/* * Copyright © 2010 Daniel Vetter * Copyright © 2011-2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include /* fault-inject.h is not standalone! */ #include #include #include #include #include #include #include #include "i915_drv.h" #include "i915_scatterlist.h" #include "i915_trace.h" #include "i915_vgpu.h" #include "intel_drv.h" #include "intel_frontbuffer.h" #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) /** * DOC: Global GTT views * * Background and previous state * * Historically objects could exists (be bound) in global GTT space only as * singular instances with a view representing all of the object's backing pages * in a linear fashion. This view will be called a normal view. * * To support multiple views of the same object, where the number of mapped * pages is not equal to the backing store, or where the layout of the pages * is not linear, concept of a GGTT view was added. * * One example of an alternative view is a stereo display driven by a single * image. In this case we would have a framebuffer looking like this * (2x2 pages): * * 12 * 34 * * Above would represent a normal GGTT view as normally mapped for GPU or CPU * rendering. In contrast, fed to the display engine would be an alternative * view which could look something like this: * * 1212 * 3434 * * In this example both the size and layout of pages in the alternative view is * different from the normal view. * * Implementation and usage * * GGTT views are implemented using VMAs and are distinguished via enum * i915_ggtt_view_type and struct i915_ggtt_view. * * A new flavour of core GEM functions which work with GGTT bound objects were * added with the _ggtt_ infix, and sometimes with _view postfix to avoid * renaming in large amounts of code. They take the struct i915_ggtt_view * parameter encapsulating all metadata required to implement a view. * * As a helper for callers which are only interested in the normal view, * globally const i915_ggtt_view_normal singleton instance exists. All old core * GEM API functions, the ones not taking the view parameter, are operating on, * or with the normal GGTT view. * * Code wanting to add or use a new GGTT view needs to: * * 1. Add a new enum with a suitable name. * 2. Extend the metadata in the i915_ggtt_view structure if required. * 3. Add support to i915_get_vma_pages(). * * New views are required to build a scatter-gather table from within the * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and * exists for the lifetime of an VMA. * * Core API is designed to have copy semantics which means that passed in * struct i915_ggtt_view does not need to be persistent (left around after * calling the core API functions). * */ static int i915_get_ggtt_vma_pages(struct i915_vma *vma); static void gen6_ggtt_invalidate(struct drm_i915_private *i915) { struct intel_uncore *uncore = &i915->uncore; /* * Note that as an uncached mmio write, this will flush the * WCB of the writes into the GGTT before it triggers the invalidate. */ intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); } static void guc_ggtt_invalidate(struct drm_i915_private *i915) { struct intel_uncore *uncore = &i915->uncore; gen6_ggtt_invalidate(i915); intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE); } static void gmch_ggtt_invalidate(struct drm_i915_private *i915) { intel_gtt_chipset_flush(); } static inline void i915_ggtt_invalidate(struct drm_i915_private *i915) { i915->ggtt.invalidate(i915); } static int ppgtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 unused) { u32 pte_flags; int err; if (!(vma->flags & I915_VMA_LOCAL_BIND)) { err = vma->vm->allocate_va_range(vma->vm, vma->node.start, vma->size); if (err) return err; } /* Applicable to VLV, and gen8+ */ pte_flags = 0; if (i915_gem_object_is_readonly(vma->obj)) pte_flags |= PTE_READ_ONLY; vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); return 0; } static void ppgtt_unbind_vma(struct i915_vma *vma) { vma->vm->clear_range(vma->vm, vma->node.start, vma->size); } static int ppgtt_set_pages(struct i915_vma *vma) { GEM_BUG_ON(vma->pages); vma->pages = vma->obj->mm.pages; vma->page_sizes = vma->obj->mm.page_sizes; return 0; } static void clear_pages(struct i915_vma *vma) { GEM_BUG_ON(!vma->pages); if (vma->pages != vma->obj->mm.pages) { sg_free_table(vma->pages); kfree(vma->pages); } vma->pages = NULL; memset(&vma->page_sizes, 0, sizeof(vma->page_sizes)); } static u64 gen8_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW; if (unlikely(flags & PTE_READ_ONLY)) pte &= ~_PAGE_RW; switch (level) { case I915_CACHE_NONE: pte |= PPAT_UNCACHED; break; case I915_CACHE_WT: pte |= PPAT_DISPLAY_ELLC; break; default: pte |= PPAT_CACHED; break; } return pte; } static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, const enum i915_cache_level level) { gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; pde |= addr; if (level != I915_CACHE_NONE) pde |= PPAT_CACHED_PDE; else pde |= PPAT_UNCACHED; return pde; } #define gen8_pdpe_encode gen8_pde_encode #define gen8_pml4e_encode gen8_pde_encode static u64 snb_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= GEN6_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_L3_LLC: case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(level); } return pte; } static u64 ivb_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= GEN6_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_L3_LLC: pte |= GEN7_PTE_CACHE_L3_LLC; break; case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(level); } return pte; } static u64 byt_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= GEN6_PTE_ADDR_ENCODE(addr); if (!(flags & PTE_READ_ONLY)) pte |= BYT_PTE_WRITEABLE; if (level != I915_CACHE_NONE) pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; return pte; } static u64 hsw_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= HSW_PTE_ADDR_ENCODE(addr); if (level != I915_CACHE_NONE) pte |= HSW_WB_LLC_AGE3; return pte; } static u64 iris_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= HSW_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_NONE: break; case I915_CACHE_WT: pte |= HSW_WT_ELLC_LLC_AGE3; break; default: pte |= HSW_WB_ELLC_LLC_AGE3; break; } return pte; } static void stash_init(struct pagestash *stash) { pagevec_init(&stash->pvec); spin_lock_init(&stash->lock); } static struct page *stash_pop_page(struct pagestash *stash) { struct page *page = NULL; spin_lock(&stash->lock); if (likely(stash->pvec.nr)) page = stash->pvec.pages[--stash->pvec.nr]; spin_unlock(&stash->lock); return page; } static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec) { unsigned int nr; spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING); nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec)); memcpy(stash->pvec.pages + stash->pvec.nr, pvec->pages + pvec->nr - nr, sizeof(pvec->pages[0]) * nr); stash->pvec.nr += nr; spin_unlock(&stash->lock); pvec->nr -= nr; } static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp) { struct pagevec stack; struct page *page; if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) i915_gem_shrink_all(vm->i915); page = stash_pop_page(&vm->free_pages); if (page) return page; if (!vm->pt_kmap_wc) return alloc_page(gfp); /* Look in our global stash of WC pages... */ page = stash_pop_page(&vm->i915->mm.wc_stash); if (page) return page; /* * Otherwise batch allocate pages to amortize cost of set_pages_wc. * * We have to be careful as page allocation may trigger the shrinker * (via direct reclaim) which will fill up the WC stash underneath us. * So we add our WB pages into a temporary pvec on the stack and merge * them into the WC stash after all the allocations are complete. */ pagevec_init(&stack); do { struct page *page; page = alloc_page(gfp); if (unlikely(!page)) break; stack.pages[stack.nr++] = page; } while (pagevec_space(&stack)); if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) { page = stack.pages[--stack.nr]; /* Merge spare WC pages to the global stash */ if (stack.nr) stash_push_pagevec(&vm->i915->mm.wc_stash, &stack); /* Push any surplus WC pages onto the local VM stash */ if (stack.nr) stash_push_pagevec(&vm->free_pages, &stack); } /* Return unwanted leftovers */ if (unlikely(stack.nr)) { WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr)); __pagevec_release(&stack); } return page; } static void vm_free_pages_release(struct i915_address_space *vm, bool immediate) { struct pagevec *pvec = &vm->free_pages.pvec; struct pagevec stack; lockdep_assert_held(&vm->free_pages.lock); GEM_BUG_ON(!pagevec_count(pvec)); if (vm->pt_kmap_wc) { /* * When we use WC, first fill up the global stash and then * only if full immediately free the overflow. */ stash_push_pagevec(&vm->i915->mm.wc_stash, pvec); /* * As we have made some room in the VM's free_pages, * we can wait for it to fill again. Unless we are * inside i915_address_space_fini() and must * immediately release the pages! */ if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1)) return; /* * We have to drop the lock to allow ourselves to sleep, * so take a copy of the pvec and clear the stash for * others to use it as we sleep. */ stack = *pvec; pagevec_reinit(pvec); spin_unlock(&vm->free_pages.lock); pvec = &stack; set_pages_array_wb(pvec->pages, pvec->nr); spin_lock(&vm->free_pages.lock); } __pagevec_release(pvec); } static void vm_free_page(struct i915_address_space *vm, struct page *page) { /* * On !llc, we need to change the pages back to WB. We only do so * in bulk, so we rarely need to change the page attributes here, * but doing so requires a stop_machine() from deep inside arch/x86/mm. * To make detection of the possible sleep more likely, use an * unconditional might_sleep() for everybody. */ might_sleep(); spin_lock(&vm->free_pages.lock); while (!pagevec_space(&vm->free_pages.pvec)) vm_free_pages_release(vm, false); GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE); pagevec_add(&vm->free_pages.pvec, page); spin_unlock(&vm->free_pages.lock); } static void i915_address_space_init(struct i915_address_space *vm, int subclass) { kref_init(&vm->ref); /* * The vm->mutex must be reclaim safe (for use in the shrinker). * Do a dummy acquire now under fs_reclaim so that any allocation * attempt holding the lock is immediately reported by lockdep. */ mutex_init(&vm->mutex); lockdep_set_subclass(&vm->mutex, subclass); i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); GEM_BUG_ON(!vm->total); drm_mm_init(&vm->mm, 0, vm->total); vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; stash_init(&vm->free_pages); INIT_LIST_HEAD(&vm->unbound_list); INIT_LIST_HEAD(&vm->bound_list); } static void i915_address_space_fini(struct i915_address_space *vm) { spin_lock(&vm->free_pages.lock); if (pagevec_count(&vm->free_pages.pvec)) vm_free_pages_release(vm, true); GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec)); spin_unlock(&vm->free_pages.lock); drm_mm_takedown(&vm->mm); mutex_destroy(&vm->mutex); } static int __setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p, gfp_t gfp) { p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL); if (unlikely(!p->page)) return -ENOMEM; p->daddr = dma_map_page_attrs(vm->dma, p->page, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_NO_WARN); if (unlikely(dma_mapping_error(vm->dma, p->daddr))) { vm_free_page(vm, p->page); return -ENOMEM; } return 0; } static int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p) { return __setup_page_dma(vm, p, __GFP_HIGHMEM); } static void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p) { dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); vm_free_page(vm, p->page); } #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page) #define setup_px(vm, px) setup_page_dma((vm), px_base(px)) #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px)) #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v)) #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v)) static