/* * Copyright © 2006-2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt */ #include #include #include #include #include #include #include #include #include #include "intel_drv.h" #include #include "i915_drv.h" #include "intel_dsi.h" #include "i915_trace.h" #include #include #include #include #include #include #include #include #include /* Primary plane formats for gen <= 3 */ static const uint32_t i8xx_primary_formats[] = { DRM_FORMAT_C8, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB1555, DRM_FORMAT_XRGB8888, }; /* Primary plane formats for gen >= 4 */ static const uint32_t i965_primary_formats[] = { DRM_FORMAT_C8, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, DRM_FORMAT_XBGR8888, DRM_FORMAT_XRGB2101010, DRM_FORMAT_XBGR2101010, }; static const uint32_t skl_primary_formats[] = { DRM_FORMAT_C8, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, DRM_FORMAT_XBGR8888, DRM_FORMAT_ARGB8888, DRM_FORMAT_ABGR8888, DRM_FORMAT_XRGB2101010, DRM_FORMAT_XBGR2101010, DRM_FORMAT_YUYV, DRM_FORMAT_YVYU, DRM_FORMAT_UYVY, DRM_FORMAT_VYUY, }; /* Cursor formats */ static const uint32_t intel_cursor_formats[] = { DRM_FORMAT_ARGB8888, }; static void i9xx_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config); static void ironlake_pch_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config); static int intel_framebuffer_init(struct drm_device *dev, struct intel_framebuffer *ifb, struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj); static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc); static void intel_set_pipe_timings(struct intel_crtc *intel_crtc); static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc); static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc, struct intel_link_m_n *m_n, struct intel_link_m_n *m2_n2); static void ironlake_set_pipeconf(struct drm_crtc *crtc); static void haswell_set_pipeconf(struct drm_crtc *crtc); static void haswell_set_pipemisc(struct drm_crtc *crtc); static void vlv_prepare_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config); static void chv_prepare_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config); static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *); static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *); static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state); static void skylake_pfit_enable(struct intel_crtc *crtc); static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force); static void ironlake_pfit_enable(struct intel_crtc *crtc); static void intel_modeset_setup_hw_state(struct drm_device *dev); static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc); typedef struct { int min, max; } intel_range_t; typedef struct { int dot_limit; int p2_slow, p2_fast; } intel_p2_t; typedef struct intel_limit intel_limit_t; struct intel_limit { intel_range_t dot, vco, n, m, m1, m2, p, p1; intel_p2_t p2; }; /* returns HPLL frequency in kHz */ static int valleyview_get_vco(struct drm_i915_private *dev_priv) { int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; /* Obtain SKU information */ mutex_lock(&dev_priv->sb_lock); hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & CCK_FUSE_HPLL_FREQ_MASK; mutex_unlock(&dev_priv->sb_lock); return vco_freq[hpll_freq] * 1000; } int vlv_get_cck_clock(struct drm_i915_private *dev_priv, const char *name, u32 reg, int ref_freq) { u32 val; int divider; mutex_lock(&dev_priv->sb_lock); val = vlv_cck_read(dev_priv, reg); mutex_unlock(&dev_priv->sb_lock); divider = val & CCK_FREQUENCY_VALUES; WARN((val & CCK_FREQUENCY_STATUS) != (divider << CCK_FREQUENCY_STATUS_SHIFT), "%s change in progress\n", name); return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); } static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, const char *name, u32 reg) { if (dev_priv->hpll_freq == 0) dev_priv->hpll_freq = valleyview_get_vco(dev_priv); return vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); } static int intel_pch_rawclk(struct drm_i915_private *dev_priv) { return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000; } static int intel_vlv_hrawclk(struct drm_i915_private *dev_priv) { return vlv_get_cck_clock_hpll(dev_priv, "hrawclk", CCK_DISPLAY_REF_CLOCK_CONTROL); } static int intel_g4x_hrawclk(struct drm_i915_private *dev_priv) { uint32_t clkcfg; /* hrawclock is 1/4 the FSB frequency */ clkcfg = I915_READ(CLKCFG); switch (clkcfg & CLKCFG_FSB_MASK) { case CLKCFG_FSB_400: return 100000; case CLKCFG_FSB_533: return 133333; case CLKCFG_FSB_667: return 166667; case CLKCFG_FSB_800: return 200000; case CLKCFG_FSB_1067: return 266667; case CLKCFG_FSB_1333: return 333333; /* these two are just a guess; one of them might be right */ case CLKCFG_FSB_1600: case CLKCFG_FSB_1600_ALT: return 400000; default: return 133333; } } static void intel_update_rawclk(struct drm_i915_private *dev_priv) { if (HAS_PCH_SPLIT(dev_priv)) dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv); else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv); else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv)) dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv); else return; /* no rawclk on other platforms, or no need to know it */ DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq); } static void intel_update_czclk(struct drm_i915_private *dev_priv) { if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) return; dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", CCK_CZ_CLOCK_CONTROL); DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq); } static inline u32 /* units of 100MHz */ intel_fdi_link_freq(struct drm_i915_private *dev_priv, const struct intel_crtc_state *pipe_config) { if (HAS_DDI(dev_priv)) return pipe_config->port_clock; /* SPLL */ else if (IS_GEN5(dev_priv)) return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000; else return 270000; } static const intel_limit_t intel_limits_i8xx_dac = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 908000, .max = 1512000 }, .n = { .min = 2, .max = 16 }, .m = { .min = 96, .max = 140 }, .m1 = { .min = 18, .max = 26 }, .m2 = { .min = 6, .max = 16 }, .p = { .min = 4, .max = 128 }, .p1 = { .min = 2, .max = 33 }, .p2 = { .dot_limit = 165000, .p2_slow = 4, .p2_fast = 2 }, }; static const intel_limit_t intel_limits_i8xx_dvo = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 908000, .max = 1512000 }, .n = { .min = 2, .max = 16 }, .m = { .min = 96, .max = 140 }, .m1 = { .min = 18, .max = 26 }, .m2 = { .min = 6, .max = 16 }, .p = { .min = 4, .max = 128 }, .p1 = { .min = 2, .max = 33 }, .p2 = { .dot_limit = 165000, .p2_slow = 4, .p2_fast = 4 }, }; static const intel_limit_t intel_limits_i8xx_lvds = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 908000, .max = 1512000 }, .n = { .min = 2, .max = 16 }, .m = { .min = 96, .max = 140 }, .m1 = { .min = 18, .max = 26 }, .m2 = { .min = 6, .max = 16 }, .p = { .min = 4, .max = 128 }, .p1 = { .min = 1, .max = 6 }, .p2 = { .dot_limit = 165000, .p2_slow = 14, .p2_fast = 7 }, }; static const intel_limit_t intel_limits_i9xx_sdvo = { .dot = { .min = 20000, .max = 400000 }, .vco = { .min = 1400000, .max = 2800000 }, .n = { .min = 1, .max = 6 }, .m = { .min = 70, .max = 120 }, .m1 = { .min = 8, .max = 18 }, .m2 = { .min = 3, .max = 7 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 200000, .p2_slow = 10, .p2_fast = 5 }, }; static const intel_limit_t intel_limits_i9xx_lvds = { .dot = { .min = 20000, .max = 400000 }, .vco = { .min = 1400000, .max = 2800000 }, .n = { .min = 1, .max = 6 }, .m = { .min = 70, .max = 120 }, .m1 = { .min = 8, .max = 18 }, .m2 = { .min = 3, .max = 7 }, .p = { .min = 7, .max = 98 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 112000, .p2_slow = 14, .p2_fast = 7 }, }; static const intel_limit_t intel_limits_g4x_sdvo = { .dot = { .min = 25000, .max = 270000 }, .vco = { .min = 1750000, .max = 3500000}, .n = { .min = 1, .max = 4 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 17, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 10, .max = 30 }, .p1 = { .min = 1, .max = 3}, .p2 = { .dot_limit = 270000, .p2_slow = 10, .p2_fast = 10 }, }; static const intel_limit_t intel_limits_g4x_hdmi = { .dot = { .min = 22000, .max = 400000 }, .vco = { .min = 1750000, .max = 3500000}, .n = { .min = 1, .max = 4 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 16, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8}, .p2 = { .dot_limit = 165000, .p2_slow = 10, .p2_fast = 5 }, }; static const intel_limit_t intel_limits_g4x_single_channel_lvds = { .dot = { .min = 20000, .max = 115000 }, .vco = { .min = 1750000, .max = 3500000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 17, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 28, .max = 112 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 0, .p2_slow = 14, .p2_fast = 14 }, }; static const intel_limit_t intel_limits_g4x_dual_channel_lvds = { .dot = { .min = 80000, .max = 224000 }, .vco = { .min = 1750000, .max = 3500000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 17, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 14, .max = 42 }, .p1 = { .min = 2, .max = 6 }, .p2 = { .dot_limit = 0, .p2_slow = 7, .p2_fast = 7 }, }; static const intel_limit_t intel_limits_pineview_sdvo = { .dot = { .min = 20000, .max = 400000}, .vco = { .min = 1700000, .max = 3500000 }, /* Pineview's Ncounter is a ring counter */ .n = { .min = 3, .max = 6 }, .m = { .min = 2, .max = 256 }, /* Pineview only has one combined m divider, which we treat as m2. */ .m1 = { .min = 0, .max = 0 }, .m2 = { .min = 0, .max = 254 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 200000, .p2_slow = 10, .p2_fast = 5 }, }; static const intel_limit_t intel_limits_pineview_lvds = { .dot = { .min = 20000, .max = 400000 }, .vco = { .min = 1700000, .max = 3500000 }, .n = { .min = 3, .max = 6 }, .m = { .min = 2, .max = 256 }, .m1 = { .min = 0, .max = 0 }, .m2 = { .min = 0, .max = 254 }, .p = { .min = 7, .max = 112 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 112000, .p2_slow = 14, .p2_fast = 14 }, }; /* Ironlake / Sandybridge * * We calculate clock using (register_value + 2) for N/M1/M2, so here * the range value for them is (actual_value - 2). */ static const intel_limit_t intel_limits_ironlake_dac = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 5 }, .m = { .min = 79, .max = 127 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 10, .p2_fast = 5 }, }; static const intel_limit_t intel_limits_ironlake_single_lvds = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 79, .max = 118 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 28, .max = 112 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 14, .p2_fast = 14 }, }; static const intel_limit_t intel_limits_ironlake_dual_lvds = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 79, .max = 127 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 14, .max = 56 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 7, .p2_fast = 7 }, }; /* LVDS 100mhz refclk limits. */ static const intel_limit_t intel_limits_ironlake_single_lvds_100m = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 2 }, .m = { .min = 79, .max = 126 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 28, .max = 112 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 14, .p2_fast = 14 }, }; static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 79, .max = 126 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 14, .max = 42 }, .p1 = { .min = 2, .max = 6 }, .p2 = { .dot_limit = 225000, .p2_slow = 7, .p2_fast = 7 }, }; static const intel_limit_t intel_limits_vlv = { /* * These are the data rate limits (measured in fast clocks) * since those are the strictest limits we have. The fast * clock and actual rate limits are more relaxed, so checking * them would make no difference. */ .dot = { .min = 25000 * 5, .max = 270000 * 5 }, .vco = { .min = 4000000, .max = 6000000 }, .n = { .min = 1, .max = 7 }, .m1 = { .min = 2, .max = 3 }, .m2 = { .min = 11, .max = 156 }, .p1 = { .min = 2, .max = 3 }, .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ }; static const intel_limit_t intel_limits_chv = { /* * These are the data rate limits (measured in fast clocks) * since those are the strictest limits we have. The fast * clock and actual rate limits are more relaxed, so checking * them would make no difference. */ .dot = { .min = 25000 * 5, .max = 540000 * 5}, .vco = { .min = 4800000, .max = 6480000 }, .n = { .min = 1, .max = 1 }, .m1 = { .min = 2, .max = 2 }, .m2 = { .min = 24 << 22, .max = 175 << 22 }, .p1 = { .min = 2, .max = 4 }, .p2 = { .p2_slow = 1, .p2_fast = 14 }, }; static const intel_limit_t intel_limits_bxt = { /* FIXME: find real dot limits */ .dot = { .min = 0, .max = INT_MAX }, .vco = { .min = 4800000, .max = 6700000 }, .n = { .min = 1, .max = 1 }, .m1 = { .min = 2, .max = 2 }, /* FIXME: find real m2 limits */ .m2 = { .min = 2 << 22, .max = 255 << 22 }, .p1 = { .min = 2, .max = 4 }, .p2 = { .p2_slow = 1, .p2_fast = 20 }, }; static bool needs_modeset(struct drm_crtc_state *state) { return drm_atomic_crtc_needs_modeset(state); } /** * Returns whether any output on the specified pipe is of the specified type */ bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type) { struct drm_device *dev = crtc->base.dev; struct intel_encoder *encoder; for_each_encoder_on_crtc(dev, &crtc->base, encoder) if (encoder->type == type) return true; return false; } /** * Returns whether any output on the specified pipe will have the specified * type after a staged modeset is complete, i.e., the same as * intel_pipe_has_type() but looking at encoder->new_crtc instead of * encoder->crtc. */ static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state, int type) { struct drm_atomic_state *state = crtc_state->base.state; struct drm_connector *connector; struct drm_connector_state *connector_state; struct intel_encoder *encoder; int i, num_connectors = 0; for_each_connector_in_state(state, connector, connector_state, i) { if (connector_state->crtc != crtc_state->base.crtc) continue; num_connectors++; encoder = to_intel_encoder(connector_state->best_encoder); if (encoder->type == type) return true; } WARN_ON(num_connectors == 0); return false; } /* * Platform specific helpers to calculate the port PLL loopback- (clock.m), * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. * The helpers' return value is the rate of the clock that is fed to the * display engine's pipe which can be the above fast dot clock rate or a * divided-down version of it. */ /* m1 is reserved as 0 in Pineview, n is a ring counter */ static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock) { clock->m = clock->m2 + 2; clock->p = clock->p1 * clock->p2; if (WARN_ON(clock->n == 0 || clock->p == 0)) return 0; clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); return clock->dot; } static uint32_t i9xx_dpll_compute_m(struct dpll *dpll) { return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); } static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock) { clock->m = i9xx_dpll_compute_m(clock); clock->p = clock->p1 * clock->p2; if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) return 0; clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); return clock->dot; } static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock) { clock->m = clock->m1 * clock->m2; clock->p = clock->p1 * clock->p2; if (WARN_ON(clock->n == 0 || clock->p == 0)) return 0; clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); return clock->dot / 5; } int chv_calc_dpll_params(int refclk, intel_clock_t *clock) { clock->m = clock->m1 * clock->m2; clock->p = clock->p1 * clock->p2; if (WARN_ON(clock->n == 0 || clock->p == 0)) return 0; clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m, clock->n << 22); clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); return clock->dot / 5; } #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) /** * Returns whether the given set of divisors are valid for a given refclk with * the given connectors. */ static bool intel_PLL_is_valid(struct drm_device *dev, const intel_limit_t *limit, const intel_clock_t *clock) { if (clock->n < limit->n.min || limit->n.max < clock->n) INTELPllInvalid("n out of range\n"); if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) INTELPllInvalid("p1 out of range\n"); if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) INTELPllInvalid("m2 out of range\n"); if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) INTELPllInvalid("m1 out of range\n"); if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) if (clock->m1 <= clock->m2) INTELPllInvalid("m1 <= m2\n"); if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) { if (clock->p < limit->p.min || limit->p.max < clock->p) INTELPllInvalid("p out of range\n"); if (clock->m < limit->m.min || limit->m.max < clock->m) INTELPllInvalid("m out of range\n"); } if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) INTELPllInvalid("vco out of range\n"); /* XXX: We may need to be checking "Dot clock" depending on the multiplier, * connector, etc., rather than just a single range. */ if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) INTELPllInvalid("dot out of range\n"); return true; } static int i9xx_select_p2_div(const intel_limit_t *limit, const struct intel_crtc_state *crtc_state, int target) { struct drm_device *dev = crtc_state->base.crtc->dev; if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { /* * For LVDS just rely on its current settings for dual-channel. * We haven't figured out how to reliably set up different * single/dual channel state, if we even can. */ if (intel_is_dual_link_lvds(dev)) return limit->p2.p2_fast; else return limit->p2.p2_slow; } else { if (target < limit->p2.dot_limit) return limit->p2.p2_slow; else return limit->p2.p2_fast; } } /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. * * Target and reference clocks are specified in kHz. * * If match_clock is provided, then best_clock P divider must match the P * divider from @match_clock used for LVDS downclocking. */ static bool i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc_state *crtc_state, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { struct drm_device *dev = crtc_state->base.crtc->dev; intel_clock_t clock; int err = target; memset(best_clock, 0, sizeof(*best_clock)); clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) { if (clock.m2 >= clock.m1) break; for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) { for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max; clock.p1++) { int this_err; i9xx_calc_dpll_params(refclk, &clock); if (!intel_PLL_is_valid(dev, limit, &clock)) continue; if (match_clock && clock.p != match_clock->p) continue; this_err = abs(clock.dot - target); if (this_err < err) { *best_clock = clock; err = this_err; } } } } } return (err != target); } /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. * * Target and reference clocks are specified in kHz. * * If match_clock is provided, then best_clock P divider must match the P * divider from @match_clock used for LVDS downclocking. */ static bool pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc_state *crtc_state, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { struct drm_device *dev = crtc_state->base.crtc->dev; intel_clock_t clock; int err = target; memset(best_clock, 0, sizeof(*best_clock)); clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) { for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) { for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max; clock.p1++) { int this_err; pnv_calc_dpll_params(refclk, &clock); if (!intel_PLL_is_valid(dev, limit, &clock)) continue; if (match_clock && clock.p != match_clock->p) continue; this_err = abs(clock.dot - target); if (this_err < err) { *best_clock = clock; err = this_err; } } } } } return (err != target); } /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. * * Target and reference clocks are specified in kHz. * * If match_clock is provided, then best_clock P divider must match the P * divider from @match_clock used for LVDS downclocking. */ static bool g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc_state *crtc_state, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { struct drm_device *dev = crtc_state->base.crtc->dev; intel_clock_t clock; int max_n; bool found = false; /* approximately equals target * 0.00585 */ int err_most = (target >> 8) + (target >> 9); memset(best_clock, 0, sizeof(*best_clock)); clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); max_n = limit->n.max; /* based on hardware requirement, prefer smaller n to precision */ for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { /* based on hardware requirement, prefere larger m1,m2 */ for (clock.m1 = limit->m1.max; clock.m1 >= limit->m1.min; clock.m1--) { for (clock.m2 = limit->m2.max; clock.m2 >= limit->m2.min; clock.m2--) { for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { int this_err; i9xx_calc_dpll_params(refclk, &clock); if (!intel_PLL_is_valid(dev, limit, &clock)) continue; this_err = abs(clock.dot - target); if (this_err < err_most) { *best_clock = clock; err_most = this_err; max_n = clock.n; found = true; } } } } } return found; } /* * Check if the calculated PLL configuration is more optimal compared to the * best configuration and error found so far. Return the calculated error. */ static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, const intel_clock_t *calculated_clock, const intel_clock_t *best_clock, unsigned int best_error_ppm, unsigned int *error_ppm) { /* * For CHV ignore the error and consider only the P value. * Prefer a bigger P value based on HW requirements. */ if (IS_CHERRYVIEW(dev)) { *error_ppm = 0; return calculated_clock->p > best_clock->p; } if (WARN_ON_ONCE(!target_freq)) return false; *error_ppm = div_u64(1000000ULL * abs(target_freq - calculated_clock->dot), target_freq); /* * Prefer a better P value over a better (smaller) error if the error * is small. Ensure this preference for future configurations too by * setting the error to 0. */ if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { *error_ppm = 0; return true; } return *error_ppm + 10 < best_error_ppm; } /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. */ static bool vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc_state *crtc_state, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_device *dev = crtc->base.dev; intel_clock_t clock; unsigned int bestppm = 1000000; /* min update 19.2 MHz */ int max_n = min(limit->n.max, refclk / 19200); bool found = false; target *= 5; /* fast clock */ memset(best_clock, 0, sizeof(*best_clock)); /* based on hardware requirement, prefer smaller n to precision */ for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; clock.p2 -= clock.p2 > 10 ? 