/* * Support PCI/PCIe on PowerNV platforms * * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "powernv.h" #include "pci.h" /* 256M DMA window, 4K TCE pages, 8 bytes TCE */ #define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8) static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl); static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, const char *fmt, ...) { struct va_format vaf; va_list args; char pfix[32]; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; if (pe->flags & PNV_IODA_PE_DEV) strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) sprintf(pfix, "%04x:%02x ", pci_domain_nr(pe->pbus), pe->pbus->number); #ifdef CONFIG_PCI_IOV else if (pe->flags & PNV_IODA_PE_VF) sprintf(pfix, "%04x:%02x:%2x.%d", pci_domain_nr(pe->parent_dev->bus), (pe->rid & 0xff00) >> 8, PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); #endif /* CONFIG_PCI_IOV*/ printk("%spci %s: [PE# %.3d] %pV", level, pfix, pe->pe_number, &vaf); va_end(args); } #define pe_err(pe, fmt, ...) \ pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__) #define pe_warn(pe, fmt, ...) \ pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__) #define pe_info(pe, fmt, ...) \ pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__) static bool pnv_iommu_bypass_disabled __read_mostly; static int __init iommu_setup(char *str) { if (!str) return -EINVAL; while (*str) { if (!strncmp(str, "nobypass", 8)) { pnv_iommu_bypass_disabled = true; pr_info("PowerNV: IOMMU bypass window disabled.\n"); break; } str += strcspn(str, ","); if (*str == ',') str++; } return 0; } early_param("iommu", iommu_setup); /* * stdcix is only supposed to be used in hypervisor real mode as per * the architecture spec */ static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr) { __asm__ __volatile__("stdcix %0,0,%1" : : "r" (val), "r" (paddr) : "memory"); } static inline bool pnv_pci_is_mem_pref_64(unsigned long flags) { return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) == (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)); } static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) { if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) { pr_warn("%s: Invalid PE %d on PHB#%x\n", __func__, pe_no, phb->hose->global_number); return; } if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) { pr_warn("%s: PE %d was assigned on PHB#%x\n", __func__, pe_no, phb->hose->global_number); return; } phb->ioda.pe_array[pe_no].phb = phb; phb->ioda.pe_array[pe_no].pe_number = pe_no; } static int pnv_ioda_alloc_pe(struct pnv_phb *phb) { unsigned long pe; do { pe = find_next_zero_bit(phb->ioda.pe_alloc, phb->ioda.total_pe, 0); if (pe >= phb->ioda.total_pe) return IODA_INVALID_PE; } while(test_and_set_bit(pe, phb->ioda.pe_alloc)); phb->ioda.pe_array[pe].phb = phb; phb->ioda.pe_array[pe].pe_number = pe; return pe; } static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe) { WARN_ON(phb->ioda.pe_array[pe].pdev); memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe)); clear_bit(pe, phb->ioda.pe_alloc); } /* The default M64 BAR is shared by all PEs */ static int pnv_ioda2_init_m64(struct pnv_phb *phb) { const char *desc; struct resource *r; s64 rc; /* Configure the default M64 BAR */ rc = opal_pci_set_phb_mem_window(phb->opal_id, OPAL_M64_WINDOW_TYPE, phb->ioda.m64_bar_idx, phb->ioda.m64_base, 0, /* unused */ phb->ioda.m64_size); if (rc != OPAL_SUCCESS) { desc = "configuring"; goto fail; } /* Enable the default M64 BAR */ rc = opal_pci_phb_mmio_enable(phb->opal_id, OPAL_M64_WINDOW_TYPE, phb->ioda.m64_bar_idx, OPAL_ENABLE_M64_SPLIT); if (rc != OPAL_SUCCESS) { desc = "enabling"; goto fail; } /* Mark the M64 BAR assigned */ set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc); /* * Strip off the segment used by the reserved PE, which is * expected to be 0 or last one of PE capabicity. */ r = &phb->hose->mem_resources[1]; if (phb->ioda.reserved_pe == 0) r->start += phb->ioda.m64_segsize; else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1)) r->end -= phb->ioda.m64_segsize; else pr_warn(" Cannot strip M64 segment for reserved PE#%d\n", phb->ioda.reserved_pe); return 0; fail: pr_warn(" Failure %lld %s M64 BAR#%d\n", rc, desc, phb->ioda.m64_bar_idx); opal_pci_phb_mmio_enable(phb->opal_id, OPAL_M64_WINDOW_TYPE, phb->ioda.m64_bar_idx, OPAL_DISABLE_M64); return -EIO; } static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb) { resource_size_t sgsz = phb->ioda.m64_segsize; struct pci_dev *pdev; struct resource *r; int base, step, i; /* * Root bus always has full M64 range and root port has * M64 range used in reality. So we're checking root port * instead of root bus. */ list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) { for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { r = &pdev->resource[PCI_BRIDGE_RESOURCES + i]; if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags)) continue; base = (r->start - phb->ioda.m64_base) / sgsz; for (step = 0; step < resource_size(r) / sgsz; step++) pnv_ioda_reserve_pe(phb, base + step); } } } static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb, struct pci_bus *bus, int all) { resource_size_t segsz = phb->ioda.m64_segsize; struct pci_dev *pdev; struct resource *r; struct pnv_ioda_pe *master_pe, *pe; unsigned long size, *pe_alloc; bool found; int start, i, j; /* Root bus shouldn't use M64 */ if (pci_is_root_bus(bus)) return IODA_INVALID_PE; /* We support only one M64 window on each bus */ found = false; pci_bus_for_each_resource(bus, r, i) { if (r && r->parent && pnv_pci_is_mem_pref_64(r->flags)) { found = true; break; } } /* No M64 window found ? */ if (!found) return IODA_INVALID_PE; /* Allocate bitmap */ size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long)); pe_alloc = kzalloc(size, GFP_KERNEL); if (!pe_alloc) { pr_warn("%s: Out of memory !\n", __func__); return IODA_INVALID_PE; } /* * Figure out reserved PE numbers by the PE * the its child PEs. */ start = (r->start - phb->ioda.m64_base) / segsz; for (i = 0; i < resource_size(r) / segsz; i++) set_bit(start + i, pe_alloc); if (all) goto done; /* * If the PE doesn't cover all subordinate buses, * we need subtract from reserved PEs for children. */ list_for_each_entry(pdev, &bus->devices, bus_list) { if (!pdev->subordinate) continue; pci_bus_for_each_resource(pdev->subordinate, r, i) { if (!r || !r->parent || !pnv_pci_is_mem_pref_64(r->flags)) continue; start = (r->start - phb->ioda.m64_base) / segsz; for (j = 0; j < resource_size(r) / segsz ; j++) clear_bit(start + j, pe_alloc); } } /* * the current bus might not own M64 window and that's all * contributed by its child buses. For the case, we needn't * pick M64 dependent PE#. */ if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) { kfree(pe_alloc); return IODA_INVALID_PE; } /* * Figure out the master PE and put all slave PEs to master * PE's list to form compound PE. */ done: master_pe = NULL; i = -1; while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) < phb->ioda.total_pe) { pe = &phb->ioda.pe_array[i]; if (!master_pe) { pe->flags |= PNV_IODA_PE_MASTER; INIT_LIST_HEAD(&pe->slaves); master_pe = pe; } else { pe->flags |= PNV_IODA_PE_SLAVE; pe->master = master_pe; list_add_tail(&pe->list, &master_pe->slaves); } } kfree(pe_alloc); return master_pe->pe_number; } static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) { struct pci_controller *hose = phb->hose; struct device_node *dn = hose->dn; struct resource *res; const u32 *r; u64 pci_addr; /* FIXME: Support M64 for P7IOC */ if (phb->type != PNV_PHB_IODA2) { pr_info(" Not support M64 window\n"); return; } if (!firmware_has_feature(FW_FEATURE_OPALv3)) { pr_info(" Firmware too old to support M64 window\n"); return; } r = of_get_property(dn, "ibm,opal-m64-window", NULL); if (!r) { pr_info(" No on %s\n", dn->full_name); return; } res = &hose->mem_resources[1]; res->start = of_translate_address(dn, r + 2); res->end = res->start + of_read_number(r + 4, 2) - 1; res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); pci_addr = of_read_number(r, 2); hose->mem_offset[1] = res->start - pci_addr; phb->ioda.m64_size = resource_size(res); phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe; phb->ioda.m64_base = pci_addr; pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n", res->start, res->end, pci_addr); /* Use last M64 BAR to cover M64 window */ phb->ioda.m64_bar_idx = 15; phb->init_m64 = pnv_ioda2_init_m64; phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe; phb->pick_m64_pe = pnv_ioda2_pick_m64_pe; } static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) { struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; struct pnv_ioda_pe *slave; s64 rc; /* Fetch master PE */ if (pe->flags & PNV_IODA_PE_SLAVE) { pe = pe->master; if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) return; pe_no = pe->pe_number; } /* Freeze master PE */ rc = opal_pci_eeh_freeze_set(phb->opal_id, pe_no, OPAL_EEH_ACTION_SET_FREEZE_ALL); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", __func__, rc, phb->hose->global_number, pe_no); return; } /* Freeze slave PEs */ if (!