTOOL_STAT(rx_bytes), MTK_ETHTOOL_STAT(rx_packets), MTK_ETHTOOL_STAT(rx_overflow), MTK_ETHTOOL_STAT(rx_fcs_errors), MTK_ETHTOOL_STAT(rx_short_errors), MTK_ETHTOOL_STAT(rx_long_errors), MTK_ETHTOOL_STAT(rx_checksum_errors), MTK_ETHTOOL_STAT(rx_flow_control_packets), }; void mtk_w32(struct mtk_eth *eth, u32 val, unsigned reg) { __raw_writel(val, eth->base + reg); } u32 mtk_r32(struct mtk_eth *eth, unsigned reg) { return __raw_readl(eth->base + reg); } static int mtk_mdio_busy_wait(struct mtk_eth *eth) { unsigned long t_start = jiffies; while (1) { if (!(mtk_r32(eth, MTK_PHY_IAC) & PHY_IAC_ACCESS)) return 0; if (time_after(jiffies, t_start + PHY_IAC_TIMEOUT)) break; usleep_range(10, 20); } dev_err(eth->dev, "mdio: MDIO timeout\n"); return -1; } u32 _mtk_mdio_write(struct mtk_eth *eth, u32 phy_addr, u32 phy_register, u32 write_data) { if (mtk_mdio_busy_wait(eth)) return -1; write_data &= 0xffff; mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_WRITE | (phy_register << PHY_IAC_REG_SHIFT) | (phy_addr << PHY_IAC_ADDR_SHIFT) | write_data, MTK_PHY_IAC); if (mtk_mdio_busy_wait(eth)) return -1; return 0; } u32 _mtk_mdio_read(struct mtk_eth *eth, int phy_addr, int phy_reg) { u32 d; if (mtk_mdio_busy_wait(eth)) return 0xffff; mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_READ | (phy_reg << PHY_IAC_REG_SHIFT) | (phy_addr << PHY_IAC_ADDR_SHIFT), MTK_PHY_IAC); if (mtk_mdio_busy_wait(eth)) return 0xffff; d = mtk_r32(eth, MTK_PHY_IAC) & 0xffff; return d; } static int mtk_mdio_write(struct mii_bus *bus, int phy_addr, int phy_reg, u16 val) { struct mtk_eth *eth = bus->priv; return _mtk_mdio_write(eth, phy_addr, phy_reg, val); } static int mtk_mdio_read(struct mii_bus *bus, int phy_addr, int phy_reg) { struct mtk_eth *eth = bus->priv; return _mtk_mdio_read(eth, phy_addr, phy_reg); } static void mtk_phy_link_adjust(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); u16 lcl_adv = 0, rmt_adv = 0; u8 flowctrl; u32 mcr = MAC_MCR_MAX_RX_1536 | MAC_MCR_IPG_CFG | MAC_MCR_FORCE_MODE | MAC_MCR_TX_EN | MAC_MCR_RX_EN | MAC_MCR_BACKOFF_EN | MAC_MCR_BACKPR_EN; switch (mac->phy_dev->speed) { case SPEED_1000: mcr |= MAC_MCR_SPEED_1000; break; case SPEED_100: mcr |= MAC_MCR_SPEED_100; break; }; if (mac->phy_dev->link) mcr |= MAC_MCR_FORCE_LINK; if (mac->phy_dev->duplex) { mcr |= MAC_MCR_FORCE_DPX; if (mac->phy_dev->pause) rmt_adv = LPA_PAUSE_CAP; if (mac->phy_dev->asym_pause) rmt_adv |= LPA_PAUSE_ASYM; if (mac->phy_dev->advertising & ADVERTISED_Pause) lcl_adv |= ADVERTISE_PAUSE_CAP; if (mac->phy_dev->advertising & ADVERTISED_Asym_Pause) lcl_adv |= ADVERTISE_PAUSE_ASYM; flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); if (flowctrl & FLOW_CTRL_TX) mcr |= MAC_MCR_FORCE_TX_FC; if (flowctrl & FLOW_CTRL_RX) mcr |= MAC_MCR_FORCE_RX_FC; netif_dbg(mac->hw, link, dev, "rx pause %s, tx pause %s\n", flowctrl & FLOW_CTRL_RX ? "enabled" : "disabled", flowctrl & FLOW_CTRL_TX ? "enabled" : "disabled"); } mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id)); if (mac->phy_dev->link) netif_carrier_on(dev); else netif_carrier_off(dev); } static int mtk_phy_connect_node(struct mtk_eth *eth, struct mtk_mac *mac, struct device_node *phy_node) { const __be32 *_addr = NULL; struct phy_device *phydev; int phy_mode, addr; _addr = of_get_property(phy_node, "reg", NULL); if (!_addr || (be32_to_cpu(*_addr) >= 0x20)) { pr_err("%s: invalid phy address\n", phy_node->name); return -EINVAL; } addr = be32_to_cpu(*_addr); phy_mode = of_get_phy_mode(phy_node); if (phy_mode < 0) { dev_err(eth->dev, "incorrect phy-mode %d\n", phy_mode); return -EINVAL; } phydev = of_phy_connect(eth->netdev[mac->id], phy_node, mtk_phy_link_adjust, 0, phy_mode); if (!phydev) { dev_err(eth->dev, "could not connect to PHY\n"); return -ENODEV; } dev_info(eth->dev, "connected mac %d to PHY at %s [uid=%08x, driver=%s]\n", mac->id, phydev_name(phydev), phydev->phy_id, phydev->drv->name); mac->phy_dev = phydev; return 0; } static int mtk_phy_connect(struct mtk_mac *mac) { struct mtk_eth *eth = mac->hw; struct device_node *np; u32 val, ge_mode; np = of_parse_phandle(mac->of_node, "phy-handle", 0); if (!np && of_phy_is_fixed_link(mac->of_node)) if (!of_phy_register_fixed_link(mac->of_node)) np = of_node_get(mac->of_node); if (!np) return -ENODEV; switch (of_get_phy_mode(np)) { case PHY_INTERFACE_MODE_RGMII_TXID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII: ge_mode = 0; break; case PHY_INTERFACE_MODE_MII: ge_mode = 1; break; case PHY_INTERFACE_MODE_RMII: ge_mode = 2; break; default: dev_err(eth->dev, "invalid phy_mode\n"); return -1; } /* put the gmac into the right mode */ regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val); val &= ~SYSCFG0_GE_MODE(SYSCFG0_GE_MASK, mac->id); val |= SYSCFG0_GE_MODE(ge_mode, mac->id); regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val); mtk_phy_connect_node(eth, mac, np); mac->phy_dev->autoneg = AUTONEG_ENABLE; mac->phy_dev->speed = 0; mac->phy_dev->duplex = 0; mac->phy_dev->supported &= PHY_GBIT_FEATURES | SUPPORTED_Pause | SUPPORTED_Asym_Pause; mac->phy_dev->advertising = mac->phy_dev->supported | ADVERTISED_Autoneg; phy_start_aneg(mac->phy_dev); return 0; } static int mtk_mdio_init(struct mtk_eth *eth) { struct device_node *mii_np; int err; mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus"); if (!mii_np) { dev_err(eth->dev, "no %s child node found", "mdio-bus"); return -ENODEV; } if (!of_device_is_available(mii_np)) { err = 0; goto err_put_node; } eth->mii_bus = mdiobus_alloc(); if (!eth->mii_bus) { err = -ENOMEM; goto err_put_node; } eth->mii_bus->name = "mdio"; eth->mii_bus->read = mtk_mdio_read; eth->mii_bus->write = mtk_mdio_write; eth->mii_bus->priv = eth; eth->mii_bus->parent = eth->dev; snprintf(eth->mii_bus->id, MII_BUS_ID_SIZE, "%s", mii_np->name); err = of_mdiobus_register(eth->mii_bus, mii_np); if (err) goto err_free_bus; return 0; err_free_bus: mdiobus_free(eth->mii_bus); err_put_node: of_node_put(mii_np); eth->mii_bus = NULL; return err; } static void mtk_mdio_cleanup(struct mtk_eth *eth) { if (!eth->mii_bus) return; mdiobus_unregister(eth->mii_bus); of_node_put(eth->mii_bus->dev.of_node); mdiobus_free(eth->mii_bus); } static inline void mtk_irq_disable(struct mtk_eth *eth, u32 mask) { u32 val; val = mtk_r32(eth, MTK_QDMA_INT_MASK); mtk_w32(eth, val & ~mask, MTK_QDMA_INT_MASK); /* flush write */ mtk_r32(eth, MTK_QDMA_INT_MASK); } static inline void mtk_irq_enable(struct mtk_eth *eth, u32 mask) { u32 val; val = mtk_r32(eth, MTK_QDMA_INT_MASK); mtk_w32(eth, val | mask, MTK_QDMA_INT_MASK); /* flush write */ mtk_r32(eth, MTK_QDMA_INT_MASK); } static int mtk_set_mac_address(struct net_device *dev, void *p) { int ret = eth_mac_addr(dev, p); struct mtk_mac *mac = netdev_priv(dev); const char *macaddr = dev->dev_addr; unsigned long flags; if (ret) return ret; spin_lock_irqsave(&mac->hw->page_lock, flags); mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1], MTK_GDMA_MAC_ADRH(mac->id)); mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) | (macaddr[4] << 8) | macaddr[5], MTK_GDMA_MAC_ADRL(mac->id)); spin_unlock_irqrestore(&mac->hw->page_lock, flags); return 0; } void mtk_stats_update_mac(struct mtk_mac *mac) { struct mtk_hw_stats *hw_stats = mac->hw_stats; unsigned int base = MTK_GDM1_TX_GBCNT; u64 stats; base += hw_stats->reg_offset; u64_stats_update_begin(&hw_stats->syncp); hw_stats->rx_bytes += mtk_r32(mac->hw, base); stats = mtk_r32(mac->hw, base + 0x04); if (stats) hw_stats->rx_bytes += (stats << 32); hw_stats->rx_packets += mtk_r32(mac->hw, base + 0x08); hw_stats->rx_overflow += mtk_r32(mac->hw, base + 0x10); hw_stats->rx_fcs_errors += mtk_r32(mac->hw, base + 0x14); hw_stats->rx_short_errors += mtk_r32(mac->hw, base + 0x18); hw_stats->rx_long_errors += mtk_r32(mac->hw, base + 0x1c); hw_stats->rx_checksum_errors += mtk_r32(mac->hw, base + 0x20); hw_stats->rx_flow_control_packets += mtk_r32(mac->hw, base + 0x24); hw_stats->tx_skip += mtk_r32(mac->hw, base + 0x28); hw_stats->tx_collisions += mtk_r32(mac->hw, base + 0x2c); hw_stats->tx_bytes += mtk_r32(mac->hw, base + 0x30); stats = mtk_r32(mac->hw, base + 0x34); if (stats) hw_stats->tx_bytes += (stats << 32); hw_stats->tx_packets += mtk_r32(mac->hw, base + 0x38); u64_stats_update_end(&hw_stats->syncp); } static void mtk_stats_update(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->mac[i] || !eth->mac[i]->hw_stats) continue; if (spin_trylock(ð->mac[i]->hw_stats->stats_lock)) { mtk_stats_update_mac(eth->mac[i]); spin_unlock(ð->mac[i]->hw_stats->stats_lock); } } } static struct rtnl_link_stats64 *mtk_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_hw_stats *hw_stats = mac->hw_stats; unsigned int start; if (netif_running(dev) && netif_device_present(dev)) { if (spin_trylock(&hw_stats->stats_lock)) { mtk_stats_update_mac(mac); spin_unlock(&hw_stats->stats_lock); } } do { start = u64_stats_fetch_begin_irq(&hw_stats->syncp); storage->rx_packets = hw_stats->rx_packets; storage->tx_packets = hw_stats->tx_packets; storage->rx_bytes = hw_stats->rx_bytes; storage->tx_bytes = hw_stats->tx_bytes; storage->collisions = hw_stats->tx_collisions; storage->rx_length_errors = hw_stats->rx_short_errors + hw_stats->rx_long_errors; storage->rx_over_errors = hw_stats->rx_overflow; storage->rx_crc_errors = hw_stats->rx_fcs_errors; storage->rx_errors = hw_stats->rx_checksum_errors; storage->tx_aborted_errors = hw_stats->tx_skip; } while (u64_stats_fetch_retry_irq(&hw_stats->syncp, start)); storage->tx_errors = dev->stats.tx_errors; storage->rx_dropped = dev->stats.rx_dropped; storage->tx_dropped = dev->stats.tx_dropped; return storage; } static inline int mtk_max_frag_size(int mtu) { /* make sure buf_size will be at least MTK_MAX_RX_LENGTH */ if (mtu + MTK_RX_ETH_HLEN < MTK_MAX_RX_LENGTH) mtu = MTK_MAX_RX_LENGTH - MTK_RX_ETH_HLEN; return SKB_DATA_ALIGN(MTK_RX_HLEN + mtu) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); } static inline int mtk_max_buf_size(int frag_size) { int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); WARN_ON(buf_size < MTK_MAX_RX_LENGTH); return buf_size; } static inline void mtk_rx_get_desc(struct mtk_rx_dma *rxd, struct mtk_rx_dma *dma_rxd) { rxd->rxd1 = READ_ONCE(dma_rxd->rxd1); rxd->rxd2 = READ_ONCE(dma_rxd->rxd2); rxd->rxd3 = READ_ONCE(dma_rxd->rxd3); rxd->rxd4 = READ_ONCE(dma_rxd->rxd4); } /* the qdma core needs scratch memory to be setup */ static int mtk_init_fq_dma(struct mtk_eth *eth) { dma_addr_t phy_ring_tail; int cnt = MTK_DMA_SIZE; dma_addr_t dma_addr; int i; eth->scratch_ring = dma_alloc_coherent(eth->dev, cnt * sizeof(struct mtk_tx_dma), ð->phy_scratch_ring, GFP_ATOMIC | __GFP_ZERO); if (unlikely(!eth->scratch_ring)) return -ENOMEM; eth->scratch_head = kcalloc(cnt, MTK_QDMA_PAGE_SIZE, GFP_KERNEL); if (unlikely(!eth->scratch_head)) return -ENOMEM; dma_addr = dma_map_single(eth->dev, eth->scratch_head, cnt * MTK_QDMA_PAGE_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(eth->dev, dma_addr))) return -ENOMEM; memset(eth->scratch_ring, 0x0, sizeof(struct mtk_tx_dma) * cnt); phy_ring_tail = eth->phy_scratch_ring + (sizeof(struct mtk_tx_dma) * (cnt - 1)); for (i = 0; i < cnt; i++) { eth->scratch_ring[i].txd1 = (dma_addr + (i * MTK_QDMA_PAGE_SIZE)); if (i < cnt - 1) eth->scratch_ring[i].txd2 = (eth->phy_scratch_ring + ((i + 1) * sizeof(struct mtk_tx_dma))); eth->scratch_ring[i].txd3 = TX_DMA_SDL(MTK_QDMA_PAGE_SIZE); } mtk_w32(eth, eth->phy_scratch_ring, MTK_QDMA_FQ_HEAD); mtk_w32(eth, phy_ring_tail, MTK_QDMA_FQ_TAIL); mtk_w32(eth, (cnt << 16) | cnt, MTK_QDMA_FQ_CNT); mtk_w32(eth, MTK_QDMA_PAGE_SIZE << 16, MTK_QDMA_FQ_BLEN); return 0; } static inline void *mtk_qdma_phys_to_virt(struct mtk_tx_ring *ring, u32 desc) { void *ret = ring->dma; return ret + (desc - ring->phys); } static inline struct mtk_tx_buf *mtk_desc_to_tx_buf(struct mtk_tx_ring *ring, struct mtk_tx_dma *txd) { int idx = txd - ring->dma; return &ring->buf[idx]; } static void mtk_tx_unmap(struct device *dev, struct mtk_tx_buf *tx_buf) { if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) { dma_unmap_single(dev, dma_unmap_addr(tx_buf, dma_addr0), dma_unmap_len(tx_buf, dma_len0), DMA_TO_DEVICE); } else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) { dma_unmap_page(dev, dma_unmap_addr(tx_buf, dma_addr0), dma_unmap_len(tx_buf, dma_len0), DMA_TO_DEVICE); } tx_buf->flags = 0; if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC)) dev_kfree_skb_any(tx_buf->skb); tx_buf->skb = NULL; } static int mtk_tx_map(struct sk_buff *skb, struct net_device *dev, int tx_num, struct mtk_tx_ring *ring, bool gso) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; struct mtk_tx_dma *itxd, *txd; struct mtk_tx_buf *tx_buf; dma_addr_t mapped_addr; unsigned int nr_frags; int i, n_desc = 1; u32 txd4 = 0; itxd = ring->next_free; if (itxd == ring->last_free) return -ENOMEM; /* set the forward port */ txd4 |= (mac->id + 1) << TX_DMA_FPORT_SHIFT; tx_buf = mtk_desc_to_tx_buf(ring, itxd); memset(tx_buf, 0, sizeof(*tx_buf)); if (gso) txd4 |= TX_DMA_TSO; /* TX Checksum offload */ if (skb->ip_summed == CHECKSUM_PARTIAL) txd4 |= TX_DMA_CHKSUM; /* VLAN header offload */ if (skb_vlan_tag_present(skb)) txd4 |= TX_DMA_INS_VLAN | skb_vlan_tag_get(skb); mapped_addr = dma_map_single(&dev->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&dev->dev, mapped_addr))) return -ENOMEM; WRITE_ONCE(itxd->txd1, mapped_addr); tx_buf->flags |= MTK_TX_FLAGS_SINGLE0; dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr); dma_unmap_len_set(tx_buf, dma_len0, skb_headlen(skb)); /* TX SG offload */ txd = itxd; nr_frags = skb_shinfo(skb)->nr_frags; for (i = 0; i < nr_frags; i++) { struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i]; unsigned int offset = 0; int frag_size = skb_frag_size(frag); while (frag_size) { bool last_frag = false; unsigned int frag_map_size; txd = mtk_qdma_phys_to_virt(ring, txd->txd2); if (txd == ring->last_free) goto err_dma; n_desc++; frag_map_size = min(frag_size, MTK_TX_DMA_BUF_LEN); mapped_addr = skb_frag_dma_map(&dev->dev, frag, offset, frag_map_size, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&dev->dev, mapped_addr))) goto err_dma; if (i == nr_frags - 1 && (frag_size - frag_map_size) == 0) last_frag = true; WRITE_ONCE(txd->txd1, mapped_addr); WRITE_ONCE(txd->txd3, (TX_DMA_SWC | TX_DMA_PLEN0(frag_map_size) | last_frag * TX_DMA_LS0)); WRITE_ONCE(txd->txd4, 0); tx_buf->skb = (struct sk_buff *)MTK_DMA_DUMMY_DESC; tx_buf = mtk_desc_to_tx_buf(ring, txd); memset(tx_buf, 0, sizeof(*tx_buf)); tx_buf->flags |= MTK_TX_FLAGS_PAGE0; dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr); dma_unmap_len_set(tx_buf, dma_len0, frag_map_size); frag_size -= frag_map_size; offset += frag_map_size; } } /* store skb to cleanup */ tx_buf->skb = skb; WRITE_ONCE(itxd->txd4, txd4); WRITE_ONCE(itxd->txd3, (TX_DMA_SWC | TX_DMA_PLEN0(skb_headlen(skb)) | (!nr_frags * TX_DMA_LS0))); netdev_sent_queue(dev, skb->len); skb_tx_timestamp(skb); ring->next_free = mtk_qdma_phys_to_virt(ring, txd->txd2); atomic_sub(n_desc, &ring->free_count); /* make sure that all changes to the dma ring are flushed before we * continue */ wmb(); if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !skb->xmit_more) mtk_w32(eth, txd->txd2, MTK_QTX_CTX_PTR); return 0; err_dma: do { tx_buf = mtk_desc_to_tx_buf(ring, itxd); /* unmap dma */ mtk_tx_unmap(&dev->dev, tx_buf); itxd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU; itxd = mtk_qdma_phys_to_virt(ring, itxd->txd2); } while (itxd != txd); return -ENOMEM; } static inline int mtk_cal_txd_req(struct sk_buff *skb) { int i, nfrags; struct skb_frag_struct *frag; nfrags = 1; if (skb_is_gso(skb)) { for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { frag = &skb_shinfo(skb)->frags[i]; nfrags += DIV_ROUND_UP(frag->size, MTK_TX_DMA_BUF_LEN); } } else { nfrags += skb_shinfo(skb)->nr_frags; } return nfrags; } static int mtk_queue_stopped(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; if (netif_queue_stopped(eth->netdev[i])) return 1; } return 0; } static void mtk_wake_queue(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; netif_wake_queue(eth->netdev[i]); } } static void mtk_stop_queue(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; netif_stop_queue(eth->netdev[i]); } } static int mtk_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; struct mtk_tx_ring *ring = ð->tx_ring; struct net_device_stats *stats = &dev->stats; unsigned long flags; bool gso = false; int tx_num; /* normally we can rely on the stack not calling this more than once, * however we have 2 queues running on the same ring so we need to lock * the ring access */ spin_lock_irqsave(ð->page_lock, flags); tx_num = mtk_cal_txd_req(skb); if (unlikely(atomic_read(&ring->free_count) <= tx_num)) { mtk_stop_queue(eth); netif_err(eth, tx_queued, dev, "Tx Ring full when queue awake!\n"); spin_unlock_irqrestore(ð->page_lock, flags); return NETDEV_TX_BUSY; } /* TSO: fill MSS info in tcp checksum field */ if (skb_is_gso(skb)) { if (skb_cow_head(skb, 0)) { netif_warn(eth, tx_err, dev, "GSO expand head fail.\n"); goto drop; } if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { gso = true; tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size); } } if (mtk_tx_map(skb, dev, tx_num, ring, gso) < 0) goto drop; if (unlikely(atomic_read(&ring->free_count) <= ring->thresh)) { mtk_stop_queue(eth); if (unlikely(atomic_read(&ring->free_count) > ring->thresh)) mtk_wake_queue(eth); } spin_unlock_irqrestore(ð->page_lock, flags); return NETDEV_TX_OK; drop: spin_unlock_irqrestore(ð->page_lock, flags); stats->tx_dropped++; dev_kfree_skb(skb); return NETDEV_TX_OK; } static int mtk_poll_rx(struct napi_struct *napi, int budget, struct mtk_eth *eth, u32 rx_intr) { struct mtk_rx_ring *ring = ð->rx_ring; int idx = ring->calc_idx; struct sk_buff *skb; u8 *data, *new_data; struct mtk_rx_dma *rxd, trxd; int done = 0; while (done < budget) { struct net_device *netdev; unsigned int pktlen; dma_addr_t dma_addr; int mac = 0; idx = NEXT_RX_DESP_IDX(idx); rxd = &ring->dma[idx]; data = ring->data[idx]; mtk_rx_get_desc(&trxd, rxd); if (!(trxd.rxd2 & RX_DMA_DONE)) break; /* find out which mac the packet come from. values start at 1 */ mac = (trxd.rxd4 >> RX_DMA_FPORT_SHIFT) & RX_DMA_FPORT_MASK; mac--; netdev = eth->netdev[mac]; /* alloc new buffer */ new_data = napi_alloc_frag(ring->frag_size); if (unlikely(!new_data)) { netdev->stats.rx_dropped++; goto release_desc; } dma_addr = dma_map_single(ð->netdev[mac]->dev, new_data + NET_SKB_PAD, ring->buf_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&netdev->dev, dma_addr))) { skb_free_frag(new_data); netdev->stats.rx_dropped++; goto release_desc; } /* receive data */ skb = build_skb(data, ring->frag_size); if (unlikely(!skb)) { put_page(virt_to_head_page(new_data)); netdev->stats.rx_dropped++; goto release_desc; } skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); dma_unmap_single(&netdev->dev, trxd.rxd1, ring->buf_size, DMA_FROM_DEVICE); pktlen = RX_DMA_GET_PLEN0(trxd.rxd2); skb->dev = netdev; skb_put(skb, pktlen); if (trxd.rxd4 & RX_DMA_L4_VALID) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); skb->protocol = eth_type_trans(skb, netdev); if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX && RX_DMA_VID(trxd.rxd3)) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), RX_DMA_VID(trxd.rxd3)); napi_gro_receive(napi, skb); ring->data[idx] = new_data; rxd->rxd1 = (unsigned int)dma_addr; release_desc: rxd->rxd2 = RX_DMA_PLEN0(ring->buf_size); ring->calc_idx = idx; /* make sure that all changes to the dma ring are flushed before * we continue */ wmb(); mtk_w32(eth, ring->calc_idx, MTK_QRX_CRX_IDX0); done++; } if (done < budget) mtk_w32(eth, rx_intr, MTK_QMTK_INT_STATUS); return done; } static int mtk_poll_tx(struct mtk_eth *eth, int budget, bool *tx_again) { struct mtk_tx_ring *ring = ð->tx_ring; struct mtk_tx_dma *desc; struct sk_buff *skb; struct mtk_tx_buf *tx_buf; int total = 0, done[MTK_MAX_DEVS]; unsigned int bytes[MTK_MAX_DEVS]; u32 cpu, dma; static int condition; int i; memset(done, 0, sizeof(done)); memset(bytes, 0, sizeof(bytes)); cpu = mtk_r32(eth, MTK_QTX_CRX_PTR); dma = mtk_r32(eth, MTK_QTX_DRX_PTR); desc = mtk_qdma_phys_to_virt(ring, cpu); while ((cpu != dma) && budget) { u32 next_cpu = desc->txd2; int mac; desc = mtk_qdma_phys_to_virt(ring, desc->txd2); if ((desc->txd3 & TX_DMA_OWNER_CPU) == 0) break; mac = (desc->txd4 >> TX_DMA_FPORT_SHIFT) & TX_DMA_FPORT_MASK; mac--; tx_buf = mtk_desc_to_tx_buf(ring, desc); skb = tx_buf->skb; if (!skb) { condition = 1; break; } if (skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC) { bytes[mac] += skb->len; done[mac]++; budget--; } mtk_tx_unmap(eth->dev, tx_buf); ring->last_free = desc; atomic_inc(&ring->free_count); cpu = next_cpu; } mtk_w32(eth, cpu, MTK_QTX_CRX_PTR); for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i] || !done[i]) continue; netdev_completed_queue(eth->netdev[i], done[i], bytes[i]); total += done[i]; } /* read hw index again make sure no new tx packet */ if (cpu != dma || cpu != mtk_r32(eth, MTK_QTX_DRX_PTR)) *tx_again = true; else mtk_w32(eth, MTK_TX_DONE_INT, MTK_QMTK_INT_STATUS); if (!total) return 0; if (mtk_queue_stopped(eth) && (atomic_read(&ring->free_count) > ring->thresh)) mtk_wake_queue(eth); return total; } static int mtk_poll(struct napi_struct *napi, int budget) { struct mtk_eth *eth = container_of(napi, struct mtk_eth, rx_napi); u32 status, status2, mask, tx_intr, rx_intr, status_intr; int tx_done, rx_done; bool tx_again = false; status = mtk_r32(eth, MTK_QMTK_INT_STATUS); status2 = mtk_r32(eth, MTK_INT_STATUS2); tx_intr = MTK_TX_DONE_INT; rx_intr = MTK_RX_DONE_INT; status_intr = (MTK_GDM1_AF | MTK_GDM2_AF); tx_done = 0; rx_done = 0; tx_again = 0; if (status & tx_intr) tx_done = mtk_poll_tx(eth, budget, &tx_again); if (status & rx_intr) rx_done = mtk_poll_rx(napi, budget, eth, rx_intr); if (unlikely(status2 & status_intr)) { mtk_stats_update(eth); mtk_w32(eth, status_intr, MTK_INT_STATUS2); } if (unlikely(netif_msg_intr(eth))) { mask = mtk_r32(eth, MTK_QDMA_INT_MASK); netdev_info(eth->netdev[0], "done tx %d, rx %d, intr 0x%08x/0x%x\n", tx_done, rx_done, status, mask); } if (tx_again || rx_done == budget) return budget; status = mtk_r32(eth, MTK_QMTK_INT_STATUS); if (status & (tx_intr | rx_intr)) return budget; napi_complete(napi); mtk_irq_enable(eth, tx_intr | rx_intr); return rx_done; } static int mtk_tx_alloc(struct mtk_eth *eth) { struct mtk_tx_ring *ring = ð->tx_ring; int i, sz = sizeof(*ring->dma); ring->buf = kcalloc(MTK_DMA_SIZE, sizeof(*ring->buf), GFP_KERNEL); if (!ring->buf) goto no_tx_mem; ring->dma = dma_alloc_coherent(eth->dev, MTK_DMA_SIZE * sz, &ring->phys, GFP_ATOMIC | __GFP_ZERO); if (!ring->dma) goto no_tx_mem; memset(ring->dma, 0, MTK_DMA_SIZE * sz); for (i = 0; i < MTK_DMA_SIZE; i++) { int next = (i + 1) % MTK_DMA_SIZE; u32 next_ptr = ring->phys + next * sz; ring->dma[i].txd2 = next_ptr; ring->dma[i].txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU; } atomic_set(&ring->free_count, MTK_DMA_SIZE - 2); ring->next_free = &ring->dma[0]; ring->last_free = &ring->dma[MTK_DMA_SIZE - 1]; ring->thresh = MAX_SKB_FRAGS; /* make sure that all changes to the dma ring are flushed before we * continue */ wmb(); mtk_w32(eth, ring->phys, MTK_QTX_CTX_PTR); mtk_w32(eth, ring->phys, MTK_QTX_DTX_PTR); mtk_w32(eth, ring->phys + ((MTK_DMA_SIZE - 1) * sz), MTK_QTX_CRX_PTR); mtk_w32(eth, ring->phys + ((MTK_DMA_SIZE - 1) * sz), MTK_QTX_DRX_PTR); return 0; no_tx_mem: return -ENOMEM; } static void mtk_tx_clean(struct mtk_eth *eth) { struct mtk_tx_ring *ring = ð->tx_ring; int i; if (ring->buf) { for (i = 0; i < MTK_DMA_SIZE; i++) mtk_tx_unmap(eth->dev, &ring->buf[i]); kfree(ring->buf); ring->buf = NULL; } if (ring->dma) { dma_free_coherent(eth->dev, MTK_DMA_SIZE * sizeof(*ring->dma), ring->dma, ring->phys); ring->dma = NULL; } } static int mtk_rx_alloc(struct mtk_eth *eth) { struct mtk_rx_ring *ring = ð->rx_ring; int i; ring->frag_size = mtk_max_frag_size(ETH_DATA_LEN); ring->buf_size = mtk_max_buf_size(ring->frag_size); ring->data = kcalloc(MTK_DMA_SIZE, sizeof(*ring->data), GFP_KERNEL); if (!ring->data) return -ENOMEM; for (i = 0; i < MTK_DMA_SIZE; i++) { ring->data[i] = netdev_alloc_frag(ring->frag_size); if (!ring->data[i]) return -ENOMEM; } ring->dma = dma_alloc_coherent(eth->dev, MTK_DMA_SIZE * sizeof(*ring->dma), &ring->phys, GFP_ATOMIC | __GFP_ZERO); if (!ring->dma) return -ENOMEM; for (i = 0; i < MTK_DMA_SIZE; i++) { dma_addr_t dma_addr = dma_map_single(eth->dev, ring->data[i] + NET_SKB_PAD, ring->buf_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(eth->dev, dma_addr))) return -ENOMEM; ring->dma[i].rxd1 = (unsigned int)dma_addr; ring->dma[i].rxd2 = RX_DMA_PLEN0(ring->buf_size); } ring->calc_idx = MTK_DMA_SIZE - 1; /* make sure that all changes to the dma ring are flushed before we * continue */ wmb(); mtk_w32(eth, eth->rx_ring.phys, MTK_QRX_BASE_PTR0); mtk_w32(eth, MTK_DMA_SIZE, MTK_QRX_MAX_CNT0); mtk_w32(eth, eth->rx_ring.calc_idx, MTK_QRX_CRX_IDX0); mtk_w32(eth, MTK_PST_DRX_IDX0, MTK_QDMA_RST_IDX); mtk_w32(eth, (QDMA_RES_THRES << 8) | QDMA_RES_THRES, MTK_QTX_CFG(0)); return 0; } static void mtk_rx_clean(struct mtk_eth *eth) { struct mtk_rx_ring *ring = ð->rx_ring; int i; if (ring->data && ring->dma) { for (i = 0; i < MTK_DMA_SIZE; i++) { if (!ring->data[i]) continue; if (!ring->dma[i].rxd1) continue; dma_unmap_single(eth->dev, ring->dma[i].rxd1, ring->buf_size, DMA_FROM_DEVICE); skb_free_frag(ring->data[i]); } kfree(ring->data); ring->data = NULL; } if (ring->dma) { dma_free_coherent(eth->dev, MTK_DMA_SIZE * sizeof(*ring->dma), ring->dma, ring->phys); ring->dma = NULL; } } /* wait for DMA to finish whatever it is doing before we start using it again */ static int mtk_dma_busy_wait(struct mtk_eth *eth) { unsigned long t_start = jiffies; while (1) { if (!