void fill_page_dma(struct i915_address_space *vm, struct i915_page_dma *p, const u64 val) { u64 * const vaddr = kmap_atomic(p->page); memset64(vaddr, val, PAGE_SIZE / sizeof(val)); kunmap_atomic(vaddr); } static void fill_page_dma_32(struct i915_address_space *vm, struct i915_page_dma *p, const u32 v) { fill_page_dma(vm, p, (u64)v << 32 | v); } static int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp) { unsigned long size; /* * In order to utilize 64K pages for an object with a size < 2M, we will * need to support a 64K scratch page, given that every 16th entry for a * page-table operating in 64K mode must point to a properly aligned 64K * region, including any PTEs which happen to point to scratch. * * This is only relevant for the 48b PPGTT where we support * huge-gtt-pages, see also i915_vma_insert(). However, as we share the * scratch (read-only) between all vm, we create one 64k scratch page * for all. */ size = I915_GTT_PAGE_SIZE_4K; if (i915_vm_is_4lvl(vm) && HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) { size = I915_GTT_PAGE_SIZE_64K; gfp |= __GFP_NOWARN; } gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL; do { int order = get_order(size); struct page *page; dma_addr_t addr; page = alloc_pages(gfp, order); if (unlikely(!page)) goto skip; addr = dma_map_page_attrs(vm->dma, page, 0, size, PCI_DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_NO_WARN); if (unlikely(dma_mapping_error(vm->dma, addr))) goto free_page; if (unlikely(!IS_ALIGNED(addr, size))) goto unmap_page; vm->scratch_page.page = page; vm->scratch_page.daddr = addr; vm->scratch_order = order; return 0; unmap_page: dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL); free_page: __free_pages(page, order); skip: if (size == I915_GTT_PAGE_SIZE_4K) return -ENOMEM; size = I915_GTT_PAGE_SIZE_4K; gfp &= ~__GFP_NOWARN; } while (1); } static void cleanup_scratch_page(struct i915_address_space *vm) { struct i915_page_dma *p = &vm->scratch_page; int order = vm->scratch_order; dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT, PCI_DMA_BIDIRECTIONAL); __free_pages(p->page, order); } static struct i915_page_table *alloc_pt(struct i915_address_space *vm) { struct i915_page_table *pt; pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL); if (unlikely(!pt)) return ERR_PTR(-ENOMEM); if (unlikely(setup_px(vm, pt))) { kfree(pt); return ERR_PTR(-ENOMEM); } atomic_set(&pt->used_ptes, 0); return pt; } static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt) { cleanup_px(vm, pt); kfree(pt); } static void gen8_initialize_pt(struct i915_address_space *vm, struct i915_page_table *pt) { fill_px(vm, pt, vm->scratch_pte); } static void gen6_initialize_pt(struct i915_address_space *vm, struct i915_page_table *pt) { fill32_px(vm, pt, vm->scratch_pte); } static struct i915_page_directory *alloc_pd(struct i915_address_space *vm) { struct i915_page_directory *pd; pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL); if (unlikely(!pd)) return ERR_PTR(-ENOMEM); if (unlikely(setup_px(vm, pd))) { kfree(pd); return ERR_PTR(-ENOMEM); } atomic_set(&pd->used_pdes, 0); spin_lock_init(&pd->lock); return pd; } static void free_pd(struct i915_address_space *vm, struct i915_page_directory *pd) { cleanup_px(vm, pd); kfree(pd); } static void gen8_initialize_pd(struct i915_address_space *vm, struct i915_page_directory *pd) { fill_px(vm, pd, gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC)); memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES); } static int __pdp_init(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp) { const unsigned int pdpes = i915_pdpes_per_pdp(vm); pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory), I915_GFP_ALLOW_FAIL); if (unlikely(!pdp->page_directory)) return -ENOMEM; memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes); atomic_set(&pdp->used_pdpes, 0); spin_lock_init(&pdp->lock); return 0; } static void __pdp_fini(struct i915_page_directory_pointer *pdp) { kfree(pdp->page_directory); pdp->page_directory = NULL; } static struct i915_page_directory_pointer * alloc_pdp(struct i915_address_space *vm) { struct i915_page_directory_pointer *pdp; int ret = -ENOMEM; GEM_BUG_ON(!i915_vm_is_4lvl(vm)); pdp = kzalloc(sizeof(*pdp), GFP_KERNEL); if (!pdp) return ERR_PTR(-ENOMEM); ret = __pdp_init(vm, pdp); if (ret) goto fail_bitmap; ret = setup_px(vm, pdp); if (ret) goto fail_page_m; return pdp; fail_page_m: __pdp_fini(pdp); fail_bitmap: kfree(pdp); return ERR_PTR(ret); } static void free_pdp(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp) { __pdp_fini(pdp); if (!i915_vm_is_4lvl(vm)) return; cleanup_px(vm, pdp); kfree(pdp); } static void gen8_initialize_pdp(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp) { fill_px(vm, pdp, gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC)); } static void gen8_initialize_pml4(struct i915_address_space *vm, struct i915_pml4 *pml4) { fill_px(vm, pml4, gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC)); memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4); spin_lock_init(&pml4->lock); } /* * PDE TLBs are a pain to invalidate on GEN8+. When we modify * the page table structures, we mark them dirty so that * context switching/execlist queuing code takes extra steps * to ensure that tlbs are flushed. */ static void mark_tlbs_dirty(struct i915_ppgtt *ppgtt) { ppgtt->pd_dirty_engines = ALL_ENGINES; } /* Removes entries from a single page table, releasing it if it's empty. * Caller can use the return value to update higher-level entries. */ static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm, struct i915_page_table *pt, u64 start, u64 length) { unsigned int num_entries = gen8_pte_count(start, length); gen8_pte_t *vaddr; vaddr = kmap_atomic_px(pt); memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries); kunmap_atomic(vaddr); GEM_BUG_ON(num_entries > atomic_read(&pt->used_ptes)); return !atomic_sub_return(num_entries, &pt->used_ptes); } static void gen8_ppgtt_set_pde(struct i915_address_space *vm, struct i915_page_directory *pd, struct i915_page_table *pt, unsigned int pde) { gen8_pde_t *vaddr; vaddr = kmap_atomic_px(pd); vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC); kunmap_atomic(vaddr); } static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm, struct i915_page_directory *pd, u64 start, u64 length) { struct i915_page_table *pt; u32 pde; gen8_for_each_pde(pt, pd, start, length, pde) { bool free = false; GEM_BUG_ON(pt == vm->scratch_pt); if (!gen8_ppgtt_clear_pt(vm, pt, start, length)) continue; spin_lock(&pd->lock); if (!atomic_read(&pt->used_ptes)) { gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde); pd->page_table[pde] = vm->scratch_pt; GEM_BUG_ON(!atomic_read(&pd->used_pdes)); atomic_dec(&pd->used_pdes); free = true; } spin_unlock(&pd->lock); if (free) free_pt(vm, pt); } return !atomic_read(&pd->used_pdes); } static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp, struct i915_page_directory *pd, unsigned int pdpe) { gen8_ppgtt_pdpe_t *vaddr; if (!i915_vm_is_4lvl(vm)) return; vaddr = kmap_atomic_px(pdp); vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC); kunmap_atomic(vaddr); } /* Removes entries from a single page dir pointer, releasing it if it's empty. * Caller can use the return value to update higher-level entries */ static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp, u64 start, u64 length) { struct i915_page_directory *pd; unsigned int pdpe; gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { bool free = false; GEM_BUG_ON(pd == vm->scratch_pd); if (!gen8_ppgtt_clear_pd(vm, pd, start, length)) continue; spin_lock(&pdp->lock); if (!atomic_read(&pd->used_pdes)) { gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); pdp->page_directory[pdpe] = vm->scratch_pd; GEM_BUG_ON(!atomic_read(&pdp->used_pdpes)); atomic_dec(&pdp->used_pdpes); free = true; } spin_unlock(&pdp->lock); if (free) free_pd(vm, pd); } return !atomic_read(&pdp->used_pdpes); } static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm, u64 start, u64 length) { gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length); } static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4, struct i915_page_directory_pointer *pdp, unsigned int pml4e) { gen8_ppgtt_pml4e_t *vaddr; vaddr = kmap_atomic_px(pml4); vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC); kunmap_atomic(vaddr); } /* Removes entries from a single pml4. * This is the top-level structure in 4-level page tables used on gen8+. * Empty entries are always scratch pml4e. */ static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm, u64 start, u64 length) { struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct i915_pml4 *pml4 = &ppgtt->pml4; struct i915_page_directory_pointer *pdp; unsigned int pml4e; GEM_BUG_ON(!i915_vm_is_4lvl(vm)); gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { bool free = false; GEM_BUG_ON(pdp == vm->scratch_pdp); if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length)) continue; spin_lock(&pml4->lock); if (!atomic_read(&pdp->used_pdpes)) { gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); pml4->pdps[pml4e] = vm->scratch_pdp; free = true; } spin_unlock(&pml4->lock); if (free) free_pdp(vm, pdp); } } static inline struct sgt_dma { struct scatterlist *sg; dma_addr_t dma, max; } sgt_dma(struct i915_vma *vma) { struct scatterlist *sg = vma->pages->sgl; dma_addr_t addr = sg_dma_address(sg); return (struct sgt_dma) { sg, addr, addr + sg->length }; } struct gen8_insert_pte { u16 pml4e; u16 pdpe; u16 pde; u16 pte; }; static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start) { return (struct gen8_insert_pte) { gen8_pml4e_index(start), gen8_pdpe_index(start), gen8_pde_index(start), gen8_pte_index(start), }; } static __always_inline bool gen8_ppgtt_insert_pte_entries(struct i915_ppgtt *ppgtt, struct i915_page_directory_pointer *pdp, struct sgt_dma *iter, struct gen8_insert_pte *idx, enum i915_cache_level cache_level, u32 flags) { struct i915_page_directory *pd; const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); gen8_pte_t *vaddr; bool ret; GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm)); pd = pdp->page_directory[idx->pdpe]; vaddr = kmap_atomic_px(pd->page_table[idx->pde]); do { vaddr[idx->pte] = pte_encode | iter->dma; iter->dma += I915_GTT_PAGE_SIZE; if (iter->dma >= iter->max) { iter->sg = __sg_next(iter->sg); if (!iter->sg) { ret = false; break; } iter->dma = sg_dma_address(iter->sg); iter->max = iter->dma + iter->sg->length; } if (++idx->pte == GEN8_PTES) { idx->pte = 0; if (++idx->pde == I915_PDES) { idx->pde = 0; /* Limited by sg length for 3lvl */ if (++idx->pdpe == GEN8_PML4ES_PER_PML4) { idx->pdpe = 0; ret = true; break; } GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm)); pd = pdp->page_directory[idx->pdpe]; } kunmap_atomic(vaddr); vaddr = kmap_atomic_px(pd->page_table[idx->pde]); } } while (1); kunmap_atomic(vaddr); return ret; } static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct sgt_dma iter = sgt_dma(vma); struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx, cache_level, flags); vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; } static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma, struct i915_page_directory_pointer **pdps, struct sgt_dma *iter, enum i915_cache_level cache_level, u32 flags) { const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); u64 start = vma->node.start; dma_addr_t rem = iter->sg->length; do { struct gen8_insert_pte idx = gen8_insert_pte(start); struct i915_page_directory_pointer *pdp = pdps[idx.pml4e]; struct i915_page_directory *pd = pdp->page_directory[idx.pdpe]; unsigned int page_size; bool maybe_64K = false; gen8_pte_t encode = pte_encode; gen8_pte_t *vaddr; u16 index, max; if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M && IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) && rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) { index = idx.pde; max = I915_PDES; page_size = I915_GTT_PAGE_SIZE_2M; encode |= GEN8_PDE_PS_2M; vaddr = kmap_atomic_px(pd); } else { struct i915_page_table *pt = pd->page_table[idx.pde]; index = idx.pte; max = GEN8_PTES; page_size = I915_GTT_PAGE_SIZE; if (!index && vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K && IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || rem >= (max - index) * I915_GTT_PAGE_SIZE)) maybe_64K = true; vaddr = kmap_atomic_px(pt); } do { GEM_BUG_ON(iter->sg->length < page_size); vaddr[index++] = encode | iter->dma; start += page_size; iter->dma += page_size; rem -= page_size; if (iter->dma >= iter->max) { iter->sg = __sg_next(iter->sg); if (!iter->sg) break; rem = iter->sg->length; iter->dma = sg_dma_address(iter->sg); iter->max = iter->dma + rem; if (maybe_64K && index < max && !