(pe->flags & PNV_IODA_PE_MASTER)) return; list_for_each_entry(slave, &pe->slaves, list) { rc = opal_pci_eeh_freeze_set(phb->opal_id, slave->pe_number, OPAL_EEH_ACTION_SET_FREEZE_ALL); if (rc != OPAL_SUCCESS) pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", __func__, rc, phb->hose->global_number, slave->pe_number); } } static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) { struct pnv_ioda_pe *pe, *slave; s64 rc; /* Find master PE */ pe = &phb->ioda.pe_array[pe_no]; if (pe->flags & PNV_IODA_PE_SLAVE) { pe = pe->master; WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); pe_no = pe->pe_number; } /* Clear frozen state for master PE */ rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", __func__, rc, opt, phb->hose->global_number, pe_no); return -EIO; } if (!(pe->flags & PNV_IODA_PE_MASTER)) return 0; /* Clear frozen state for slave PEs */ list_for_each_entry(slave, &pe->slaves, list) { rc = opal_pci_eeh_freeze_clear(phb->opal_id, slave->pe_number, opt); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", __func__, rc, opt, phb->hose->global_number, slave->pe_number); return -EIO; } } return 0; } static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) { struct pnv_ioda_pe *slave, *pe; u8 fstate, state; __be16 pcierr; s64 rc; /* Sanity check on PE number */ if (pe_no < 0 || pe_no >= phb->ioda.total_pe) return OPAL_EEH_STOPPED_PERM_UNAVAIL; /* * Fetch the master PE and the PE instance might be * not initialized yet. */ pe = &phb->ioda.pe_array[pe_no]; if (pe->flags & PNV_IODA_PE_SLAVE) { pe = pe->master; WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); pe_no = pe->pe_number; } /* Check the master PE */ rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, &state, &pcierr, NULL); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld getting " "PHB#%x-PE#%x state\n", __func__, rc, phb->hose->global_number, pe_no); return OPAL_EEH_STOPPED_TEMP_UNAVAIL; } /* Check the slave PE */ if (!(pe->flags & PNV_IODA_PE_MASTER)) return state; list_for_each_entry(slave, &pe->slaves, list) { rc = opal_pci_eeh_freeze_status(phb->opal_id, slave->pe_number, &fstate, &pcierr, NULL); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld getting " "PHB#%x-PE#%x state\n", __func__, rc, phb->hose->global_number, slave->pe_number); return OPAL_EEH_STOPPED_TEMP_UNAVAIL; } /* * Override the result based on the ascending * priority. */ if (fstate > state) state = fstate; } return state; } /* Currently those 2 are only used when MSIs are enabled, this will change * but in the meantime, we need to protect them to avoid warnings */ #ifdef CONFIG_PCI_MSI static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; struct pci_dn *pdn = pci_get_pdn(dev); if (!pdn) return NULL; if (pdn->pe_number == IODA_INVALID_PE) return NULL; return &phb->ioda.pe_array[pdn->pe_number]; } #endif /* CONFIG_PCI_MSI */ static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, struct pnv_ioda_pe *parent, struct pnv_ioda_pe *child, bool is_add) { const char *desc = is_add ? "adding" : "removing"; uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : OPAL_REMOVE_PE_FROM_DOMAIN; struct pnv_ioda_pe *slave; long rc; /* Parent PE affects child PE */ rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, child->pe_number, op); if (rc != OPAL_SUCCESS) { pe_warn(child, "OPAL error %ld %s to parent PELTV\n", rc, desc); return -ENXIO; } if (!(child->flags & PNV_IODA_PE_MASTER)) return 0; /* Compound case: parent PE affects slave PEs */ list_for_each_entry(slave, &child->slaves, list) { rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, slave->pe_number, op); if (rc != OPAL_SUCCESS) { pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", rc, desc); return -ENXIO; } } return 0; } static int pnv_ioda_set_peltv(struct pnv_phb *phb, struct pnv_ioda_pe *pe, bool is_add) { struct pnv_ioda_pe *slave; struct pci_dev *pdev = NULL; int ret; /* * Clear PE frozen state. If it's master PE, we need * clear slave PE frozen state as well. */ if (is_add) { opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); if (pe->flags & PNV_IODA_PE_MASTER) { list_for_each_entry(slave, &pe->slaves, list) opal_pci_eeh_freeze_clear(phb->opal_id, slave->pe_number, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); } } /* * Associate PE in PELT. We need add the PE into the * corresponding PELT-V as well. Otherwise, the error * originated from the PE might contribute to other * PEs. */ ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); if (ret) return ret; /* For compound PEs, any one affects all of them */ if (pe->flags & PNV_IODA_PE_MASTER) { list_for_each_entry(slave, &pe->slaves, list) { ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); if (ret) return ret; } } if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) pdev = pe->pbus->self; else if (pe->flags & PNV_IODA_PE_DEV) pdev = pe->pdev->bus->self; #ifdef CONFIG_PCI_IOV else if (pe->flags & PNV_IODA_PE_VF) pdev = pe->parent_dev->bus->self; #endif /* CONFIG_PCI_IOV */ while (pdev) { struct pci_dn *pdn = pci_get_pdn(pdev); struct pnv_ioda_pe *parent; if (pdn && pdn->pe_number != IODA_INVALID_PE) { parent = &phb->ioda.pe_array[pdn->pe_number]; ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); if (ret) return ret; } pdev = pdev->bus->self; } return 0; } #ifdef CONFIG_PCI_IOV static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) { struct pci_dev *parent; uint8_t bcomp, dcomp, fcomp; int64_t rc; long rid_end, rid; /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ if (pe->pbus) { int count; dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; parent = pe->pbus->self; if (pe->flags & PNV_IODA_PE_BUS_ALL) count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; else count = 1; switch(count) { case 1: bcomp = OpalPciBusAll; break; case 2: bcomp = OpalPciBus7Bits; break; case 4: bcomp = OpalPciBus6Bits; break; case 8: bcomp = OpalPciBus5Bits; break; case 16: bcomp = OpalPciBus4Bits; break; case 32: bcomp = OpalPciBus3Bits; break; default: dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", count); /* Do an exact match only */ bcomp = OpalPciBusAll; } rid_end = pe->rid + (count << 8); } else { if (pe->flags & PNV_IODA_PE_VF) parent = pe->parent_dev; else parent = pe->pdev->bus->self; bcomp = OpalPciBusAll; dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; rid_end = pe->rid + 1; } /* Clear the reverse map */ for (rid = pe->rid; rid < rid_end; rid++) phb->ioda.pe_rmap[rid] = 0; /* Release from all parents PELT-V */ while (parent) { struct pci_dn *pdn = pci_get_pdn(parent); if (pdn && pdn->pe_number != IODA_INVALID_PE) { rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); /* XXX What to do in case of error ? */ } parent = parent->bus->self; } opal_pci_eeh_freeze_set(phb->opal_id, pe->pe_number, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); /* Disassociate PE in PELT */ rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); if (rc) pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc); rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, bcomp, dcomp, fcomp, OPAL_UNMAP_PE); if (rc) pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); pe->pbus = NULL; pe->pdev = NULL; pe->parent_dev = NULL; return 0; } #endif /* CONFIG_PCI_IOV */ static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) { struct pci_dev *parent; uint8_t bcomp, dcomp, fcomp; long rc, rid_end, rid; /* Bus validation ? */ if (pe->pbus) { int count; dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; parent = pe->pbus->self; if (pe->flags & PNV_IODA_PE_BUS_ALL) count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; else count = 1; switch(count) { case 1: bcomp = OpalPciBusAll; break; case 2: bcomp = OpalPciBus7Bits; break; case 4: bcomp = OpalPciBus6Bits; break; case 8: bcomp = OpalPciBus5Bits; break; case 16: bcomp = OpalPciBus4Bits; break; case 32: bcomp = OpalPciBus3Bits; break; default: dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", count); /* Do an exact match only */ bcomp = OpalPciBusAll; } rid_end = pe->rid + (count << 8); } else { #ifdef CONFIG_PCI_IOV if (pe->flags & PNV_IODA_PE_VF) parent = pe->parent_dev; else #endif /* CONFIG_PCI_IOV */ parent = pe->pdev->bus->self; bcomp = OpalPciBusAll; dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; rid_end = pe->rid + 1; } /* * Associate PE in PELT. We need add the PE into the * corresponding PELT-V as well. Otherwise, the error * originated from the PE might contribute to other * PEs. */ rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, bcomp, dcomp, fcomp, OPAL_MAP_PE); if (rc) { pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); return -ENXIO; } /* Configure PELTV */ pnv_ioda_set_peltv(phb, pe, true); /* Setup reverse map */ for (rid = pe->rid; rid < rid_end; rid++) phb->ioda.pe_rmap[rid] = pe->pe_number; /* Setup one MVTs on IODA1 */ if (phb->type != PNV_PHB_IODA1) { pe->mve_number = 0; goto out; } pe->mve_number = pe->pe_number; rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); if (rc != OPAL_SUCCESS) { pe_err(pe, "OPAL error %ld setting up MVE %d\n", rc, pe->mve_number); pe->mve_number = -1; } else { rc = opal_pci_set_mve_enable(phb->opal_id, pe->mve_number, OPAL_ENABLE_MVE); if (rc) { pe_err(pe, "OPAL error %ld enabling MVE %d\n", rc, pe->mve_number); pe->mve_number = -1; } } out: return 0; } static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb, struct pnv_ioda_pe *pe) { struct pnv_ioda_pe *lpe; list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) { if (lpe->dma_weight < pe->dma_weight) { list_add_tail(&pe->dma_link, &lpe->dma_link); return; } } list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list); } static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev) { /* This is quite simplistic. The "base" weight of a device * is 10. 