2 : 1) { clock.p = clock.p1 * clock.p2; /* based on hardware requirement, prefer bigger m1,m2 values */ for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { unsigned int ppm; clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, refclk * clock.m1); vlv_calc_dpll_params(refclk, &clock); if (!intel_PLL_is_valid(dev, limit, &clock)) continue; if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, bestppm, &ppm)) continue; *best_clock = clock; bestppm = ppm; found = true; } } } } return found; } /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. */ static bool chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc_state *crtc_state, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_device *dev = crtc->base.dev; unsigned int best_error_ppm; intel_clock_t clock; uint64_t m2; int found = false; memset(best_clock, 0, sizeof(*best_clock)); best_error_ppm = 1000000; /* * Based on hardware doc, the n always set to 1, and m1 always * set to 2. If requires to support 200Mhz refclk, we need to * revisit this because n may not 1 anymore. */ clock.n = 1, clock.m1 = 2; target *= 5; /* fast clock */ for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; clock.p2 -= clock.p2 > 10 ? 2 : 1) { unsigned int error_ppm; clock.p = clock.p1 * clock.p2; m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p * clock.n) << 22, refclk * clock.m1); if (m2 > INT_MAX/clock.m1) continue; clock.m2 = m2; chv_calc_dpll_params(refclk, &clock); if (!intel_PLL_is_valid(dev, limit, &clock)) continue; if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, best_error_ppm, &error_ppm)) continue; *best_clock = clock; best_error_ppm = error_ppm; found = true; } } return found; } bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock, intel_clock_t *best_clock) { int refclk = 100000; const intel_limit_t *limit = &intel_limits_bxt; return chv_find_best_dpll(limit, crtc_state, target_clock, refclk, NULL, best_clock); } bool intel_crtc_active(struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); /* Be paranoid as we can arrive here with only partial * state retrieved from the hardware during setup. * * We can ditch the adjusted_mode.crtc_clock check as soon * as Haswell has gained clock readout/fastboot support. * * We can ditch the crtc->primary->fb check as soon as we can * properly reconstruct framebuffers. * * FIXME: The intel_crtc->active here should be switched to * crtc->state->active once we have proper CRTC states wired up * for atomic. */ return intel_crtc->active && crtc->primary->state->fb && intel_crtc->config->base.adjusted_mode.crtc_clock; } enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); return intel_crtc->config->cpu_transcoder; } static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; i915_reg_t reg = PIPEDSL(pipe); u32 line1, line2; u32 line_mask; if (IS_GEN2(dev)) line_mask = DSL_LINEMASK_GEN2; else line_mask = DSL_LINEMASK_GEN3; line1 = I915_READ(reg) & line_mask; msleep(5); line2 = I915_READ(reg) & line_mask; return line1 == line2; } /* * intel_wait_for_pipe_off - wait for pipe to turn off * @crtc: crtc whose pipe to wait for * * After disabling a pipe, we can't wait for vblank in the usual way, * spinning on the vblank interrupt status bit, since we won't actually * see an interrupt when the pipe is disabled. * * On Gen4 and above: * wait for the pipe register state bit to turn off * * Otherwise: * wait for the display line value to settle (it usually * ends up stopping at the start of the next frame). * */ static void intel_wait_for_pipe_off(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; enum pipe pipe = crtc->pipe; if (INTEL_INFO(dev)->gen >= 4) { i915_reg_t reg = PIPECONF(cpu_transcoder); /* Wait for the Pipe State to go off */ if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 100)) WARN(1, "pipe_off wait timed out\n"); } else { /* Wait for the display line to settle */ if (wait_for(pipe_dsl_stopped(dev, pipe), 100)) WARN(1, "pipe_off wait timed out\n"); } } /* Only for pre-ILK configs */ void assert_pll(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { u32 val; bool cur_state; val = I915_READ(DPLL(pipe)); cur_state = !!(val & DPLL_VCO_ENABLE); I915_STATE_WARN(cur_state != state, "PLL state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } /* XXX: the dsi pll is shared between MIPI DSI ports */ void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) { u32 val; bool cur_state; mutex_lock(&dev_priv->sb_lock); val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); mutex_unlock(&dev_priv->sb_lock); cur_state = val & DSI_PLL_VCO_EN; I915_STATE_WARN(cur_state != state, "DSI PLL state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } static void assert_fdi_tx(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { bool cur_state; enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); if (HAS_DDI(dev_priv)) { /* DDI does not have a specific FDI_TX register */ u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); } else { u32 val = I915_READ(FDI_TX_CTL(pipe)); cur_state = !!(val & FDI_TX_ENABLE); } I915_STATE_WARN(cur_state != state, "FDI TX state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) static void assert_fdi_rx(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { u32 val; bool cur_state; val = I915_READ(FDI_RX_CTL(pipe)); cur_state = !!(val & FDI_RX_ENABLE); I915_STATE_WARN(cur_state != state, "FDI RX state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 val; /* ILK FDI PLL is always enabled */ if (INTEL_INFO(dev_priv)->gen == 5) return; /* On Haswell, DDI ports are responsible for the FDI PLL setup */ if (HAS_DDI(dev_priv)) return; val = I915_READ(FDI_TX_CTL(pipe)); I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); } void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { u32 val; bool cur_state; val = I915_READ(FDI_RX_CTL(pipe)); cur_state = !!(val & FDI_RX_PLL_ENABLE); I915_STATE_WARN(cur_state != state, "FDI RX PLL assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_device *dev = dev_priv->dev; i915_reg_t pp_reg; u32 val; enum pipe panel_pipe = PIPE_A; bool locked = true; if (WARN_ON(HAS_DDI(dev))) return; if (HAS_PCH_SPLIT(dev)) { u32 port_sel; pp_reg = PCH_PP_CONTROL; port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK; if (port_sel == PANEL_PORT_SELECT_LVDS && I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT) panel_pipe = PIPE_B; /* XXX: else fix for eDP */ } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { /* presumably write lock depends on pipe, not port select */ pp_reg = VLV_PIPE_PP_CONTROL(pipe); panel_pipe = pipe; } else { pp_reg = PP_CONTROL; if (I915_READ(LVDS) & LVDS_PIPEB_SELECT) panel_pipe = PIPE_B; } val = I915_READ(pp_reg); if (!(val & PANEL_POWER_ON) || ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) locked = false; I915_STATE_WARN(panel_pipe == pipe && locked, "panel assertion failure, pipe %c regs locked\n", pipe_name(pipe)); } static void assert_cursor(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { struct drm_device *dev = dev_priv->dev; bool cur_state; if (IS_845G(dev) || IS_I865G(dev)) cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE; else cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE; I915_STATE_WARN(cur_state != state, "cursor on pipe %c assertion failure (expected %s, current %s)\n", pipe_name(pipe), onoff(state), onoff(cur_state)); } #define assert_cursor_enabled(d, p) assert_cursor(d, p, true) #define assert_cursor_disabled(d, p) assert_cursor(d, p, false) void assert_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { bool cur_state; enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); enum intel_display_power_domain power_domain; /* if we need the pipe quirk it must be always on */ if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) state = true; power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); if (intel_display_power_get_if_enabled(dev_priv, power_domain)) { u32 val = I915_READ(PIPECONF(cpu_transcoder)); cur_state = !!(val & PIPECONF_ENABLE); intel_display_power_put(dev_priv, power_domain); } else { cur_state = false; } I915_STATE_WARN(cur_state != state, "pipe %c assertion failure (expected %s, current %s)\n", pipe_name(pipe), onoff(state), onoff(cur_state)); } static void assert_plane(struct drm_i915_private *dev_priv, enum plane plane, bool state) { u32 val; bool cur_state; val = I915_READ(DSPCNTR(plane)); cur_state = !!(val & DISPLAY_PLANE_ENABLE); I915_STATE_WARN(cur_state != state, "plane %c assertion failure (expected %s, current %s)\n", plane_name(plane), onoff(state), onoff(cur_state)); } #define assert_plane_enabled(d, p) assert_plane(d, p, true) #define assert_plane_disabled(d, p) assert_plane(d, p, false) static void assert_planes_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_device *dev = dev_priv->dev; int i; /* Primary planes are fixed to pipes on gen4+ */ if (INTEL_INFO(dev)->gen >= 4) { u32 val = I915_READ(DSPCNTR(pipe)); I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE, "plane %c assertion failure, should be disabled but not\n", plane_name(pipe)); return; } /* Need to check both planes against the pipe */ for_each_pipe(dev_priv, i) { u32 val = I915_READ(DSPCNTR(i)); enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> DISPPLANE_SEL_PIPE_SHIFT; I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe, "plane %c assertion failure, should be off on pipe %c but is still active\n", plane_name(i), pipe_name(pipe)); } } static void assert_sprites_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_device *dev = dev_priv->dev; int sprite; if (INTEL_INFO(dev)->gen >= 9) { for_each_sprite(dev_priv, pipe, sprite) { u32 val = I915_READ(PLANE_CTL(pipe, sprite)); I915_STATE_WARN(val & PLANE_CTL_ENABLE, "plane %d assertion failure, should be off on pipe %c but is still active\n", sprite, pipe_name(pipe)); } } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { for_each_sprite(dev_priv, pipe, sprite) { u32 val = I915_READ(SPCNTR(pipe, sprite)); I915_STATE_WARN(val & SP_ENABLE, "sprite %c assertion failure, should be off on pipe %c but is still active\n", sprite_name(pipe, sprite), pipe_name(pipe)); } } else if (INTEL_INFO(dev)->gen >= 7) { u32 val = I915_READ(SPRCTL(pipe)); I915_STATE_WARN(val & SPRITE_ENABLE, "sprite %c assertion failure, should be off on pipe %c but is still active\n", plane_name(pipe), pipe_name(pipe)); } else if (INTEL_INFO(dev)->gen >= 5) { u32 val = I915_READ(DVSCNTR(pipe)); I915_STATE_WARN(val & DVS_ENABLE, "sprite %c assertion failure, should be off on pipe %c but is still active\n", plane_name(pipe), pipe_name(pipe)); } } static void assert_vblank_disabled(struct drm_crtc *crtc) { if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) drm_crtc_vblank_put(crtc); } void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 val; bool enabled; val = I915_READ(PCH_TRANSCONF(pipe)); enabled = !!(val & TRANS_ENABLE); I915_STATE_WARN(enabled, "transcoder assertion failed, should be off on pipe %c but is still active\n", pipe_name(pipe)); } static bool dp_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe, u32 port_sel, u32 val) { if ((val & DP_PORT_EN) == 0) return false; if (HAS_PCH_CPT(dev_priv)) { u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe)); if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel) return false; } else if (IS_CHERRYVIEW(dev_priv)) { if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe)) return false; } else { if ((val & DP_PIPE_MASK) != (pipe << 30)) return false; } return true; } static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe, u32 val) { if ((val & SDVO_ENABLE) == 0) return false; if (HAS_PCH_CPT(dev_priv)) { if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe)) return false; } else if (IS_CHERRYVIEW(dev_priv)) { if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe)) return false; } else { if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe)) return false; } return true; } static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe, u32 val) { if ((val & LVDS_PORT_EN) == 0) return false; if (HAS_PCH_CPT(dev_priv)) { if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) return false; } else { if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe)) return false; } return true; } static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe, u32 val) { if ((val & ADPA_DAC_ENABLE) == 0) return false; if (HAS_PCH_CPT(dev_priv)) { if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) return false; } else { if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe)) return false; } return true; } static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, enum pipe pipe, i915_reg_t reg, u32 port_sel) { u32 val = I915_READ(reg); I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val), "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n", i915_mmio_reg_offset(reg), pipe_name(pipe)); I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0 && (val & DP_PIPEB_SELECT), "IBX PCH dp port still using transcoder B\n"); } static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, enum pipe pipe, i915_reg_t reg) { u32 val = I915_READ(reg); I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val), "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n", i915_mmio_reg_offset(reg), pipe_name(pipe)); I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0 && (val & SDVO_PIPE_B_SELECT), "IBX PCH hdmi port still using transcoder B\n"); } static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 val; assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B); assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C); assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D); val = I915_READ(PCH_ADPA); I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val), "PCH VGA enabled on transcoder %c, should be disabled\n", pipe_name(pipe)); val = I915_READ(PCH_LVDS); I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val), "PCH LVDS enabled on transcoder %c, should be disabled\n", pipe_name(pipe)); assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB); assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC); assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID); } static void vlv_enable_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = crtc->pipe; i915_reg_t reg = DPLL(pipe); u32 dpll = pipe_config->dpll_hw_state.dpll; assert_pipe_disabled(dev_priv, pipe); /* PLL is protected by panel, make sure we can write it */ assert_panel_unlocked(dev_priv, pipe); I915_WRITE(reg, dpll); POSTING_READ(reg); udelay(150); if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1)) DRM_ERROR("DPLL %d failed to lock\n", pipe); I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); POSTING_READ(DPLL_MD(pipe)); } static void chv_enable_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = crtc->pipe; enum dpio_channel port = vlv_pipe_to_channel(pipe); u32 tmp; assert_pipe_disabled(dev_priv, pipe); /* PLL is protected by panel, make sure we can write it */ assert_panel_unlocked(dev_priv, pipe); mutex_lock(&dev_priv->sb_lock); /* Enable back the 10bit clock to display controller */ tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); tmp |= DPIO_DCLKP_EN; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); mutex_unlock(&dev_priv->sb_lock); /* * Need to wait > 100ns between dclkp clock enable bit and PLL enable. */ udelay(1); /* Enable PLL */ I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); /* Check PLL is locked */ if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1)) DRM_ERROR("PLL %d failed to lock\n", pipe); if (pipe != PIPE_A) { /* * WaPixelRepeatModeFixForC0:chv * * DPLLCMD is AWOL. Use chicken bits to propagate * the value from DPLLBMD to either pipe B or C. */ I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C); I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md); I915_WRITE(CBR4_VLV, 0); dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; /* * DPLLB VGA mode also seems to cause problems. * We should always have it disabled. */ WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0); } else { I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); POSTING_READ(DPLL_MD(pipe)); } } static int intel_num_dvo_pipes(struct drm_device *dev) { struct intel_crtc *crtc; int count = 0; for_each_intel_crtc(dev, crtc) count += crtc->base.state->active && intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO); return count; } static void i9xx_enable_pll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; i915_reg_t reg = DPLL(crtc->pipe); u32 dpll = crtc->config->dpll_hw_state.dpll; assert_pipe_disabled(dev_priv, crtc->pipe); /* PLL is protected by panel, make sure we can write it */ if (IS_MOBILE(dev) && !IS_I830(dev)) assert_panel_unlocked(dev_priv, crtc->pipe); /* Enable DVO 2x clock on both PLLs if necessary */ if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) { /* * It appears to be important that we don't enable this * for the current pipe before otherwise configuring the * PLL. No idea how this should be handled if multiple * DVO outputs are enabled simultaneosly. */ dpll |= DPLL_DVO_2X_MODE; I915_WRITE(DPLL(!crtc->pipe), I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE); } /* * Apparently we need to have VGA mode enabled prior to changing * the P1/P2 dividers. Otherwise the DPLL will keep using the old * dividers, even though the register value does change. */ I915_WRITE(reg, 0); I915_WRITE(reg, dpll); /* Wait for the clocks to stabilize. */ POSTING_READ(reg); udelay(150); if (INTEL_INFO(dev)->gen >= 4) { I915_WRITE(DPLL_MD(crtc->pipe), crtc->config->dpll_hw_state.dpll_md); } else { /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ I915_WRITE(reg, dpll); } /* We do this three times for luck */ I915_WRITE(reg, dpll); POSTING_READ(reg); udelay(150); /* wait for warmup */ I915_WRITE(reg, dpll); POSTING_READ(reg); udelay(150); /* wait for warmup */ I915_WRITE(reg, dpll); POSTING_READ(reg); udelay(150); /* wait for warmup */ } /** * i9xx_disable_pll - disable a PLL * @dev_priv: i915 private structure * @pipe: pipe PLL to disable * * Disable the PLL for @pipe, making sure the pipe is off first. * * Note! This is for pre-ILK only. */ static void i9xx_disable_pll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = crtc->pipe; /* Disable DVO 2x clock on both PLLs if necessary */ if (IS_I830(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) && !intel_num_dvo_pipes(dev)) { I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE); I915_WRITE(DPLL(PIPE_A), I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE); } /* Don't disable pipe or pipe PLLs if needed */ if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) return; /* Make sure the pipe isn't still relying on us */ assert_pipe_disabled(dev_priv, pipe); I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS); POSTING_READ(DPLL(pipe)); } static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 val; /* Make sure the pipe isn't still relying on us */ assert_pipe_disabled(dev_priv, pipe); val = DPLL_INTEGRATED_REF_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; if (pipe != PIPE_A) val |= DPLL_INTEGRATED_CRI_CLK_VLV; I915_WRITE(DPLL(pipe), val); POSTING_READ(DPLL(pipe)); } static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) { enum dpio_channel port = vlv_pipe_to_channel(pipe); u32 val; /* Make sure the pipe isn't still relying on us */ assert_pipe_disabled(dev_priv, pipe); val = DPLL_SSC_REF_CLK_CHV | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; if (pipe != PIPE_A) val |= DPLL_INTEGRATED_CRI_CLK_VLV; I915_WRITE(DPLL(pipe), val); POSTING_READ(DPLL(pipe)); mutex_lock(&dev_priv->sb_lock); /* Disable 10bit clock to display controller */ val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); val &= ~DPIO_DCLKP_EN; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); mutex_unlock(&dev_priv->sb_lock); } void vlv_wait_port_ready(struct drm_i915_private *dev_priv, struct intel_digital_port *dport, unsigned int expected_mask) { u32 port_mask; i915_reg_t dpll_reg; switch (dport->port) { case PORT_B: port_mask = DPLL_PORTB_READY_MASK; dpll_reg = DPLL(0); break; case PORT_C: port_mask = DPLL_PORTC_READY_MASK; dpll_reg = DPLL(0); expected_mask <<= 4; break; case PORT_D: port_mask = DPLL_PORTD_READY_MASK; dpll_reg = DPIO_PHY_STATUS; break; default: BUG(); } if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000)) WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n", port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask); } static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_device *dev = dev_priv->dev; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); i915_reg_t reg; uint32_t val, pipeconf_val; /* Make sure PCH DPLL is enabled */ assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll); /* FDI must be feeding us bits for PCH ports */ assert_fdi_tx_enabled(dev_priv, pipe); assert_fdi_rx_enabled(dev_priv, pipe); if (HAS_PCH_CPT(dev)) { /* Workaround: Set the timing override bit before enabling the * pch transcoder. */ reg = TRANS_CHICKEN2(pipe); val = I915_READ(reg); val |= TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(reg, val); } reg = PCH_TRANSCONF(pipe); val = I915_READ(reg); pipeconf_val = I915_READ(PIPECONF(pipe)); if (HAS_PCH_IBX(dev_priv)) { /* * Make the BPC in transcoder be consistent with * that in pipeconf reg. For HDMI we must use 8bpc * here for both 8bpc and 12bpc. */ val &= ~PIPECONF_BPC_MASK; if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI)) val |= PIPECONF_8BPC; else val |= pipeconf_val & PIPECONF_BPC_MASK; } val &= ~TRANS_INTERLACE_MASK; if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) if (HAS_PCH_IBX(dev_priv) && intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO)) val |= TRANS_LEGACY_INTERLACED_ILK; else val |= TRANS_INTERLACED; else val |= TRANS_PROGRESSIVE; I915_WRITE(reg, val | TRANS_ENABLE); if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100)) DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe)); } static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { u32 val, pipeconf_val; /* FDI must be feeding us bits for PCH ports */ assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); assert_fdi_rx_enabled(dev_priv, TRANSCODER_A); /* Workaround: set timing override bit. */ val = I915_READ(TRANS_CHICKEN2(PIPE_A)); val |= TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); val = TRANS_ENABLE; pipeconf_val = I915_READ(PIPECONF(cpu_transcoder)); if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == PIPECONF_INTERLACED_ILK) val |= TRANS_INTERLACED; else val |= TRANS_PROGRESSIVE; I915_WRITE(LPT_TRANSCONF, val); if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100)) DRM_ERROR("Failed to enable PCH transcoder\n"); } static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_device *dev = dev_priv->dev; i915_reg_t reg; uint32_t val; /* FDI relies on the transcoder */ assert_fdi_tx_disabled(dev_priv, pipe); assert_fdi_rx_disabled(dev_priv, pipe); /* Ports must be off as well */ assert_pch_ports_disabled(dev_priv, pipe); reg = PCH_TRANSCONF(pipe); val = I915_READ(reg); val &= ~TRANS_ENABLE; I915_WRITE(reg, val); /* wait for PCH transcoder off, transcoder state */ if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50)) DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe)); if (HAS_PCH_CPT(dev)) { /* Workaround: Clear the timing override chicken bit again. */ reg = TRANS_CHICKEN2(pipe); val = I915_READ(reg); val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(reg, val); } } static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) { u32 val; val = I915_READ(LPT_TRANSCONF); val &= ~TRANS_ENABLE; I915_WRITE(LPT_TRANSCONF, val); /* wait for PCH transcoder off, transcoder state */ if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50)) DRM_ERROR("Failed to disable PCH transcoder\n"); /* Workaround: clear timing override bit. */ val = I915_READ(TRANS_CHICKEN2(PIPE_A)); val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); } /** * intel_enable_pipe - enable a pipe, asserting requirements * @crtc: crtc responsible for the pipe * * Enable @crtc's pipe, making sure that various hardware specific requirements * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc. */ static void intel_enable_pipe(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = crtc->pipe; enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; enum pipe pch_transcoder; i915_reg_t reg; u32 val; DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe)); assert_planes_disabled(dev_priv, pipe); assert_cursor_disabled(dev_priv, pipe); assert_sprites_disabled(dev_priv, pipe); if (HAS_PCH_LPT(dev_priv)) pch_transcoder = TRANSCODER_A; else pch_transcoder = pipe; /* * A pipe without a PLL won't actually be able to drive bits from * a plane. On ILK+ the pipe PLLs are integrated, so we don't * need the check. */ if (HAS_GMCH_DISPLAY(dev_priv)) if (crtc->config->has_dsi_encoder) assert_dsi_pll_enabled(dev_priv); else assert_pll_enabled(dev_priv, pipe); else { if (crtc->config->has_pch_encoder) { /* if driving the PCH, we need FDI enabled */ assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder); assert_fdi_tx_pll_enabled(dev_priv, (enum pipe) cpu_transcoder); } /* FIXME: assert CPU port conditions for SNB+ */ } reg = PIPECONF(cpu_transcoder); val = I915_READ(reg); if (val & PIPECONF_ENABLE) { WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))); return; } I915_WRITE(reg, val | PIPECONF_ENABLE); POSTING_READ(reg); /* * Until the pipe starts DSL will read as 0, which would cause * an apparent vblank timestamp jump, which messes up also the * frame count when it's derived from the timestamps. So let's * wait for the pipe to start properly before we call * drm_crtc_vblank_on() */ if (dev->max_vblank_count == 0 && wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50)) DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe)); } /** * intel_disable_pipe - disable a pipe, asserting requirements * @crtc: crtc whose pipes is to be disabled * * Disable the pipe of @crtc, making sure that various hardware * specific requirements are met, if applicable, e.g. plane * disabled, panel fitter off, etc. * * Will wait until the pipe has shut down before returning. */ static void intel_disable_pipe(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; enum pipe pipe = crtc->pipe; i915_reg_t reg; u32 val; DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe)); /* * Make sure planes won't keep trying to pump pixels to us, * or we might hang the display. */ assert_planes_disabled(dev_priv, pipe); assert_cursor_disabled(dev_priv, pipe); assert_sprites_disabled(dev_priv, pipe); reg = PIPECONF(cpu_transcoder); val = I915_READ(reg); if ((val & PIPECONF_ENABLE) == 0) return; /* * Double wide has implications for planes * so best keep it disabled when not needed. */ if (crtc->config->double_wide) val &= ~PIPECONF_DOUBLE_WIDE; /* Don't disable pipe or pipe PLLs if needed */ if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) && !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) val &= ~PIPECONF_ENABLE; I915_WRITE(reg, val); if ((val & PIPECONF_ENABLE) == 0) intel_wait_for_pipe_off(crtc); } static bool need_vtd_wa(struct drm_device *dev) { #ifdef CONFIG_INTEL_IOMMU if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped) return true; #endif return false; } static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) { return IS_GEN2(dev_priv) ? 2048 : 4096; } static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv, uint64_t fb_modifier, unsigned int cpp) { switch (fb_modifier) { case DRM_FORMAT_MOD_NONE: return cpp; case I915_FORMAT_MOD_X_TILED: if (IS_GEN2(dev_priv)) return 128; else return 512; case I915_FORMAT_MOD_Y_TILED: if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv)) return 128; else return 512; case I915_FORMAT_MOD_Yf_TILED: switch (cpp) { case 1: return 64; case 2: case 4: return 128; case 8: case 16: return 256; default: MISSING_CASE(cpp); return cpp; } break; default: MISSING_CASE(fb_modifier); return cpp; } } unsigned int intel_tile_height(const struct drm_i915_private *dev_priv, uint64_t fb_modifier, unsigned int cpp) { if (fb_modifier == DRM_FORMAT_MOD_NONE) return 1; else return intel_tile_size(dev_priv) / intel_tile_width_bytes(dev_priv, fb_modifier, cpp); } /* Return the tile dimensions in pixel units */ static void intel_tile_dims(const struct drm_i915_private *dev_priv, unsigned int *tile_width, unsigned int *tile_height, uint64_t fb_modifier, unsigned int cpp) { unsigned int tile_width_bytes = intel_tile_width_bytes(dev_priv, fb_modifier, cpp); *tile_width = tile_width_bytes / cpp; *tile_height = intel_tile_size(dev_priv) / tile_width_bytes; } unsigned int intel_fb_align_height(struct drm_device *dev, unsigned int height, uint32_t pixel_format, uint64_t fb_modifier) { unsigned int cpp = drm_format_plane_cpp(pixel_format, 0); unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp); return ALIGN(height, tile_height); } unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) { unsigned int size = 0; int i; for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) size += rot_info->plane[i].width * rot_info->plane[i].height; return size; } static void intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, const struct drm_framebuffer *fb, unsigned int rotation) { if (intel_rotation_90_or_270(rotation)) { *view = i915_ggtt_view_rotated; view->params.rotated = to_intel_framebuffer(fb)->rot_info; } else { *view = i915_ggtt_view_normal; } } static void intel_fill_fb_info(struct drm_i915_private *dev_priv, struct drm_framebuffer *fb) { struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info; unsigned int tile_size, tile_width, tile_height, cpp; tile_size = intel_tile_size(dev_priv); cpp = drm_format_plane_cpp(fb->pixel_format, 0); intel_tile_dims(dev_priv, &tile_width, &tile_height, fb->modifier[0], cpp); info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp); info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height); if (info->pixel_format == DRM_FORMAT_NV12) { cpp = drm_format_plane_cpp(fb->pixel_format, 1); intel_tile_dims(dev_priv, &tile_width, &tile_height, fb->modifier[1], cpp); info->uv_offset = fb->offsets[1]; info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp); info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height); } } static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) { if (INTEL_INFO(dev_priv)->gen >= 9) return 256 * 1024; else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) return 128 * 1024; else if (INTEL_INFO(dev_priv)->gen >= 4) return 4 * 1024; else return 0; } static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv, uint64_t fb_modifier) { switch (fb_modifier) { case DRM_FORMAT_MOD_NONE: return intel_linear_alignment(dev_priv); case I915_FORMAT_MOD_X_TILED: if (INTEL_INFO(dev_priv)->gen >= 9) return 256 * 1024; return 0; case I915_FORMAT_MOD_Y_TILED: case I915_FORMAT_MOD_Yf_TILED: return 1 * 1024 * 1024; default: MISSING_CASE(fb_modifier); return 0; } } int intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation) { struct drm_device *dev = fb->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj = intel_fb_obj(fb); struct i915_ggtt_view view; u32 alignment; int ret; WARN_ON(!mutex_is_locked(&dev->struct_mutex)); alignment = intel_surf_alignment(dev_priv, fb->modifier[0]); intel_fill_fb_ggtt_view(&view, fb, rotation); /* Note that the w/a also requires 64 PTE of padding following the * bo. We currently fill all unused PTE with the shadow page and so * we should always have valid PTE following the scanout preventing * the VT-d warning. */ if (need_vtd_wa(dev) && alignment < 256 * 1024) alignment = 256 * 1024; /* * Global gtt pte registers are special registers which actually forward * writes to a chunk of system memory. Which means that there is no risk * that the register values disappear as soon as we call * intel_runtime_pm_put(), so it is correct to wrap only the * pin/unpin/fence and not more. */ intel_runtime_pm_get(dev_priv); ret = i915_gem_object_pin_to_display_plane(obj, alignment, &view); if (ret) goto err_pm; /* Install a fence for tiled scan-out. Pre-i965 always needs a * fence, whereas 965+ only requires a fence if using * framebuffer compression. For simplicity, we always install * a fence as the cost is not that onerous. */ if (view.type == I915_GGTT_VIEW_NORMAL) { ret = i915_gem_object_get_fence(obj); if (ret == -EDEADLK) { /* * -EDEADLK means there are no free fences * no pending flips. * * This is propagated to atomic, but it uses * -EDEADLK to force a locking recovery, so * change the returned error to -EBUSY. */ ret = -EBUSY; goto err_unpin; } else if (ret) goto err_unpin; i915_gem_object_pin_fence(obj); } intel_runtime_pm_put(dev_priv); return 0; err_unpin: i915_gem_object_unpin_from_display_plane(obj, &view); err_pm: intel_runtime_pm_put(dev_priv); return ret; } static void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation) { struct drm_i915_gem_object *obj = intel_fb_obj(fb); struct i915_ggtt_view view; WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex)); intel_fill_fb_ggtt_view(&view, fb, rotation); if (view.type == I915_GGTT_VIEW_NORMAL) i915_gem_object_unpin_fence(obj); i915_gem_object_unpin_from_display_plane(obj, &view); } /* * Adjust the tile offset by moving the difference into * the x/y offsets. * * Input tile dimensions and pitch must already be * rotated to match x and y, and in pixel units. */ static u32 intel_adjust_tile_offset(int *x, int *y, unsigned int tile_width, unsigned int tile_height, unsigned int tile_size, unsigned int pitch_tiles, u32 old_offset, u32 new_offset) { unsigned int tiles; WARN_ON(old_offset & (tile_size - 1)); WARN_ON(new_offset & (tile_size - 1)); WARN_ON(new_offset > old_offset); tiles = (old_offset - new_offset) / tile_size; *y += tiles / pitch_tiles * tile_height; *x += tiles % pitch_tiles * tile_width; return new_offset; } /* * Computes the linear offset to the base tile and adjusts * x, y. bytes per pixel is assumed to be a power-of-two. * * In the 90/270 rotated case, x and y are assumed * to be already rotated to match the rotated GTT view, and * pitch is the tile_height aligned framebuffer height. */ u32 intel_compute_tile_offset(int *x, int *y, const struct drm_framebuffer *fb, int plane, unsigned int pitch, unsigned int rotation) { const struct drm_i915_private *dev_priv = to_i915(fb->dev); uint64_t fb_modifier = fb->modifier[plane]; unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane); u32 offset, offset_aligned, alignment; alignment = intel_surf_alignment(dev_priv, fb_modifier); if (alignment) alignment--; if (fb_modifier != DRM_FORMAT_MOD_NONE) { unsigned int tile_size, tile_width, tile_height; unsigned int tile_rows, tiles, pitch_tiles; tile_size = intel_tile_size(dev_priv); intel_tile_dims(dev_priv, &tile_width, &tile_height, fb_modifier, cpp); if (intel_rotation_90_or_270(rotation)) { pitch_tiles = pitch / tile_height; swap(tile_width, tile_height); } else { pitch_tiles = pitch / (tile_width * cpp); } tile_rows = *y / tile_height; *y %= tile_height; tiles = *x / tile_width; *x %= tile_width; offset = (tile_rows * pitch_tiles + tiles) * tile_size; offset_aligned = offset & ~alignment; intel_adjust_tile_offset(x, y, tile_width, tile_height, tile_size, pitch_tiles, offset, offset_aligned); } else { offset = *y * pitch + *x * cpp; offset_aligned = offset & ~alignment; *y = (offset & alignment) / pitch; *x = ((offset & alignment) - *y * pitch) / cpp; } return offset_aligned; } static int i9xx_format_to_fourcc(int format) { switch (format) { case DISPPLANE_8BPP: return DRM_FORMAT_C8; case DISPPLANE_BGRX555: return DRM_FORMAT_XRGB1555; case DISPPLANE_BGRX565: return DRM_FORMAT_RGB565; default: case DISPPLANE_BGRX888: return DRM_FORMAT_XRGB8888; case DISPPLANE_RGBX888: return DRM_FORMAT_XBGR8888; case DISPPLANE_BGRX101010: return DRM_FORMAT_XRGB2101010; case DISPPLANE_RGBX101010: return DRM_FORMAT_XBGR2101010; } } static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) { switch (format) { case PLANE_CTL_FORMAT_RGB_565: return DRM_FORMAT_RGB565; default: case PLANE_CTL_FORMAT_XRGB_8888: if (rgb_order) { if (alpha) return DRM_FORMAT_ABGR8888; else return DRM_FORMAT_XBGR8888; } else { if (alpha) return DRM_FORMAT_ARGB8888; else return DRM_FORMAT_XRGB8888; } case PLANE_CTL_FORMAT_XRGB_2101010: if (rgb_order) return DRM_FORMAT_XBGR2101010; else return DRM_FORMAT_XRGB2101010; } } static bool intel_alloc_initial_plane_obj(struct intel_crtc *crtc, struct intel_initial_plane_config *plane_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct i915_ggtt *ggtt = &dev_priv->ggtt; struct drm_i915_gem_object *obj = NULL; struct drm_mode_fb_cmd2 mode_cmd = { 0 }; struct drm_framebuffer *fb = &plane_config->fb->base; u32 base_aligned = round_down(plane_config->base, PAGE_SIZE); u32 size_aligned = round_up(plane_config->base + plane_config->size, PAGE_SIZE); size_aligned -= base_aligned; if (plane_config->size == 0) return false; /* If the FB is too big, just don't use it since fbdev is not very * important and we should probably use that space with FBC or other * features. */ if (size_aligned * 2 > ggtt->stolen_usable_size) return false; mutex_lock(&dev->struct_mutex); obj = i915_gem_object_create_stolen_for_preallocated(dev, base_aligned, base_aligned, size_aligned); if (!obj) { mutex_unlock(&dev->struct_mutex); return false; } obj->tiling_mode = plane_config->tiling; if (obj->tiling_mode == I915_TILING_X) obj->stride = fb->pitches[0]; mode_cmd.pixel_format = fb->pixel_format; mode_cmd.width = fb->width; mode_cmd.height = fb->height; mode_cmd.pitches[0] = fb->pitches[0]; mode_cmd.modifier[0] = fb->modifier[0]; mode_cmd.flags = DRM_MODE_FB_MODIFIERS; if (intel_framebuffer_init(dev, to_intel_framebuffer(fb), &mode_cmd, obj)) { DRM_DEBUG_KMS("intel fb init failed\n"); goto out_unref_obj; } mutex_unlock(&dev->struct_mutex); DRM_DEBUG_KMS("initial plane fb obj %p\n", obj); return true; out_unref_obj: drm_gem_object_unreference(&obj->base); mutex_unlock(&dev->struct_mutex); return false; } /* Update plane->state->fb to match plane->fb after driver-internal updates */ static void update_state_fb(struct drm_plane *plane) { if (plane->fb == plane->state->fb) return; if (plane->state->fb) drm_framebuffer_unreference(plane->state->fb); plane->state->fb = plane->fb; if (plane->state->fb) drm_framebuffer_reference(plane->state->fb); } static void intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, struct intel_initial_plane_config *plane_config) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *c; struct intel_crtc *i; struct drm_i915_gem_object *obj; struct drm_plane *primary = intel_crtc->base.primary; struct drm_plane_state *plane_state = primary->state; struct drm_crtc_state *crtc_state = intel_crtc->base.state; struct intel_plane *intel_plane = to_intel_plane(primary); struct intel_plane_state *intel_state = to_intel_plane_state(plane_state); struct drm_framebuffer *fb; if (!plane_config->fb) return; if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { fb = &plane_config->fb->base; goto valid_fb; } kfree(plane_config->fb); /* * Failed to alloc the obj, check to see if we should share * an fb with another CRTC instead */ for_each_crtc(dev, c) { i = to_intel_crtc(c); if (c == &intel_crtc->base) continue; if (!i->active) continue; fb = c->primary->fb; if (!fb) continue; obj = intel_fb_obj(fb); if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) { drm_framebuffer_reference(fb); goto valid_fb; } } /* * We've failed to reconstruct the BIOS FB. Current display state * indicates that the primary plane is visible, but has a NULL FB, * which will lead to problems later if we don't fix it up. The * simplest solution is to just disable the primary plane now and * pretend the BIOS never had it enabled. */ to_intel_plane_state(plane_state)->visible = false; crtc_state->plane_mask &= ~(1 << drm_plane_index(primary)); intel_pre_disable_primary_noatomic(&intel_crtc->base); intel_plane->disable_plane(primary, &intel_crtc->base); return; valid_fb: plane_state->src_x = 0; plane_state->src_y = 0; plane_state->src_w = fb->width << 16; plane_state->src_h = fb->height << 16; plane_state->crtc_x = 0; plane_state->crtc_y = 0; plane_state->crtc_w = fb->width; plane_state->crtc_h = fb->height; intel_state->src.x1 = plane_state->src_x; intel_state->src.y1 = plane_state->src_y; intel_state->src.x2 = plane_state->src_x + plane_state->src_w; intel_state->src.y2 = plane_state->src_y + plane_state->src_h; intel_state->dst.x1 = plane_state->crtc_x; intel_state->dst.y1 = plane_state->crtc_y; intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w; intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h; obj = intel_fb_obj(fb); if (obj->tiling_mode != I915_TILING_NONE) dev_priv->preserve_bios_swizzle = true; drm_framebuffer_reference(fb); primary->fb = primary->state->fb = fb; primary->crtc = primary->state->crtc = &intel_crtc->base; intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary)); obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit; } static void i9xx_update_primary_plane(struct drm_plane *primary, const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct drm_device *dev = primary->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_framebuffer *fb = plane_state->base.fb; struct drm_i915_gem_object *obj = intel_fb_obj(fb); int plane = intel_crtc->plane; u32 linear_offset; u32 dspcntr; i915_reg_t reg = DSPCNTR(plane); unsigned int rotation = plane_state->base.rotation; int cpp = drm_format_plane_cpp(fb->pixel_format, 0); int x = plane_state->src.x1 >> 16; int y = plane_state->src.y1 >> 16; dspcntr = DISPPLANE_GAMMA_ENABLE; dspcntr |= DISPLAY_PLANE_ENABLE; if (INTEL_INFO(dev)->gen < 4) { if (intel_crtc->pipe == PIPE_B) dspcntr |= DISPPLANE_SEL_PIPE_B; /* pipesrc and dspsize control the size that is scaled from, * which should always be the user's requested size. */ I915_WRITE(DSPSIZE(plane), ((crtc_state->pipe_src_h - 1) << 16) | (crtc_state->pipe_src_w - 1)); I915_WRITE(DSPPOS(plane), 0); } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) { I915_WRITE(PRIMSIZE(plane), ((crtc_state->pipe_src_h - 1) << 16) | (crtc_state->pipe_src_w - 1)); I915_WRITE(PRIMPOS(plane), 0); I915_WRITE(PRIMCNSTALPHA(plane), 0); } switch (fb->pixel_format) { case DRM_FORMAT_C8: dspcntr |= DISPPLANE_8BPP; break; case DRM_FORMAT_XRGB1555: dspcntr |= DISPPLANE_BGRX555; break; case DRM_FORMAT_RGB565: dspcntr |= DISPPLANE_BGRX565; break; case DRM_FORMAT_XRGB8888: dspcntr |= DISPPLANE_BGRX888; break; case DRM_FORMAT_XBGR8888: dspcntr |= DISPPLANE_RGBX888; break; case DRM_FORMAT_XRGB2101010: dspcntr |= DISPPLANE_BGRX101010; break; case DRM_FORMAT_XBGR2101010: dspcntr |= DISPPLANE_RGBX101010; break; default: BUG(); } if (INTEL_INFO(dev)->gen >= 4 && obj->tiling_mode != I915_TILING_NONE) dspcntr |= DISPPLANE_TILED; if (IS_G4X(dev)) dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; linear_offset = y * fb->pitches[0] + x * cpp; if (INTEL_INFO(dev)->gen >= 4) { intel_crtc->dspaddr_offset = intel_compute_tile_offset(&x, &y, fb, 0, fb->pitches[0], rotation); linear_offset -= intel_crtc->dspaddr_offset; } else { intel_crtc->dspaddr_offset = linear_offset; } if (rotation == BIT(DRM_ROTATE_180)) { dspcntr |= DISPPLANE_ROTATE_180; x += (crtc_state->pipe_src_w - 1); y += (crtc_state->pipe_src_h - 1); /* Finding the last pixel of the last line of the display data and adding to linear_offset*/ linear_offset += (crtc_state->pipe_src_h - 1) * fb->pitches[0] + (crtc_state->pipe_src_w - 1) * cpp; } intel_crtc->adjusted_x = x; intel_crtc->adjusted_y = y; I915_WRITE(reg, dspcntr); I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); if (INTEL_INFO(dev)->gen >= 4) { I915_WRITE(DSPSURF(plane), i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset); I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); I915_WRITE(DSPLINOFF(plane), linear_offset); } else I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset); POSTING_READ(reg); } static void i9xx_disable_primary_plane(struct drm_plane *primary, struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int plane = intel_crtc->plane; I915_WRITE(DSPCNTR(plane), 0); if (INTEL_INFO(dev_priv)->gen >= 4) I915_WRITE(DSPSURF(plane), 0); else I915_WRITE(DSPADDR(plane), 0); POSTING_READ(DSPCNTR(plane)); } static void ironlake_update_primary_plane(struct drm_plane *primary, const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct drm_device *dev = primary->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_framebuffer *fb = plane_state->base.fb; struct drm_i915_gem_object *obj = intel_fb_obj(fb); int plane = intel_crtc->plane; u32 linear_offset; u32 dspcntr; i915_reg_t reg = DSPCNTR(plane); unsigned int rotation = plane_state->base.rotation; int cpp = drm_format_plane_cpp(fb->pixel_format, 0); int x = plane_state->src.x1 >> 16; int y = plane_state->src.y1 >> 16; dspcntr = DISPPLANE_GAMMA_ENABLE; dspcntr |= DISPLAY_PLANE_ENABLE; if (IS_HASWELL(dev) || IS_BROADWELL(dev)) dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; switch (fb->pixel_format) { case DRM_FORMAT_C8: dspcntr |= DISPPLANE_8BPP; break; case DRM_FORMAT_RGB565: dspcntr |= DISPPLANE_BGRX565; break; case DRM_FORMAT_XRGB8888: dspcntr |= DISPPLANE_BGRX888; break; case DRM_FORMAT_XBGR8888: dspcntr |= DISPPLANE_RGBX888; break; case DRM_FORMAT_XRGB2101010: dspcntr |= DISPPLANE_BGRX101010; break; case DRM_FORMAT_XBGR2101010: dspcntr |= DISPPLANE_RGBX101010; break; default: BUG(); } if (obj->tiling_mode != I915_TILING_NONE) dspcntr |= DISPPLANE_TILED; if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; linear_offset = y * fb->pitches[0] + x * cpp; intel_crtc->dspaddr_offset = intel_compute_tile_offset(&x, &y, fb, 0, fb->pitches[0], rotation); linear_offset -= intel_crtc->dspaddr_offset; if (rotation == BIT(DRM_ROTATE_180)) { dspcntr |= DISPPLANE_ROTATE_180; if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) { x += (crtc_state->pipe_src_w - 1); y += (crtc_state->pipe_src_h - 1); /* Finding the last pixel of the last line of the display data and adding to linear_offset*/ linear_offset += (crtc_state->pipe_src_h - 1) * fb->pitches[0] + (crtc_state->pipe_src_w - 1) * cpp; } } intel_crtc->adjusted_x = x; intel_crtc->adjusted_y = y; I915_WRITE(reg, dspcntr); I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); I915_WRITE(DSPSURF(plane), i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset); if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { I915_WRITE(DSPOFFSET(plane), (y << 16) | x); } else { I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); I915_WRITE(DSPLINOFF(plane), linear_offset); } POSTING_READ(reg); } u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv, uint64_t fb_modifier, uint32_t pixel_format) { if (fb_modifier == DRM_FORMAT_MOD_NONE) { return 64; } else { int cpp = drm_format_plane_cpp(pixel_format, 0); return intel_tile_width_bytes(dev_priv, fb_modifier, cpp); } } u32 intel_plane_obj_offset(struct intel_plane *intel_plane, struct drm_i915_gem_object *obj, unsigned int plane) { struct i915_ggtt_view view; struct i915_vma *vma; u64 offset; intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb, intel_plane->base.state->rotation); vma = i915_gem_obj_to_ggtt_view(obj, &view); if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n", view.type)) return -1; offset = vma->node.start; if (plane == 1) { offset += vma->ggtt_view.params.rotated.uv_start_page * PAGE_SIZE; } WARN_ON(upper_32_bits(offset)); return lower_32_bits(offset); } static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0); I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); } /* * This function detaches (aka. unbinds) unused scalers in hardware */ static void skl_detach_scalers(struct intel_crtc *intel_crtc) { struct intel_crtc_scaler_state *scaler_state; int i; scaler_state = &intel_crtc->config->scaler_state; /* loop through and disable scalers that aren't in use */ for (i = 0; i < intel_crtc->num_scalers; i++) { if (!scaler_state->scalers[i].in_use) skl_detach_scaler(intel_crtc, i); } } u32 skl_plane_ctl_format(uint32_t pixel_format) { switch (pixel_format) { case DRM_FORMAT_C8: return PLANE_CTL_FORMAT_INDEXED; case DRM_FORMAT_RGB565: return PLANE_CTL_FORMAT_RGB_565; case DRM_FORMAT_XBGR8888: return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; case DRM_FORMAT_XRGB8888: return PLANE_CTL_FORMAT_XRGB_8888; /* * XXX: For ARBG/ABGR formats we default to expecting scanout buffers * to be already pre-multiplied. We need to add a knob (or a different * DRM_FORMAT) for user-space to configure that. */ case DRM_FORMAT_ABGR8888: return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX | PLANE_CTL_ALPHA_SW_PREMULTIPLY; case DRM_FORMAT_ARGB8888: return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ALPHA_SW_PREMULTIPLY; case DRM_FORMAT_XRGB2101010: return PLANE_CTL_FORMAT_XRGB_2101010; case DRM_FORMAT_XBGR2101010: return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010; case DRM_FORMAT_YUYV: return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; case DRM_FORMAT_YVYU: return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; case DRM_FORMAT_UYVY: return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; case DRM_FORMAT_VYUY: return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; default: MISSING_CASE(pixel_format); } return 0; } u32 skl_plane_ctl_tiling(uint64_t fb_modifier) { switch (fb_modifier) { case DRM_FORMAT_MOD_NONE: break; case I915_FORMAT_MOD_X_TILED: return PLANE_CTL_TILED_X; case I915_FORMAT_MOD_Y_TILED: return PLANE_CTL_TILED_Y; case I915_FORMAT_MOD_Yf_TILED: return PLANE_CTL_TILED_YF; default: MISSING_CASE(fb_modifier); } return 0; } u32 skl_plane_ctl_rotation(unsigned int rotation) { switch (rotation) { case BIT(DRM_ROTATE_0): break; /* * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr * while i915 HW rotation is clockwise, thats why this swapping. */ case BIT(DRM_ROTATE_90): return PLANE_CTL_ROTATE_270; case BIT(DRM_ROTATE_180): return PLANE_CTL_ROTATE_180; case BIT(DRM_ROTATE_270): return PLANE_CTL_ROTATE_90; default: MISSING_CASE(rotation); } return 0; } static void skylake_update_primary_plane(struct drm_plane *plane, const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct drm_device *dev = plane->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_framebuffer *fb = plane_state->base.fb; struct drm_i915_gem_object *obj = intel_fb_obj(fb); int pipe = intel_crtc->pipe; u32 plane_ctl, stride_div, stride; u32 tile_height, plane_offset, plane_size; unsigned int rotation = plane_state->base.rotation; int x_offset, y_offset; u32 surf_addr; int scaler_id = plane_state->scaler_id; int src_x = plane_state->src.x1 >> 16; int src_y = plane_state->src.y1 >> 16; int src_w = drm_rect_width(&plane_state->src) >> 16; int src_h = drm_rect_height(&plane_state->src) >> 16; int dst_x = plane_state->dst.x1; int dst_y = plane_state->dst.y1; int dst_w = drm_rect_width(&plane_state->dst); int dst_h = drm_rect_height(&plane_state->dst); plane_ctl = PLANE_CTL_ENABLE | PLANE_CTL_PIPE_GAMMA_ENABLE | PLANE_CTL_PIPE_CSC_ENABLE; plane_ctl |= skl_plane_ctl_format(fb->pixel_format); plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]); plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; plane_ctl |= skl_plane_ctl_rotation(rotation); stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0], fb->pixel_format); surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0); WARN_ON(drm_rect_width(&plane_state->src) == 0); if (intel_rotation_90_or_270(rotation)) { int cpp = drm_format_plane_cpp(fb->pixel_format, 0); /* stride = Surface height in tiles */ tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp); stride = DIV_ROUND_UP(fb->height, tile_height); x_offset = stride * tile_height - src_y - src_h; y_offset = src_x; plane_size = (src_w - 1) << 16 | (src_h - 1); } else { stride = fb->pitches[0] / stride_div; x_offset = src_x; y_offset = src_y; plane_size = (src_h - 1) << 16 | (src_w - 1); } plane_offset = y_offset << 16 | x_offset; intel_crtc->adjusted_x = x_offset; intel_crtc->adjusted_y = y_offset; I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl); I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset); I915_WRITE(PLANE_SIZE(pipe, 0), plane_size); I915_WRITE(PLANE_STRIDE(pipe, 0), stride); if (scaler_id >= 0) { uint32_t ps_ctrl = 0; WARN_ON(!dst_w || !dst_h); ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) | crtc_state->scaler_state.scalers[scaler_id].mode; I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl); I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0); I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y); I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h); I915_WRITE(PLANE_POS(pipe, 0), 0); } else { I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x); } I915_WRITE(PLANE_SURF(pipe, 0), surf_addr); POSTING_READ(PLANE_SURF(pipe, 0)); } static void skylake_disable_primary_plane(struct drm_plane *primary, struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = to_intel_crtc(crtc)->pipe; I915_WRITE(PLANE_CTL(pipe, 0), 0); I915_WRITE(PLANE_SURF(pipe, 0), 0); POSTING_READ(PLANE_SURF(pipe, 0)); } /* Assume fb object is pinned & idle & fenced and just update base pointers */ static int intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic state) { /* Support for kgdboc is disabled, this needs a major rework. */ DRM_ERROR("legacy panic handler not supported any more.\n"); return -ENODEV; } static void intel_complete_page_flips(struct drm_device *dev) { struct drm_crtc *crtc; for_each_crtc(dev, crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum plane plane = intel_crtc->plane; intel_prepare_page_flip(dev, plane); intel_finish_page_flip_plane(dev, plane); } } static void intel_update_primary_planes(struct drm_device *dev) { struct drm_crtc *crtc; for_each_crtc(dev, crtc) { struct intel_plane *plane = to_intel_plane(crtc->primary); struct intel_plane_state *plane_state; drm_modeset_lock_crtc(crtc, &plane->base); plane_state = to_intel_plane_state(plane->base.state); if (plane_state->visible) plane->update_plane(&plane->base, to_intel_crtc_state(crtc->state), plane_state); drm_modeset_unlock_crtc(crtc); } } void intel_prepare_reset(struct drm_device *dev) { /* no reset support for gen2 */ if (IS_GEN2(dev)) return; /* reset doesn't touch the display */ if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) return; drm_modeset_lock_all(dev); /* * Disabling the crtcs gracefully seems nicer. Also the * g33 docs say we should at least disable all the planes. */ intel_display_suspend(dev); } void intel_finish_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); /* * Flips in the rings will be nuked by the reset, * so complete all pending flips so that user space * will get its events and not get stuck. */ intel_complete_page_flips(dev); /* no reset support for gen2 */ if (IS_GEN2(dev)) return; /* reset doesn't touch the display */ if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) { /* * Flips in the rings have been nuked by the reset, * so update the base address of all primary * planes to the the last fb to make sure we're * showing the correct fb after a reset. * * FIXME: Atomic will make this obsolete since we won't schedule * CS-based flips (which might get lost in gpu resets) any more. */ intel_update_primary_planes(dev); return; } /* * The display has been reset as well, * so need a full re-initialization. */ intel_runtime_pm_disable_interrupts(dev_priv); intel_runtime_pm_enable_interrupts(dev_priv); intel_modeset_init_hw(dev); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display.hpd_irq_setup) dev_priv->display.hpd_irq_setup(dev); spin_unlock_irq(&dev_priv->irq_lock); intel_display_resume(dev); intel_hpd_init(dev_priv); drm_modeset_unlock_all(dev); } static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); unsigned reset_counter; bool pending; reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error); if (intel_crtc->reset_counter != reset_counter) return false; spin_lock_irq(&dev->event_lock); pending = to_intel_crtc(crtc)->unpin_work != NULL; spin_unlock_irq(&dev->event_lock); return pending; } static void intel_update_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *old_crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->base.state); /* drm_atomic_helper_update_legacy_modeset_state might not be called. */ crtc->base.mode = crtc->base.state->mode; DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n", old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h, pipe_config->pipe_src_w, pipe_config->pipe_src_h); /* * Update pipe size and adjust fitter if needed: the reason for this is * that in compute_mode_changes we check the native mode (not the pfit * mode) to see if we can flip rather than do a full mode set. In the * fastboot case, we'll flip, but if we don't update the pipesrc and * pfit state, we'll end up with a big fb scanned out into the wrong * sized surface. */ I915_WRITE(PIPESRC(crtc->pipe), ((pipe_config->pipe_src_w - 1) << 16) | (pipe_config->pipe_src_h - 1)); /* on skylake this is done by detaching scalers */ if (INTEL_INFO(dev)->gen >= 9) { skl_detach_scalers(crtc); if (pipe_config->pch_pfit.enabled) skylake_pfit_enable(crtc); } else if (HAS_PCH_SPLIT(dev)) { if (pipe_config->pch_pfit.enabled) ironlake_pfit_enable(crtc); else if (old_crtc_state->pch_pfit.enabled) ironlake_pfit_disable(crtc, true); } } static void intel_fdi_normal_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; i915_reg_t reg; u32 temp; /* enable normal train */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); if (IS_IVYBRIDGE(dev)) { temp &= ~FDI_LINK_TRAIN_NONE_IVB; temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; } I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_NORMAL_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_NONE; } I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); /* wait one idle pattern time */ POSTING_READ(reg); udelay(1000); /* IVB wants error correction enabled */ if (IS_IVYBRIDGE(dev)) I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE); } /* The FDI link training functions for ILK/Ibexpeak. */ static void ironlake_fdi_link_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; i915_reg_t reg; u32 temp, tries; /* FDI needs bits from pipe first */ assert_pipe_enabled(dev_priv, pipe); /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ reg = FDI_RX_IMR(pipe); temp = I915_READ(reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(reg, temp); I915_READ(reg); udelay(150); /* enable CPU FDI TX and PCH FDI RX */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_DP_PORT_WIDTH_MASK; temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(reg, temp | FDI_TX_ENABLE); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(reg, temp | FDI_RX_ENABLE); POSTING_READ(reg); udelay(150); /* Ironlake workaround, enable clock pointer after FDI enable*/ I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN); reg = FDI_RX_IIR(pipe); for (tries = 0; tries < 5; tries++) { temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if ((temp & FDI_RX_BIT_LOCK)) { DRM_DEBUG_KMS("FDI train 1 done.\n"); I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); break; } } if (tries == 5) DRM_ERROR("FDI train 1 fail!\n"); /* Train 2 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); reg = FDI_RX_IIR(pipe); for (tries = 0; tries < 5; tries++) { temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK) { I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done.\n"); break; } } if (tries == 5) DRM_ERROR("FDI train 2 fail!\n"); DRM_DEBUG_KMS("FDI train done\n"); } static const int snb_b_fdi_train_param[] = { FDI_LINK_TRAIN_400MV_0DB_SNB_B, FDI_LINK_TRAIN_400MV_6DB_SNB_B, FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, FDI_LINK_TRAIN_800MV_0DB_SNB_B, }; /* The FDI link training functions for SNB/Cougarpoint. */ static void gen6_fdi_link_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; i915_reg_t reg; u32 temp, i, retry; /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ reg = FDI_RX_IMR(pipe); temp = I915_READ(reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); /* enable CPU FDI TX and PCH FDI RX */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_DP_PORT_WIDTH_MASK; temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; /* SNB-B */ temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; I915_WRITE(reg, temp | FDI_TX_ENABLE); I915_WRITE(FDI_RX_MISC(pipe), FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; } I915_WRITE(reg, temp | FDI_RX_ENABLE); POSTING_READ(reg); udelay(150); for (i = 0; i < 4; i++) { reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[i]; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(500); for (retry = 0; retry < 5; retry++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_BIT_LOCK) { I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); DRM_DEBUG_KMS("FDI train 1 done.\n"); break; } udelay(50); } if (retry < 5) break; } if (i == 4) DRM_ERROR("FDI train 1 fail!\n"); /* Train 2 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; if (IS_GEN6(dev)) { temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; /* SNB-B */ temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; } I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; } I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); for (i = 0; i < 4; i++) { reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[i]; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(500); for (retry = 0; retry < 5; retry++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK) { I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done.\n"); break; } udelay(50); } if (retry < 5) break; } if (i == 4) DRM_ERROR("FDI train 2 fail!\n"); DRM_DEBUG_KMS("FDI train done.\n"); } /* Manual link training for Ivy Bridge A0 parts */ static void ivb_manual_fdi_link_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; i915_reg_t reg; u32 temp, i, j; /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ reg = FDI_RX_IMR(pipe); temp = I915_READ(reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n", I915_READ(FDI_RX_IIR(pipe))); /* Try each vswing and preemphasis setting twice before moving on */ for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { /* disable first in case we need to retry */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); temp &= ~FDI_TX_ENABLE; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_AUTO; temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp &= ~FDI_RX_ENABLE; I915_WRITE(reg, temp); /* enable CPU FDI TX and PCH FDI RX */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_DP_PORT_WIDTH_MASK; temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[j/2]; temp |= FDI_COMPOSITE_SYNC; I915_WRITE(reg, temp | FDI_TX_ENABLE); I915_WRITE(FDI_RX_MISC(pipe), FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; temp |= FDI_COMPOSITE_SYNC; I915_WRITE(reg, temp | FDI_RX_ENABLE); POSTING_READ(reg); udelay(1); /* should be 0.5us */ for (i = 0; i < 4; i++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_BIT_LOCK || (I915_READ(reg) & FDI_RX_BIT_LOCK)) { I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i); break; } udelay(1); /* should be 0.5us */ } if (i == 4) { DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2); continue; } /* Train 2 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE_IVB; temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(2); /* should be 1.5us */ for (i = 0; i < 4; i++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK || (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) { I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i); goto train_done; } udelay(2); /* should be 1.5us */ } if (i == 4) DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2); } train_done: DRM_DEBUG_KMS("FDI train done.\n"); } static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = intel_crtc->pipe; i915_reg_t reg; u32 temp; /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); POSTING_READ(reg); udelay(200); /* Switch from Rawclk to PCDclk */ temp = I915_READ(reg); I915_WRITE(reg, temp | FDI_PCDCLK); POSTING_READ(reg); udelay(200); /* Enable CPU FDI TX PLL, always on for Ironlake */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); if ((temp & FDI_TX_PLL_ENABLE) == 0) { I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); POSTING_READ(reg); udelay(100); } } static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = intel_crtc->pipe; i915_reg_t reg; u32 temp; /* Switch from PCDclk to Rawclk */ reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_PCDCLK); /* Disable CPU FDI TX PLL */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); POSTING_READ(reg); udelay(100); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); /* Wait for the clocks to turn off. */ POSTING_READ(reg); udelay(100); } static void ironlake_fdi_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; i915_reg_t reg; u32 temp; /* disable CPU FDI tx and PCH FDI rx */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_TX_ENABLE); POSTING_READ(reg); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~(0x7 << 16); temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; I915_WRITE(reg, temp & ~FDI_RX_ENABLE); POSTING_READ(reg); udelay(100); /* Ironlake workaround, disable clock pointer after downing FDI */ if (HAS_PCH_IBX(dev)) I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); /* still set train pattern 1 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; } /* BPC in FDI rx is consistent with that in PIPECONF */ temp &= ~(0x07 << 16); temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(100); } bool intel_has_pending_fb_unpin(struct drm_device *dev) { struct intel_crtc *crtc; /* Note that we don't need to be called with mode_config.lock here * as our list of CRTC objects is static for the lifetime of the * device and so cannot disappear as we iterate. Similarly, we can * happily treat the predicates as racy, atomic checks as userspace * cannot claim and pin a new fb without at least acquring the * struct_mutex and so serialising with us. */ for_each_intel_crtc(dev, crtc) { if (atomic_read(&crtc->unpin_work_count) == 0) continue; if (crtc->unpin_work) intel_wait_for_vblank(dev, crtc->pipe); return true; } return false; } static void page_flip_completed(struct intel_crtc *intel_crtc) { struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); struct intel_unpin_work *work = intel_crtc->unpin_work; /* ensure that the unpin work is consistent wrt ->pending. */ smp_rmb(); intel_crtc->unpin_work = NULL; if (work->event) drm_send_vblank_event(intel_crtc->base.dev, intel_crtc->pipe, work->event); drm_crtc_vblank_put(&intel_crtc->base); wake_up_all(&dev_priv->pending_flip_queue); queue_work(dev_priv->wq, &work->work); trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj); } static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; long ret; WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue)); ret = wait_event_interruptible_timeout( dev_priv->pending_flip_queue, !intel_crtc_has_pending_flip(crtc), 60*HZ); if (ret < 0) return ret; if (ret == 0) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); spin_lock_irq(&dev->event_lock); if (intel_crtc->unpin_work) { WARN_ONCE(1, "Removing stuck page flip\n"); page_flip_completed(intel_crtc); } spin_unlock_irq(&dev->event_lock); } return 0; } static void lpt_disable_iclkip(struct drm_i915_private *dev_priv) { u32 temp; I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE); mutex_lock(&dev_priv->sb_lock); temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); temp |= SBI_SSCCTL_DISABLE; intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); mutex_unlock(&dev_priv->sb_lock); } /* Program iCLKIP clock to the desired frequency */ static void lpt_program_iclkip(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock; u32 divsel, phaseinc, auxdiv, phasedir = 0; u32 temp; lpt_disable_iclkip(dev_priv); /* The iCLK virtual clock root frequency is in MHz, * but the adjusted_mode->crtc_clock in in KHz. To get the * divisors, it is necessary to divide one by another, so we * convert the virtual clock precision to KHz here for higher * precision. */ for (auxdiv = 0; auxdiv < 2; auxdiv++) { u32 iclk_virtual_root_freq = 172800 * 1000; u32 iclk_pi_range = 64; u32 desired_divisor; desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, clock << auxdiv); divsel = (desired_divisor / iclk_pi_range) - 2; phaseinc = desired_divisor % iclk_pi_range; /* * Near 20MHz is a corner case which is * out of range for the 7-bit divisor */ if (divsel <= 0x7f) break; } /* This should not happen with any sane values */ WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) & ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) & ~SBI_SSCDIVINTPHASE_INCVAL_MASK); DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", clock, auxdiv, divsel, phasedir, phaseinc); mutex_lock(&dev_priv->sb_lock); /* Program SSCDIVINTPHASE6 */ temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); temp |= SBI_SSCDIVINTPHASE_PROPAGATE; intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); /* Program SSCAUXDIV */ temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); /* Enable modulator and associated divider */ temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); temp &= ~SBI_SSCCTL_DISABLE; intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); mutex_unlock(&dev_priv->sb_lock); /* Wait for initialization time */ udelay(24); I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE); } int lpt_get_iclkip(struct drm_i915_private *dev_priv) { u32 divsel, phaseinc, auxdiv; u32 iclk_virtual_root_freq = 