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || rem >= (max - index) * I915_GTT_PAGE_SIZE))) maybe_64K = false; if (unlikely(!IS_ALIGNED(iter->dma, page_size))) break; } } while (rem >= page_size && index < max); kunmap_atomic(vaddr); /* * Is it safe to mark the 2M block as 64K? -- Either we have * filled whole page-table with 64K entries, or filled part of * it and have reached the end of the sg table and we have * enough padding. */ if (maybe_64K && (index == max || (i915_vm_has_scratch_64K(vma->vm) && !iter->sg && IS_ALIGNED(vma->node.start + vma->node.size, I915_GTT_PAGE_SIZE_2M)))) { vaddr = kmap_atomic_px(pd); vaddr[idx.pde] |= GEN8_PDE_IPS_64K; kunmap_atomic(vaddr); page_size = I915_GTT_PAGE_SIZE_64K; /* * We write all 4K page entries, even when using 64K * pages. In order to verify that the HW isn't cheating * by using the 4K PTE instead of the 64K PTE, we want * to remove all the surplus entries. If the HW skipped * the 64K PTE, it will read/write into the scratch page * instead - which we detect as missing results during * selftests. */ if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) { u16 i; encode = vma->vm->scratch_pte; vaddr = kmap_atomic_px(pd->page_table[idx.pde]); for (i = 1; i < index; i += 16) memset64(vaddr + i, encode, 15); kunmap_atomic(vaddr); } } vma->page_sizes.gtt |= page_size; } while (iter->sg); } static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct sgt_dma iter = sgt_dma(vma); struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps; if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level, flags); } else { struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter, &idx, cache_level, flags)) GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4); vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; } } static void gen8_free_page_tables(struct i915_address_space *vm, struct i915_page_directory *pd) { int i; for (i = 0; i < I915_PDES; i++) { if (pd->page_table[i] != vm->scratch_pt) free_pt(vm, pd->page_table[i]); } } static int gen8_init_scratch(struct i915_address_space *vm) { int ret; /* * If everybody agrees to not to write into the scratch page, * we can reuse it for all vm, keeping contexts and processes separate. */ if (vm->has_read_only && vm->i915->kernel_context && vm->i915->kernel_context->vm) { struct i915_address_space *clone = vm->i915->kernel_context->vm; GEM_BUG_ON(!clone->has_read_only); vm->scratch_order = clone->scratch_order; vm->scratch_pte = clone->scratch_pte; vm->scratch_pt = clone->scratch_pt; vm->scratch_pd = clone->scratch_pd; vm->scratch_pdp = clone->scratch_pdp; return 0; } ret = setup_scratch_page(vm, __GFP_HIGHMEM); if (ret) return ret; vm->scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, vm->has_read_only); vm->scratch_pt = alloc_pt(vm); if (IS_ERR(vm->scratch_pt)) { ret = PTR_ERR(vm->scratch_pt); goto free_scratch_page; } vm->scratch_pd = alloc_pd(vm); if (IS_ERR(vm->scratch_pd)) { ret = PTR_ERR(vm->scratch_pd); goto free_pt; } if (i915_vm_is_4lvl(vm)) { vm->scratch_pdp = alloc_pdp(vm); if (IS_ERR(vm->scratch_pdp)) { ret = PTR_ERR(vm->scratch_pdp); goto free_pd; } } gen8_initialize_pt(vm, vm->scratch_pt); gen8_initialize_pd(vm, vm->scratch_pd); if (i915_vm_is_4lvl(vm)) gen8_initialize_pdp(vm, vm->scratch_pdp); return 0; free_pd: free_pd(vm, vm->scratch_pd); free_pt: free_pt(vm, vm->scratch_pt); free_scratch_page: cleanup_scratch_page(vm); return ret; } static int gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create) { struct i915_address_space *vm = &ppgtt->vm; struct drm_i915_private *dev_priv = vm->i915; enum vgt_g2v_type msg; int i; if (i915_vm_is_4lvl(vm)) { const u64 daddr = px_dma(&ppgtt->pml4); I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY); } else { for (i = 0; i < GEN8_3LVL_PDPES; i++) { const u64 daddr = i915_page_dir_dma_addr(ppgtt, i); I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); } msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY); } I915_WRITE(vgtif_reg(g2v_notify), msg); return 0; } static void gen8_free_scratch(struct i915_address_space *vm) { if (!vm->scratch_page.daddr) return; if (i915_vm_is_4lvl(vm)) free_pdp(vm, vm->scratch_pdp); free_pd(vm, vm->scratch_pd); free_pt(vm, vm->scratch_pt); cleanup_scratch_page(vm); } static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp) { const unsigned int pdpes = i915_pdpes_per_pdp(vm); int i; for (i = 0; i < pdpes; i++) { if (pdp->page_directory[i] == vm->scratch_pd) continue; gen8_free_page_tables(vm, pdp->page_directory[i]); free_pd(vm, pdp->page_directory[i]); } free_pdp(vm, pdp); } static void gen8_ppgtt_cleanup_4lvl(struct i915_ppgtt *ppgtt) { int i; for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) { if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp) continue; gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]); } cleanup_px(&ppgtt->vm, &ppgtt->pml4); } static void gen8_ppgtt_cleanup(struct i915_address_space *vm) { struct drm_i915_private *i915 = vm->i915; struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); if (intel_vgpu_active(i915)) gen8_ppgtt_notify_vgt(ppgtt, false); if (i915_vm_is_4lvl(vm)) gen8_ppgtt_cleanup_4lvl(ppgtt); else gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp); gen8_free_scratch(vm); } static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm, struct i915_page_directory *pd, u64 start, u64 length) { struct i915_page_table *pt; u64 from = start; unsigned int pde; spin_lock(&pd->lock); gen8_for_each_pde(pt, pd, start, length, pde) { const int count = gen8_pte_count(start, length); if (pt == vm->scratch_pt) { struct i915_page_table *old; spin_unlock(&pd->lock); pt = alloc_pt(vm); if (IS_ERR(pt)) goto unwind; if (count < GEN8_PTES || intel_vgpu_active(vm->i915)) gen8_initialize_pt(vm, pt); old = cmpxchg(&pd->page_table[pde], vm->scratch_pt, pt); if (old == vm->scratch_pt) { gen8_ppgtt_set_pde(vm, pd, pt, pde); atomic_inc(&pd->used_pdes); } else { free_pt(vm, pt); pt = old; } spin_lock(&pd->lock); } atomic_add(count, &pt->used_ptes); } spin_unlock(&pd->lock); return 0; unwind: gen8_ppgtt_clear_pd(vm, pd, from, start - from); return -ENOMEM; } static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp, u64 start, u64 length) { struct i915_page_directory *pd; u64 from = start; unsigned int pdpe; int ret; spin_lock(&pdp->lock); gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { if (pd == vm->scratch_pd) { struct i915_page_directory *old; spin_unlock(&pdp->lock); pd = alloc_pd(vm); if (IS_ERR(pd)) goto unwind; gen8_initialize_pd(vm, pd); old = cmpxchg(&pdp->page_directory[pdpe], vm->scratch_pd, pd); if (old == vm->scratch_pd) { gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); atomic_inc(&pdp->used_pdpes); } else { free_pd(vm, pd); pd = old; } spin_lock(&pdp->lock); } atomic_inc(&pd->used_pdes); spin_unlock(&pdp->lock); ret = gen8_ppgtt_alloc_pd(vm, pd, start, length); if (unlikely(ret)) goto unwind_pd; spin_lock(&pdp->lock); atomic_dec(&pd->used_pdes); } spin_unlock(&pdp->lock); return 0; unwind_pd: spin_lock(&pdp->lock); if (atomic_dec_and_test(&pd->used_pdes)) { gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); GEM_BUG_ON(!atomic_read(&pdp->used_pdpes)); atomic_dec(&pdp->used_pdpes); free_pd(vm, pd); } spin_unlock(&pdp->lock); unwind: gen8_ppgtt_clear_pdp(vm, pdp, from, start - from); return -ENOMEM; } static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm, u64 start, u64 length) { return gen8_ppgtt_alloc_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length); } static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm, u64 start, u64 length) { struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct i915_pml4 *pml4 = &ppgtt->pml4; struct i915_page_directory_pointer *pdp; u64 from = start; u32 pml4e; int ret; spin_lock(&pml4->lock); gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { if (pdp == vm->scratch_pdp) { struct i915_page_directory_pointer *old; spin_unlock(&pml4->lock); pdp = alloc_pdp(vm); if (IS_ERR(pdp)) goto unwind; gen8_initialize_pdp(vm, pdp); old = cmpxchg(&pml4->pdps[pml4e], vm->scratch_pdp, pdp); if (old == vm->scratch_pdp) { gen8_ppgtt_set_pml4e(pml4, pdp, pml4e); } else { free_pdp(vm, pdp); pdp = old; } spin_lock(&pml4->lock); } atomic_inc(&pdp->used_pdpes); spin_unlock(&pml4->lock); ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length); if (unlikely(ret)) goto unwind_pdp; spin_lock(&pml4->lock); atomic_dec(&pdp->used_pdpes); } spin_unlock(&pml4->lock); return 0; unwind_pdp: spin_lock(&pml4->lock); if (atomic_dec_and_test(&pdp->used_pdpes)) { gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); free_pdp(vm, pdp); } spin_unlock(&pml4->lock); unwind: gen8_ppgtt_clear_4lvl(vm, from, start - from); return -ENOMEM; } static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt) { struct i915_address_space *vm = &ppgtt->vm; struct i915_page_directory_pointer *pdp = &ppgtt->pdp; struct i915_page_directory *pd; u64 start = 0, length = ppgtt->vm.total; u64 from = start; unsigned int pdpe; gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { pd = alloc_pd(vm); if (IS_ERR(pd)) goto unwind; gen8_initialize_pd(vm, pd); gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); atomic_inc(&pdp->used_pdpes); } atomic_inc(&pdp->used_pdpes); /* never remove */ return 0; unwind: start -= from; gen8_for_each_pdpe(pd, pdp, from, start, pdpe) { gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); free_pd(vm, pd); } atomic_set(&pdp->used_pdpes, 0); return -ENOMEM; } static void ppgtt_init(struct drm_i915_private *i915, struct i915_ppgtt *ppgtt) { ppgtt->vm.i915 = i915; ppgtt->vm.dma = &i915->drm.pdev->dev; ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size); i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT); ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma; ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma; ppgtt->vm.vma_ops.set_pages = ppgtt_set_pages; ppgtt->vm.vma_ops.clear_pages = clear_pages; } /* * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers * with a net effect resembling a 2-level page table in normal x86 terms. Each * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address * space. * */ static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915) { struct i915_ppgtt *ppgtt; int err; ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); if (!ppgtt) return ERR_PTR(-ENOMEM); ppgtt_init(i915, ppgtt); /* * From bdw, there is hw support for read-only pages in the PPGTT. * * Gen11 has HSDES#:1807136187 unresolved. Disable ro support * for now. */ ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11; /* There are only few exceptions for gen >=6. chv and bxt. * And we are not sure about the latter so play safe for now. */ if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915)) ppgtt->vm.pt_kmap_wc = true; err = gen8_init_scratch(&ppgtt->vm); if (err) goto err_free; if (i915_vm_is_4lvl(&ppgtt->vm)) { err = setup_px(&ppgtt->vm, &ppgtt->pml4); if (err) goto err_scratch; gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4); ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl; ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl; ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl; } else { err = __pdp_init(&ppgtt->vm, &ppgtt->pdp); if (err) goto err_scratch; if (intel_vgpu_active(i915)) { err = gen8_preallocate_top_level_pdp(ppgtt); if (err) { __pdp_fini(&ppgtt->pdp); goto err_scratch; } } ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl; ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl; ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl; } if (intel_vgpu_active(i915)) gen8_ppgtt_notify_vgt(ppgtt, true); ppgtt->vm.cleanup = gen8_ppgtt_cleanup; return ppgtt; err_scratch: gen8_free_scratch(&ppgtt->vm); err_free: kfree(ppgtt); return ERR_PTR(err); } /* Write pde (index) from the page directory @pd to the page table @pt */ static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt, const unsigned int pde, const struct i915_page_table *pt) { /* Caller needs to make sure the write completes if necessary */ iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID, ppgtt->pd_addr + pde); } static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; u32 ecochk, ecobits; enum intel_engine_id id; ecobits = I915_READ(GAC_ECO_BITS); I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); ecochk = I915_READ(GAM_ECOCHK); if (IS_HASWELL(dev_priv)) { ecochk |= ECOCHK_PPGTT_WB_HSW; } else { ecochk |= ECOCHK_PPGTT_LLC_IVB; ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; } I915_WRITE(GAM_ECOCHK, ecochk); for_each_engine(engine, dev_priv, id) { /* GFX_MODE is per-ring on gen7+ */ ENGINE_WRITE(engine, RING_MODE_GEN7, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); } } static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv) { u32 ecochk, gab_ctl, ecobits; ecobits = I915_READ(GAC_ECO_BITS); I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B); gab_ctl = I915_READ(GAB_CTL); I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); ecochk = I915_READ(GAM_ECOCHK); I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */ I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); } /* PPGTT support for Sandybdrige/Gen6 and later */ static void gen6_ppgtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); unsigned int first_entry = start / I915_GTT_PAGE_SIZE; unsigned int pde = first_entry / GEN6_PTES; unsigned int pte = first_entry % GEN6_PTES; unsigned int num_entries = length / I915_GTT_PAGE_SIZE; const gen6_pte_t scratch_pte = vm->scratch_pte; while (num_entries) { struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++]; const unsigned int count = min(num_entries, GEN6_PTES - pte); gen6_pte_t *vaddr; GEM_BUG_ON(pt == vm->scratch_pt); num_entries -= count; GEM_BUG_ON(count > atomic_read(&pt->used_ptes)); if (!atomic_sub_return(count, &pt->used_ptes)) ppgtt->scan_for_unused_pt = true; /* * Note that the hw doesn't support removing PDE on the fly * (they are cached inside the context with no means to * invalidate the cache), so we can only reset the PTE * entries back to scratch. */ vaddr = kmap_atomic_px(pt); memset32(vaddr + pte, scratch_pte, count); kunmap_atomic(vaddr); pte = 0; } } static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE; unsigned act_pt = first_entry / GEN6_PTES; unsigned act_pte = first_entry % GEN6_PTES; const u32 pte_encode = vm->pte_encode(0, cache_level, flags); struct sgt_dma iter = sgt_dma(vma); gen6_pte_t *vaddr; GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt); vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]); do { vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma); iter.dma += I915_GTT_PAGE_SIZE; if (iter.dma == iter.max) { iter.sg = __sg_next(iter.sg); if (!iter.sg) break; iter.dma = sg_dma_address(iter.sg); iter.max = iter.dma + iter.sg->length; } if (++act_pte == GEN6_PTES) { kunmap_atomic(vaddr); vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]); act_pte = 0; } } while (1); kunmap_atomic(vaddr); vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; } static int gen6_alloc_va_range(struct i915_address_space *vm, u64 start, u64 length) { struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); struct i915_page_table *pt; intel_wakeref_t wakeref; u64 from = start; unsigned int pde; bool flush = false; wakeref = intel_runtime_pm_get(vm->i915); spin_lock(&ppgtt->base.pd.lock); gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) { const unsigned int count = gen6_pte_count(start, length); if (pt == vm->scratch_pt) { struct i915_page_table *old; spin_unlock(&ppgtt->base.pd.lock); pt = alloc_pt(vm); if (IS_ERR(pt)) goto unwind_out; gen6_initialize_pt(vm, pt); old = cmpxchg(&ppgtt->base.pd.page_table[pde], vm->scratch_pt, pt); if (old == vm->scratch_pt) { ppgtt->base.pd.page_table[pde] = pt; if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) { gen6_write_pde(ppgtt, pde, pt); flush = true; } } else { free_pt(vm, pt); pt = old; } spin_lock(&ppgtt->base.pd.lock); } atomic_add(count, &pt->used_ptes); } spin_unlock(&ppgtt->base.pd.lock); if (flush) { mark_tlbs_dirty(&ppgtt->base); gen6_ggtt_invalidate(vm->i915); } intel_runtime_pm_put(vm->i915, wakeref); return 0; unwind_out: intel_runtime_pm_put(vm->i915, wakeref); gen6_ppgtt_clear_range(vm, from, start - from); return -ENOMEM; } static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt) { struct i915_address_space * const vm = &ppgtt->base.vm; struct i915_page_table *unused; u32 pde; int ret; ret = setup_scratch_page(vm, __GFP_HIGHMEM); if (ret) return ret; vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_NONE, PTE_READ_ONLY); vm->scratch_pt = alloc_pt(vm); if (IS_ERR(vm->scratch_pt)) { cleanup_scratch_page(vm); return PTR_ERR(vm->scratch_pt); } gen6_initialize_pt(vm, vm->scratch_pt); gen6_for_all_pdes(unused, &ppgtt->base.pd, pde) ppgtt->base.pd.page_table[pde] = vm->scratch_pt; spin_lock_init(&ppgtt->base.pd.lock); return 0; } static void gen6_ppgtt_free_scratch(struct i915_address_space *vm) { free_pt(vm, vm->scratch_pt); cleanup_scratch_page(vm); } static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt) { struct i915_page_table *pt; u32 pde; gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) if (pt != ppgtt->base.vm.scratch_pt) free_pt(&ppgtt->base.vm, pt); } struct gen6_ppgtt_cleanup_work { struct work_struct base; struct i915_vma *vma; }; static void gen6_ppgtt_cleanup_work(struct work_struct *wrk) { struct gen6_ppgtt_cleanup_work *work = container_of(wrk, typeof(*work), base); /* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */ struct drm_i915_private *i915 = work->vma->vm->i915; mutex_lock(&i915->drm.struct_mutex); i915_vma_destroy(work->vma); mutex_unlock(&i915->drm.struct_mutex); kfree(work); } static int nop_set_pages(struct i915_vma *vma) { return -ENODEV; } static void nop_clear_pages(struct i915_vma *vma) { } static int nop_bind(struct i915_vma *vma, enum i915_cache_level cache_level, u32 unused) { return -ENODEV; } static void nop_unbind(struct i915_vma *vma) { } static const struct i915_vma_ops nop_vma_ops = { .set_pages = nop_set_pages, .clear_pages = nop_clear_pages, .bind_vma = nop_bind, .unbind_vma = nop_unbind, }; static void gen6_ppgtt_cleanup(struct i915_address_space *vm) { struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); struct gen6_ppgtt_cleanup_work *work = ppgtt->work; /* FIXME remove the struct_mutex to bring the locking under control */ INIT_WORK(&work->base, gen6_ppgtt_cleanup_work); work->vma = ppgtt->vma; work->vma->ops = &nop_vma_ops; schedule_work(&work->base); gen6_ppgtt_free_pd(ppgtt); gen6_ppgtt_free_scratch(vm); } static int pd_vma_set_pages(struct i915_vma *vma) { vma->pages = ERR_PTR(-ENODEV); return 0; } static void pd_vma_clear_pages(struct i915_vma *vma) { GEM_BUG_ON(!vma->pages); vma->pages = NULL; } static int pd_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, u32 unused) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm); struct gen6_ppgtt *ppgtt = vma->private; u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE; struct i915_page_table *pt; unsigned int pde; ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t); ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset; gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) gen6_write_pde(ppgtt, pde, pt); mark_tlbs_dirty(&ppgtt->base); gen6_ggtt_invalidate(ppgtt->base.vm.i915); return 0; } static void pd_vma_unbind(struct i915_vma *vma) { struct gen6_ppgtt *ppgtt = vma->private; struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt; struct i915_page_table *pt; unsigned int pde; if (!ppgtt->scan_for_unused_pt) return; /* Free all no longer used page tables */ gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) { if (atomic_read(&pt->used_ptes) || pt == scratch_pt) continue; free_pt(&ppgtt->base.vm, pt); ppgtt->base.pd.page_table[pde] = scratch_pt; } ppgtt->scan_for_unused_pt = false; } static const struct i915_vma_ops pd_vma_ops = { .set_pages = pd_vma_set_pages, .clear_pages = pd_vma_clear_pages, .bind_vma = pd_vma_bind, .unbind_vma = pd_vma_unbind, }; static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size) { struct drm_i915_private *i915 = ppgtt->base.vm.i915; struct i915_ggtt *ggtt = &i915->ggtt; struct i915_vma *vma; GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); GEM_BUG_ON(size > ggtt->vm.total); vma = i915_vma_alloc(); if (!vma) return ERR_PTR(-ENOMEM); i915_active_init(i915, &vma->active, NULL); INIT_ACTIVE_REQUEST(&vma->last_fence); vma->vm = &ggtt->vm; vma->ops = &pd_vma_ops; vma->private = ppgtt; vma->size = size; vma->fence_size = size; vma->flags = I915_VMA_GGTT; vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */ INIT_LIST_HEAD(&vma->obj_link); INIT_LIST_HEAD(&vma->closed_link); mutex_lock(&vma->vm->mutex); list_add(&vma->vm_link, &vma->vm->unbound_list); mutex_unlock(&vma->vm->mutex); return vma; } int gen6_ppgtt_pin(struct i915_ppgtt *base) { struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base); int err; GEM_BUG_ON(ppgtt->base.vm.closed); /* * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt * which will be pinned into every active context. * (When vma->pin_count becomes atomic, I expect we will naturally * need a larger, unpacked, type and kill this redundancy.) */ if (ppgtt->pin_count++) return 0; /* * PPGTT PDEs reside in the GGTT and consists of 512 entries. The * allocator works in address space sizes, so it's multiplied by page * size. We allocate at the top of the GTT to avoid fragmentation. */ err = i915_vma_pin(ppgtt->vma, 0, GEN6_PD_ALIGN, PIN_GLOBAL | PIN_HIGH); if (err) goto unpin; return 0; unpin: ppgtt->pin_count = 0; return err; } void gen6_ppgtt_unpin(struct i915_ppgtt *base) { struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base); GEM_BUG_ON(!ppgtt->pin_count); if (--ppgtt->pin_count) return; i915_vma_unpin(ppgtt->vma); } void gen6_ppgtt_unpin_all(struct i915_ppgtt *base) { struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base); if (!ppgtt->pin_count) return; ppgtt->pin_count = 0; i915_vma_unpin(ppgtt->vma); } static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915) { struct i915_ggtt * const ggtt = &i915->ggtt; struct gen6_ppgtt *ppgtt; int err; ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); if (!ppgtt) return ERR_PTR(-ENOMEM); ppgtt_init(i915, &ppgtt->base); ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range; ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range; ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries; ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup; ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode; ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL); if (!ppgtt->work) { err = -ENOMEM; goto err_free; } err = gen6_ppgtt_init_scratch(ppgtt); if (err) goto err_work; ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE); if (IS_ERR(ppgtt->vma)) { err = PTR_ERR(ppgtt->vma); goto