0 means no DMA is to be accounted for it. */ /* If it's a bridge, no DMA */ if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) return 0; /* Reduce the weight of slow USB controllers */ if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || dev->class == PCI_CLASS_SERIAL_USB_OHCI || dev->class == PCI_CLASS_SERIAL_USB_EHCI) return 3; /* Increase the weight of RAID (includes Obsidian) */ if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) return 15; /* Default */ return 10; } #ifdef CONFIG_PCI_IOV static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset) { struct pci_dn *pdn = pci_get_pdn(dev); int i; struct resource *res, res2; resource_size_t size; u16 num_vfs; if (!dev->is_physfn) return -EINVAL; /* * "offset" is in VFs. The M64 windows are sized so that when they * are segmented, each segment is the same size as the IOV BAR. * Each segment is in a separate PE, and the high order bits of the * address are the PE number. Therefore, each VF's BAR is in a * separate PE, and changing the IOV BAR start address changes the * range of PEs the VFs are in. */ num_vfs = pdn->num_vfs; for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { res = &dev->resource[i + PCI_IOV_RESOURCES]; if (!res->flags || !res->parent) continue; if (!pnv_pci_is_mem_pref_64(res->flags)) continue; /* * The actual IOV BAR range is determined by the start address * and the actual size for num_vfs VFs BAR. This check is to * make sure that after shifting, the range will not overlap * with another device. */ size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); res2.flags = res->flags; res2.start = res->start + (size * offset); res2.end = res2.start + (size * num_vfs) - 1; if (res2.end > res->end) { dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n", i, &res2, res, num_vfs, offset); return -EBUSY; } } /* * After doing so, there would be a "hole" in the /proc/iomem when * offset is a positive value. It looks like the device return some * mmio back to the system, which actually no one could use it. */ for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { res = &dev->resource[i + PCI_IOV_RESOURCES]; if (!res->flags || !res->parent) continue; if (!pnv_pci_is_mem_pref_64(res->flags)) continue; size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); res2 = *res; res->start += size * offset; dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (enabling %d VFs shifted by %d)\n", i, &res2, res, num_vfs, offset); pci_update_resource(dev, i + PCI_IOV_RESOURCES); } return 0; } #endif /* CONFIG_PCI_IOV */ #if 0 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; struct pci_dn *pdn = pci_get_pdn(dev); struct pnv_ioda_pe *pe; int pe_num; if (!pdn) { pr_err("%s: Device tree node not associated properly\n", pci_name(dev)); return NULL; } if (pdn->pe_number != IODA_INVALID_PE) return NULL; /* PE#0 has been pre-set */ if (dev->bus->number == 0) pe_num = 0; else pe_num = pnv_ioda_alloc_pe(phb); if (pe_num == IODA_INVALID_PE) { pr_warning("%s: Not enough PE# available, disabling device\n", pci_name(dev)); return NULL; } /* NOTE: We get only one ref to the pci_dev for the pdn, not for the * pointer in the PE data structure, both should be destroyed at the * same time. However, this needs to be looked at more closely again * once we actually start removing things (Hotplug, SR-IOV, ...) * * At some point we want to remove the PDN completely anyways */ pe = &phb->ioda.pe_array[pe_num]; pci_dev_get(dev); pdn->pcidev = dev; pdn->pe_number = pe_num; pe->pdev = dev; pe->pbus = NULL; pe->tce32_seg = -1; pe->mve_number = -1; pe->rid = dev->bus->number << 8 | pdn->devfn; pe_info(pe, "Associated device to PE\n"); if (pnv_ioda_configure_pe(phb, pe)) { /* XXX What do we do here ? */ if (pe_num) pnv_ioda_free_pe(phb, pe_num); pdn->pe_number = IODA_INVALID_PE; pe->pdev = NULL; pci_dev_put(dev); return NULL; } /* Assign a DMA weight to the device */ pe->dma_weight = pnv_ioda_dma_weight(dev); if (pe->dma_weight != 0) { phb->ioda.dma_weight += pe->dma_weight; phb->ioda.dma_pe_count++; } /* Link the PE */ pnv_ioda_link_pe_by_weight(phb, pe); return pe; } #endif /* Useful for SRIOV case */ static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe) { struct pci_dev *dev; list_for_each_entry(dev, &bus->devices, bus_list) { struct pci_dn *pdn = pci_get_pdn(dev); if (pdn == NULL) { pr_warn("%s: No device node associated with device !\n", pci_name(dev)); continue; } pdn->pe_number = pe->pe_number; pe->dma_weight += pnv_ioda_dma_weight(dev); if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) pnv_ioda_setup_same_PE(dev->subordinate, pe); } } /* * There're 2 types of PCI bus sensitive PEs: One that is compromised of * single PCI bus. Another one that contains the primary PCI bus and its * subordinate PCI devices and buses. The second type of PE is normally * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. */ static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all) { struct pci_controller *hose = pci_bus_to_host(bus); struct pnv_phb *phb = hose->private_data; struct pnv_ioda_pe *pe; int pe_num = IODA_INVALID_PE; /* Check if PE is determined by M64 */ if (phb->pick_m64_pe) pe_num = phb->pick_m64_pe(phb, bus, all); /* The PE number isn't pinned by M64 */ if (pe_num == IODA_INVALID_PE) pe_num = pnv_ioda_alloc_pe(phb); if (pe_num == IODA_INVALID_PE) { pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n", __func__, pci_domain_nr(bus), bus->number); return; } pe = &phb->ioda.pe_array[pe_num]; pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); pe->pbus = bus; pe->pdev = NULL; pe->tce32_seg = -1; pe->mve_number = -1; pe->rid = bus->busn_res.start << 8; pe->dma_weight = 0; if (all) pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n", bus->busn_res.start, bus->busn_res.end, pe_num); else pe_info(pe, "Secondary bus %d associated with PE#%d\n", bus->busn_res.start, pe_num); if (pnv_ioda_configure_pe(phb, pe)) { /* XXX What do we do here ? */ if (pe_num) pnv_ioda_free_pe(phb, pe_num); pe->pbus = NULL; return; } /* Associate it with all child devices */ pnv_ioda_setup_same_PE(bus, pe); /* Put PE to the list */ list_add_tail(&pe->list, &phb->ioda.pe_list); /* Account for one DMA PE if at least one DMA capable device exist * below the bridge */ if (pe->dma_weight != 0) { phb->ioda.dma_weight += pe->dma_weight; phb->ioda.dma_pe_count++; } /* Link the PE */ pnv_ioda_link_pe_by_weight(phb, pe); } static void pnv_ioda_setup_PEs(struct pci_bus *bus) { struct pci_dev *dev; pnv_ioda_setup_bus_PE(bus, 0); list_for_each_entry(dev, &bus->devices, bus_list) { if (dev->subordinate) { if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE) pnv_ioda_setup_bus_PE(dev->subordinate, 1); else pnv_ioda_setup_PEs(dev->subordinate); } } } /* * Configure PEs so that the downstream PCI buses and devices * could have their associated PE#. Unfortunately, we didn't * figure out the way to identify the PLX bridge yet. So we * simply put the PCI bus and the subordinate behind the root * port to PE# here. The game rule here is expected to be changed * as soon as we can detected PLX bridge correctly. */ static void pnv_pci_ioda_setup_PEs(void) { struct pci_controller *hose, *tmp; struct pnv_phb *phb; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { phb = hose->private_data; /* M64 layout might affect PE allocation */ if (phb->reserve_m64_pe) phb->reserve_m64_pe(phb); pnv_ioda_setup_PEs(hose->bus); } } #ifdef CONFIG_PCI_IOV static int pnv_pci_vf_release_m64(struct pci_dev *pdev) { struct pci_bus *bus; struct pci_controller *hose; struct pnv_phb *phb; struct pci_dn *pdn; int i, j; bus = pdev->bus; hose = pci_bus_to_host(bus); phb = hose->private_data; pdn = pci_get_pdn(pdev); for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) for (j = 0; j < M64_PER_IOV; j++) { if (pdn->m64_wins[i][j] == IODA_INVALID_M64) continue; opal_pci_phb_mmio_enable(phb->opal_id, OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0); clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc); pdn->m64_wins[i][j] = IODA_INVALID_M64; } return 0; } static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs) { struct pci_bus *bus; struct pci_controller *hose; struct pnv_phb *phb; struct pci_dn *pdn; unsigned int win; struct resource *res; int i, j; int64_t rc; int total_vfs; resource_size_t size, start; int pe_num; int vf_groups; int vf_per_group; bus = pdev->bus; hose = pci_bus_to_host(bus); phb = hose->private_data; pdn = pci_get_pdn(pdev); total_vfs = pci_sriov_get_totalvfs(pdev); /* Initialize the m64_wins to IODA_INVALID_M64 */ for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) for (j = 0; j < M64_PER_IOV; j++) pdn->m64_wins[i][j] = IODA_INVALID_M64; if (pdn->m64_per_iov == M64_PER_IOV) { vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV; vf_per_group = (num_vfs <= M64_PER_IOV)? 