172800 * 1000; u32 iclk_pi_range = 64; u32 desired_divisor; u32 temp; if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) return 0; mutex_lock(&dev_priv->sb_lock); temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); if (temp & SBI_SSCCTL_DISABLE) { mutex_unlock(&dev_priv->sb_lock); return 0; } temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> SBI_SSCDIVINTPHASE_INCVAL_SHIFT; temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; mutex_unlock(&dev_priv->sb_lock); desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, desired_divisor << auxdiv); } static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc, enum pipe pch_transcoder) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder), I915_READ(HTOTAL(cpu_transcoder))); I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder), I915_READ(HBLANK(cpu_transcoder))); I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder), I915_READ(HSYNC(cpu_transcoder))); I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder), I915_READ(VTOTAL(cpu_transcoder))); I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder), I915_READ(VBLANK(cpu_transcoder))); I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder), I915_READ(VSYNC(cpu_transcoder))); I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder), I915_READ(VSYNCSHIFT(cpu_transcoder))); } static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t temp; temp = I915_READ(SOUTH_CHICKEN1); if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) return; WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); temp &= ~FDI_BC_BIFURCATION_SELECT; if (enable) temp |= FDI_BC_BIFURCATION_SELECT; DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis"); I915_WRITE(SOUTH_CHICKEN1, temp); POSTING_READ(SOUTH_CHICKEN1); } static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; switch (intel_crtc->pipe) { case PIPE_A: break; case PIPE_B: if (intel_crtc->config->fdi_lanes > 2) cpt_set_fdi_bc_bifurcation(dev, false); else cpt_set_fdi_bc_bifurcation(dev, true); break; case PIPE_C: cpt_set_fdi_bc_bifurcation(dev, true); break; default: BUG(); } } /* Return which DP Port should be selected for Transcoder DP control */ static enum port intel_trans_dp_port_sel(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct intel_encoder *encoder; for_each_encoder_on_crtc(dev, crtc, encoder) { if (encoder->type == INTEL_OUTPUT_DISPLAYPORT || encoder->type == INTEL_OUTPUT_EDP) return enc_to_dig_port(&encoder->base)->port; } return -1; } /* * Enable PCH resources required for PCH ports: * - PCH PLLs * - FDI training & RX/TX * - update transcoder timings * - DP transcoding bits * - transcoder */ static void ironlake_pch_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 temp; assert_pch_transcoder_disabled(dev_priv, pipe); if (IS_IVYBRIDGE(dev)) ivybridge_update_fdi_bc_bifurcation(intel_crtc); /* Write the TU size bits before fdi link training, so that error * detection works. */ I915_WRITE(FDI_RX_TUSIZE1(pipe), I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); /* For PCH output, training FDI link */ dev_priv->display.fdi_link_train(crtc); /* We need to program the right clock selection before writing the pixel * mutliplier into the DPLL. */ if (HAS_PCH_CPT(dev)) { u32 sel; temp = I915_READ(PCH_DPLL_SEL); temp |= TRANS_DPLL_ENABLE(pipe); sel = TRANS_DPLLB_SEL(pipe); if (intel_crtc->config->shared_dpll == intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) temp |= sel; else temp &= ~sel; I915_WRITE(PCH_DPLL_SEL, temp); } /* XXX: pch pll's can be enabled any time before we enable the PCH * transcoder, and we actually should do this to not upset any PCH * transcoder that already use the clock when we share it. * * Note that enable_shared_dpll tries to do the right thing, but * get_shared_dpll unconditionally resets the pll - we need that to have * the right LVDS enable sequence. */ intel_enable_shared_dpll(intel_crtc); /* set transcoder timing, panel must allow it */ assert_panel_unlocked(dev_priv, pipe); ironlake_pch_transcoder_set_timings(intel_crtc, pipe); intel_fdi_normal_train(crtc); /* For PCH DP, enable TRANS_DP_CTL */ if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) { const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode; u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; i915_reg_t reg = TRANS_DP_CTL(pipe); temp = I915_READ(reg); temp &= ~(TRANS_DP_PORT_SEL_MASK | TRANS_DP_SYNC_MASK | TRANS_DP_BPC_MASK); temp |= TRANS_DP_OUTPUT_ENABLE; temp |= bpc << 9; /* same format but at 11:9 */ if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; switch (intel_trans_dp_port_sel(crtc)) { case PORT_B: temp |= TRANS_DP_PORT_SEL_B; break; case PORT_C: temp |= TRANS_DP_PORT_SEL_C; break; case PORT_D: temp |= TRANS_DP_PORT_SEL_D; break; default: BUG(); } I915_WRITE(reg, temp); } ironlake_enable_pch_transcoder(dev_priv, pipe); } static void lpt_pch_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A); lpt_program_iclkip(crtc); /* Set transcoder timing. */ ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A); lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); } static void cpt_verify_modeset(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; i915_reg_t dslreg = PIPEDSL(pipe); u32 temp; temp = I915_READ(dslreg); udelay(500); if (wait_for(I915_READ(dslreg) != temp, 5)) { if (wait_for(I915_READ(dslreg) != temp, 5)) DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe)); } } static int skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, unsigned scaler_user, int *scaler_id, unsigned int rotation, int src_w, int src_h, int dst_w, int dst_h) { struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); int need_scaling; need_scaling = intel_rotation_90_or_270(rotation) ? (src_h != dst_w || src_w != dst_h): (src_w != dst_w || src_h != dst_h); /* * if plane is being disabled or scaler is no more required or force detach * - free scaler binded to this plane/crtc * - in order to do this, update crtc->scaler_usage * * Here scaler state in crtc_state is set free so that * scaler can be assigned to other user. Actual register * update to free the scaler is done in plane/panel-fit programming. * For this purpose crtc/plane_state->scaler_id isn't reset here. */ if (force_detach || !need_scaling) { if (*scaler_id >= 0) { scaler_state->scaler_users &= ~(1 << scaler_user); scaler_state->scalers[*scaler_id].in_use = 0; DRM_DEBUG_KMS("scaler_user index %u.%u: " "Staged freeing scaler id %d scaler_users = 0x%x\n", intel_crtc->pipe, scaler_user, *scaler_id, scaler_state->scaler_users); *scaler_id = -1; } return 0; } /* range checks */ if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) { DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u " "size is out of scaler range\n", intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h); return -EINVAL; } /* mark this plane as a scaler user in crtc_state */ scaler_state->scaler_users |= (1 << scaler_user); DRM_DEBUG_KMS("scaler_user index %u.%u: " "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, scaler_state->scaler_users); return 0; } /** * skl_update_scaler_crtc - Stages update to scaler state for a given crtc. * * @state: crtc's scaler state * * Return * 0 - scaler_usage updated successfully * error - requested scaling cannot be supported or other error condition */ int skl_update_scaler_crtc(struct intel_crtc_state *state) { struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc); const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode; DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n", intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX); return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX, &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0), state->pipe_src_w, state->pipe_src_h, adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay); } /** * skl_update_scaler_plane - Stages update to scaler state for a given plane. * * @state: crtc's scaler state * @plane_state: atomic plane state to update * * Return * 0 - scaler_usage updated successfully * error - requested scaling cannot be supported or other error condition */ static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); struct intel_plane *intel_plane = to_intel_plane(plane_state->base.plane); struct drm_framebuffer *fb = plane_state->base.fb; int ret; bool force_detach = !fb || !plane_state->visible; DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n", intel_plane->base.base.id, intel_crtc->pipe, drm_plane_index(&intel_plane->base)); ret = skl_update_scaler(crtc_state, force_detach, drm_plane_index(&intel_plane->base), &plane_state->scaler_id, plane_state->base.rotation, drm_rect_width(&plane_state->src) >> 16, drm_rect_height(&plane_state->src) >> 16, drm_rect_width(&plane_state->dst), drm_rect_height(&plane_state->dst)); if (ret || plane_state->scaler_id < 0) return ret; /* check colorkey */ if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) { DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed", intel_plane->base.base.id); return -EINVAL; } /* Check src format */ switch (fb->pixel_format) { case DRM_FORMAT_RGB565: case DRM_FORMAT_XBGR8888: case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ABGR8888: case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_YUYV: case DRM_FORMAT_YVYU: case DRM_FORMAT_UYVY: case DRM_FORMAT_VYUY: break; default: DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n", intel_plane->base.base.id, fb->base.id, fb->pixel_format); return -EINVAL; } return 0; } static void skylake_scaler_disable(struct intel_crtc *crtc) { int i; for (i = 0; i < crtc->num_scalers; i++) skl_detach_scaler(crtc, i); } static void skylake_pfit_enable(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; struct intel_crtc_scaler_state *scaler_state = &crtc->config->scaler_state; DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config); if (crtc->config->pch_pfit.enabled) { int id; if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) { DRM_ERROR("Requesting pfit without getting a scaler first\n"); return; } id = scaler_state->scaler_id; I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN | PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos); I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size); DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id); } } static void ironlake_pfit_enable(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; if (crtc->config->pch_pfit.enabled) { /* Force use of hard-coded filter coefficients * as some pre-programmed values are broken, * e.g. x201. */ if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); else I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos); I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size); } } void hsw_enable_ips(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!crtc->config->ips_enabled) return; /* * We can only enable IPS after we enable a plane and wait for a vblank * This function is called from post_plane_update, which is run after * a vblank wait. */ assert_plane_enabled(dev_priv, crtc->plane); if (IS_BROADWELL(dev)) { mutex_lock(&dev_priv->rps.hw_lock); WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000)); mutex_unlock(&dev_priv->rps.hw_lock); /* Quoting Art Runyan: "its not safe to expect any particular * value in IPS_CTL bit 31 after enabling IPS through the * mailbox." Moreover, the mailbox may return a bogus state, * so we need to just enable it and continue on. */ } else { I915_WRITE(IPS_CTL, IPS_ENABLE); /* The bit only becomes 1 in the next vblank, so this wait here * is essentially intel_wait_for_vblank. If we don't have this * and don't wait for vblanks until the end of crtc_enable, then * the HW state readout code will complain that the expected * IPS_CTL value is not the one we read. */ if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50)) DRM_ERROR("Timed out waiting for IPS enable\n"); } } void hsw_disable_ips(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!crtc->config->ips_enabled) return; assert_plane_enabled(dev_priv, crtc->plane); if (IS_BROADWELL(dev)) { mutex_lock(&dev_priv->rps.hw_lock); WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); mutex_unlock(&dev_priv->rps.hw_lock); /* wait for pcode to finish disabling IPS, which may take up to 42ms */ if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42)) DRM_ERROR("Timed out waiting for IPS disable\n"); } else { I915_WRITE(IPS_CTL, 0); POSTING_READ(IPS_CTL); } /* We need to wait for a vblank before we can disable the plane. */ intel_wait_for_vblank(dev, crtc->pipe); } static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) { if (intel_crtc->overlay) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; mutex_lock(&dev->struct_mutex); dev_priv->mm.interruptible = false; (void) intel_overlay_switch_off(intel_crtc->overlay); dev_priv->mm.interruptible = true; mutex_unlock(&dev->struct_mutex); } /* Let userspace switch the overlay on again. In most cases userspace * has to recompute where to put it anyway. */ } /** * intel_post_enable_primary - Perform operations after enabling primary plane * @crtc: the CRTC whose primary plane was just enabled * * Performs potentially sleeping operations that must be done after the primary * plane is enabled, such as updating FBC and IPS. Note that this may be * called due to an explicit primary plane update, or due to an implicit * re-enable that is caused when a sprite plane is updated to no longer * completely hide the primary plane. */ static void intel_post_enable_primary(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; /* * FIXME IPS should be fine as long as one plane is * enabled, but in practice it seems to have problems * when going from primary only to sprite only and vice * versa. */ hsw_enable_ips(intel_crtc); /* * Gen2 reports pipe underruns whenever all planes are disabled. * So don't enable underrun reporting before at least some planes * are enabled. * FIXME: Need to fix the logic to work when we turn off all planes * but leave the pipe running. */ if (IS_GEN2(dev)) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); /* Underruns don't always raise interrupts, so check manually. */ intel_check_cpu_fifo_underruns(dev_priv); intel_check_pch_fifo_underruns(dev_priv); } /* FIXME move all this to pre_plane_update() with proper state tracking */ static void intel_pre_disable_primary(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; /* * Gen2 reports pipe underruns whenever all planes are disabled. * So diasble underrun reporting before all the planes get disabled. * FIXME: Need to fix the logic to work when we turn off all planes * but leave the pipe running. */ if (IS_GEN2(dev)) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); /* * FIXME IPS should be fine as long as one plane is * enabled, but in practice it seems to have problems * when going from primary only to sprite only and vice * versa. */ hsw_disable_ips(intel_crtc); } /* FIXME get rid of this and use pre_plane_update */ static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; intel_pre_disable_primary(crtc); /* * Vblank time updates from the shadow to live plane control register * are blocked if the memory self-refresh mode is active at that * moment. So to make sure the plane gets truly disabled, disable * first the self-refresh mode. The self-refresh enable bit in turn * will be checked/applied by the HW only at the next frame start * event which is after the vblank start event, so we need to have a * wait-for-vblank between disabling the plane and the pipe. */ if (HAS_GMCH_DISPLAY(dev)) { intel_set_memory_cxsr(dev_priv, false); dev_priv->wm.vlv.cxsr = false; intel_wait_for_vblank(dev, pipe); } } static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); struct drm_atomic_state *old_state = old_crtc_state->base.state; struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->base.state); struct drm_device *dev = crtc->base.dev; struct drm_plane *primary = crtc->base.primary; struct drm_plane_state *old_pri_state = drm_atomic_get_existing_plane_state(old_state, primary); intel_frontbuffer_flip(dev, pipe_config->fb_bits); crtc->wm.cxsr_allowed = true; if (pipe_config->update_wm_post && pipe_config->base.active) intel_update_watermarks(&crtc->base); if (old_pri_state) { struct intel_plane_state *primary_state = to_intel_plane_state(primary->state); struct intel_plane_state *old_primary_state = to_intel_plane_state(old_pri_state); intel_fbc_post_update(crtc); if (primary_state->visible && (needs_modeset(&pipe_config->base) || !old_primary_state->visible)) intel_post_enable_primary(&crtc->base); } } static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->base.state); struct drm_atomic_state *old_state = old_crtc_state->base.state; struct drm_plane *primary = crtc->base.primary; struct drm_plane_state *old_pri_state = drm_atomic_get_existing_plane_state(old_state, primary); bool modeset = needs_modeset(&pipe_config->base); if (old_pri_state) { struct intel_plane_state *primary_state = to_intel_plane_state(primary->state); struct intel_plane_state *old_primary_state = to_intel_plane_state(old_pri_state); intel_fbc_pre_update(crtc); if (old_primary_state->visible && (modeset || !primary_state->visible)) intel_pre_disable_primary(&crtc->base); } if (pipe_config->disable_cxsr) { crtc->wm.cxsr_allowed = false; /* * Vblank time updates from the shadow to live plane control register * are blocked if the memory self-refresh mode is active at that * moment. So to make sure the plane gets truly disabled, disable * first the self-refresh mode. The self-refresh enable bit in turn * will be checked/applied by the HW only at the next frame start * event which is after the vblank start event, so we need to have a * wait-for-vblank between disabling the plane and the pipe. */ if (old_crtc_state->base.active) { intel_set_memory_cxsr(dev_priv, false); dev_priv->wm.vlv.cxsr = false; intel_wait_for_vblank(dev, crtc->pipe); } } /* * IVB workaround: must disable low power watermarks for at least * one frame before enabling scaling. LP watermarks can be re-enabled * when scaling is disabled. * * WaCxSRDisabledForSpriteScaling:ivb */ if (pipe_config->disable_lp_wm) { ilk_disable_lp_wm(dev); intel_wait_for_vblank(dev, crtc->pipe); } /* * If we're doing a modeset, we're done. No need to do any pre-vblank * watermark programming here. */ if (needs_modeset(&pipe_config->base)) return; /* * For platforms that support atomic watermarks, program the * 'intermediate' watermarks immediately. On pre-gen9 platforms, these * will be the intermediate values that are safe for both pre- and * post- vblank; when vblank happens, the 'active' values will be set * to the final 'target' values and we'll do this again to get the * optimal watermarks. For gen9+ platforms, the values we program here * will be the final target values which will get automatically latched * at vblank time; no further programming will be necessary. * * If a platform hasn't been transitioned to atomic watermarks yet, * we'll continue to update watermarks the old way, if flags tell * us to. */ if (dev_priv->display.initial_watermarks != NULL) dev_priv->display.initial_watermarks(pipe_config); else if (pipe_config->update_wm_pre) intel_update_watermarks(&crtc->base); } static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask) { struct drm_device *dev = crtc->dev; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_plane *p; int pipe = intel_crtc->pipe; intel_crtc_dpms_overlay_disable(intel_crtc); drm_for_each_plane_mask(p, dev, plane_mask) to_intel_plane(p)->disable_plane(p, crtc); /* * FIXME: Once we grow proper nuclear flip support out of this we need * to compute the mask of flip planes precisely. For the time being * consider this a flip to a NULL plane. */ intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe)); } static void ironlake_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state); if (WARN_ON(intel_crtc->active)) return; /* * Sometimes spurious CPU pipe underruns happen during FDI * training, at least with VGA+HDMI cloning. Suppress them. * * On ILK we get an occasional spurious CPU pipe underruns * between eDP port A enable and vdd enable. Also PCH port * enable seems to result in the occasional CPU pipe underrun. * * Spurious PCH underruns also occur during PCH enabling. */ if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv)) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); if (intel_crtc->config->has_pch_encoder) intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); if (intel_crtc->config->has_pch_encoder) intel_prepare_shared_dpll(intel_crtc); if (intel_crtc->config->has_dp_encoder) intel_dp_set_m_n(intel_crtc, M1_N1); intel_set_pipe_timings(intel_crtc); intel_set_pipe_src_size(intel_crtc); if (intel_crtc->config->has_pch_encoder) { intel_cpu_transcoder_set_m_n(intel_crtc, &intel_crtc->config->fdi_m_n, NULL); } ironlake_set_pipeconf(crtc); intel_crtc->active = true; for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_enable) encoder->pre_enable(encoder); if (intel_crtc->config->has_pch_encoder) { /* Note: FDI PLL enabling _must_ be done before we enable the * cpu pipes, hence this is separate from all the other fdi/pch * enabling. */ ironlake_fdi_pll_enable(intel_crtc); } else { assert_fdi_tx_disabled(dev_priv, pipe); assert_fdi_rx_disabled(dev_priv, pipe); } ironlake_pfit_enable(intel_crtc); /* * On ILK+ LUT must be loaded before the pipe is running but with * clocks enabled */ intel_color_load_luts(&pipe_config->base); if (dev_priv->display.initial_watermarks != NULL) dev_priv->display.initial_watermarks(intel_crtc->config); intel_enable_pipe(intel_crtc); if (intel_crtc->config->has_pch_encoder) ironlake_pch_enable(crtc); assert_vblank_disabled(crtc); drm_crtc_vblank_on(crtc); for_each_encoder_on_crtc(dev, crtc, encoder) encoder->enable(encoder); if (HAS_PCH_CPT(dev)) cpt_verify_modeset(dev, intel_crtc->pipe); /* Must wait for vblank to avoid spurious PCH FIFO underruns */ if (intel_crtc->config->has_pch_encoder) intel_wait_for_vblank(dev, pipe); intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); } /* IPS only exists on ULT machines and is tied to pipe A. */ static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) { return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A; } static void haswell_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe, hsw_workaround_pipe; enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state); if (WARN_ON(intel_crtc->active)) return; if (intel_crtc->config->has_pch_encoder) intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, false); if (intel_crtc->config->shared_dpll) intel_enable_shared_dpll(intel_crtc); if (intel_crtc->config->has_dp_encoder) intel_dp_set_m_n(intel_crtc, M1_N1); if (!intel_crtc->config->has_dsi_encoder) intel_set_pipe_timings(intel_crtc); intel_set_pipe_src_size(intel_crtc); if (cpu_transcoder != TRANSCODER_EDP && !transcoder_is_dsi(cpu_transcoder)) { I915_WRITE(PIPE_MULT(cpu_transcoder), intel_crtc->config->pixel_multiplier - 1); } if (intel_crtc->config->has_pch_encoder) { intel_cpu_transcoder_set_m_n(intel_crtc, &intel_crtc->config->fdi_m_n, NULL); } if (!intel_crtc->config->has_dsi_encoder) haswell_set_pipeconf(crtc); haswell_set_pipemisc(crtc); intel_color_set_csc(&pipe_config->base); intel_crtc->active = true; if (intel_crtc->config->has_pch_encoder) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); else intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); for_each_encoder_on_crtc(dev, crtc, encoder) { if (encoder->pre_enable) encoder->pre_enable(encoder); } if (intel_crtc->config->has_pch_encoder) dev_priv->display.fdi_link_train(crtc); if (!intel_crtc->config->has_dsi_encoder) intel_ddi_enable_pipe_clock(intel_crtc); if (INTEL_INFO(dev)->gen >= 9) skylake_pfit_enable(intel_crtc); else ironlake_pfit_enable(intel_crtc); /* * On ILK+ LUT must be loaded before the pipe is running but with * clocks enabled */ intel_color_load_luts(&pipe_config->base); intel_ddi_set_pipe_settings(crtc); if (!intel_crtc->config->has_dsi_encoder) intel_ddi_enable_transcoder_func(crtc); if (dev_priv->display.initial_watermarks != NULL) dev_priv->display.initial_watermarks(pipe_config); else intel_update_watermarks(crtc); /* XXX: Do the pipe assertions at the right place for BXT DSI. */ if (!intel_crtc->config->has_dsi_encoder) intel_enable_pipe(intel_crtc); if (intel_crtc->config->has_pch_encoder) lpt_pch_enable(crtc); if (intel_crtc->config->dp_encoder_is_mst) intel_ddi_set_vc_payload_alloc(crtc, true); assert_vblank_disabled(crtc); drm_crtc_vblank_on(crtc); for_each_encoder_on_crtc(dev, crtc, encoder) { encoder->enable(encoder); intel_opregion_notify_encoder(encoder, true); } if (intel_crtc->config->has_pch_encoder) { intel_wait_for_vblank(dev, pipe); intel_wait_for_vblank(dev, pipe); intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, true); } /* If we change the relative order between pipe/planes enabling, we need * to change the workaround. */ hsw_workaround_pipe = pipe_config->hsw_workaround_pipe; if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) { intel_wait_for_vblank(dev, hsw_workaround_pipe); intel_wait_for_vblank(dev, hsw_workaround_pipe); } } static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; /* To avoid upsetting the power well on haswell only disable the pfit if * it's in use. The hw state code will make sure we get this right. */ if (force || crtc->config->pch_pfit.enabled) { I915_WRITE(PF_CTL(pipe), 0); I915_WRITE(PF_WIN_POS(pipe), 0); I915_WRITE(PF_WIN_SZ(pipe), 0); } } static void ironlake_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; /* * Sometimes spurious CPU pipe underruns happen when the * pipe is already disabled, but FDI RX/TX is still enabled. * Happens at least with VGA+HDMI cloning. Suppress them. */ if (intel_crtc->config->has_pch_encoder) { intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); } for_each_encoder_on_crtc(dev, crtc, encoder) encoder->disable(encoder); drm_crtc_vblank_off(crtc); assert_vblank_disabled(crtc); intel_disable_pipe(intel_crtc); ironlake_pfit_disable(intel_crtc, false); if (intel_crtc->config->has_pch_encoder) ironlake_fdi_disable(crtc); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->post_disable) encoder->post_disable(encoder); if (intel_crtc->config->has_pch_encoder) { ironlake_disable_pch_transcoder(dev_priv, pipe); if (HAS_PCH_CPT(dev)) { i915_reg_t reg; u32 temp; /* disable TRANS_DP_CTL */ reg = TRANS_DP_CTL(pipe); temp = I915_READ(reg); temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK); temp |= TRANS_DP_PORT_SEL_NONE; I915_WRITE(reg, temp); /* disable DPLL_SEL */ temp = I915_READ(PCH_DPLL_SEL); temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); I915_WRITE(PCH_DPLL_SEL, temp); } ironlake_fdi_pll_disable(intel_crtc); } intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); } static void haswell_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; if (intel_crtc->config->has_pch_encoder) intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, false); for_each_encoder_on_crtc(dev, crtc, encoder) { intel_opregion_notify_encoder(encoder, false); encoder->disable(encoder); } drm_crtc_vblank_off(crtc); assert_vblank_disabled(crtc); /* XXX: Do the pipe assertions at the right place for BXT DSI. */ if (!intel_crtc->config->has_dsi_encoder) intel_disable_pipe(intel_crtc); if (intel_crtc->config->dp_encoder_is_mst) intel_ddi_set_vc_payload_alloc(crtc, false); if (!intel_crtc->config->has_dsi_encoder) intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder); if (INTEL_INFO(dev)->gen >= 9) skylake_scaler_disable(intel_crtc); else ironlake_pfit_disable(intel_crtc, false); if (!intel_crtc->config->has_dsi_encoder) intel_ddi_disable_pipe_clock(intel_crtc); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->post_disable) encoder->post_disable(encoder); if (intel_crtc->config->has_pch_encoder) { lpt_disable_pch_transcoder(dev_priv); lpt_disable_iclkip(dev_priv); intel_ddi_fdi_disable(crtc); intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, true); } } static void i9xx_pfit_enable(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc_state *pipe_config = crtc->config; if (!pipe_config->gmch_pfit.control) return; /* * The panel fitter should only be adjusted whilst the pipe is disabled, * according to register description and PRM. */ WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE); assert_pipe_disabled(dev_priv, crtc->pipe); I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios); I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control); /* Border color in case we don't scale up to the full screen. Black by * default, change to something else for debugging. */ I915_WRITE(BCLRPAT(crtc->pipe), 0); } static enum intel_display_power_domain port_to_power_domain(enum port port) { switch (port) { case PORT_A: return POWER_DOMAIN_PORT_DDI_A_LANES; case PORT_B: return POWER_DOMAIN_PORT_DDI_B_LANES; case PORT_C: return POWER_DOMAIN_PORT_DDI_C_LANES; case PORT_D: return POWER_DOMAIN_PORT_DDI_D_LANES; case PORT_E: return POWER_DOMAIN_PORT_DDI_E_LANES; default: MISSING_CASE(port); return POWER_DOMAIN_PORT_OTHER; } } static enum intel_display_power_domain port_to_aux_power_domain(enum port port) { switch (port) { case PORT_A: return POWER_DOMAIN_AUX_A; case PORT_B: return POWER_DOMAIN_AUX_B; case PORT_C: return POWER_DOMAIN_AUX_C; case PORT_D: return POWER_DOMAIN_AUX_D; case PORT_E: /* FIXME: Check VBT for actual wiring of PORT E */ return POWER_DOMAIN_AUX_D; default: MISSING_CASE(port); return POWER_DOMAIN_AUX_A; } } enum intel_display_power_domain intel_display_port_power_domain(struct intel_encoder *intel_encoder) { struct drm_device *dev = intel_encoder->base.dev; struct intel_digital_port *intel_dig_port; switch (intel_encoder->type) { case INTEL_OUTPUT_UNKNOWN: /* Only DDI platforms should ever use this output type */ WARN_ON_ONCE(!HAS_DDI(dev)); case INTEL_OUTPUT_DISPLAYPORT: case INTEL_OUTPUT_HDMI: case INTEL_OUTPUT_EDP: intel_dig_port = enc_to_dig_port(&intel_encoder->base); return port_to_power_domain(intel_dig_port->port); case INTEL_OUTPUT_DP_MST: intel_dig_port = enc_to_mst(&intel_encoder->base)->primary; return port_to_power_domain(intel_dig_port->port); case INTEL_OUTPUT_ANALOG: return POWER_DOMAIN_PORT_CRT; case INTEL_OUTPUT_DSI: return POWER_DOMAIN_PORT_DSI; default: return POWER_DOMAIN_PORT_OTHER; } } enum intel_display_power_domain intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder) { struct drm_device *dev = intel_encoder->base.dev; struct intel_digital_port *intel_dig_port; switch (intel_encoder->type) { case INTEL_OUTPUT_UNKNOWN: case INTEL_OUTPUT_HDMI: /* * Only DDI platforms should ever use these output types. * We can get here after the HDMI detect code has already set * the type of the shared encoder. Since we can't be sure * what's the status of the given connectors, play safe and * run the DP detection too. */ WARN_ON_ONCE(!HAS_DDI(dev)); case INTEL_OUTPUT_DISPLAYPORT: case INTEL_OUTPUT_EDP: intel_dig_port = enc_to_dig_port(&intel_encoder->base); return port_to_aux_power_domain(intel_dig_port->port); case INTEL_OUTPUT_DP_MST: intel_dig_port = enc_to_mst(&intel_encoder->base)->primary; return port_to_aux_power_domain(intel_dig_port->port); default: MISSING_CASE(intel_encoder->type); return POWER_DOMAIN_AUX_A; } } static unsigned long get_crtc_power_domains(struct drm_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->dev; struct drm_encoder *encoder; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum pipe pipe = intel_crtc->pipe; unsigned long mask; enum transcoder transcoder = crtc_state->cpu_transcoder; if (!crtc_state->base.active) return 0; mask = BIT(POWER_DOMAIN_PIPE(pipe)); mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder)); if (crtc_state->pch_pfit.enabled || crtc_state->pch_pfit.force_thru) mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) { struct intel_encoder *intel_encoder = to_intel_encoder(encoder); mask |= BIT(intel_display_port_power_domain(intel_encoder)); } if (crtc_state->shared_dpll) mask |= BIT(POWER_DOMAIN_PLLS); return mask; } static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = crtc->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum intel_display_power_domain domain; unsigned long domains, new_domains, old_domains; old_domains = intel_crtc->enabled_power_domains; intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc, crtc_state); domains = new_domains & ~old_domains; for_each_power_domain(domain, domains) intel_display_power_get(dev_priv, domain); return old_domains & ~new_domains; } static void modeset_put_power_domains(struct drm_i915_private *dev_priv, unsigned long domains) { enum intel_display_power_domain domain; for_each_power_domain(domain, domains) intel_display_power_put(dev_priv, domain); } static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv) { int max_cdclk_freq = dev_priv->max_cdclk_freq; if (INTEL_INFO(dev_priv)->gen >= 9 || IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) return max_cdclk_freq; else if (IS_CHERRYVIEW(dev_priv)) return max_cdclk_freq*95/100; else if (INTEL_INFO(dev_priv)->gen < 4) return 2*max_cdclk_freq*90/100; else return max_cdclk_freq*90/100; } static void intel_update_max_cdclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) { u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK; if (limit == SKL_DFSM_CDCLK_LIMIT_675) dev_priv->max_cdclk_freq = 675000; else if (limit == SKL_DFSM_CDCLK_LIMIT_540) dev_priv->max_cdclk_freq = 540000; else if (limit == SKL_DFSM_CDCLK_LIMIT_450) dev_priv->max_cdclk_freq = 450000; else dev_priv->max_cdclk_freq = 337500; } else if (IS_BROXTON(dev)) { dev_priv->max_cdclk_freq = 624000; } else if (IS_BROADWELL(dev)) { /* * FIXME with extra cooling we can allow * 540 MHz for ULX and 675 Mhz for ULT. * How can we know if extra cooling is * available? PCI ID, VTB, something else? */ if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) dev_priv->max_cdclk_freq = 450000; else if (IS_BDW_ULX(dev)) dev_priv->max_cdclk_freq = 450000; else if (IS_BDW_ULT(dev)) dev_priv->max_cdclk_freq = 540000; else dev_priv->max_cdclk_freq = 675000; } else if (IS_CHERRYVIEW(dev)) { dev_priv->max_cdclk_freq = 320000; } else if (IS_VALLEYVIEW(dev)) { dev_priv->max_cdclk_freq = 400000; } else { /* otherwise assume cdclk is fixed */ dev_priv->max_cdclk_freq = dev_priv->cdclk_freq; } dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv); DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n", dev_priv->max_cdclk_freq); DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n", dev_priv->max_dotclk_freq); } static void intel_update_cdclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev); DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n", dev_priv->cdclk_freq); /* * Program the gmbus_freq based on the cdclk frequency. * BSpec erroneously claims we should aim for 4MHz, but * in fact 1MHz is the correct frequency. */ if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { /* * Program the gmbus_freq based on the cdclk frequency. * BSpec erroneously claims we should aim for 4MHz, but * in fact 1MHz is the correct frequency. */ I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000)); } if (dev_priv->max_cdclk_freq == 0) intel_update_max_cdclk(dev); } static void broxton_set_cdclk(struct drm_device *dev, int frequency) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t divider; uint32_t ratio; uint32_t current_freq; int ret; /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */ switch (frequency) { case 144000: divider = BXT_CDCLK_CD2X_DIV_SEL_4; ratio = BXT_DE_PLL_RATIO(60); break; case 288000: divider = BXT_CDCLK_CD2X_DIV_SEL_2; ratio = BXT_DE_PLL_RATIO(60); break; case 384000: divider = BXT_CDCLK_CD2X_DIV_SEL_1_5; ratio = BXT_DE_PLL_RATIO(60); break; case 576000: divider = BXT_CDCLK_CD2X_DIV_SEL_1; ratio = BXT_DE_PLL_RATIO(60); break; case 624000: divider = BXT_CDCLK_CD2X_DIV_SEL_1; ratio = BXT_DE_PLL_RATIO(65); break; case 19200: /* * Bypass frequency with DE PLL disabled. Init ratio, divider * to suppress GCC warning. */ ratio = 0; divider = 0; break; default: DRM_ERROR("unsupported CDCLK freq %d", frequency); return; } mutex_lock(&dev_priv->rps.hw_lock); /* Inform power controller of upcoming frequency change */ ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, 0x80000000); mutex_unlock(&dev_priv->rps.hw_lock); if (ret) { DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n", ret, frequency); return; } current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK; /* convert from .1 fixpoint MHz with -1MHz offset to kHz */ current_freq = current_freq * 500 + 1000; /* * DE PLL has to be disabled when * - setting to 19.2MHz (bypass, PLL isn't used) * - before setting to 624MHz (PLL needs toggling) * - before setting to any frequency from 624MHz (PLL needs toggling) */ if (frequency == 19200 || frequency == 624000 || current_freq == 624000) { I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE); /* Timeout 200us */ if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK), 1)) DRM_ERROR("timout waiting for DE PLL unlock\n"); } if (frequency != 19200) { uint32_t val; val = I915_READ(BXT_DE_PLL_CTL); val &= ~BXT_DE_PLL_RATIO_MASK; val |= ratio; I915_WRITE(BXT_DE_PLL_CTL, val); I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE); /* Timeout 200us */ if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1)) DRM_ERROR("timeout waiting for DE PLL lock\n"); val = I915_READ(CDCLK_CTL); val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK; val |= divider; /* * Disable SSA Precharge when CD clock frequency < 500 MHz, * enable otherwise. */ val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE; if (frequency >= 500000) val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; val &= ~CDCLK_FREQ_DECIMAL_MASK; /* convert from kHz to .1 fixpoint MHz with -1MHz offset */ val |= (frequency - 1000) / 500; I915_WRITE(CDCLK_CTL, val); } mutex_lock(&dev_priv->rps.hw_lock); ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, DIV_ROUND_UP(frequency, 25000)); mutex_unlock(&dev_priv->rps.hw_lock); if (ret) { DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n", ret, frequency); return; } intel_update_cdclk(dev); } void broxton_init_cdclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t val; /* * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT * or else the reset will hang because there is no PCH to respond. * Move the handshake programming to initialization sequence. * Previously was left up to BIOS. */ val = I915_READ(HSW_NDE_RSTWRN_OPT); val &= ~RESET_PCH_HANDSHAKE_ENABLE; I915_WRITE(HSW_NDE_RSTWRN_OPT, val); /* Enable PG1 for cdclk */ intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS); /* check if cd clock is enabled */ if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) { DRM_DEBUG_KMS("Display already initialized\n"); return; } /* * FIXME: * - The initial CDCLK needs to be read from VBT. * Need to make this change after VBT has changes for BXT. * - check if setting the max (or any) cdclk freq is really necessary * here, it belongs to modeset time */ broxton_set_cdclk(dev, 624000); I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST); POSTING_READ(DBUF_CTL); udelay(10); if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) DRM_ERROR("DBuf power enable timeout!\n"); } void broxton_uninit_cdclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST); POSTING_READ(DBUF_CTL); udelay(10); if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE) DRM_ERROR("DBuf power disable timeout!\n"); /* Set minimum (bypass) frequency, in effect turning off the DE PLL */ broxton_set_cdclk(dev, 19200); intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); } static const struct skl_cdclk_entry { unsigned int freq; unsigned int vco; } skl_cdclk_frequencies[] = { { .freq = 308570, .vco = 8640 }, { .freq = 337500, .vco = 8100 }, { .freq = 432000, .vco = 8640 }, { .freq = 450000, .vco = 8100 }, { .freq = 540000, .vco = 8100 }, { .freq = 617140, .vco = 8640 }, { .freq = 675000, .vco = 8100 }, }; static unsigned int skl_cdclk_decimal(unsigned int freq) { return (freq - 1000) / 500; } static unsigned int skl_cdclk_get_vco(unsigned int freq) { unsigned int i; for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) { const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i]; if (e->freq == freq) return e->vco; } return 8100; } static void skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco) { unsigned int min_freq; u32 val; /* select the minimum CDCLK before enabling DPLL 0 */ val = I915_READ(CDCLK_CTL); val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK; val |= CDCLK_FREQ_337_308; if (required_vco == 8640) min_freq = 308570; else min_freq = 337500; val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq); I915_WRITE(CDCLK_CTL, val); POSTING_READ(CDCLK_CTL); /* * We always enable DPLL0 with the lowest link rate possible, but still * taking into account the VCO required to operate the eDP panel at the * desired frequency. The usual DP link rates operate with a VCO of * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640. * The modeset code is responsible for the selection of the exact link * rate later on, with the constraint of choosing a frequency that * works with required_vco. */ val = I915_READ(DPLL_CTRL1); val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) | DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)); val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0); if (required_vco == 8640) val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0); else val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0); I915_WRITE(DPLL_CTRL1, val); POSTING_READ(DPLL_CTRL1); I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE); if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5)) DRM_ERROR("DPLL0 not locked\n"); } static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv) { int ret; u32 val; /* inform PCU we want to change CDCLK */ val = SKL_CDCLK_PREPARE_FOR_CHANGE; mutex_lock(&dev_priv->rps.hw_lock); ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val); mutex_unlock(&dev_priv->rps.hw_lock); return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE); } static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv) { unsigned int i; for (i = 0; i < 15; i++) { if (skl_cdclk_pcu_ready(dev_priv)) return true; udelay(10); } return false; } static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq) { struct drm_device *dev = dev_priv->dev; u32 freq_select, pcu_ack; DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq); if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) { DRM_ERROR("failed to inform PCU about cdclk change\n"); return; } /* set CDCLK_CTL */ switch(freq) { case 450000: case 432000: freq_select = CDCLK_FREQ_450_432; pcu_ack = 1; break; case 540000: freq_select = CDCLK_FREQ_540; pcu_ack = 2; break; case 308570: case 337500: default: freq_select = CDCLK_FREQ_337_308; pcu_ack = 0; break; case 617140: case 675000: freq_select = CDCLK_FREQ_675_617; pcu_ack = 3; break; } I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq)); POSTING_READ(CDCLK_CTL); /* inform PCU of the change */ mutex_lock(&dev_priv->rps.hw_lock); sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack); mutex_unlock(&dev_priv->rps.hw_lock); intel_update_cdclk(dev); } void skl_uninit_cdclk(struct drm_i915_private *dev_priv) { /* disable DBUF power */ I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST); POSTING_READ(DBUF_CTL); udelay(10); if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE) DRM_ERROR("DBuf power disable timeout\n"); /* disable DPLL0 */ I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE); if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1)) DRM_ERROR("Couldn't disable DPLL0\n"); } void skl_init_cdclk(struct drm_i915_private *dev_priv) { unsigned int required_vco; /* DPLL0 not enabled (happens on early BIOS versions) */ if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) { /* enable DPLL0 */ required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk); skl_dpll0_enable(dev_priv, required_vco); } /* set CDCLK to the frequency the BIOS chose */ skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk); /* enable DBUF power */ I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST); POSTING_READ(DBUF_CTL); udelay(10); if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) DRM_ERROR("DBuf power enable timeout\n"); } int skl_sanitize_cdclk(struct drm_i915_private *dev_priv) { uint32_t lcpll1 = I915_READ(LCPLL1_CTL); uint32_t cdctl = I915_READ(CDCLK_CTL); int freq = dev_priv->skl_boot_cdclk; /* * check if the pre-os intialized the display * There is SWF18 scratchpad register defined which is set by the * pre-os which can be used by the OS drivers to check the status */ if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0) goto sanitize; /* Is PLL enabled and locked ? */ if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK))) goto sanitize; /* DPLL okay; verify the cdclock * * Noticed in some instances that the freq selection is correct but * decimal part is programmed wrong from BIOS where pre-os does not * enable display. Verify the same as well. */ if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq))) /* All well; nothing to sanitize */ return false; sanitize: /* * As of now initialize with max cdclk till * we get dynamic cdclk support * */ dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq; skl_init_cdclk(dev_priv); /* we did have to sanitize */ return true; } /* Adjust CDclk dividers to allow high res or save power if possible */ static void valleyview_set_cdclk(struct drm_device *dev, int cdclk) { struct drm_i915_private *dev_priv = dev->dev_private; u32 val, cmd; WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->cdclk_freq); if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */ cmd = 2; else if (cdclk == 266667) cmd = 1; else cmd = 0; mutex_lock(&dev_priv->rps.hw_lock); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); val &= ~DSPFREQGUAR_MASK; val |= (cmd << DSPFREQGUAR_SHIFT); vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT), 50)) { DRM_ERROR("timed out waiting for CDclk