(mtk_r32(eth, MTK_QDMA_GLO_CFG) & (MTK_RX_DMA_BUSY | MTK_TX_DMA_BUSY))) return 0; if (time_after(jiffies, t_start + MTK_DMA_BUSY_TIMEOUT)) break; } dev_err(eth->dev, "DMA init timeout\n"); return -1; } static int mtk_dma_init(struct mtk_eth *eth) { int err; if (mtk_dma_busy_wait(eth)) return -EBUSY; /* QDMA needs scratch memory for internal reordering of the * descriptors */ err = mtk_init_fq_dma(eth); if (err) return err; err = mtk_tx_alloc(eth); if (err) return err; err = mtk_rx_alloc(eth); if (err) return err; /* Enable random early drop and set drop threshold automatically */ mtk_w32(eth, FC_THRES_DROP_MODE | FC_THRES_DROP_EN | FC_THRES_MIN, MTK_QDMA_FC_THRES); mtk_w32(eth, 0x0, MTK_QDMA_HRED2); return 0; } static void mtk_dma_free(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) if (eth->netdev[i]) netdev_reset_queue(eth->netdev[i]); if (eth->scratch_ring) { dma_free_coherent(eth->dev, MTK_DMA_SIZE * sizeof(struct mtk_tx_dma), eth->scratch_ring, eth->phy_scratch_ring); eth->scratch_ring = NULL; eth->phy_scratch_ring = 0; } mtk_tx_clean(eth); mtk_rx_clean(eth); kfree(eth->scratch_head); } static void mtk_tx_timeout(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; eth->netdev[mac->id]->stats.tx_errors++; netif_err(eth, tx_err, dev, "transmit timed out\n"); schedule_work(ð->pending_work); } static irqreturn_t mtk_handle_irq(int irq, void *_eth) { struct mtk_eth *eth = _eth; u32 status; status = mtk_r32(eth, MTK_QMTK_INT_STATUS); if (unlikely(!status)) return IRQ_NONE; if (likely(status & (MTK_RX_DONE_INT | MTK_TX_DONE_INT))) { if (likely(napi_schedule_prep(ð->rx_napi))) __napi_schedule(ð->rx_napi); } else { mtk_w32(eth, status, MTK_QMTK_INT_STATUS); } mtk_irq_disable(eth, (MTK_RX_DONE_INT | MTK_TX_DONE_INT)); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER static void mtk_poll_controller(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; u32 int_mask = MTK_TX_DONE_INT | MTK_RX_DONE_INT; mtk_irq_disable(eth, int_mask); mtk_handle_irq(dev->irq, dev); mtk_irq_enable(eth, int_mask); } #endif static int mtk_start_dma(struct mtk_eth *eth) { int err; err = mtk_dma_init(eth); if (err) { mtk_dma_free(eth); return err; } mtk_w32(eth, MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN | MTK_RX_2B_OFFSET | MTK_DMA_SIZE_16DWORDS | MTK_RX_BT_32DWORDS | MTK_NDP_CO_PRO, MTK_QDMA_GLO_CFG); return 0; } static int mtk_open(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; /* we run 2 netdevs on the same dma ring so we only bring it up once */ if (!atomic_read(ð->dma_refcnt)) { int err = mtk_start_dma(eth); if (err) return err; napi_enable(ð->rx_napi); mtk_irq_enable(eth, MTK_TX_DONE_INT | MTK_RX_DONE_INT); } atomic_inc(ð->dma_refcnt); phy_start(mac->phy_dev); netif_start_queue(dev); return 0; } static void mtk_stop_dma(struct mtk_eth *eth, u32 glo_cfg) { unsigned long flags; u32 val; int i; /* stop the dma engine */ spin_lock_irqsave(ð->page_lock, flags); val = mtk_r32(eth, glo_cfg); mtk_w32(eth, val & ~(MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN), glo_cfg); spin_unlock_irqrestore(ð->page_lock, flags); /* wait for dma stop */ for (i = 0; i < 10; i++) { val = mtk_r32(eth, glo_cfg); if (val & (MTK_TX_DMA_BUSY | MTK_RX_DMA_BUSY)) { msleep(20); continue; } break; } } static int mtk_stop(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; netif_tx_disable(dev); phy_stop(mac->phy_dev); /* only shutdown DMA if this is the last user */ if (!atomic_dec_and_test(ð->dma_refcnt)) return 0; mtk_irq_disable(eth, MTK_TX_DONE_INT | MTK_RX_DONE_INT); napi_disable(ð->rx_napi); mtk_stop_dma(eth, MTK_QDMA_GLO_CFG); mtk_dma_free(eth); return 0; } static int __init mtk_hw_init(struct mtk_eth *eth) { int err, i; /* reset the frame engine */ reset_control_assert(eth->rstc); usleep_range(10, 20); reset_control_deassert(eth->rstc); usleep_range(10, 20); /* Set GE2 driving and slew rate */ regmap_write(eth->pctl, GPIO_DRV_SEL10, 0xa00); /* set GE2 TDSEL */ regmap_write(eth->pctl, GPIO_OD33_CTRL8, 0x5); /* set GE2 TUNE */ regmap_write(eth->pctl, GPIO_BIAS_CTRL, 0x0); /* GE1, Force 1000M/FD, FC ON */ mtk_w32(eth, MAC_MCR_FIXED_LINK, MTK_MAC_MCR(0)); /* GE2, Force 1000M/FD, FC ON */ mtk_w32(eth, MAC_MCR_FIXED_LINK, MTK_MAC_MCR(1)); /* Enable RX VLan Offloading */ mtk_w32(eth, 1, MTK_CDMP_EG_CTRL); err = devm_request_irq(eth->dev, eth->irq, mtk_handle_irq, 0, dev_name(eth->dev), eth); if (err) return err; err = mtk_mdio_init(eth); if (err) return err; /* disable delay and normal interrupt */ mtk_w32(eth, 0, MTK_QDMA_DELAY_INT); mtk_irq_disable(eth, ~0); mtk_w32(eth, RST_GL_PSE, MTK_RST_GL); mtk_w32(eth, 0, MTK_RST_GL); /* FE int grouping */ mtk_w32(eth, 