/* * fake_mem.c * * Copyright (C) 2015 FUJITSU LIMITED * Author: Taku Izumi * * This code introduces new boot option named "efi_fake_mem" * By specifying this parameter, you can add arbitrary attribute to * specific memory range by updating original (firmware provided) EFI * memmap. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, see . * * The full GNU General Public License is included in this distribution in * the file called "COPYING". */ #include #include #include #include #include #include #include #define EFI_MAX_FAKEMEM CONFIG_EFI_MAX_FAKE_MEM struct fake_mem { struct range range; u64 attribute; }; static struct fake_mem fake_mems[EFI_MAX_FAKEMEM]; static int nr_fake_mem; static int __init cmp_fake_mem(const void *x1, const void *x2) { const struct fake_mem *m1 = x1; const struct fake_mem *m2 = x2; if (m1->range.start < m2->range.start) return -1; if (m1->range.start > m2->range.start) return 1; return 0; } void __init efi_fake_memmap(void) { u64 start, end, m_start, m_end, m_attr; int new_nr_map = efi.memmap.nr_map; efi_memory_desc_t *md; phys_addr_t new_memmap_phy; void *new_memmap; void *old, *new; int i; if (!nr_fake_mem) return; /* count up the number of EFI memory descriptor */ for_each_efi_memory_desc(md) { start = md->phys_addr; end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1; for (i = 0; i < nr_fake_mem; i++) { /* modifying range */ m_start = fake_mems[i].range.start; m_end = fake_mems[i].range.end; if (m_start <= start) { /* split into 2 parts */ if (start < m_end && m_end < end) new_nr_map++; } if (start < m_start && m_start < end) { /* split into 3 parts */ if (m_end < end) new_nr_map += 2; /* split into 2 parts */ if (end <= m_end) new_nr_map++; } } } /* allocate memory for new EFI memmap */ new_memmap_phy = memblock_alloc(efi.memmap.desc_size * new_nr_map, PAGE_SIZE); if (!new_memmap_phy) return; /* create new EFI memmap */ new_memmap = early_memremap(new_memmap_phy, efi.memmap.desc_size * new_nr_map); if (!new_memmap) { memblock_free(new_memmap_phy, efi.memmap.desc_size * new_nr_map); return; } for (old = efi.memmap.map, new = new_memmap; old < efi.memmap.map_end; old += efi.memmap.desc_size, new += efi.memmap.desc_size) { /* copy original EFI memory descriptor */ memcpy(new, old, efi.memmap.desc_size); md = new; start = md->phys_addr; end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; for (i = 0; i < nr_fake_mem; i++) { /* modifying range */ m_start = fake_mems[i].range.start; m_end = fake_mems[i].range.end; m_attr = fake_mems[i].attribute; if (m_start <= start && end <= m_end) md->attribute |= m_attr; if (m_start <= start && (start < m_end && m_end < end)) { /* first part */ md->attribute |= m_attr; md->num_pages = (m_end - md->phys_addr + 1) >> EFI_PAGE_SHIFT; /* latter part */ new += efi.memmap.desc_size; memcpy(new, old, efi.memmap.desc_size); md = new; md->phys_addr = m_end + 1; md->num_pages = (end - md->phys_addr + 1) >> EFI_PAGE_SHIFT; } if ((start < m_start && m_start < end) && m_end < end) { /* first part */ md->num_pages = (m_start - md->phys_addr) >> EFI_PAGE_SHIFT; /* middle part */ new += efi.memmap.desc_size; memcpy(new, old, efi.memmap.desc_size); md = new; md->attribute |= m_attr; md->phys_addr = m_start; md->num_pages = (m_end - m_start + 1) >> EFI_PAGE_SHIFT; /* last part */ new += efi.memmap.desc_size; memcpy(new, old, efi.memmap.desc_size); md = new; md->phys_addr = m_end + 1; md->num_pages = (end - m_end) >> EFI_PAGE_SHIFT; } if ((start < m_start && m_start < end) && (end <= m_end)) { /* first part */ md->num_pages = (m_start - md->phys_addr) >> EFI_PAGE_SHIFT; /* latter part */ new += efi.memmap.desc_size; memcpy(new, old, efi.memmap.desc_size); md = new; md->phys_addr = m_start; md->num_pages = (end - md->phys_addr + 1) >> EFI_PAGE_SHIFT; md->attribute |= m_attr; } } } /* swap into new EFI memmap */ efi_unmap_memmap(); efi.memmap.map = new_memmap; efi.memmap.phys_map = new_memmap_phy; efi.memmap.nr_map = new_nr_map; efi.memmap.map_end = efi.memmap.map + efi.memmap.nr_map * efi.memmap.desc_size; set_bit(EFI_MEMMAP, &efi.flags); /* print new EFI memmap */ efi_print_memmap(); } static int __init setup_fake_mem(char *p) { u64 start = 0, mem_size = 0, attribute = 0; int i; if (!p) return -EINVAL; while (*p != '\0') { mem_size = memparse(p, &p); if (*p == '@') start = memparse(p+1, &p); else break; if (*p == ':') attribute = simple_strtoull(p+1, &p, 0); else break; if (nr_fake_mem >= EFI_MAX_FAKEMEM) break; fake_mems[nr_fake_mem].range.start = start; fake_mems[nr_fake_mem].range.end = start + mem_size - 1; fake_mems[nr_fake_mem].attribute = attribute; nr_fake_mem++; if (*p == ',') p++; } sort(fake_mems, nr_fake_mem, sizeof(struct fake_mem), cmp_fake_mem, NULL); for (i = 0; i < nr_fake_mem; i++) pr_info("efi_fake_mem: add attr=0x%016llx to [mem 0x%016llx-0x%016llx]", fake_mems[i].attribute, fake_mems[i].range.start, fake_mems[i].range.end); return *p == '\0' ? 0 : -EINVAL; } early_param("efi_fake_mem", setup_fake_mem);