change\n"); } mutex_unlock(&dev_priv->rps.hw_lock); mutex_lock(&dev_priv->sb_lock); if (cdclk == 400000) { u32 divider; divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; /* adjust cdclk divider */ val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); val &= ~CCK_FREQUENCY_VALUES; val |= divider; vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val); if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) & CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT), 50)) DRM_ERROR("timed out waiting for CDclk change\n"); } /* adjust self-refresh exit latency value */ val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC); val &= ~0x7f; /* * For high bandwidth configs, we set a higher latency in the bunit * so that the core display fetch happens in time to avoid underruns. */ if (cdclk == 400000) val |= 4500 / 250; /* 4.5 usec */ else val |= 3000 / 250; /* 3.0 usec */ vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val); mutex_unlock(&dev_priv->sb_lock); intel_update_cdclk(dev); } static void cherryview_set_cdclk(struct drm_device *dev, int cdclk) { struct drm_i915_private *dev_priv = dev->dev_private; u32 val, cmd; WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->cdclk_freq); switch (cdclk) { case 333333: case 320000: case 266667: case 200000: break; default: MISSING_CASE(cdclk); return; } /* * Specs are full of misinformation, but testing on actual * hardware has shown that we just need to write the desired * CCK divider into the Punit register. */ cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; mutex_lock(&dev_priv->rps.hw_lock); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); val &= ~DSPFREQGUAR_MASK_CHV; val |= (cmd << DSPFREQGUAR_SHIFT_CHV); vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV), 50)) { DRM_ERROR("timed out waiting for CDclk change\n"); } mutex_unlock(&dev_priv->rps.hw_lock); intel_update_cdclk(dev); } static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv, int max_pixclk) { int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000; int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90; /* * Really only a few cases to deal with, as only 4 CDclks are supported: * 200MHz * 267MHz * 320/333MHz (depends on HPLL freq) * 400MHz (VLV only) * So we check to see whether we're above 90% (VLV) or 95% (CHV) * of the lower bin and adjust if needed. * * We seem to get an unstable or solid color picture at 200MHz. * Not sure what's wrong. For now use 200MHz only when all pipes * are off. */ if (!IS_CHERRYVIEW(dev_priv) && max_pixclk > freq_320*limit/100) return 400000; else if (max_pixclk > 266667*limit/100) return freq_320; else if (max_pixclk > 0) return 266667; else return 200000; } static int broxton_calc_cdclk(struct drm_i915_private *dev_priv, int max_pixclk) { /* * FIXME: * - remove the guardband, it's not needed on BXT * - set 19.2MHz bypass frequency if there are no active pipes */ if (max_pixclk > 576000*9/10) return 624000; else if (max_pixclk > 384000*9/10) return 576000; else if (max_pixclk > 288000*9/10) return 384000; else if (max_pixclk > 144000*9/10) return 288000; else return 144000; } /* Compute the max pixel clock for new configuration. */ static int intel_mode_max_pixclk(struct drm_device *dev, struct drm_atomic_state *state) { struct intel_atomic_state *intel_state = to_intel_atomic_state(state); struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; unsigned max_pixclk = 0, i; enum pipe pipe; memcpy(intel_state->min_pixclk, dev_priv->min_pixclk, sizeof(intel_state->min_pixclk)); for_each_crtc_in_state(state, crtc, crtc_state, i) { int pixclk = 0; if (crtc_state->enable) pixclk = crtc_state->adjusted_mode.crtc_clock; intel_state->min_pixclk[i] = pixclk; } for_each_pipe(dev_priv, pipe) max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk); return max_pixclk; } static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct drm_i915_private *dev_priv = dev->dev_private; int max_pixclk = intel_mode_max_pixclk(dev, state); struct intel_atomic_state *intel_state = to_intel_atomic_state(state); if (max_pixclk < 0) return max_pixclk; intel_state->cdclk = intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk); if (!intel_state->active_crtcs) intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0); return 0; } static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct drm_i915_private *dev_priv = dev->dev_private; int max_pixclk = intel_mode_max_pixclk(dev, state); struct intel_atomic_state *intel_state = to_intel_atomic_state(state); if (max_pixclk < 0) return max_pixclk; intel_state->cdclk = intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk); if (!intel_state->active_crtcs) intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0); return 0; } static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv) { unsigned int credits, default_credits; if (IS_CHERRYVIEW(dev_priv)) default_credits = PFI_CREDIT(12); else default_credits = PFI_CREDIT(8); if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) { /* CHV suggested value is 31 or 63 */ if (IS_CHERRYVIEW(dev_priv)) credits = PFI_CREDIT_63; else credits = PFI_CREDIT(15); } else { credits = default_credits; } /* * WA - write default credits before re-programming * FIXME: should we also set the resend bit here? */ I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE | default_credits); I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND); /* * FIXME is this guaranteed to clear * immediately or should we poll for it? */ WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND); } static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state) { struct drm_device *dev = old_state->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_atomic_state *old_intel_state = to_intel_atomic_state(old_state); unsigned req_cdclk = old_intel_state->dev_cdclk; /* * FIXME: We can end up here with all power domains off, yet * with a CDCLK frequency other than the minimum. To account * for this take the PIPE-A power domain, which covers the HW * blocks needed for the following programming. This can be * removed once it's guaranteed that we get here either with * the minimum CDCLK set, or the required power domains * enabled. */ intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A); if (IS_CHERRYVIEW(dev)) cherryview_set_cdclk(dev, req_cdclk); else valleyview_set_cdclk(dev, req_cdclk); vlv_program_pfi_credits(dev_priv); intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A); } static void valleyview_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state); int pipe = intel_crtc->pipe; if (WARN_ON(intel_crtc->active)) return; if (intel_crtc->config->has_dp_encoder) intel_dp_set_m_n(intel_crtc, M1_N1); intel_set_pipe_timings(intel_crtc); intel_set_pipe_src_size(intel_crtc); if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) { struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY); I915_WRITE(CHV_CANVAS(pipe), 0); } i9xx_set_pipeconf(intel_crtc); intel_crtc->active = true; intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_pll_enable) encoder->pre_pll_enable(encoder); if (!intel_crtc->config->has_dsi_encoder) { if (IS_CHERRYVIEW(dev)) { chv_prepare_pll(intel_crtc, intel_crtc->config); chv_enable_pll(intel_crtc, intel_crtc->config); } else { vlv_prepare_pll(intel_crtc, intel_crtc->config); vlv_enable_pll(intel_crtc, intel_crtc->config); } } for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_enable) encoder->pre_enable(encoder); i9xx_pfit_enable(intel_crtc); intel_color_load_luts(&pipe_config->base); intel_update_watermarks(crtc); intel_enable_pipe(intel_crtc); assert_vblank_disabled(crtc); drm_crtc_vblank_on(crtc); for_each_encoder_on_crtc(dev, crtc, encoder) encoder->enable(encoder); } static void i9xx_set_pll_dividers(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0); I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1); } static void i9xx_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state); int pipe = intel_crtc->pipe; if (WARN_ON(intel_crtc->active)) return; i9xx_set_pll_dividers(intel_crtc); if (intel_crtc->config->has_dp_encoder) intel_dp_set_m_n(intel_crtc, M1_N1); intel_set_pipe_timings(intel_crtc); intel_set_pipe_src_size(intel_crtc); i9xx_set_pipeconf(intel_crtc); intel_crtc->active = true; if (!IS_GEN2(dev)) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_enable) encoder->pre_enable(encoder); i9xx_enable_pll(intel_crtc); i9xx_pfit_enable(intel_crtc); intel_color_load_luts(&pipe_config->base); intel_update_watermarks(crtc); intel_enable_pipe(intel_crtc); assert_vblank_disabled(crtc); drm_crtc_vblank_on(crtc); for_each_encoder_on_crtc(dev, crtc, encoder) encoder->enable(encoder); } static void i9xx_pfit_disable(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!crtc->config->gmch_pfit.control) return; assert_pipe_disabled(dev_priv, crtc->pipe); DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", I915_READ(PFIT_CONTROL)); I915_WRITE(PFIT_CONTROL, 0); } static void i9xx_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; /* * On gen2 planes are double buffered but the pipe isn't, so we must * wait for planes to fully turn off before disabling the pipe. */ if (IS_GEN2(dev)) intel_wait_for_vblank(dev, pipe); for_each_encoder_on_crtc(dev, crtc, encoder) encoder->disable(encoder); drm_crtc_vblank_off(crtc); assert_vblank_disabled(crtc); intel_disable_pipe(intel_crtc); i9xx_pfit_disable(intel_crtc); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->post_disable) encoder->post_disable(encoder); if (!intel_crtc->config->has_dsi_encoder) { if (IS_CHERRYVIEW(dev)) chv_disable_pll(dev_priv, pipe); else if (IS_VALLEYVIEW(dev)) vlv_disable_pll(dev_priv, pipe); else i9xx_disable_pll(intel_crtc); } for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->post_pll_disable) encoder->post_pll_disable(encoder); if (!IS_GEN2(dev)) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); } static void intel_crtc_disable_noatomic(struct drm_crtc *crtc) { struct intel_encoder *encoder; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_i915_private *dev_priv = to_i915(crtc->dev); enum intel_display_power_domain domain; unsigned long domains; if (!intel_crtc->active) return; if (to_intel_plane_state(crtc->primary->state)->visible) { WARN_ON(intel_crtc->unpin_work); intel_pre_disable_primary_noatomic(crtc); intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary)); to_intel_plane_state(crtc->primary->state)->visible = false; } dev_priv->display.crtc_disable(crtc); DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n", crtc->base.id); WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0); crtc->state->active = false; intel_crtc->active = false; crtc->enabled = false; crtc->state->connector_mask = 0; crtc->state->encoder_mask = 0; for_each_encoder_on_crtc(crtc->dev, crtc, encoder) encoder->base.crtc = NULL; intel_fbc_disable(intel_crtc); intel_update_watermarks(crtc); intel_disable_shared_dpll(intel_crtc); domains = intel_crtc->enabled_power_domains; for_each_power_domain(domain, domains) intel_display_power_put(dev_priv, domain); intel_crtc->enabled_power_domains = 0; dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe); dev_priv->min_pixclk[intel_crtc->pipe] = 0; } /* * turn all crtc's off, but do not adjust state * This has to be paired with a call to intel_modeset_setup_hw_state. */ int intel_display_suspend(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_atomic_state *state; int ret; state = drm_atomic_helper_suspend(dev); ret = PTR_ERR_OR_ZERO(state); if (ret) DRM_ERROR("Suspending crtc's failed with %i\n", ret); else dev_priv->modeset_restore_state = state; return ret; } void intel_encoder_destroy(struct drm_encoder *encoder) { struct intel_encoder *intel_encoder = to_intel_encoder(encoder); drm_encoder_cleanup(encoder); kfree(intel_encoder); } /* Cross check the actual hw state with our own modeset state tracking (and it's * internal consistency). */ static void intel_connector_verify_state(struct intel_connector *connector) { struct drm_crtc *crtc = connector->base.state->crtc; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.base.id, connector->base.name); if (connector->get_hw_state(connector)) { struct intel_encoder *encoder = connector->encoder; struct drm_connector_state *conn_state = connector->base.state; I915_STATE_WARN(!crtc, "connector enabled without attached crtc\n"); if (!crtc) return; I915_STATE_WARN(!crtc->state->active, "connector is active, but attached crtc isn't\n"); if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) return; I915_STATE_WARN(conn_state->best_encoder != &encoder->base, "atomic encoder doesn't match attached encoder\n"); I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, "attached encoder crtc differs from connector crtc\n"); } else { I915_STATE_WARN(crtc && crtc->state->active, "attached crtc is active, but connector isn't\n"); I915_STATE_WARN(!crtc && connector->base.state->best_encoder, "best encoder set without crtc!\n"); } } int intel_connector_init(struct intel_connector *connector) { drm_atomic_helper_connector_reset(&connector->base); if (!connector->base.state) return -ENOMEM; return 0; } struct intel_connector *intel_connector_alloc(void) { struct intel_connector *connector; connector = kzalloc(sizeof *connector, GFP_KERNEL); if (!connector) return NULL; if (intel_connector_init(connector) < 0) { kfree(connector); return NULL; } return connector; } /* Simple connector->get_hw_state implementation for encoders that support only * one connector and no cloning and hence the encoder state determines the state * of the connector. */ bool intel_connector_get_hw_state(struct intel_connector *connector) { enum pipe pipe = 0; struct intel_encoder *encoder = connector->encoder; return encoder->get_hw_state(encoder, &pipe); } static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) { if (crtc_state->base.enable && crtc_state->has_pch_encoder) return crtc_state->fdi_lanes; return 0; } static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, struct intel_crtc_state *pipe_config) { struct drm_atomic_state *state = pipe_config->base.state; struct intel_crtc *other_crtc; struct intel_crtc_state *other_crtc_state; DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n", pipe_name(pipe), pipe_config->fdi_lanes); if (pipe_config->fdi_lanes > 4) { DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n", pipe_name(pipe), pipe_config->fdi_lanes); return -EINVAL; } if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { if (pipe_config->fdi_lanes > 2) { DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n", pipe_config->fdi_lanes); return -EINVAL; } else { return 0; } } if (INTEL_INFO(dev)->num_pipes == 2) return 0; /* Ivybridge 3 pipe is really complicated */ switch (pipe) { case PIPE_A: return 0; case PIPE_B: if (pipe_config->fdi_lanes <= 2) return 0; other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C)); other_crtc_state = intel_atomic_get_crtc_state(state, other_crtc); if (IS_ERR(other_crtc_state)) return PTR_ERR(other_crtc_state); if (pipe_required_fdi_lanes(other_crtc_state) > 0) { DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n", pipe_name(pipe), pipe_config->fdi_lanes); return -EINVAL; } return 0; case PIPE_C: if (pipe_config->fdi_lanes > 2) { DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n", pipe_name(pipe), pipe_config->fdi_lanes); return -EINVAL; } other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B)); other_crtc_state = intel_atomic_get_crtc_state(state, other_crtc); if (IS_ERR(other_crtc_state)) return PTR_ERR(other_crtc_state); if (pipe_required_fdi_lanes(other_crtc_state) > 2) { DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n"); return -EINVAL; } return 0; default: BUG(); } } #define RETRY 1 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = intel_crtc->base.dev; const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; int lane, link_bw, fdi_dotclock, ret; bool needs_recompute = false; retry: /* FDI is a binary signal running at ~2.7GHz, encoding * each output octet as 10 bits. The actual frequency * is stored as a divider into a 100MHz clock, and the * mode pixel clock is stored in units of 1KHz. * Hence the bw of each lane in terms of the mode signal * is: */ link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config); fdi_dotclock = adjusted_mode->crtc_clock; lane = ironlake_get_lanes_required(fdi_dotclock, link_bw, pipe_config->pipe_bpp); pipe_config->fdi_lanes = lane; intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, link_bw, &pipe_config->fdi_m_n); ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { pipe_config->pipe_bpp -= 2*3; DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n", pipe_config->pipe_bpp); needs_recompute = true; pipe_config->bw_constrained = true; goto retry; } if (needs_recompute) return RETRY; return ret; } static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv, struct intel_crtc_state *pipe_config) { if (pipe_config->pipe_bpp > 24) return false; /* HSW can handle pixel rate up to cdclk? */ if (IS_HASWELL(dev_priv)) return true; /* * We compare against max which means we must take * the increased cdclk requirement into account when * calculating the new cdclk. * * Should measure whether using a lower cdclk w/o IPS */ return ilk_pipe_pixel_rate(pipe_config) <= dev_priv->max_cdclk_freq * 95 / 100; } static void hsw_compute_ips_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; pipe_config->ips_enabled = i915.enable_ips && hsw_crtc_supports_ips(crtc) && pipe_config_supports_ips(dev_priv, pipe_config); } static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) { const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* GDG double wide on either pipe, otherwise pipe A only */ return INTEL_INFO(dev_priv)->gen < 4 && (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); } static int intel_crtc_compute_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; /* FIXME should check pixel clock limits on all platforms */ if (INTEL_INFO(dev)->gen < 4) { int clock_limit = dev_priv->max_cdclk_freq * 9 / 10; /* * Enable double wide mode when the dot clock * is > 90% of the (display) core speed. */ if (intel_crtc_supports_double_wide(crtc) && adjusted_mode->crtc_clock > clock_limit) { clock_limit *= 2; pipe_config->double_wide = true; } if (adjusted_mode->crtc_clock > clock_limit) { DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", adjusted_mode->crtc_clock, clock_limit, yesno(pipe_config->double_wide)); return -EINVAL; } } /* * Pipe horizontal size must be even in: * - DVO ganged mode * - LVDS dual channel mode * - Double wide pipe */ if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) && intel_is_dual_link_lvds(dev)) || pipe_config->double_wide) pipe_config->pipe_src_w &= ~1; /* Cantiga+ cannot handle modes with a hsync front porch of 0. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. */ if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) && adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) return -EINVAL; if (HAS_IPS(dev)) hsw_compute_ips_config(crtc, pipe_config); if (pipe_config->has_pch_encoder) return ironlake_fdi_compute_config(crtc, pipe_config); return 0; } static int skylake_get_display_clock_speed(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); uint32_t lcpll1 = I915_READ(LCPLL1_CTL); uint32_t cdctl = I915_READ(CDCLK_CTL); uint32_t linkrate; if (!(lcpll1 & LCPLL_PLL_ENABLE)) return 24000; /* 24MHz is the cd freq with NSSC ref */ if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540) return 540000; linkrate = (I915_READ(DPLL_CTRL1) & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1; if (linkrate == DPLL_CTRL1_LINK_RATE_2160 || linkrate == DPLL_CTRL1_LINK_RATE_1080) { /* vco 8640 */ switch (cdctl & CDCLK_FREQ_SEL_MASK) { case CDCLK_FREQ_450_432: return 432000; case CDCLK_FREQ_337_308: return 308570; case CDCLK_FREQ_675_617: return 617140; default: WARN(1, "Unknown cd freq selection\n"); } } else { /* vco 8100 */ switch (cdctl & CDCLK_FREQ_SEL_MASK) { case CDCLK_FREQ_450_432: return 450000; case CDCLK_FREQ_337_308: return 337500; case CDCLK_FREQ_675_617: return 675000; default: WARN(1, "Unknown cd freq selection\n"); } } /* error case, do as if DPLL0 isn't enabled */ return 24000; } static int broxton_get_display_clock_speed(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); uint32_t cdctl = I915_READ(CDCLK_CTL); uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK; uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE); int cdclk; if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE)) return 19200; cdclk = 19200 * pll_ratio / 2; switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) { case BXT_CDCLK_CD2X_DIV_SEL_1: return cdclk; /* 576MHz or 624MHz */ case BXT_CDCLK_CD2X_DIV_SEL_1_5: return cdclk * 2 / 3; /* 384MHz */ case BXT_CDCLK_CD2X_DIV_SEL_2: return cdclk / 2; /* 288MHz */ case BXT_CDCLK_CD2X_DIV_SEL_4: return cdclk / 4; /* 144MHz */ } /* error case, do as if DE PLL isn't enabled */ return 19200; } static int broadwell_get_display_clock_speed(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t lcpll = I915_READ(LCPLL_CTL); uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK; if (lcpll & LCPLL_CD_SOURCE_FCLK) return 800000; else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) return 450000; else if (freq == LCPLL_CLK_FREQ_450) return 450000; else if (freq == LCPLL_CLK_FREQ_54O_BDW) return 540000; else if (freq == LCPLL_CLK_FREQ_337_5_BDW) return 337500; else return 675000; } static int haswell_get_display_clock_speed(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t lcpll = I915_READ(LCPLL_CTL); uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK; if (lcpll & LCPLL_CD_SOURCE_FCLK) return 800000; else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) return 450000; else if (freq == LCPLL_CLK_FREQ_450) return 450000; else if (IS_HSW_ULT(dev)) return 337500; else return 540000; } static int valleyview_get_display_clock_speed(struct drm_device *dev) { return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk", CCK_DISPLAY_CLOCK_CONTROL); } static int ilk_get_display_clock_speed(struct drm_device *dev) { return 450000; } static int i945_get_display_clock_speed(struct drm_device *dev) { return 400000; } static int i915_get_display_clock_speed(struct drm_device *dev) { return 333333; } static int i9xx_misc_get_display_clock_speed(struct drm_device *dev) { return 200000; } static int pnv_get_display_clock_speed(struct drm_device *dev) { u16 gcfgc = 0; pci_read_config_word(dev->pdev, GCFGC, &gcfgc); switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { case GC_DISPLAY_CLOCK_267_MHZ_PNV: return 266667; case GC_DISPLAY_CLOCK_333_MHZ_PNV: return 333333; case GC_DISPLAY_CLOCK_444_MHZ_PNV: return 444444; case GC_DISPLAY_CLOCK_200_MHZ_PNV: return 200000; default: DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc); case GC_DISPLAY_CLOCK_133_MHZ_PNV: return 133333; case GC_DISPLAY_CLOCK_167_MHZ_PNV: return 166667; } } static int i915gm_get_display_clock_speed(struct drm_device *dev) { u16 gcfgc = 0; pci_read_config_word(dev->pdev, GCFGC, &gcfgc); if (gcfgc & GC_LOW_FREQUENCY_ENABLE) return 133333; else { switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { case GC_DISPLAY_CLOCK_333_MHZ: return 333333; default: case GC_DISPLAY_CLOCK_190_200_MHZ: return 190000; } } } static int i865_get_display_clock_speed(struct drm_device *dev) { return 266667; } static int i85x_get_display_clock_speed(struct drm_device *dev) { u16 hpllcc = 0; /* * 852GM/852GMV only supports 133 MHz and the HPLLCC * encoding is different :( * FIXME is this the right way to detect 852GM/852GMV? */ if (dev->pdev->revision == 0x1) return 133333; pci_bus_read_config_word(dev->pdev->bus, PCI_DEVFN(0, 3), HPLLCC, &hpllcc); /* Assume that the hardware is in the high speed state. This * should be the default. */ switch (hpllcc & GC_CLOCK_CONTROL_MASK) { case GC_CLOCK_133_200: case GC_CLOCK_133_200_2: case GC_CLOCK_100_200: return 200000; case GC_CLOCK_166_250: return 250000; case GC_CLOCK_100_133: return 133333; case GC_CLOCK_133_266: case GC_CLOCK_133_266_2: case GC_CLOCK_166_266: return 266667; } /* Shouldn't happen */ return 0; } static int i830_get_display_clock_speed(struct drm_device *dev) { return 133333; } static unsigned int intel_hpll_vco(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; static const unsigned int blb_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 4800000, [4] = 6400000, }; static const unsigned int pnv_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 4800000, [4] = 2666667, }; static const unsigned int cl_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 6400000, [4] = 3333333, [5] = 3566667, [6] = 4266667, }; static const unsigned int elk_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 4800000, }; static const unsigned int ctg_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 6400000, [4] = 2666667, [5] = 4266667, }; const unsigned int *vco_table; unsigned int vco; uint8_t tmp = 0; /* FIXME other chipsets? */ if (IS_GM45(dev)) vco_table = ctg_vco; else if (IS_G4X(dev)) vco_table = elk_vco; else if (IS_CRESTLINE(dev)) vco_table = cl_vco; else if (IS_PINEVIEW(dev)) vco_table = pnv_vco; else if (IS_G33(dev)) vco_table = blb_vco; else return 0; tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO); vco = vco_table[tmp & 0x7]; if (vco == 0) DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp); else DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco); return vco; } static int gm45_get_display_clock_speed(struct drm_device *dev) { unsigned int cdclk_sel, vco = intel_hpll_vco(dev); uint16_t tmp = 0; pci_read_config_word(dev->pdev, GCFGC, &tmp); cdclk_sel = (tmp >> 12) & 0x1; switch (vco) { case 2666667: case 4000000: case 5333333: return cdclk_sel ? 