1: roundup_pow_of_two(num_vfs) / pdn->m64_per_iov; } else { vf_groups = 1; vf_per_group = 1; } for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { res = &pdev->resource[i + PCI_IOV_RESOURCES]; if (!res->flags || !res->parent) continue; if (!pnv_pci_is_mem_pref_64(res->flags)) continue; for (j = 0; j < vf_groups; j++) { do { win = find_next_zero_bit(&phb->ioda.m64_bar_alloc, phb->ioda.m64_bar_idx + 1, 0); if (win >= phb->ioda.m64_bar_idx + 1) goto m64_failed; } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc)); pdn->m64_wins[i][j] = win; if (pdn->m64_per_iov == M64_PER_IOV) { size = pci_iov_resource_size(pdev, PCI_IOV_RESOURCES + i); size = size * vf_per_group; start = res->start + size * j; } else { size = resource_size(res); start = res->start; } /* Map the M64 here */ if (pdn->m64_per_iov == M64_PER_IOV) { pe_num = pdn->offset + j; rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe_num, OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0); } rc = opal_pci_set_phb_mem_window(phb->opal_id, OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], start, 0, /* unused */ size); if (rc != OPAL_SUCCESS) { dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n", win, rc); goto m64_failed; } if (pdn->m64_per_iov == M64_PER_IOV) rc = opal_pci_phb_mmio_enable(phb->opal_id, OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2); else rc = opal_pci_phb_mmio_enable(phb->opal_id, OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1); if (rc != OPAL_SUCCESS) { dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n", win, rc); goto m64_failed; } } } return 0; m64_failed: pnv_pci_vf_release_m64(pdev); return -EBUSY; } static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe) { struct pci_bus *bus; struct pci_controller *hose; struct pnv_phb *phb; struct iommu_table *tbl; unsigned long addr; int64_t rc; bus = dev->bus; hose = pci_bus_to_host(bus); phb = hose->private_data; tbl = pe->table_group.tables[0]; addr = tbl->it_base; opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, pe->pe_number << 1, 1, __pa(addr), 0, 0x1000); rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, pe->pe_number, (pe->pe_number << 1) + 1, pe->tce_bypass_base, 0); if (rc) pe_warn(pe, "OPAL error %ld release DMA window\n", rc); pnv_pci_unlink_table_and_group(tbl, &pe->table_group); if (pe->table_group.group) { iommu_group_put(pe->table_group.group); BUG_ON(pe->table_group.group); } pnv_pci_ioda2_table_free_pages(tbl); iommu_free_table(tbl, of_node_full_name(dev->dev.of_node)); } static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs) { struct pci_bus *bus; struct pci_controller *hose; struct pnv_phb *phb; struct pnv_ioda_pe *pe, *pe_n; struct pci_dn *pdn; u16 vf_index; int64_t rc; bus = pdev->bus; hose = pci_bus_to_host(bus); phb = hose->private_data; pdn = pci_get_pdn(pdev); if (!pdev->is_physfn) return; if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) { int vf_group; int vf_per_group; int vf_index1; vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov; for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) for (vf_index = vf_group * vf_per_group; vf_index < (vf_group + 1) * vf_per_group && vf_index < num_vfs; vf_index++) for (vf_index1 = vf_group * vf_per_group; vf_index1 < (vf_group + 1) * vf_per_group && vf_index1 < num_vfs; vf_index1++){ rc = opal_pci_set_peltv(phb->opal_id, pdn->offset + vf_index, pdn->offset + vf_index1, OPAL_REMOVE_PE_FROM_DOMAIN); if (rc) dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n", __func__, pdn->offset + vf_index1, rc); } } list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) { if (pe->parent_dev != pdev) continue; pnv_pci_ioda2_release_dma_pe(pdev, pe); /* Remove from list */ mutex_lock(&phb->ioda.pe_list_mutex); list_del(&pe->list); mutex_unlock(&phb->ioda.pe_list_mutex); pnv_ioda_deconfigure_pe(phb, pe); pnv_ioda_free_pe(phb, pe->pe_number); } } void pnv_pci_sriov_disable(struct pci_dev *pdev) { struct pci_bus *bus; struct pci_controller *hose; struct pnv_phb *phb; struct pci_dn *pdn; struct pci_sriov *iov; u16 num_vfs; bus = pdev->bus; hose = pci_bus_to_host(bus); phb = hose->private_data; pdn = pci_get_pdn(pdev); iov = pdev->sriov; num_vfs = pdn->num_vfs; /* Release VF PEs */ pnv_ioda_release_vf_PE(pdev, num_vfs); if (phb->type == PNV_PHB_IODA2) { if (pdn->m64_per_iov == 1) pnv_pci_vf_resource_shift(pdev, -pdn->offset); /* Release M64 windows */ pnv_pci_vf_release_m64(pdev); /* Release PE numbers */ bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs); pdn->offset = 0; } } static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe); static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs) { struct pci_bus *bus; struct pci_controller *hose; struct pnv_phb *phb; struct pnv_ioda_pe *pe; int pe_num; u16 vf_index; struct pci_dn *pdn; int64_t rc; bus = pdev->bus; hose = pci_bus_to_host(bus); phb = hose->private_data; pdn = pci_get_pdn(pdev); if (!pdev->is_physfn) return; /* Reserve PE for each VF */ for (vf_index = 0; vf_index < num_vfs; vf_index++) { pe_num = pdn->offset + vf_index; pe = &phb->ioda.pe_array[pe_num]; pe->pe_number = pe_num; pe->phb = phb; pe->flags = PNV_IODA_PE_VF; pe->pbus = NULL; pe->parent_dev = pdev; pe->tce32_seg = -1; pe->mve_number = -1; pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) | pci_iov_virtfn_devfn(pdev, vf_index); pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n", hose->global_number, pdev->bus->number, PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)), PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num); if (pnv_ioda_configure_pe(phb, pe)) { /* XXX What do we do here ? */ if (pe_num) pnv_ioda_free_pe(phb, pe_num); pe->pdev = NULL; continue; } /* Put PE to the list */ mutex_lock(&phb->ioda.pe_list_mutex); list_add_tail(&pe->list, &phb->ioda.pe_list); mutex_unlock(&phb->ioda.pe_list_mutex); pnv_pci_ioda2_setup_dma_pe(phb, pe); } if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) { int vf_group; int vf_per_group; int vf_index1; vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov; for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) { for (vf_index = vf_group * vf_per_group; vf_index < (vf_group + 1) * vf_per_group && vf_index < num_vfs; vf_index++) { for (vf_index1 = vf_group * vf_per_group; vf_index1 < (vf_group + 1) * vf_per_group && vf_index1 < num_vfs; vf_index1++) { rc = opal_pci_set_peltv(phb->opal_id, pdn->offset + vf_index, pdn->offset + vf_index1, OPAL_ADD_PE_TO_DOMAIN); if (rc) dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n", __func__, pdn->offset + vf_index1, rc); } } } } } int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs) { struct pci_bus *bus; struct pci_controller *hose; struct pnv_phb *phb; struct pci_dn *pdn; int ret; bus = pdev->bus; hose = pci_bus_to_host(bus); phb = hose->private_data; pdn = pci_get_pdn(pdev); if (phb->type == PNV_PHB_IODA2) { /* Calculate available PE for required VFs */ mutex_lock(&phb->ioda.pe_alloc_mutex); pdn->offset = bitmap_find_next_zero_area( phb->ioda.pe_alloc, phb->ioda.total_pe, 0, num_vfs, 0); if (pdn->offset >= phb->ioda.total_pe) { mutex_unlock(&phb->ioda.pe_alloc_mutex); dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs); pdn->offset = 0; return -EBUSY; } bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs); pdn->num_vfs = num_vfs; mutex_unlock(&phb->ioda.pe_alloc_mutex); /* Assign M64 window accordingly */ ret = pnv_pci_vf_assign_m64(pdev, num_vfs); if (ret) { dev_info(&pdev->dev, "Not enough M64 window resources\n"); goto m64_failed; } /* * When using one M64 BAR to map one IOV BAR, we need to shift * the IOV BAR according to the PE# allocated to the VFs. * Otherwise, the PE# for the VF will conflict with others. */ if (pdn->m64_per_iov == 1) { ret = pnv_pci_vf_resource_shift(pdev, pdn->offset); if (ret) goto m64_failed; } } /* Setup VF PEs */ pnv_ioda_setup_vf_PE(pdev, num_vfs); return 0; m64_failed: bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs); pdn->offset = 0; return ret; } int pcibios_sriov_disable(struct pci_dev *pdev) { pnv_pci_sriov_disable(pdev); /* Release PCI data */ remove_dev_pci_data(pdev); return 0; } int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) { /* Allocate PCI data */ add_dev_pci_data(pdev); pnv_pci_sriov_enable(pdev, num_vfs); return 0; } #endif /* CONFIG_PCI_IOV */ static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev) { struct pci_dn *pdn = pci_get_pdn(pdev); struct pnv_ioda_pe *pe; /* * The function can be called while the PE# * hasn't been assigned. Do nothing for the * case. */ if (!pdn || pdn->pe_number == IODA_INVALID_PE) return; pe = &phb->ioda.pe_array[pdn->pe_number]; WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); /* * Note: iommu_add_device() will fail here as * for physical PE: the device is already added by now; * for virtual PE: sysfs entries are not ready yet and * tce_iommu_bus_notifier will add the device to a group later. */ } static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask) { struct pci_controller *hose = pci_bus_to_host(pdev->bus); struct pnv_phb *phb = hose->private_data; struct pci_dn *pdn = pci_get_pdn(pdev); struct pnv_ioda_pe *pe; uint64_t top; bool bypass = false; if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) return -ENODEV;; pe = &phb->ioda.pe_array[pdn->pe_number]; if (pe->tce_bypass_enabled) { top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; bypass = (dma_mask >= top); } if (bypass) { dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n"); set_dma_ops(&pdev->dev, &dma_direct_ops); set_dma_offset(&pdev->dev, pe->tce_bypass_base); } else { dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n"); set_dma_ops(&pdev->dev, &dma_iommu_ops); set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); } *pdev->dev.dma_mask = dma_mask; return 0; } static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb, struct pci_dev *pdev) { struct pci_dn *pdn = pci_get_pdn(pdev); struct pnv_ioda_pe *pe; u64 end, mask; if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) return 0; pe = &phb->ioda.pe_array[pdn->pe_number]; if (!pe->tce_bypass_enabled) return __dma_get_required_mask(&pdev->dev); end = pe->tce_bypass_base + memblock_end_of_DRAM(); mask = 1ULL << (fls64(end) - 1); mask += mask - 1; return mask; } static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus) { struct pci_dev *dev; list_for_each_entry(dev, &bus->devices, bus_list) { set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); iommu_add_device(&dev->dev); if (dev->subordinate) pnv_ioda_setup_bus_dma(pe, dev->subordinate); } } static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl, unsigned long index, unsigned long npages, bool rm) { struct iommu_table_group_link *tgl = list_first_entry_or_null( &tbl->it_group_list, struct iommu_table_group_link, next); struct pnv_ioda_pe *pe = container_of(tgl->table_group, struct pnv_ioda_pe, table_group); __be64 __iomem *invalidate = rm ? (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys : pe->phb->ioda.tce_inval_reg; unsigned long start, end, inc; const unsigned shift = tbl->it_page_shift; start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset); end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset + npages - 1); /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */ if (tbl->it_busno) { start <<= shift; end <<= shift; inc = 128ull << shift; start |= tbl->it_busno; end |= tbl->it_busno; } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) { /* p7ioc-style invalidation, 2 TCEs per write */ start |= (1ull << 63); end |= (1ull << 63); inc = 16; } else { /* Default (older HW) */ inc = 128; } end |= inc - 1; /* round up end to be different than start */ mb(); /* Ensure above stores are visible */ while (start <= end) { if (rm) __raw_rm_writeq(cpu_to_be64(start), invalidate); else __raw_writeq(cpu_to_be64(start), invalidate); start += inc; } /* * The iommu layer will do another mb() for us on build() * and we don't care on free() */ } static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index, long npages, unsigned long uaddr, enum dma_data_direction direction, struct dma_attrs *attrs) { int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, attrs); if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE)) pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false); return ret; } #ifdef CONFIG_IOMMU_API static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index, unsigned long *hpa, enum dma_data_direction *direction) { long ret = pnv_tce_xchg(tbl, index, hpa, direction); if (!ret && (tbl->it_type & (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE))) pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false); return ret; } #endif static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index, long npages) { pnv_tce_free(tbl, index, npages); if (tbl->it_type & TCE_PCI_SWINV_FREE) pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false); } static struct iommu_table_ops pnv_ioda1_iommu_ops = { .set = pnv_ioda1_tce_build, #ifdef CONFIG_IOMMU_API .exchange = pnv_ioda1_tce_xchg, #endif .clear = pnv_ioda1_tce_free, .get = pnv_tce_get, }; static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe) { /* 01xb - invalidate TCEs that match the specified PE# */ unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF); struct pnv_phb *phb = pe->phb; if (!phb->ioda.tce_inval_reg) return; mb(); /* Ensure above stores are visible */ __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg); } static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm, __be64 __iomem *invalidate, unsigned shift, unsigned long index, unsigned long npages) { unsigned long start, end, inc; /* We'll invalidate DMA address in PE scope */ start = 0x2ull << 60; start |= (pe_number & 0xFF); end = start; /* Figure out the start, end and step */ start |= (index << shift); end |= ((index + npages - 1) << shift); inc = (0x1ull << shift); mb(); while (start <= end) { if (rm) __raw_rm_writeq(cpu_to_be64(start), invalidate); else __raw_writeq(cpu_to_be64(start), invalidate); start += inc; } } static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, unsigned long index, unsigned long npages, bool rm) { struct iommu_table_group_link *tgl; list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) { struct pnv_ioda_pe *pe = container_of(tgl->table_group, struct pnv_ioda_pe, table_group); __be64 __iomem *invalidate = rm ? (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys : pe->phb->ioda.tce_inval_reg; pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm, invalidate, tbl->it_page_shift, index, npages); } } static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, long npages, unsigned long uaddr, enum dma_data_direction direction, struct dma_attrs *attrs) { int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, attrs); if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE)) pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); return ret; } #ifdef CONFIG_IOMMU_API static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index, unsigned long *hpa, enum dma_data_direction *direction) { long ret = pnv_tce_xchg(tbl, index, hpa, direction); if (!ret && (tbl->it_type & (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE))) pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false); return ret; } #endif static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, long npages) { pnv_tce_free(tbl, index, npages); if (tbl->it_type & TCE_PCI_SWINV_FREE) pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); } static struct iommu_table_ops pnv_ioda2_iommu_ops = { .set = pnv_ioda2_tce_build, #ifdef CONFIG_IOMMU_API .exchange = pnv_ioda2_tce_xchg, #endif .clear = pnv_ioda2_tce_free, .get = pnv_tce_get, }; static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe, unsigned int base, unsigned int segs) { struct page *tce_mem = NULL; struct iommu_table *tbl; unsigned int i; int64_t rc; void *addr; /* XXX FIXME: Handle 64-bit only DMA devices */ /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ /* XXX FIXME: Allocate multi-level tables on PHB3 */ /* We shouldn't already have a 32-bit DMA associated */ if (WARN_ON(pe->tce32_seg >= 0)) return; tbl = pnv_pci_table_alloc(phb->hose->node); iommu_register_group(&pe->table_group, phb->hose->global_number, pe->pe_number); pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); /* Grab a 32-bit TCE table */ pe->tce32_seg = base; pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", (base << 28), ((base + segs) << 28) - 1); /* XXX Currently, we allocate one big contiguous table for the * TCEs. We only really need one chunk per 256M of TCE space * (ie per segment) but that's an optimization for later, it * requires some added smarts with our get/put_tce implementation */ tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, get_order(TCE32_TABLE_SIZE * segs)); if (!tce_mem) { pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); goto fail; } addr = page_address(tce_mem); memset(addr, 0, TCE32_TABLE_SIZE * segs); /* Configure HW */ for (i = 0; i < segs; i++) { rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, base + i, 1, __pa(addr) + TCE32_TABLE_SIZE * i, TCE32_TABLE_SIZE, 0x1000); if (rc) { pe_err(pe, " Failed to configure 32-bit TCE table," " err %ld\n", rc); goto fail; } } /* Setup linux iommu table */ pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs, base << 28, IOMMU_PAGE_SHIFT_4K); /* OPAL variant of P7IOC SW invalidated TCEs */ if (phb->ioda.tce_inval_reg) tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE | TCE_PCI_SWINV_PAIR); tbl->it_ops = &pnv_ioda1_iommu_ops; iommu_init_table(tbl, phb->hose->node); if (pe->flags & PNV_IODA_PE_DEV) { /* * Setting table base