err_scratch; } return &ppgtt->base; err_scratch: gen6_ppgtt_free_scratch(&ppgtt->base.vm); err_work: kfree(ppgtt->work); err_free: kfree(ppgtt); return ERR_PTR(err); } static void gtt_write_workarounds(struct drm_i915_private *dev_priv) { /* This function is for gtt related workarounds. This function is * called on driver load and after a GPU reset, so you can place * workarounds here even if they get overwritten by GPU reset. */ /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ if (IS_BROADWELL(dev_priv)) I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); else if (IS_CHERRYVIEW(dev_priv)) I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); else if (IS_GEN9_LP(dev_priv)) I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); else if (INTEL_GEN(dev_priv) >= 9) I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); /* * To support 64K PTEs we need to first enable the use of the * Intermediate-Page-Size(IPS) bit of the PDE field via some magical * mmio, otherwise the page-walker will simply ignore the IPS bit. This * shouldn't be needed after GEN10. * * 64K pages were first introduced from BDW+, although technically they * only *work* from gen9+. For pre-BDW we instead have the option for * 32K pages, but we don't currently have any support for it in our * driver. */ if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) && INTEL_GEN(dev_priv) <= 10) I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA, I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) | GAMW_ECO_ENABLE_64K_IPS_FIELD); } int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv) { gtt_write_workarounds(dev_priv); if (IS_GEN(dev_priv, 6)) gen6_ppgtt_enable(dev_priv); else if (IS_GEN(dev_priv, 7)) gen7_ppgtt_enable(dev_priv); return 0; } static struct i915_ppgtt * __ppgtt_create(struct drm_i915_private *i915) { if (INTEL_GEN(i915) < 8) return gen6_ppgtt_create(i915); else return gen8_ppgtt_create(i915); } struct i915_ppgtt * i915_ppgtt_create(struct drm_i915_private *i915) { struct i915_ppgtt *ppgtt; ppgtt = __ppgtt_create(i915); if (IS_ERR(ppgtt)) return ppgtt; trace_i915_ppgtt_create(&ppgtt->vm); return ppgtt; } static void ppgtt_destroy_vma(struct i915_address_space *vm) { struct list_head *phases[] = { &vm->bound_list, &vm->unbound_list, NULL, }, **phase; vm->closed = true; for (phase = phases; *phase; phase++) { struct i915_vma *vma, *vn; list_for_each_entry_safe(vma, vn, *phase, vm_link) i915_vma_destroy(vma); } } void i915_vm_release(struct kref *kref) { struct i915_address_space *vm = container_of(kref, struct i915_address_space, ref); GEM_BUG_ON(i915_is_ggtt(vm)); trace_i915_ppgtt_release(vm); ppgtt_destroy_vma(vm); GEM_BUG_ON(!list_empty(&vm->bound_list)); GEM_BUG_ON(!list_empty(&vm->unbound_list)); vm->cleanup(vm); i915_address_space_fini(vm); kfree(vm); } /* Certain Gen5 chipsets require require idling the GPU before * unmapping anything from the GTT when VT-d is enabled. */ static bool needs_idle_maps(struct drm_i915_private *dev_priv) { /* Query intel_iommu to see if we need the workaround. Presumably that * was loaded first. */ return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active(); } void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; /* Don't bother messing with faults pre GEN6 as we have little * documentation supporting that it's a good idea. */ if (INTEL_GEN(dev_priv) < 6) return; i915_check_and_clear_faults(dev_priv); ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); i915_ggtt_invalidate(dev_priv); } int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { do { if (dma_map_sg_attrs(&obj->base.dev->pdev->dev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL, DMA_ATTR_NO_WARN)) return 0; /* * If the DMA remap fails, one cause can be that we have * too many objects pinned in a small remapping table, * such as swiotlb. Incrementally purge all other objects and * try again - if there are no more pages to remove from * the DMA remapper, i915_gem_shrink will return 0. */ GEM_BUG_ON(obj->mm.pages == pages); } while (i915_gem_shrink(to_i915(obj->base.dev), obj->base.size >> PAGE_SHIFT, NULL, I915_SHRINK_BOUND | I915_SHRINK_UNBOUND)); return -ENOSPC; } static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) { writeq(pte, addr); } static void gen8_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level level, u32 unused) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen8_pte_t __iomem *pte = (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; gen8_set_pte(pte, gen8_pte_encode(addr, level, 0)); ggtt->invalidate(vm->i915); } static void gen8_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level level, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); struct sgt_iter sgt_iter; gen8_pte_t __iomem *gtt_entries; const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0); dma_addr_t addr; /* * Note that we ignore PTE_READ_ONLY here. The caller must be careful * not to allow the user to override access to a read only page. */ gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm; gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE; for_each_sgt_dma(addr, sgt_iter, vma->pages) gen8_set_pte(gtt_entries++, pte_encode | addr); /* * We want to flush the TLBs only after we're certain all the PTE * updates have finished. */ ggtt->invalidate(vm->i915); } static void gen6_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level level, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen6_pte_t __iomem *pte = (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; iowrite32(vm->pte_encode(addr, level, flags), pte); ggtt->invalidate(vm->i915); } /* * Binds an object into the global gtt with the specified cache level. The object * will be accessible to the GPU via commands whose operands reference offsets * within the global GTT as well as accessible by the GPU through the GMADR * mapped BAR (dev_priv->mm.gtt->gtt). */ static void gen6_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level level, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm; unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE; struct sgt_iter iter; dma_addr_t addr; for_each_sgt_dma(addr, iter, vma->pages) iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]); /* * We want to flush the TLBs only after we're certain all the PTE * updates have finished. */ ggtt->invalidate(vm->i915); } static void nop_clear_range(struct i915_address_space *vm, u64 start, u64 length) { } static void gen8_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); unsigned first_entry = start / I915_GTT_PAGE_SIZE; unsigned num_entries = length / I915_GTT_PAGE_SIZE; const gen8_pte_t scratch_pte = vm->scratch_pte; gen8_pte_t __iomem *gtt_base = (gen8_pte_t __iomem *)ggtt->gsm + first_entry; const int max_entries = ggtt_total_entries(ggtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; for (i = 0; i < num_entries; i++) gen8_set_pte(>t_base[i], scratch_pte); } static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) { struct drm_i915_private *dev_priv = vm->i915; /* * Make sure the internal GAM fifo has been cleared of all GTT * writes before exiting stop_machine(). This guarantees that * any aperture accesses waiting to start in another process * cannot back up behind the GTT writes causing a hang. * The register can be any arbitrary GAM register. */ POSTING_READ(GFX_FLSH_CNTL_GEN6); } struct insert_page { struct i915_address_space *vm; dma_addr_t addr; u64 offset; enum i915_cache_level level; }; static int bxt_vtd_ggtt_insert_page__cb(void *_arg) { struct insert_page *arg = _arg; gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); bxt_vtd_ggtt_wa(arg->vm); return 0; } static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level level, u32 unused) { struct insert_page arg = { vm, addr, offset, level }; stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); } struct insert_entries { struct i915_address_space *vm; struct i915_vma *vma; enum i915_cache_level level; u32 flags; }; static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) { struct insert_entries *arg = _arg; gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags); bxt_vtd_ggtt_wa(arg->vm); return 0; } static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level level, u32 flags) { struct insert_entries arg = { vm, vma, level, flags }; stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); } struct clear_range { struct i915_address_space *vm; u64 start; u64 length; }; static int bxt_vtd_ggtt_clear_range__cb(void *_arg) { struct clear_range *arg = _arg; gen8_ggtt_clear_range(arg->vm, arg->start, arg->length); bxt_vtd_ggtt_wa(arg->vm); return 0; } static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm, u64 start, u64 length) { struct clear_range arg = { vm, start, length }; stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL); } static void gen6_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); unsigned first_entry = start / I915_GTT_PAGE_SIZE; unsigned num_entries = length / I915_GTT_PAGE_SIZE; gen6_pte_t scratch_pte, __iomem *gtt_base = (gen6_pte_t __iomem *)ggtt->gsm + first_entry; const int max_entries = ggtt_total_entries(ggtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; scratch_pte = vm->scratch_pte; for (i = 0; i < num_entries; i++) iowrite32(scratch_pte, >t_base[i]); } static void i915_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level cache_level, u32 unused) { unsigned int flags = (cache_level == I915_CACHE_NONE) ? AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); } static void i915_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level cache_level, u32 unused) { unsigned int flags = (cache_level == I915_CACHE_NONE) ? AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT, flags); } static void i915_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); } static int ggtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct drm_i915_private *i915 = vma->vm->i915; struct drm_i915_gem_object *obj = vma->obj; intel_wakeref_t wakeref; u32 pte_flags; /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ pte_flags = 0; if (i915_gem_object_is_readonly(obj)) pte_flags |= PTE_READ_ONLY; with_intel_runtime_pm(i915, wakeref) vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; /* * Without aliasing PPGTT there's no difference between * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally * upgrade to both bound if we bind either to avoid double-binding. */ vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; return 0; } static void ggtt_unbind_vma(struct i915_vma *vma) { struct drm_i915_private *i915 = vma->vm->i915; intel_wakeref_t wakeref; with_intel_runtime_pm(i915, wakeref) vma->vm->clear_range(vma->vm, vma->node.start, vma->size); } static int aliasing_gtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct drm_i915_private *i915 = vma->vm->i915; u32 pte_flags; int ret; /* Currently applicable only to VLV */ pte_flags = 0; if (i915_gem_object_is_readonly(vma->obj)) pte_flags |= PTE_READ_ONLY; if (flags & I915_VMA_LOCAL_BIND) { struct i915_ppgtt *appgtt = i915->mm.aliasing_ppgtt; if (!(vma->flags & I915_VMA_LOCAL_BIND)) { ret = appgtt->vm.allocate_va_range(&appgtt->vm, vma->node.start, vma->size); if (ret) return ret; } appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level, pte_flags); } if (flags & I915_VMA_GLOBAL_BIND) { intel_wakeref_t wakeref; with_intel_runtime_pm(i915, wakeref) { vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); } } return 0; } static void aliasing_gtt_unbind_vma(struct i915_vma *vma) { struct drm_i915_private *i915 = vma->vm->i915; if (vma->flags & I915_VMA_GLOBAL_BIND) { struct i915_address_space *vm = vma->vm; intel_wakeref_t wakeref; with_intel_runtime_pm(i915, wakeref) vm->clear_range(vm, vma->node.start, vma->size); } if (vma->flags & I915_VMA_LOCAL_BIND) { struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm; vm->clear_range(vm, vma->node.start, vma->size); } } void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); struct device *kdev = &dev_priv->drm.pdev->dev; struct i915_ggtt *ggtt = &dev_priv->ggtt; if (unlikely(ggtt->do_idle_maps)) { if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) { DRM_ERROR("Failed to wait for idle; VT'd may hang.