0, MTK_FE_INT_GRP); for (i = 0; i < 2; i++) { u32 val = mtk_r32(eth, MTK_GDMA_FWD_CFG(i)); /* setup the forward port to send frame to QDMA */ val &= ~0xffff; val |= 0x5555; /* Enable RX checksum */ val |= MTK_GDMA_ICS_EN | MTK_GDMA_TCS_EN | MTK_GDMA_UCS_EN; /* setup the mac dma */ mtk_w32(eth, val, MTK_GDMA_FWD_CFG(i)); } return 0; } static int __init mtk_init(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; const char *mac_addr; mac_addr = of_get_mac_address(mac->of_node); if (mac_addr) ether_addr_copy(dev->dev_addr, mac_addr); /* If the mac address is invalid, use random mac address */ if (!is_valid_ether_addr(dev->dev_addr)) { random_ether_addr(dev->dev_addr); dev_err(eth->dev, "generated random MAC address %pM\n", dev->dev_addr); dev->addr_assign_type = NET_ADDR_RANDOM; } return mtk_phy_connect(mac); } static void mtk_uninit(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; phy_disconnect(mac->phy_dev); mtk_mdio_cleanup(eth); mtk_irq_disable(eth, ~0); free_irq(dev->irq, dev); } static int mtk_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mtk_mac *mac = netdev_priv(dev); switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return phy_mii_ioctl(mac->phy_dev, ifr, cmd); default: break; } return -EOPNOTSUPP; } static void mtk_pending_work(struct work_struct *work) { struct mtk_eth *eth = container_of(work, struct mtk_eth, pending_work); int err, i; unsigned long restart = 0; rtnl_lock(); /* stop all devices to make sure that dma is properly shut down */ for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; mtk_stop(eth->netdev[i]); __set_bit(i, &restart); } /* restart DMA and enable IRQs */ for (i = 0; i < MTK_MAC_COUNT; i++) { if (!test_bit(i, &restart)) continue; err = mtk_open(eth->netdev[i]); if (err) { netif_alert(eth, ifup, eth->netdev[i], "Driver up/down cycle failed, closing device.\n"); dev_close(eth->netdev[i]); } } rtnl_unlock(); } static int mtk_cleanup(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; unregister_netdev(eth->netdev[i]); free_netdev(eth->netdev[i]); } cancel_work_sync(ð->pending_work); return 0; } static int mtk_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct mtk_mac *mac = netdev_priv(dev); int err; err = phy_read_status(mac->phy_dev); if (err) return -ENODEV; return phy_ethtool_gset(mac->phy_dev, cmd); } static int mtk_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct mtk_mac *mac = netdev_priv(dev); if (cmd->phy_address != mac->phy_dev->mdio.addr) { mac->phy_dev = mdiobus_get_phy(mac->hw->mii_bus, cmd->phy_address); if (!mac->phy_dev) return -ENODEV; } return phy_ethtool_sset(mac->phy_dev, cmd); } static void mtk_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct mtk_mac *mac = netdev_priv(dev); strlcpy(info->driver, mac->hw->dev->driver->name, sizeof(info->driver)); strlcpy(info->bus_info, dev_name(mac->hw->dev), sizeof(info->bus_info)); info->n_stats = ARRAY_SIZE(mtk_ethtool_stats); } static u32 mtk_get_msglevel(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); return mac->hw->msg_enable; } static void mtk_set_msglevel(struct net_device *dev, u32 value) { struct mtk_mac *mac = netdev_priv(dev); mac->hw->msg_enable = value; } static int mtk_nway_reset(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); return genphy_restart_aneg(mac->phy_dev); } static u32 mtk_get_link(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); int err; err = genphy_update_link(mac->phy_dev); if (err) return ethtool_op_get_link(dev); return mac->phy_dev->link; } static void mtk_get_strings(struct net_device *dev, u32 stringset, u8 *data) { int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++) { memcpy(data, mtk_ethtool_stats[i].str, ETH_GSTRING_LEN); data += ETH_GSTRING_LEN; } break; } } static int mtk_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(mtk_ethtool_stats); default: return -EOPNOTSUPP; } } static void mtk_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_hw_stats *hwstats = mac->hw_stats; u64 *data_src, *data_dst; unsigned int start; int i; if (netif_running(dev) && netif_device_present(dev)) { if (spin_trylock(&hwstats->stats_lock)) { mtk_stats_update_mac(mac); spin_unlock(&hwstats->stats_lock); } } do { data_src = (u64*)hwstats; data_dst = data; start = u64_stats_fetch_begin_irq(&hwstats->syncp); for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++) *data_dst++ = *(data_src + mtk_ethtool_stats[i].offset); } while (u64_stats_fetch_retry_irq(&hwstats->syncp, start)); } static struct ethtool_ops mtk_ethtool_ops = { .get_settings = mtk_get_settings, .set_settings = mtk_set_settings, .get_drvinfo = mtk_get_drvinfo, .get_msglevel = mtk_get_msglevel, .set_msglevel = mtk_set_msglevel, .nway_reset = mtk_nway_reset, .get_link = mtk_get_link, .get_strings = mtk_get_strings, .get_sset_count = mtk_get_sset_count, .get_ethtool_stats = mtk_get_ethtool_stats, }; static const struct net_device_ops mtk_netdev_ops = { .ndo_init = mtk_init, .ndo_uninit = mtk_uninit, .ndo_open = mtk_open, .ndo_stop = mtk_stop, .ndo_start_xmit = mtk_start_xmit, .ndo_set_mac_address = mtk_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = mtk_do_ioctl, .ndo_change_mtu = eth_change_mtu, .ndo_tx_timeout = mtk_tx_timeout, .ndo_get_stats64 = mtk_get_stats64, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = mtk_poll_controller, #endif }; static int mtk_add_mac(struct mtk_eth *eth, struct device_node *np) { struct mtk_mac *mac; const __be32 *_id = of_get_property(np, "reg", NULL); int id, err; if (!