here only for carrying iommu_group * further down to let iommu_add_device() do the job. * pnv_pci_ioda_dma_dev_setup will override it later anyway. */ set_iommu_table_base(&pe->pdev->dev, tbl); iommu_add_device(&pe->pdev->dev); } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) pnv_ioda_setup_bus_dma(pe, pe->pbus); return; fail: /* XXX Failure: Try to fallback to 64-bit only ? */ if (pe->tce32_seg >= 0) pe->tce32_seg = -1; if (tce_mem) __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs)); if (tbl) { pnv_pci_unlink_table_and_group(tbl, &pe->table_group); iommu_free_table(tbl, "pnv"); } } static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) { uint16_t window_id = (pe->pe_number << 1 ) + 1; int64_t rc; pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); if (enable) { phys_addr_t top = memblock_end_of_DRAM(); top = roundup_pow_of_two(top); rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, pe->pe_number, window_id, pe->tce_bypass_base, top); } else { rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, pe->pe_number, window_id, pe->tce_bypass_base, 0); } if (rc) pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); else pe->tce_bypass_enabled = enable; } #ifdef CONFIG_IOMMU_API static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) { struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, table_group); iommu_take_ownership(table_group->tables[0]); pnv_pci_ioda2_set_bypass(pe, false); } static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group) { struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, table_group); iommu_release_ownership(table_group->tables[0]); pnv_pci_ioda2_set_bypass(pe, true); } static struct iommu_table_group_ops pnv_pci_ioda2_ops = { .take_ownership = pnv_ioda2_take_ownership, .release_ownership = pnv_ioda2_release_ownership, }; #endif static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb) { const __be64 *swinvp; /* OPAL variant of PHB3 invalidated TCEs */ swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL); if (!swinvp) return; phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp); phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8); } static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift) { struct page *tce_mem = NULL; __be64 *addr; unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT; tce_mem = alloc_pages_node(nid, GFP_KERNEL, order); if (!tce_mem) { pr_err("Failed to allocate a TCE memory, order=%d\n", order); return NULL; } addr = page_address(tce_mem); memset(addr, 0, 1UL << (order + PAGE_SHIFT)); return addr; } static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, __u32 page_shift, __u64 window_size, struct iommu_table *tbl) { void *addr; const unsigned window_shift = ilog2(window_size); unsigned entries_shift = window_shift - page_shift; unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT); const unsigned long tce_table_size = 1UL << table_shift; if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size)) return -EINVAL; /* Allocate TCE table */ addr = pnv_pci_ioda2_table_do_alloc_pages(nid, table_shift); if (!addr) return -ENOMEM; /* Setup linux iommu table */ pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset, page_shift); pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n", window_size, tce_table_size, bus_offset); return 0; } static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl) { if (!tbl->it_size) return; free_pages(tbl->it_base, get_order(tbl->it_size << 3)); } static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) { struct iommu_table *tbl; int64_t rc; /* We shouldn't already have a 32-bit DMA associated */ if (WARN_ON(pe->tce32_seg >= 0)) return; /* TVE #1 is selected by PCI address bit 59 */ pe->tce_bypass_base = 1ull << 59; tbl = pnv_pci_table_alloc(phb->hose->node); iommu_register_group(&pe->table_group, phb->hose->global_number, pe->pe_number); pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); /* The PE will reserve all possible 32-bits space */ pe->tce32_seg = 0; pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", phb->ioda.m32_pci_base); /* Setup linux iommu table */ rc = pnv_pci_ioda2_table_alloc_pages(pe->phb->hose->node, 0, IOMMU_PAGE_SHIFT_4K, phb->ioda.m32_pci_base, tbl); if (rc) { pe_err(pe, "Failed to create 32-bit TCE table, err %ld", rc); goto fail; } tbl->it_ops = &pnv_ioda2_iommu_ops; iommu_init_table(tbl, phb->hose->node); #ifdef CONFIG_IOMMU_API pe->table_group.ops = &pnv_pci_ioda2_ops; #endif /* * Map TCE table through TVT. The TVE index is the PE number * shifted by 1 bit for 32-bits DMA space. */ rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, pe->pe_number << 1, 1, __pa(tbl->it_base), tbl->it_size << 3, 1ULL << tbl->it_page_shift); if (rc) { pe_err(pe, "Failed to configure 32-bit TCE table," " err %ld\n", rc); goto fail; } pnv_pci_ioda2_tce_invalidate_entire(pe); /* OPAL variant of PHB3 invalidated TCEs */ if (phb->ioda.tce_inval_reg) tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE); if (pe->flags & PNV_IODA_PE_DEV) { /* * Setting table base here only for carrying iommu_group * further down to let iommu_add_device() do the job. * pnv_pci_ioda_dma_dev_setup will override it later anyway. */ set_iommu_table_base(&pe->pdev->dev, tbl); iommu_add_device(&pe->pdev->dev); } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) pnv_ioda_setup_bus_dma(pe, pe->pbus); /* Also create a bypass window */ if (!pnv_iommu_bypass_disabled) pnv_pci_ioda2_set_bypass(pe, true); return; fail: if (pe->tce32_seg >= 0) pe->tce32_seg = -1; if (tbl) { pnv_pci_ioda2_table_free_pages(tbl); pnv_pci_unlink_table_and_group(tbl, &pe->table_group); iommu_free_table(tbl, "pnv"); } } static void pnv_ioda_setup_dma(struct pnv_phb *phb) { struct pci_controller *hose = phb->hose; unsigned int residual, remaining, segs, tw, base; struct pnv_ioda_pe *pe; /* If we have more PE# than segments available, hand out one * per PE until we run out and let the rest fail. If not, * then we assign at least one segment per PE, plus more based * on the amount of devices under that PE */ if (phb->ioda.dma_pe_count > phb->ioda.tce32_count) residual = 0; else residual = phb->ioda.tce32_count - phb->ioda.dma_pe_count; pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n", hose->global_number, phb->ioda.tce32_count); pr_info("PCI: %d PE# for a total weight of %d\n", phb->ioda.dma_pe_count, phb->ioda.dma_weight); pnv_pci_ioda_setup_opal_tce_kill(phb); /* Walk our PE list and configure their DMA segments, hand them * out one base segment plus any residual segments based on * weight */ remaining = phb->ioda.tce32_count; tw = phb->ioda.dma_weight; base = 0; list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) { if (!pe->dma_weight) continue; if (!remaining) { pe_warn(pe, "No DMA32 resources available\n"); continue; } segs = 1; if (residual) { segs += ((pe->dma_weight * residual) + (tw / 2)) / tw; if (segs > remaining) segs = remaining; } /* * For IODA2 compliant PHB3, we needn't care about the weight. * The all available 32-bits DMA space will be assigned to * the specific PE. */ if (phb->type == PNV_PHB_IODA1) { pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n", pe->dma_weight, segs); pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs); } else { pe_info(pe, "Assign DMA32 space\n"); segs = 0; pnv_pci_ioda2_setup_dma_pe(phb, pe); } remaining -= segs; base += segs; } } #ifdef CONFIG_PCI_MSI static void pnv_ioda2_msi_eoi(struct irq_data *d) { unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); struct irq_chip *chip = irq_data_get_irq_chip(d); struct pnv_phb *phb = container_of(chip, struct pnv_phb, ioda.irq_chip); int64_t rc; rc = opal_pci_msi_eoi(phb->opal_id, hw_irq); WARN_ON_ONCE(rc); icp_native_eoi(d); } static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq) { struct irq_data *idata; struct irq_chip *ichip; if (phb->type != PNV_PHB_IODA2) return; if (!phb->ioda.irq_chip_init) { /* * First time we setup an MSI IRQ, we need to setup the * corresponding IRQ chip to route correctly. */ idata = irq_get_irq_data(virq); ichip = irq_data_get_irq_chip(idata); phb->ioda.irq_chip_init = 1; phb->ioda.irq_chip = *ichip; phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; } irq_set_chip(virq, &phb->ioda.irq_chip); } #ifdef CONFIG_CXL_BASE struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); return of_node_get(hose->dn); } EXPORT_SYMBOL(pnv_pci_get_phb_node); int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; struct pnv_ioda_pe *pe; int rc; pe = pnv_ioda_get_pe(dev); if (!pe) return -ENODEV; pe_info(pe, "Switching PHB to CXL\n"); rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number); if (rc) dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc); return rc; } EXPORT_SYMBOL(pnv_phb_to_cxl_mode); /* Find PHB for cxl dev and allocate MSI hwirqs? * Returns the absolute hardware IRQ number */ int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num); if (hwirq < 0) { dev_warn(&dev->dev, "Failed to find a free MSI\n"); return -ENOSPC; } return phb->msi_base + hwirq; } EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs); void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num); } EXPORT_SYMBOL(pnv_cxl_release_hwirqs); void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs, struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; int i, hwirq; for (i = 1; i < CXL_IRQ_RANGES; i++) { if (!irqs->range[i]) continue; pr_devel("cxl release irq range 0x%x: offset: 0x%lx limit: %ld\n", i, irqs->offset[i], irqs->range[i]); hwirq = irqs->offset[i] - phb->msi_base; msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, irqs->range[i]); } } EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges); int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs, struct pci_dev *dev, int num) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; int i, hwirq, try; memset(irqs, 0, sizeof(struct cxl_irq_ranges)); /* 0 is reserved for the multiplexed PSL DSI interrupt */ for (i = 1; i < CXL_IRQ_RANGES && num; i++) { try = num; while (try) { hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try); if (hwirq >= 0) break; try /= 2; } if (!try) goto fail; irqs->offset[i] = phb->msi_base + hwirq; irqs->range[i] = try; pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx limit: %li\n", i, irqs->offset[i], irqs->range[i]); num -= try; } if (num) goto fail; return 0; fail: pnv_cxl_release_hwirq_ranges(irqs, dev); return -ENOSPC; } EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges); int pnv_cxl_get_irq_count(struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; return phb->msi_bmp.irq_count; } EXPORT_SYMBOL(pnv_cxl_get_irq_count); int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq, unsigned int virq) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; unsigned int xive_num = hwirq - phb->msi_base; struct pnv_ioda_pe *pe; int rc; if (!(pe = pnv_ioda_get_pe(dev))) return -ENODEV; /* Assign XIVE to PE */ rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); if (rc) { pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x " "hwirq 0x%x XIVE 0x%x PE\n", pci_name(dev), rc, phb->msi_base, hwirq, xive_num); return -EIO; } set_msi_irq_chip(phb, virq); return 0; } EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup); #endif static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, unsigned int hwirq, unsigned int virq, unsigned int is_64, struct msi_msg *msg) { struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); unsigned int xive_num = hwirq - phb->msi_base; __be32 data; int rc; /* No PE assigned ? bail out ... no MSI for you ! */ if (pe == NULL) return -ENXIO; /* Check if we have an MVE */ if (pe->mve_number < 0) return -ENXIO; /* Force 32-bit MSI on some broken devices */ if (dev->no_64bit_msi) is_64 = 0; /* Assign XIVE to PE */ rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); if (rc) { pr_warn("%s: OPAL error %d setting XIVE %d PE\n", pci_name(dev), rc, xive_num); return -EIO; } if (is_64) { __be64 addr64; rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, &addr64, &data); if (rc) { pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", pci_name(dev), rc); return -EIO; } msg->address_hi = be64_to_cpu(addr64) >> 32; msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; } else { __be32 addr32; rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, &addr32, &data); if (rc) { pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", pci_name(dev), rc); return -EIO; } msg->address_hi = 0; msg->address_lo = be32_to_cpu(addr32); } msg->data = be32_to_cpu(data); set_msi_irq_chip(phb, virq); pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d)," " address=%x_%08x data=%x PE# %d\n", pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num, msg->address_hi, msg->address_lo, data, pe->pe_number); return 0; } static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { unsigned int count; const __be32 *prop = of_get_property(phb->hose->dn, "ibm,opal-msi-ranges", NULL); if (!prop) { /* BML Fallback */ prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); } if (!prop) return; phb->msi_base = be32_to_cpup(prop); count = be32_to_cpup(prop + 1); if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { pr_err("PCI %d: Failed to allocate MSI bitmap !\n", phb->hose->global_number); return; } phb->msi_setup = pnv_pci_ioda_msi_setup; phb->msi32_support = 1; pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", count, phb->msi_base); } #else static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { } #endif /* CONFIG_PCI_MSI */ #ifdef CONFIG_PCI_IOV static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev) { struct pci_controller *hose; struct pnv_phb *phb; struct resource *res; int i; resource_size_t size; struct pci_dn *pdn; int mul, total_vfs; if (!pdev->is_physfn || pdev->is_added) return; hose = pci_bus_to_host(pdev->bus); phb = hose->private_data; pdn = pci_get_pdn(pdev); pdn->vfs_expanded = 0; total_vfs = pci_sriov_get_totalvfs(pdev); pdn->m64_per_iov = 1; mul = phb->ioda.total_pe; for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { res = &pdev->resource[i + PCI_IOV_RESOURCES]; if (!res->flags || res->parent) continue; if (!pnv_pci_is_mem_pref_64(res->flags)) { dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n", i, res); continue; } size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); /* bigger than 64M */ if (size > (1 << 26)) { dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n", i, res); pdn->m64_per_iov = M64_PER_IOV; mul = roundup_pow_of_two(total_vfs); break; } } for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { res = &pdev->resource[i + PCI_IOV_RESOURCES]; if (!res->flags || res->parent) continue; if (!pnv_pci_is_mem_pref_64(res->flags)) { dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n", i, res); continue; } dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res); size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); res->end = res->start + size * mul - 1; dev_dbg(&pdev->dev, " %pR\n", res); dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)", i, res, mul); } pdn->vfs_expanded = mul; } #endif /* CONFIG_PCI_IOV */ /* * This function is supposed to be called on basis of PE from top * to bottom style. So the the I/O or MMIO segment assigned to * parent PE could be overrided by its child PEs if necessary. */ static void pnv_ioda_setup_pe_seg(struct pci_controller *hose, struct pnv_ioda_pe *pe) { struct pnv_phb *phb = hose->private_data; struct pci_bus_region region; struct resource *res; int i, index; int rc; /* * NOTE: We only care PCI bus based PE for now. For PCI * device based PE, for example SRIOV sensitive VF should * be figured out later. */ BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); pci_bus_for_each_resource(pe->pbus, res, i) { if (!res || !res->flags || res->start > res->end) continue; if (res->flags & IORESOURCE_IO) { region.start = res->start - phb->ioda.io_pci_base; region.end = res->end - phb->ioda.io_pci_base; index = region.start / phb->ioda.io_segsize; while (index < phb->ioda.total_pe && region.start <= region.end) { phb->ioda.io_segmap[index] = pe->pe_number; rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); if (rc != OPAL_SUCCESS) { pr_err("%s: OPAL error %d when mapping IO " "segment #%d to PE#%d\n", __func__, rc, index, pe->pe_number); break; } region.start += phb->ioda.io_segsize; index++; } } else if ((res->flags & IORESOURCE_MEM) && !pnv_pci_is_mem_pref_64(res->flags)) { region.start = res->start - hose->mem_offset[0] - phb->ioda.m32_pci_base; region.end = res->end - hose->mem_offset[0] - phb->ioda.m32_pci_base; index = region.start / phb->ioda.m32_segsize; while (index < phb->ioda.total_pe && region.start <= region.end) { phb->ioda.m32_segmap[index] = pe->pe_number; rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); if (rc != OPAL_SUCCESS) { pr_err("%s: OPAL error %d when mapping M32 " "segment#%d to PE#%d", __func__, rc, index, pe->pe_number); break; } region.start += phb->ioda.m32_segsize; index++; } } } } static void pnv_pci_ioda_setup_seg(void) { struct pci_controller *tmp, *hose; struct pnv_phb *phb; struct pnv_ioda_pe *pe; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { phb = hose->private_data; list_for_each_entry(pe, &phb->ioda.pe_list, list) { pnv_ioda_setup_pe_seg(hose, pe); } } } static void pnv_pci_ioda_setup_DMA(void) { struct pci_controller *hose, *tmp; struct pnv_phb *phb; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { pnv_ioda_setup_dma(hose->private_data); /* Mark the PHB initialization done */ phb = hose->private_data; phb->initialized = 1; } } static void pnv_pci_ioda_create_dbgfs(void) { #ifdef CONFIG_DEBUG_FS struct pci_controller *hose, *tmp; struct pnv_phb *phb; char name[16]; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { phb = hose->private_data; sprintf(name, "PCI%04x", hose->global_number); phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root); if (!phb->dbgfs) pr_warning("%s: Error on creating debugfs on PHB#%x\n", __func__, hose->global_number); } #endif /* CONFIG_DEBUG_FS */ } static void pnv_pci_ioda_fixup(void) { pnv_pci_ioda_setup_PEs(); pnv_pci_ioda_setup_seg(); pnv_pci_ioda_setup_DMA(); pnv_pci_ioda_create_dbgfs(); #ifdef