\n"); /* Wait a bit, in hopes it avoids the hang */ udelay(10); } } dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL); } static int ggtt_set_pages(struct i915_vma *vma) { int ret; GEM_BUG_ON(vma->pages); ret = i915_get_ggtt_vma_pages(vma); if (ret) return ret; vma->page_sizes = vma->obj->mm.page_sizes; return 0; } static void i915_gtt_color_adjust(const struct drm_mm_node *node, unsigned long color, u64 *start, u64 *end) { if (node->allocated && node->color != color) *start += I915_GTT_PAGE_SIZE; /* Also leave a space between the unallocated reserved node after the * GTT and any objects within the GTT, i.e. we use the color adjustment * to insert a guard page to prevent prefetches crossing over the * GTT boundary. */ node = list_next_entry(node, node_list); if (node->color != color) *end -= I915_GTT_PAGE_SIZE; } static int init_aliasing_ppgtt(struct drm_i915_private *i915) { struct i915_ggtt *ggtt = &i915->ggtt; struct i915_ppgtt *ppgtt; int err; ppgtt = i915_ppgtt_create(i915); if (IS_ERR(ppgtt)) return PTR_ERR(ppgtt); if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { err = -ENODEV; goto err_ppgtt; } /* * Note we only pre-allocate as far as the end of the global * GTT. On 48b / 4-level page-tables, the difference is very, * very significant! We have to preallocate as GVT/vgpu does * not like the page directory disappearing. */ err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total); if (err) goto err_ppgtt; i915->mm.aliasing_ppgtt = ppgtt; GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma); ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma); ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; return 0; err_ppgtt: i915_vm_put(&ppgtt->vm); return err; } static void fini_aliasing_ppgtt(struct drm_i915_private *i915) { struct i915_ggtt *ggtt = &i915->ggtt; struct i915_ppgtt *ppgtt; ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt); if (!ppgtt) return; i915_vm_put(&ppgtt->vm); ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; } int i915_gem_init_ggtt(struct drm_i915_private *dev_priv) { /* Let GEM Manage all of the aperture. * * However, leave one page at the end still bound to the scratch page. * There are a number of places where the hardware apparently prefetches * past the end of the object, and we've seen multiple hangs with the * GPU head pointer stuck in a batchbuffer bound at the last page of the * aperture. One page should be enough to keep any prefetching inside * of the aperture. */ struct i915_ggtt *ggtt = &dev_priv->ggtt; unsigned long hole_start, hole_end; struct drm_mm_node *entry; int ret; /* * GuC requires all resources that we're sharing with it to be placed in * non-WOPCM memory. If GuC is not present or not in use we still need a * small bias as ring wraparound at offset 0 sometimes hangs. No idea * why. */ ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, intel_guc_reserved_gtt_size(&dev_priv->guc)); ret = intel_vgt_balloon(dev_priv); if (ret) return ret; /* Reserve a mappable slot for our lockless error capture */ ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture, PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 0, ggtt->mappable_end, DRM_MM_INSERT_LOW); if (ret) return ret; if (USES_GUC(dev_priv)) { ret = intel_guc_reserve_ggtt_top(&dev_priv->guc); if (ret) goto err_reserve; } /* Clear any non-preallocated blocks */ drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", hole_start, hole_end); ggtt->vm.clear_range(&ggtt->vm, hole_start, hole_end - hole_start); } /* And finally clear the reserved guard page */ ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) { ret = init_aliasing_ppgtt(dev_priv); if (ret) goto err_appgtt; } return 0; err_appgtt: intel_guc_release_ggtt_top(&dev_priv->guc); err_reserve: drm_mm_remove_node(&ggtt->error_capture); return ret; } /** * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization * @dev_priv: i915 device */ void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; struct i915_vma *vma, *vn; struct pagevec *pvec; ggtt->vm.closed = true; mutex_lock(&dev_priv->drm.struct_mutex); fini_aliasing_ppgtt(dev_priv); list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) WARN_ON(i915_vma_unbind(vma)); if (drm_mm_node_allocated(&ggtt->error_capture)) drm_mm_remove_node(&ggtt->error_capture); intel_guc_release_ggtt_top(&dev_priv->guc); if (drm_mm_initialized(&ggtt->vm.mm)) { intel_vgt_deballoon(dev_priv); i915_address_space_fini(&ggtt->vm); } ggtt->vm.cleanup(&ggtt->vm); pvec = &dev_priv->mm.wc_stash.pvec; if (pvec->nr) { set_pages_array_wb(pvec->pages, pvec->nr); __pagevec_release(pvec); } mutex_unlock(&dev_priv->drm.struct_mutex); arch_phys_wc_del(ggtt->mtrr); io_mapping_fini(&ggtt->iomap); i915_gem_cleanup_stolen(dev_priv); } static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) { snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; return snb_gmch_ctl << 20; } static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) { bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; if (bdw_gmch_ctl) bdw_gmch_ctl = 1 << bdw_gmch_ctl; #ifdef CONFIG_X86_32 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ if (bdw_gmch_ctl > 4) bdw_gmch_ctl = 4; #endif return bdw_gmch_ctl << 20; } static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) { gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; gmch_ctrl &= SNB_GMCH_GGMS_MASK; if (gmch_ctrl) return 1 << (20 + gmch_ctrl); return 0; } static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) { struct drm_i915_private *dev_priv = ggtt->vm.i915; struct pci_dev *pdev = dev_priv->drm.pdev; phys_addr_t phys_addr; int ret; /* For Modern GENs the PTEs and register space are split in the BAR */ phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; /* * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range * will be dropped. For WC mappings in general we have 64 byte burst * writes when the WC buffer is flushed, so we can't use it, but have to * resort to an uncached mapping. The WC issue is easily caught by the * readback check when writing GTT PTE entries. */ if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) ggtt->gsm = ioremap_nocache(phys_addr, size); else ggtt->gsm = ioremap_wc(phys_addr, size); if (!ggtt->gsm) { DRM_ERROR("Failed to map the ggtt page table\n"); return -ENOMEM; } ret = setup_scratch_page(&ggtt->vm, GFP_DMA32); if (ret) { DRM_ERROR("Scratch setup failed\n"); /* iounmap will also get called at remove, but meh */ iounmap(ggtt->gsm); return ret; } ggtt->vm.scratch_pte = ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr, I915_CACHE_NONE, 0); return 0; } static struct intel_ppat_entry * __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value) { struct intel_ppat_entry *entry = &ppat->entries[index]; GEM_BUG_ON(index >= ppat->max_entries); GEM_BUG_ON(test_bit(index, ppat->used)); entry->ppat = ppat; entry->value = value; kref_init(&entry->ref); set_bit(index, ppat->used); set_bit(index, ppat->dirty); return entry; } static void __free_ppat_entry(struct intel_ppat_entry *entry) { struct intel_ppat *ppat = entry->ppat; unsigned int index = entry - ppat->entries; GEM_BUG_ON(index >= ppat->max_entries); GEM_BUG_ON(!test_bit(index, ppat->used)); entry->value = ppat->clear_value; clear_bit(index, ppat->used); set_bit(index, ppat->dirty); } /** * intel_ppat_get - get a usable PPAT entry * @i915: i915 device instance * @value: the PPAT value required by the caller * * The function tries to search if there is an existing PPAT entry which * matches with the required value. If perfectly matched, the existing PPAT * entry will be used. If only partially matched, it will try to check if * there is any available PPAT index. If yes, it will allocate a new PPAT * index for the required entry and update the HW. If not, the partially * matched entry will be used. */ const struct intel_ppat_entry * intel_ppat_get(struct drm_i915_private *i915, u8 value) { struct intel_ppat *ppat = &i915->ppat; struct intel_ppat_entry *entry = NULL; unsigned int scanned, best_score; int i; GEM_BUG_ON(!ppat->max_entries); scanned = best_score = 0; for_each_set_bit(i, ppat->used, ppat->max_entries) { unsigned int score; score = ppat->match(ppat->entries[i].value, value); if (score > best_score) { entry = &ppat->entries[i]; if (score == INTEL_PPAT_PERFECT_MATCH) { kref_get(&entry->ref); return entry; } best_score = score; } scanned++; } if (scanned == ppat->max_entries) { if (!entry) return ERR_PTR(-ENOSPC); kref_get(&entry->ref); return entry; } i = find_first_zero_bit(ppat->used, ppat->max_entries); entry = __alloc_ppat_entry(ppat, i, value); ppat->update_hw(i915); return entry; } static void release_ppat(struct kref *kref) { struct intel_ppat_entry *entry = container_of(kref, struct intel_ppat_entry, ref); struct drm_i915_private *i915 = entry->ppat->i915; __free_ppat_entry(entry); entry->ppat->update_hw(i915); } /** * intel_ppat_put - put back the PPAT entry got from intel_ppat_get() * @entry: an intel PPAT entry * * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the * entry is dynamically allocated, its reference count will be decreased. Once * the reference count becomes into zero, the PPAT index becomes free again. */ void intel_ppat_put(const struct intel_ppat_entry *entry) { struct intel_ppat *ppat = entry->ppat; unsigned int index = entry - ppat->entries; GEM_BUG_ON(!ppat->max_entries); kref_put(&ppat->entries[index].ref, release_ppat); } static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv) { struct intel_ppat *ppat = &dev_priv->ppat; int i; for_each_set_bit(i, ppat->dirty, ppat->max_entries) { I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value); clear_bit(i, ppat->dirty); } } static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv) { struct intel_ppat *ppat = &dev_priv->ppat; u64 pat = 0; int i; for (i = 0; i < ppat->max_entries; i++) pat |= GEN8_PPAT(i, ppat->entries[i].value); bitmap_clear(ppat->dirty, 0, ppat->max_entries); I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); } static unsigned int bdw_private_pat_match(u8 src, u8 dst) { unsigned int score = 0; enum { AGE_MATCH = BIT(0), TC_MATCH = BIT(1), CA_MATCH = BIT(2), }; /* Cache attribute has to be matched. */ if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst)) return 0; score |= CA_MATCH; if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst)) score |= TC_MATCH; if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst)) score |= AGE_MATCH; if (score == (AGE_MATCH | TC_MATCH | CA_MATCH)) return INTEL_PPAT_PERFECT_MATCH; return score; } static unsigned int chv_private_pat_match(u8 src, u8 dst) { return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ? INTEL_PPAT_PERFECT_MATCH : 0; } static void cnl_setup_private_ppat(struct intel_ppat *ppat) { ppat->max_entries = 8; ppat->update_hw = cnl_private_pat_update_hw; ppat->match = bdw_private_pat_match; ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); } /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability * bits. When using advanced contexts each context stores its own PAT, but * writing this data shouldn't be harmful even in those cases. */ static void bdw_setup_private_ppat(struct intel_ppat *ppat) { ppat->max_entries = 8; ppat->update_hw = bdw_private_pat_update_hw; ppat->match = bdw_private_pat_match; ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); if (!HAS_PPGTT(ppat->i915)) { /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, * so RTL will always use the value corresponding to * pat_sel = 000". * So let's disable cache for GGTT to avoid screen corruptions. * MOCS