_id) { dev_err(eth->dev, "missing mac id\n"); return -EINVAL; } id = be32_to_cpup(_id); if (id >= MTK_MAC_COUNT) { dev_err(eth->dev, "%d is not a valid mac id\n", id); return -EINVAL; } if (eth->netdev[id]) { dev_err(eth->dev, "duplicate mac id found: %d\n", id); return -EINVAL; } eth->netdev[id] = alloc_etherdev(sizeof(*mac)); if (!eth->netdev[id]) { dev_err(eth->dev, "alloc_etherdev failed\n"); return -ENOMEM; } mac = netdev_priv(eth->netdev[id]); eth->mac[id] = mac; mac->id = id; mac->hw = eth; mac->of_node = np; mac->hw_stats = devm_kzalloc(eth->dev, sizeof(*mac->hw_stats), GFP_KERNEL); if (!mac->hw_stats) { dev_err(eth->dev, "failed to allocate counter memory\n"); err = -ENOMEM; goto free_netdev; } spin_lock_init(&mac->hw_stats->stats_lock); mac->hw_stats->reg_offset = id * MTK_STAT_OFFSET; SET_NETDEV_DEV(eth->netdev[id], eth->dev); eth->netdev[id]->watchdog_timeo = 5 * HZ; eth->netdev[id]->netdev_ops = &mtk_netdev_ops; eth->netdev[id]->base_addr = (unsigned long)eth->base; eth->netdev[id]->vlan_features = MTK_HW_FEATURES & ~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX); eth->netdev[id]->features |= MTK_HW_FEATURES; eth->netdev[id]->ethtool_ops = &mtk_ethtool_ops; err = register_netdev(eth->netdev[id]); if (err) { dev_err(eth->dev, "error bringing up device\n"); goto free_netdev; } eth->netdev[id]->irq = eth->irq; netif_info(eth, probe, eth->netdev[id], "mediatek frame engine at 0x%08lx, irq %d\n", eth->netdev[id]->base_addr, eth->netdev[id]->irq); return 0; free_netdev: free_netdev(eth->netdev[id]); return err; } static int mtk_probe(struct platform_device *pdev) { struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); struct device_node *mac_np; const struct of_device_id *match; struct mtk_soc_data *soc; struct mtk_eth *eth; int err; match = of_match_device(of_mtk_match, &pdev->dev); soc = (struct mtk_soc_data *)match->data; eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL); if (!eth) return -ENOMEM; eth->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(eth->base)) return PTR_ERR(eth->base); spin_lock_init(ð->page_lock); eth->ethsys = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "mediatek,ethsys"); if (IS_ERR(eth->ethsys)) { dev_err(&pdev->dev, "no ethsys regmap found\n"); return PTR_ERR(eth->ethsys); } eth->pctl = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "mediatek,pctl"); if (IS_ERR(eth->pctl)) { dev_err(&pdev->dev, "no pctl regmap found\n"); return PTR_ERR(eth->pctl); } eth->rstc = devm_reset_control_get(&pdev->dev, "eth"); if (IS_ERR(eth->rstc)) { dev_err(&pdev->dev, "no eth reset found\n"); return PTR_ERR(eth->rstc); } eth->irq = platform_get_irq(pdev, 0); if (eth->irq < 0) { dev_err(&pdev->dev, "no IRQ resource found\n"); return -ENXIO; } eth->clk_ethif = devm_clk_get(&pdev->dev, "ethif"); eth->clk_esw = devm_clk_get(&pdev->dev, "esw"); eth->clk_gp1 = devm_clk_get(&pdev->dev, "gp1"); eth->clk_gp2 = devm_clk_get(&pdev->dev, "gp2"); if (IS_ERR(eth->clk_esw) || IS_ERR(eth->clk_gp1) || IS_ERR(eth->clk_gp2) || IS_ERR(eth->clk_ethif)) return -ENODEV; clk_prepare_enable(eth->clk_ethif); clk_prepare_enable(eth->clk_esw); clk_prepare_enable(eth->clk_gp1); clk_prepare_enable(eth->clk_gp2); eth->dev = &pdev->dev; eth->msg_enable = netif_msg_init(mtk_msg_level, MTK_DEFAULT_MSG_ENABLE); INIT_WORK(ð->pending_work, mtk_pending_work); err = mtk_hw_init(eth); if (err) return err; for_each_child_of_node(pdev->dev.of_node, mac_np) { if (!of_device_is_compatible(mac_np, "mediatek,eth-mac")) continue; if (!of_device_is_available(mac_np)) continue; err = mtk_add_mac(eth, mac_np); if (err) goto err_free_dev; } /* we run 2 devices on the same DMA ring so we need a dummy device * for NAPI to work */ init_dummy_netdev(ð->dummy_dev); netif_napi_add(ð->dummy_dev, ð->rx_napi, mtk_poll, MTK_NAPI_WEIGHT); platform_set_drvdata(pdev, eth); return 0; err_free_dev: mtk_cleanup(eth); return err; } static int mtk_remove(struct platform_device *pdev) { struct mtk_eth *eth = platform_get_drvdata(pdev); clk_disable_unprepare(eth->clk_ethif); clk_disable_unprepare(eth->clk_esw); clk_disable_unprepare(eth->clk_gp1); clk_disable_unprepare(eth->clk_gp2); netif_napi_del(ð->rx_napi); mtk_cleanup(eth); platform_set_drvdata(pdev, NULL); return 0; } const struct of_device_id of_mtk_match[] = { { .compatible = "mediatek,mt7623-eth" }, {}, }; static struct platform_driver mtk_driver = { .probe = mtk_probe, .remove = mtk_remove, .driver = { .name = "mtk_soc_eth", .owner = THIS_MODULE, .of_match_table = of_mtk_match, }, }; module_platform_driver(mtk_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("John Crispin "); MODULE_DESCRIPTION("Ethernet driver for MediaTek SoC");