CONFIG_EEH eeh_init(); eeh_addr_cache_build(); #endif } /* * Returns the alignment for I/O or memory windows for P2P * bridges. That actually depends on how PEs are segmented. * For now, we return I/O or M32 segment size for PE sensitive * P2P bridges. Otherwise, the default values (4KiB for I/O, * 1MiB for memory) will be returned. * * The current PCI bus might be put into one PE, which was * create against the parent PCI bridge. For that case, we * needn't enlarge the alignment so that we can save some * resources. */ static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, unsigned long type) { struct pci_dev *bridge; struct pci_controller *hose = pci_bus_to_host(bus); struct pnv_phb *phb = hose->private_data; int num_pci_bridges = 0; bridge = bus->self; while (bridge) { if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { num_pci_bridges++; if (num_pci_bridges >= 2) return 1; } bridge = bridge->bus->self; } /* We fail back to M32 if M64 isn't supported */ if (phb->ioda.m64_segsize && pnv_pci_is_mem_pref_64(type)) return phb->ioda.m64_segsize; if (type & IORESOURCE_MEM) return phb->ioda.m32_segsize; return phb->ioda.io_segsize; } #ifdef CONFIG_PCI_IOV static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, int resno) { struct pci_dn *pdn = pci_get_pdn(pdev); resource_size_t align, iov_align; iov_align = resource_size(&pdev->resource[resno]); if (iov_align) return iov_align; align = pci_iov_resource_size(pdev, resno); if (pdn->vfs_expanded) return pdn->vfs_expanded * align; return align; } #endif /* CONFIG_PCI_IOV */ /* Prevent enabling devices for which we couldn't properly * assign a PE */ static bool pnv_pci_enable_device_hook(struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; struct pci_dn *pdn; /* The function is probably called while the PEs have * not be created yet. For example, resource reassignment * during PCI probe period. We just skip the check if * PEs isn't ready. */ if (!phb->initialized) return true; pdn = pci_get_pdn(dev); if (!pdn || pdn->pe_number == IODA_INVALID_PE) return false; return true; } static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus, u32 devfn) { return phb->ioda.pe_rmap[(bus->number << 8) | devfn]; } static void pnv_pci_ioda_shutdown(struct pci_controller *hose) { struct pnv_phb *phb = hose->private_data; opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); } static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { .dma_dev_setup = pnv_pci_dma_dev_setup, #ifdef CONFIG_PCI_MSI .setup_msi_irqs = pnv_setup_msi_irqs, .teardown_msi_irqs = pnv_teardown_msi_irqs, #endif .enable_device_hook = pnv_pci_enable_device_hook, .window_alignment = pnv_pci_window_alignment, .reset_secondary_bus = pnv_pci_reset_secondary_bus, .dma_set_mask = pnv_pci_ioda_dma_set_mask, .shutdown = pnv_pci_ioda_shutdown, }; static void __init pnv_pci_init_ioda_phb(struct device_node *np, u64 hub_id, int ioda_type) { struct pci_controller *hose; struct pnv_phb *phb; unsigned long size, m32map_off, pemap_off, iomap_off = 0; const __be64 *prop64; const __be32 *prop32; int len; u64 phb_id; void *aux; long rc; pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name); prop64 = of_get_property(np, "ibm,opal-phbid", NULL); if (!prop64) { pr_err(" Missing \"ibm,opal-phbid\" property !\n"); return; } phb_id = be64_to_cpup(prop64); pr_debug(" PHB-ID : 0x%016llx\n", phb_id); phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0); /* Allocate PCI controller */ phb->hose = hose = pcibios_alloc_controller(np); if (!phb->hose) { pr_err(" Can't allocate PCI controller for %s\n", np->full_name); memblock_free(__pa(phb), sizeof(struct pnv_phb)); return; } spin_lock_init(&phb->lock); prop32 = of_get_property(np, "bus-range", &len); if (prop32 && len == 8) { hose->first_busno = be32_to_cpu(prop32[0]); hose->last_busno = be32_to_cpu(prop32[1]); } else { pr_warn(" Broken on %s\n", np->full_name); hose->first_busno = 0; hose->last_busno = 0xff; } hose->private_data = phb; phb->hub_id = hub_id; phb->opal_id = phb_id; phb->type = ioda_type; mutex_init(&phb->ioda.pe_alloc_mutex); /* Detect specific models for error handling */ if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) phb->model = PNV_PHB_MODEL_P7IOC; else if (of_device_is_compatible(np, "ibm,power8-pciex")) phb->model = PNV_PHB_MODEL_PHB3; else phb->model = PNV_PHB_MODEL_UNKNOWN; /* Parse 32-bit and IO ranges (if any) */ pci_process_bridge_OF_ranges(hose, np, !hose->global_number); /* Get registers */ phb->regs = of_iomap(np, 0); if (phb->regs == NULL) pr_err(" Failed to map registers !\n"); /* Initialize more IODA stuff */ phb->ioda.total_pe = 1; prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); if (prop32) phb->ioda.total_pe = be32_to_cpup(prop32); prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); if (prop32) phb->ioda.reserved_pe = be32_to_cpup(prop32); /* Parse 64-bit MMIO range */ pnv_ioda_parse_m64_window(phb); phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); /* FW Has already off top 64k of M32 space (MSI space) */ phb->ioda.m32_size += 0x10000; phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe; phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; phb->ioda.io_size = hose->pci_io_size; phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe; phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long)); m32map_off = size; size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]); if (phb->type == PNV_PHB_IODA1) { iomap_off = size; size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]); } pemap_off = size; size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe); aux = memblock_virt_alloc(size, 0); phb->ioda.pe_alloc = aux; phb->ioda.m32_segmap = aux + m32map_off; if (phb->type == PNV_PHB_IODA1) phb->ioda.io_segmap = aux + iomap_off; phb->ioda.pe_array = aux + pemap_off; set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc); INIT_LIST_HEAD(&phb->ioda.pe_dma_list); INIT_LIST_HEAD(&phb->ioda.pe_list); mutex_init(&phb->ioda.pe_list_mutex); /* Calculate how many 32-bit TCE segments we have */ phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28; #if 0 /* We should really do that ... */ rc = opal_pci_set_phb_mem_window(opal->phb_id, window_type, window_num, starting_real_address, starting_pci_address, segment_size); #endif pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", phb->ioda.total_pe, phb->ioda.reserved_pe, phb->ioda.m32_size, phb->ioda.m32_segsize); if (phb->ioda.m64_size) pr_info(" M64: 0x%lx [segment=0x%lx]\n", phb->ioda.m64_size, phb->ioda.m64_segsize); if (phb->ioda.io_size) pr_info(" IO: 0x%x [segment=0x%x]\n", phb->ioda.io_size, phb->ioda.io_segsize); phb->hose->ops = &pnv_pci_ops; phb->get_pe_state = pnv_ioda_get_pe_state; phb->freeze_pe = pnv_ioda_freeze_pe; phb->unfreeze_pe = pnv_ioda_unfreeze_pe; /* Setup RID -> PE mapping function */ phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe; /* Setup TCEs */ phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup; phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask; /* Setup MSI support */ pnv_pci_init_ioda_msis(phb); /* * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here * to let the PCI core do resource assignment. It's supposed * that the PCI core will do correct I/O and MMIO alignment * for the P2P bridge bars so that each PCI bus (excluding * the child P2P bridges) can form individual PE. */ ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; hose->controller_ops = pnv_pci_ioda_controller_ops; #ifdef CONFIG_PCI_IOV ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources; ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; #endif pci_add_flags(PCI_REASSIGN_ALL_RSRC); /* Reset IODA tables to a clean state */ rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); if (rc) pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc); /* If we're running in kdump kerenl, the previous kerenl never * shutdown PCI devices correctly. We already got IODA table * cleaned out. So we have to issue PHB reset to stop all PCI * transactions from previous kerenl. */ if (is_kdump_kernel()) { pr_info(" Issue PHB reset ...\n"); pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); } /* Remove M64 resource if we can't configure it successfully */ if (!phb->init_m64 || phb->init_m64(phb)) hose->mem_resources[1].flags = 0; } void __init pnv_pci_init_ioda2_phb(struct device_node *np) { pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); } void __init pnv_pci_init_ioda_hub(struct device_node *np) { struct device_node *phbn; const __be64 *prop64; u64 hub_id; pr_info("Probing IODA IO-Hub %s\n", np->full_name); prop64 = of_get_property(np, "ibm,opal-hubid", NULL); if (!prop64) { pr_err(" Missing \"ibm,opal-hubid\" property !\n"); return; } hub_id = be64_to_cpup(prop64); pr_devel(" HUB-ID : 0x%016llx\n", hub_id); /* Count child PHBs */ for_each_child_of_node(np, phbn) { /* Look for IODA1 PHBs */ if (of_device_is_compatible(phbn, "ibm,ioda-phb")) pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); } }