still can be used though. * - System agent ggtt writes (i.e. cpu gtt mmaps) already work * before this patch, i.e. the same uncached + snooping access * like on gen6/7 seems to be in effect. * - So this just fixes blitter/render access. Again it looks * like it's not just uncached access, but uncached + snooping. * So we can still hold onto all our assumptions wrt cpu * clflushing on LLC machines. */ __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC); return; } __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */ __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */ __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */ __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */ __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); } static void chv_setup_private_ppat(struct intel_ppat *ppat) { ppat->max_entries = 8; ppat->update_hw = bdw_private_pat_update_hw; ppat->match = chv_private_pat_match; ppat->clear_value = CHV_PPAT_SNOOP; /* * Map WB on BDW to snooped on CHV. * * Only the snoop bit has meaning for CHV, the rest is * ignored. * * The hardware will never snoop for certain types of accesses: * - CPU GTT (GMADR->GGTT->no snoop->memory) * - PPGTT page tables * - some other special cycles * * As with BDW, we also need to consider the following for GT accesses: * "For GGTT, there is NO pat_sel[2:0] from the entry, * so RTL will always use the value corresponding to * pat_sel = 000". * Which means we must set the snoop bit in PAT entry 0 * in order to keep the global status page working. */ __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP); __alloc_ppat_entry(ppat, 1, 0); __alloc_ppat_entry(ppat, 2, 0); __alloc_ppat_entry(ppat, 3, 0); __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP); __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP); __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP); __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP); } static void gen6_gmch_remove(struct i915_address_space *vm) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); iounmap(ggtt->gsm); cleanup_scratch_page(vm); } static void setup_private_pat(struct drm_i915_private *dev_priv) { struct intel_ppat *ppat = &dev_priv->ppat; int i; ppat->i915 = dev_priv; if (INTEL_GEN(dev_priv) >= 10) cnl_setup_private_ppat(ppat); else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) chv_setup_private_ppat(ppat); else bdw_setup_private_ppat(ppat); GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES); for_each_clear_bit(i, ppat->used, ppat->max_entries) { ppat->entries[i].value = ppat->clear_value; ppat->entries[i].ppat = ppat; set_bit(i, ppat->dirty); } ppat->update_hw(dev_priv); } static int gen8_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *dev_priv = ggtt->vm.i915; struct pci_dev *pdev = dev_priv->drm.pdev; unsigned int size; u16 snb_gmch_ctl; int err; /* TODO: We're not aware of mappable constraints on gen8 yet */ ggtt->gmadr = (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), pci_resource_len(pdev, 2)); ggtt->mappable_end = resource_size(&ggtt->gmadr); err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39)); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); if (err) DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); if (IS_CHERRYVIEW(dev_priv)) size = chv_get_total_gtt_size(snb_gmch_ctl); else size = gen8_get_total_gtt_size(snb_gmch_ctl); ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; ggtt->vm.cleanup = gen6_gmch_remove; ggtt->vm.insert_page = gen8_ggtt_insert_page; ggtt->vm.clear_range = nop_clear_range; if (intel_scanout_needs_vtd_wa(dev_priv)) ggtt->vm.clear_range = gen8_ggtt_clear_range; ggtt->vm.insert_entries = gen8_ggtt_insert_entries; /* Serialize GTT updates with aperture access on BXT if VT-d is on. */ if (intel_ggtt_update_needs_vtd_wa(dev_priv) || IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) { ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; if (ggtt->vm.clear_range != nop_clear_range) ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL; /* Prevent recursively calling stop_machine() and deadlocks. */ dev_info(dev_priv->drm.dev, "Disabling error capture for VT-d workaround\n"); i915_disable_error_state(dev_priv, -ENODEV); } ggtt->invalidate = gen6_ggtt_invalidate; ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; ggtt->vm.vma_ops.set_pages = ggtt_set_pages; ggtt->vm.vma_ops.clear_pages = clear_pages; ggtt->vm.pte_encode = gen8_pte_encode; setup_private_pat(dev_priv); return ggtt_probe_common(ggtt, size); } static int gen6_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *dev_priv = ggtt->vm.i915; struct pci_dev *pdev = dev_priv->drm.pdev; unsigned int size; u16 snb_gmch_ctl; int err; ggtt->gmadr = (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), pci_resource_len(pdev, 2)); ggtt->mappable_end = resource_size(&ggtt->gmadr); /* 64/512MB is the current min/max we actually know of, but this is just * a coarse sanity check. */ if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end); return -ENXIO; } err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); if (err) DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); size = gen6_get_total_gtt_size(snb_gmch_ctl); ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; ggtt->vm.clear_range = nop_clear_range; if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv)) ggtt->vm.clear_range = gen6_ggtt_clear_range; ggtt->vm.insert_page = gen6_ggtt_insert_page; ggtt->vm.insert_entries = gen6_ggtt_insert_entries; ggtt->vm.cleanup = gen6_gmch_remove; ggtt->invalidate = gen6_ggtt_invalidate; if (HAS_EDRAM(dev_priv)) ggtt->vm.pte_encode = iris_pte_encode; else if (IS_HASWELL(dev_priv)) ggtt->vm.pte_encode = hsw_pte_encode; else if (IS_VALLEYVIEW(dev_priv)) ggtt->vm.pte_encode = byt_pte_encode; else if (INTEL_GEN(dev_priv) >= 7) ggtt->vm.pte_encode = ivb_pte_encode; else ggtt->vm.pte_encode = snb_pte_encode; ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; ggtt->vm.vma_ops.set_pages = ggtt_set_pages; ggtt->vm.vma_ops.clear_pages = clear_pages; return ggtt_probe_common(ggtt, size); } static void i915_gmch_remove(struct i915_address_space *vm) { intel_gmch_remove(); } static int i915_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *dev_priv = ggtt->vm.i915; phys_addr_t gmadr_base; int ret; ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL); if (!ret) { DRM_ERROR("failed to set up gmch\n"); return -EIO; } intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end); ggtt->gmadr = (struct resource) DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end); ggtt->do_idle_maps = needs_idle_maps(dev_priv); ggtt->vm.insert_page = i915_ggtt_insert_page; ggtt->vm.insert_entries = i915_ggtt_insert_entries; ggtt->vm.clear_range = i915_ggtt_clear_range; ggtt->vm.cleanup = i915_gmch_remove; ggtt->invalidate = gmch_ggtt_invalidate; ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; ggtt->vm.vma_ops.set_pages = ggtt_set_pages; ggtt->vm.vma_ops.clear_pages = clear_pages; if (unlikely(ggtt->do_idle_maps)) DRM_INFO("applying Ironlake quirks for intel_iommu\n"); return 0; } /** * i915_ggtt_probe_hw - Probe GGTT hardware location * @dev_priv: i915 device */ int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; int ret; ggtt->vm.i915 = dev_priv; ggtt->vm.dma = &dev_priv->drm.pdev->dev; if (INTEL_GEN(dev_priv) <= 5) ret = i915_gmch_probe(ggtt); else if (INTEL_GEN(dev_priv) < 8) ret = gen6_gmch_probe(ggtt); else ret = gen8_gmch_probe(ggtt); if (ret) return ret; if ((ggtt->vm.total - 1) >> 32) { DRM_ERROR("We never expected a Global GTT with more than 32bits" " of address space! Found %lldM!\n", ggtt->vm.total >> 20); ggtt->vm.total = 1ULL << 32; ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->vm.total); } if (ggtt->mappable_end > ggtt->vm.total) { DRM_ERROR("mappable aperture extends past end of GGTT," " aperture=%pa, total=%llx\n", &ggtt->mappable_end, ggtt->vm.total); ggtt->mappable_end = ggtt->vm.total; } /* GMADR is the PCI mmio aperture into the global GTT. */ DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20); DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20); DRM_DEBUG_DRIVER("DSM size = %lluM\n", (u64)resource_size(&intel_graphics_stolen_res) >> 20); if (intel_vtd_active()) DRM_INFO("VT-d active for gfx access\n"); return 0; } /** * i915_ggtt_init_hw - Initialize GGTT hardware * @dev_priv: i915 device */ int i915_ggtt_init_hw(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; int ret; stash_init(&dev_priv->mm.wc_stash); /* Note that we use page colouring to enforce a guard page at the * end of the address space. This is required as the CS may prefetch * beyond the end of the batch buffer, across the page boundary, * and beyond the end of the GTT if we do not provide a guard. */ mutex_lock(&dev_priv->drm.struct_mutex); i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); ggtt->vm.is_ggtt = true; /* Only VLV supports read-only GGTT mappings */ ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv); if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv)) ggtt->vm.mm.color_adjust = i915_gtt_color_adjust; mutex_unlock(&dev_priv->drm.struct_mutex); if (!io_mapping_init_wc(&dev_priv->ggtt.iomap, dev_priv->ggtt.gmadr.start, dev_priv->ggtt.mappable_end)) { ret = -EIO; goto out_gtt_cleanup; } ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end); /* * Initialise stolen early so that we may reserve preallocated * objects for the BIOS to KMS transition. */ ret = i915_gem_init_stolen(dev_priv); if (ret) goto out_gtt_cleanup; return 0; out_gtt_cleanup: ggtt->vm.cleanup(&ggtt->vm); return ret; } int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt()) return -EIO; return 0; } void i915_ggtt_enable_guc(struct drm_i915_private *i915) { GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate); i915->ggtt.invalidate = guc_ggtt_invalidate; i915_ggtt_invalidate(i915); } void i915_ggtt_disable_guc(struct drm_i915_private *i915) { /* XXX Temporary pardon for error unload */ if (i915->ggtt.invalidate == gen6_ggtt_invalidate) return; /* We should only be called after i915_ggtt_enable_guc() */ GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate); i915->ggtt.invalidate = gen6_ggtt_invalidate; i915_ggtt_invalidate(i915); } void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; struct i915_vma *vma, *vn; i915_check_and_clear_faults(dev_priv); mutex_lock(&ggtt->vm.mutex); /* First fill our portion of the GTT with scratch pages */ ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */ /* clflush objects bound into the GGTT and rebind them. */ list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { struct drm_i915_gem_object *obj = vma->obj; if (!(vma->flags & I915_VMA_GLOBAL_BIND)) continue; mutex_unlock(&ggtt->vm.mutex); if (!i915_vma_unbind(vma)) goto lock; WARN_ON(i915_vma_bind(vma, obj ? obj->cache_level : 0, PIN_UPDATE)); if (obj) { i915_gem_object_lock(obj); WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); i915_gem_object_unlock(obj); } lock: mutex_lock(&ggtt->vm.mutex); } ggtt->vm.closed = false; i915_ggtt_invalidate(dev_priv); mutex_unlock(&ggtt->vm.mutex); if (INTEL_GEN(dev_priv) >= 8) { struct intel_ppat *ppat = &dev_priv->ppat; bitmap_set(ppat->dirty, 0, ppat->max_entries); dev_priv->ppat.update_hw(dev_priv); return; } } static struct scatterlist * rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset, unsigned int width, unsigned int height, unsigned int stride, struct sg_table *st, struct scatterlist *sg) { unsigned int column, row; unsigned int src_idx; for (column = 0; column < width; column++) { src_idx = stride * (height - 1) + column + offset; for (row = 0; row < height; row++) { st->nents++; /* We don't need the pages, but need to initialize * the entries so the sg list can be happily traversed. * The only thing we need are DMA addresses. */ sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); sg_dma_address(sg) = i915_gem_object_get_dma_address(obj, src_idx); sg_dma_len(sg) = I915_GTT_PAGE_SIZE; sg = sg_next(sg); src_idx -= stride; } } return sg; } static noinline struct sg_table * intel_rotate_pages(struct intel_rotation_info *rot_info, struct drm_i915_gem_object *obj) { unsigned int size = intel_rotation_info_size(rot_info); struct sg_table *st; struct scatterlist *sg; int ret = -ENOMEM; int i; /* Allocate target SG list. */ st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, size, GFP_KERNEL); if (ret) goto err_sg_alloc; st->nents = 0; sg = st->sgl; for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { sg = rotate_pages(obj, rot_info->plane[i].offset, rot_info->plane[i].width, rot_info->plane[i].height, rot_info->plane[i].stride, st, sg); } return st; err_sg_alloc: kfree(st); err_st_alloc: DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); return ERR_PTR(ret); } static struct scatterlist * remap_pages(struct drm_i915_gem_object *obj, unsigned int offset, unsigned int width, unsigned int height, unsigned int stride, struct sg_table *st, struct scatterlist *sg) { unsigned int row; for (row = 0; row < height; row++) { unsigned int left = width * I915_GTT_PAGE_SIZE; while (left) { dma_addr_t addr; unsigned int length; /* We don't need the pages, but need to initialize * the entries so the sg list can be happily traversed. * The only thing we need are DMA addresses. */ addr = i915_gem_object_get_dma_address_len(obj, offset, &length); length = min(left, length); st->nents++; sg_set_page(sg, NULL, length, 0); sg_dma_address(sg) = addr; sg_dma_len(sg) = length; sg = sg_next(sg); offset += length / I915_GTT_PAGE_SIZE; left -= length; } offset += stride - width; } return sg; } static noinline struct sg_table * intel_remap_pages(struct intel_remapped_info *rem_info, struct drm_i915_gem_object *obj) { unsigned int size = intel_remapped_info_size(rem_info); struct sg_table *st; struct scatterlist *sg; int ret = -ENOMEM; int i; /* Allocate target SG list. */ st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, size, GFP_KERNEL); if (ret) goto err_sg_alloc; st->nents = 0; sg = st->sgl; for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) { sg = remap_pages(obj, rem_info->plane[i].offset, rem_info->plane[i].width, rem_info->plane[i].height, rem_info->plane[i].stride, st, sg); } i915_sg_trim(st); return st; err_sg_alloc: kfree(st); err_st_alloc: DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n", obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size); return ERR_PTR(ret); } static noinline struct sg_table * intel_partial_pages(const struct i915_ggtt_view *view, struct drm_i915_gem_object *obj) { struct sg_table *st; struct scatterlist *sg, *iter; unsigned int count = view->partial.size; unsigned int offset; int ret = -ENOMEM; st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, count, GFP_KERNEL); if (ret) goto err_sg_alloc; iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset); GEM_BUG_ON(!iter); sg = st->sgl; st->nents = 0; do { unsigned int len; len = min(iter->length - (offset << PAGE_SHIFT), count << PAGE_SHIFT); sg_set_page(sg, NULL, len, 0); sg_dma_address(sg) = sg_dma_address(iter) + (offset << PAGE_SHIFT); sg_dma_len(sg) = len; st->nents++; count -= len >> PAGE_SHIFT; if (count == 0) { sg_mark_end(sg); i915_sg_trim(st); /* Drop any unused tail entries. */ return st; } sg = __sg_next(sg); iter = __sg_next(iter); offset = 0; } while (1); err_sg_alloc: kfree(st); err_st_alloc: return ERR_PTR(ret); } static int i915_get_ggtt_vma_pages(struct i915_vma *vma) { int ret; /* The vma->pages are only valid within the lifespan of the borrowed * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so * must be the vma->pages. A simple rule is that vma->pages must only * be accessed when the obj->mm.pages are pinned. */ GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); switch (vma->ggtt_view.type) { default: GEM_BUG_ON(vma->ggtt_view.type); /* fall through */ case I915_GGTT_VIEW_NORMAL: vma->pages = vma->obj->mm.pages; return 0; case I915_GGTT_VIEW_ROTATED: vma->pages = intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); break; case I915_GGTT_VIEW_REMAPPED: vma->pages = intel_remap_pages(&vma->ggtt_view.remapped, vma->obj); break; case I915_GGTT_VIEW_PARTIAL: vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); break; } ret = 0; if (IS_ERR(vma->pages)) { ret = PTR_ERR(vma->pages); vma->pages = NULL; DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", vma->ggtt_view.type, ret); } return ret; } /** * i915_gem_gtt_reserve - reserve a node in an address_space (GTT) * @vm: the &struct i915_address_space * @node: the &struct drm_mm_node (typically i915_vma.mode) * @size: how much space to allocate inside the GTT, * must be #I915_GTT_PAGE_SIZE aligned * @offset: where to insert inside the GTT, * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node * (@offset + @size) must fit within the address space * @color: color to apply to node, if this node is not from a VMA, * color must be #I915_COLOR_UNEVICTABLE * @flags: control search and eviction behaviour * * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside * the address space (using @size and @color). If the @node does not fit, it * tries to evict any overlapping nodes from the GTT, including any * neighbouring nodes if the colors do not match (to ensure guard pages between * differing domains). See i915_gem_evict_for_node() for the gory details * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on * evicting active overlapping objects, and any overlapping node that is pinned * or marked as unevictable will also result in failure. * * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if * asked to wait for eviction and interrupted. */ int i915_gem_gtt_reserve(struct i915_address_space *vm, struct drm_mm_node *node, u64 size, u64 offset, unsigned long color, unsigned int flags) { int err; GEM_BUG_ON(!size); GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT)); GEM_BUG_ON(range_overflows(offset, size, vm->total)); GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm); GEM_BUG_ON(drm_mm_node_allocated(node)); node->size = size; node->start = offset; node->color = color; err = drm_mm_reserve_node(&vm->mm, node); if (err != -ENOSPC) return err; if (flags & PIN_NOEVICT) return -ENOSPC; err = i915_gem_evict_for_node(vm, node, flags); if (err == 0) err = drm_mm_reserve_node(&vm->mm, node); return err; } static u64 random_offset(u64 start, u64 end, u64 len, u64 align) { u64 range, addr; GEM_BUG_ON(range_overflows(start, len, end)); GEM_BUG_ON(round_up(start, align) > round_down(end - len, align)); range = round_down(end - len, align) - round_up(start, align); if (range) { if (sizeof(unsigned long) == sizeof(u64)) { addr = get_random_long(); } else { addr = get_random_int(); if (range > U32_MAX) { addr <<= 32; addr |= get_random_int(); } } div64_u64_rem(addr, range, &addr); start += addr; } return round_up(start, align); } /** * i915_gem_gtt_insert - insert a node into an address_space (GTT) * @vm: the &struct i915_address_space * @node: the &struct drm_mm_node (typically i915_vma.node) * @size: how much space to allocate inside the GTT, * must be #I915_GTT_PAGE_SIZE aligned * @alignment: required alignment of starting offset, may be 0 but * if specified, this must be a power-of-two and at least * #I915_GTT_MIN_ALIGNMENT * @color: color to apply to node * @start: start of any range restriction inside GTT (0 for all), * must be #I915_GTT_PAGE_SIZE aligned * @end: end of any range restriction inside GTT (U64_MAX for all), * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX * @flags: control search and eviction behaviour * * i915_gem_gtt_insert() first searches for an available hole into which * is can insert the node. The hole address is aligned to @alignment and * its @size must then fit entirely within the [@start, @end] bounds. The * nodes on either side of the hole must match @color, or else a guard page * will be inserted between the two nodes (or the node evicted). If no * suitable hole is found, first a victim is randomly selected and tested * for eviction, otherwise then the LRU list of objects within the GTT * is scanned to find the first set of replacement nodes to create the hole. * Those old overlapping nodes are evicted from the GTT (and so must be * rebound before any future use). Any node that is currently pinned cannot * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently * active and #PIN_NONBLOCK is specified, that node is also skipped when * searching for an eviction candidate. See i915_gem_evict_something() for * the gory details on the eviction algorithm. * * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if * asked to wait for eviction and interrupted. */ int i915_gem_gtt_insert(struct i915_address_space *vm, struct drm_mm_node *node, u64 size, u64 alignment, unsigned long color, u64 start, u64 end, unsigned int flags) { enum drm_mm_insert_mode mode; u64 offset; int err; lockdep_assert_held(&vm->i915->drm.struct_mutex); GEM_BUG_ON(!size); GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); GEM_BUG_ON(alignment && !is_power_of_2(alignment)); GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); GEM_BUG_ON(start >= end); GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm); GEM_BUG_ON(drm_mm_node_allocated(node)); if (unlikely(range_overflows(start, size, end))) return -ENOSPC; if (unlikely(round_up(start, alignment) > round_down(end - size, alignment))) return -ENOSPC; mode = DRM_MM_INSERT_BEST; if (flags & PIN_HIGH) mode = DRM_MM_INSERT_HIGHEST; if (flags & PIN_MAPPABLE) mode = DRM_MM_INSERT_LOW; /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, * so we know that we always have a minimum alignment of 4096. * The drm_mm range manager is optimised to return results * with zero alignment, so where possible use the optimal * path. */ BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE); if (alignment <= I915_GTT_MIN_ALIGNMENT) alignment = 0; err = drm_mm_insert_node_in_range(&vm->mm, node, size, alignment, color, start, end, mode); if (err != -ENOSPC) return err; if (mode & DRM_MM_INSERT_ONCE) { err = drm_mm_insert_node_in_range(&vm->mm, node, size, alignment, color, start, end, DRM_MM_INSERT_BEST); if (err != -ENOSPC) return err; } if (flags & PIN_NOEVICT) return -ENOSPC; /* No free space, pick a slot at random. * * There is a pathological case here using a GTT shared between * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt): * * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->| * (64k objects) (448k objects) * * Now imagine that the eviction LRU is ordered top-down (just because * pathology meets real life), and that we need to evict an object to * make room inside the aperture. The eviction scan then has to walk * the 448k list before it finds one within range. And now imagine that * it has to search for a new hole between every byte inside the memcpy, * for several simultaneous clients. * * On a full-ppgtt system, if we have run out of available space, there * will be lots and lots of objects in the eviction list! Again, * searching that LRU list may be slow if we are also applying any * range restrictions (e.g. restriction to low 4GiB) and so, for * simplicity and similarilty between different GTT, try the single * random replacement first. */ offset = random_offset(start, end, size, alignment ?: I915_GTT_MIN_ALIGNMENT); err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags); if (err != -ENOSPC) return err; /* Randomly selected placement is pinned, do a search */ err = i915_gem_evict_something(vm, size, alignment, color, start, end, flags); if (err) return err; return drm_mm_insert_node_in_range(&vm->mm, node, size, alignment, color, start, end, DRM_MM_INSERT_EVICT); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/mock_gtt.c" #include "selftests/i915_gem_gtt.c" #endif