333333 : 222222; case 3200000: return cdclk_sel ? 320000 : 228571; default: DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp); return 222222; } } static int i965gm_get_display_clock_speed(struct drm_device *dev) { static const uint8_t div_3200[] = { 16, 10, 8 }; static const uint8_t div_4000[] = { 20, 12, 10 }; static const uint8_t div_5333[] = { 24, 16, 14 }; const uint8_t *div_table; unsigned int cdclk_sel, vco = intel_hpll_vco(dev); uint16_t tmp = 0; pci_read_config_word(dev->pdev, GCFGC, &tmp); cdclk_sel = ((tmp >> 8) & 0x1f) - 1; if (cdclk_sel >= ARRAY_SIZE(div_3200)) goto fail; switch (vco) { case 3200000: div_table = div_3200; break; case 4000000: div_table = div_4000; break; case 5333333: div_table = div_5333; break; default: goto fail; } return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]); fail: DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp); return 200000; } static int g33_get_display_clock_speed(struct drm_device *dev) { static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 }; static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 }; static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 }; static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 }; const uint8_t *div_table; unsigned int cdclk_sel, vco = intel_hpll_vco(dev); uint16_t tmp = 0; pci_read_config_word(dev->pdev, GCFGC, &tmp); cdclk_sel = (tmp >> 4) & 0x7; if (cdclk_sel >= ARRAY_SIZE(div_3200)) goto fail; switch (vco) { case 3200000: div_table = div_3200; break; case 4000000: div_table = div_4000; break; case 4800000: div_table = div_4800; break; case 5333333: div_table = div_5333; break; default: goto fail; } return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]); fail: DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp); return 190476; } static void intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den) { while (*num > DATA_LINK_M_N_MASK || *den > DATA_LINK_M_N_MASK) { *num >>= 1; *den >>= 1; } } static void compute_m_n(unsigned int m, unsigned int n, uint32_t *ret_m, uint32_t *ret_n) { *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); *ret_m = div_u64((uint64_t) m * *ret_n, n); intel_reduce_m_n_ratio(ret_m, ret_n); } void intel_link_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock, int link_clock, struct intel_link_m_n *m_n) { m_n->tu = 64; compute_m_n(bits_per_pixel * pixel_clock, link_clock * nlanes * 8, &m_n->gmch_m, &m_n->gmch_n); compute_m_n(pixel_clock, link_clock, &m_n->link_m, &m_n->link_n); } static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) { if (i915.panel_use_ssc >= 0) return i915.panel_use_ssc != 0; return dev_priv->vbt.lvds_use_ssc && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); } static uint32_t pnv_dpll_compute_fp(struct dpll *dpll) { return (1 << dpll->n) << 16 | dpll->m2; } static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll) { return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; } static void i9xx_update_pll_dividers(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, intel_clock_t *reduced_clock) { struct drm_device *dev = crtc->base.dev; u32 fp, fp2 = 0; if (IS_PINEVIEW(dev)) { fp = pnv_dpll_compute_fp(&crtc_state->dpll); if (reduced_clock) fp2 = pnv_dpll_compute_fp(reduced_clock); } else { fp = i9xx_dpll_compute_fp(&crtc_state->dpll); if (reduced_clock) fp2 = i9xx_dpll_compute_fp(reduced_clock); } crtc_state->dpll_hw_state.fp0 = fp; crtc->lowfreq_avail = false; if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) && reduced_clock) { crtc_state->dpll_hw_state.fp1 = fp2; crtc->lowfreq_avail = true; } else { crtc_state->dpll_hw_state.fp1 = fp; } } static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 reg_val; /* * PLLB opamp always calibrates to max value of 0x3f, force enable it * and set it to a reasonable value instead. */ reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); reg_val &= 0xffffff00; reg_val |= 0x00000030; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); reg_val &= 0x8cffffff; reg_val = 0x8c000000; vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); reg_val &= 0xffffff00; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); reg_val &= 0x00ffffff; reg_val |= 0xb0000000; vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); } static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc, struct intel_link_m_n *m_n) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m); I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n); } static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc, struct intel_link_m_n *m_n, struct intel_link_m_n *m2_n2) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; enum transcoder transcoder = crtc->config->cpu_transcoder; if (INTEL_INFO(dev)->gen >= 5) { I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m); I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n); I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m); I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n); /* M2_N2 registers to be set only for gen < 8 (M2_N2 available * for gen < 8) and if DRRS is supported (to make sure the * registers are not unnecessarily accessed). */ if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) && crtc->config->has_drrs) { I915_WRITE(PIPE_DATA_M2(transcoder), TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n); I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m); I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n); } } else { I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n); I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m); I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n); } } void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n) { struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; if (m_n == M1_N1) { dp_m_n = &crtc->config->dp_m_n; dp_m2_n2 = &crtc->config->dp_m2_n2; } else if (m_n == M2_N2) { /* * M2_N2 registers are not supported. Hence m2_n2 divider value * needs to be programmed into M1_N1. */ dp_m_n = &crtc->config->dp_m2_n2; } else { DRM_ERROR("Unsupported divider value\n"); return; } if (crtc->config->has_pch_encoder) intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n); else intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2); } static void vlv_compute_dpll(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS | DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV; if (crtc->pipe != PIPE_A) pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; pipe_config->dpll_hw_state.dpll_md = (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; } static void chv_compute_dpll(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS | DPLL_VCO_ENABLE; if (crtc->pipe != PIPE_A) pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; pipe_config->dpll_hw_state.dpll_md = (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; } static void vlv_prepare_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; u32 mdiv; u32 bestn, bestm1, bestm2, bestp1, bestp2; u32 coreclk, reg_val; mutex_lock(&dev_priv->sb_lock); bestn = pipe_config->dpll.n; bestm1 = pipe_config->dpll.m1; bestm2 = pipe_config->dpll.m2; bestp1 = pipe_config->dpll.p1; bestp2 = pipe_config->dpll.p2; /* See eDP HDMI DPIO driver vbios notes doc */ /* PLL B needs special handling */ if (pipe == PIPE_B) vlv_pllb_recal_opamp(dev_priv, pipe); /* Set up Tx target for periodic Rcomp update */ vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); /* Disable target IRef on PLL */ reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); reg_val &= 0x00ffffff; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); /* Disable fast lock */ vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); /* Set idtafcrecal before PLL is enabled */ mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); mdiv |= ((bestn << DPIO_N_SHIFT)); mdiv |= (1 << DPIO_K_SHIFT); /* * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, * but we don't support that). * Note: don't use the DAC post divider as it seems unstable. */ mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); mdiv |= DPIO_ENABLE_CALIBRATION; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); /* Set HBR and RBR LPF coefficients */ if (pipe_config->port_clock == 162000 || intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 0x009f0003); else vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 0x00d0000f); if (pipe_config->has_dp_encoder) { /* Use SSC source */ if (pipe == PIPE_A) vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df40000); else vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df70000); } else { /* HDMI or VGA */ /* Use bend source */ if (pipe == PIPE_A) vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df70000); else vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df40000); } coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); coreclk = (coreclk & 0x0000ff00) | 0x01c00000; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) coreclk |= 0x01000000; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); mutex_unlock(&dev_priv->sb_lock); } static void chv_prepare_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; i915_reg_t dpll_reg = DPLL(crtc->pipe); enum dpio_channel port = vlv_pipe_to_channel(pipe); u32 loopfilter, tribuf_calcntr; u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; u32 dpio_val; int vco; bestn = pipe_config->dpll.n; bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; bestm1 = pipe_config->dpll.m1; bestm2 = pipe_config->dpll.m2 >> 22; bestp1 = pipe_config->dpll.p1; bestp2 = pipe_config->dpll.p2; vco = pipe_config->dpll.vco; dpio_val = 0; loopfilter = 0; /* * Enable Refclk and SSC */ I915_WRITE(dpll_reg, pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); mutex_lock(&dev_priv->sb_lock); /* p1 and p2 divider */ vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 5 << DPIO_CHV_S1_DIV_SHIFT | bestp1 << DPIO_CHV_P1_DIV_SHIFT | bestp2 << DPIO_CHV_P2_DIV_SHIFT | 1 << DPIO_CHV_K_DIV_SHIFT); /* Feedback post-divider - m2 */ vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); /* Feedback refclk divider - n and m1 */ vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), DPIO_CHV_M1_DIV_BY_2 | 1 << DPIO_CHV_N_DIV_SHIFT); /* M2 fraction division */ vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); /* M2 fraction division enable */ dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); if (bestm2_frac) dpio_val |= DPIO_CHV_FRAC_DIV_EN; vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); /* Program digital lock detect threshold */ dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); if (!bestm2_frac) dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); /* Loop filter */ if (vco == 5400000) { loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); tribuf_calcntr = 0x9; } else if (vco <= 6200000) { loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); tribuf_calcntr = 0x9; } else if (vco <= 6480000) { loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); tribuf_calcntr = 0x8; } else { /* Not supported. Apply the same limits as in the max case */ loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); tribuf_calcntr = 0; } vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); /* AFC Recal */ vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | DPIO_AFC_RECAL); mutex_unlock(&dev_priv->sb_lock); } /** * vlv_force_pll_on - forcibly enable just the PLL * @dev_priv: i915 private structure * @pipe: pipe PLL to enable * @dpll: PLL configuration * * Enable the PLL for @pipe using the supplied @dpll config. To be used * in cases where we need the PLL enabled even when @pipe is not going to * be enabled. */ int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe, const struct dpll *dpll) { struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe)); struct intel_crtc_state *pipe_config; pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL); if (!pipe_config) return -ENOMEM; pipe_config->base.crtc = &crtc->base; pipe_config->pixel_multiplier = 1; pipe_config->dpll = *dpll; if (IS_CHERRYVIEW(dev)) { chv_compute_dpll(crtc, pipe_config); chv_prepare_pll(crtc, pipe_config); chv_enable_pll(crtc, pipe_config); } else { vlv_compute_dpll(crtc, pipe_config); vlv_prepare_pll(crtc, pipe_config); vlv_enable_pll(crtc, pipe_config); } kfree(pipe_config); return 0; } /** * vlv_force_pll_off - forcibly disable just the PLL * @dev_priv: i915 private structure * @pipe: pipe PLL to disable * * Disable the PLL for @pipe. To be used in cases where we need * the PLL enabled even when @pipe is not going to be enabled. */ void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe) { if (IS_CHERRYVIEW(dev)) chv_disable_pll(to_i915(dev), pipe); else vlv_disable_pll(to_i915(dev), pipe); } static void i9xx_compute_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, intel_clock_t *reduced_clock) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 dpll; bool is_sdvo; struct dpll *clock = &crtc_state->dpll; i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) || intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI); dpll = DPLL_VGA_MODE_DIS; if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) dpll |= DPLLB_MODE_LVDS; else dpll |= DPLLB_MODE_DAC_SERIAL; if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) { dpll |= (crtc_state->pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; } if (is_sdvo) dpll |= DPLL_SDVO_HIGH_SPEED; if (crtc_state->has_dp_encoder) dpll |= DPLL_SDVO_HIGH_SPEED; /* compute bitmask from p1 value */ if (IS_PINEVIEW(dev)) dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; else { dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; if (IS_G4X(dev) && reduced_clock) dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; } switch (clock->p2) { case 5: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; break; case 7: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; break; case 10: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; break; case 14: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; break; } if (INTEL_INFO(dev)->gen >= 4) dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); if (crtc_state->sdvo_tv_clock) dpll |= PLL_REF_INPUT_TVCLKINBC; else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) && intel_panel_use_ssc(dev_priv)) dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; else dpll |= PLL_REF_INPUT_DREFCLK; dpll |= DPLL_VCO_ENABLE; crtc_state->dpll_hw_state.dpll = dpll; if (INTEL_INFO(dev)->gen >= 4) { u32 dpll_md = (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; crtc_state->dpll_hw_state.dpll_md = dpll_md; } } static void i8xx_compute_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, intel_clock_t *reduced_clock) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 dpll; struct dpll *clock = &crtc_state->dpll; i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); dpll = DPLL_VGA_MODE_DIS; if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; } else { if (clock->p1 == 2) dpll |= PLL_P1_DIVIDE_BY_TWO; else dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; if (clock->p2 == 4) dpll |= PLL_P2_DIVIDE_BY_4; } if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) dpll |= DPLL_DVO_2X_MODE; if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) && intel_panel_use_ssc(dev_priv)) dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; else dpll |= PLL_REF_INPUT_DREFCLK; dpll |= DPLL_VCO_ENABLE; crtc_state->dpll_hw_state.dpll = dpll; } static void intel_set_pipe_timings(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = intel_crtc->pipe; enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode; uint32_t crtc_vtotal, crtc_vblank_end; int vsyncshift = 0; /* We need to be careful not to changed the adjusted mode, for otherwise * the hw state checker will get angry at the mismatch. */ crtc_vtotal = adjusted_mode->crtc_vtotal; crtc_vblank_end = adjusted_mode->crtc_vblank_end; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { /* the chip adds 2 halflines automatically */ crtc_vtotal -= 1; crtc_vblank_end -= 1; if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO)) vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; else vsyncshift = adjusted_mode->crtc_hsync_start - adjusted_mode->crtc_htotal / 2; if (vsyncshift < 0) vsyncshift += adjusted_mode->crtc_htotal; } if (INTEL_INFO(dev)->gen > 3) I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift); I915_WRITE(HTOTAL(cpu_transcoder), (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); I915_WRITE(HBLANK(cpu_transcoder), (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); I915_WRITE(HSYNC(cpu_transcoder), (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); I915_WRITE(VTOTAL(cpu_transcoder), (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); I915_WRITE(VBLANK(cpu_transcoder), (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); I915_WRITE(VSYNC(cpu_transcoder), (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); /* Workaround: when the EDP input selection is B, the VTOTAL_B must be * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is * documented on the DDI_FUNC_CTL register description, EDP Input Select * bits. */ if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP && (pipe == PIPE_B || pipe == PIPE_C)) I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder))); } static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = intel_crtc->pipe; /* pipesrc controls the size that is scaled from, which should * always be the user's requested size. */ I915_WRITE(PIPESRC(pipe), ((intel_crtc->config->pipe_src_w - 1) << 16) | (intel_crtc->config->pipe_src_h - 1)); } static void intel_get_pipe_timings(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; uint32_t tmp; tmp = I915_READ(HTOTAL(cpu_transcoder)); pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; tmp = I915_READ(HBLANK(cpu_transcoder)); pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1; pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1; tmp = I915_READ(HSYNC(cpu_transcoder)); pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; tmp = I915_READ(VTOTAL(cpu_transcoder)); pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; tmp = I915_READ(VBLANK(cpu_transcoder)); pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1; pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1; tmp = I915_READ(VSYNC(cpu_transcoder)); pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) { pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; pipe_config->base.adjusted_mode.crtc_vtotal += 1; pipe_config->base.adjusted_mode.crtc_vblank_end += 1; } } static void intel_get_pipe_src_size(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 tmp; tmp = I915_READ(PIPESRC(crtc->pipe)); pipe_config->pipe_src_h = (tmp & 0xffff) + 1; pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h; pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w; } void intel_mode_from_pipe_config(struct drm_display_mode *mode, struct intel_crtc_state *pipe_config) { mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay; mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal; mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start; mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end; mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay; mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal; mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start; mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end; mode->flags = pipe_config->base.adjusted_mode.flags; mode->type = DRM_MODE_TYPE_DRIVER; mode->clock = pipe_config->base.adjusted_mode.crtc_clock; mode->flags |= pipe_config->base.adjusted_mode.flags; mode->hsync = drm_mode_hsync(mode); mode->vrefresh = drm_mode_vrefresh(mode); drm_mode_set_name(mode); } static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t pipeconf; pipeconf = 0; if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE; if (intel_crtc->config->double_wide) pipeconf |= PIPECONF_DOUBLE_WIDE; /* only g4x and later have fancy bpc/dither controls */ if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { /* Bspec claims that we can't use dithering for 30bpp pipes. */ if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30) pipeconf |= PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP; switch (intel_crtc->config->pipe_bpp) { case 18: pipeconf |= PIPECONF_6BPC; break; case 24: pipeconf |= PIPECONF_8BPC; break; case 30: pipeconf |= PIPECONF_10BPC; break; default: /* Case prevented by intel_choose_pipe_bpp_dither. */ BUG(); } } if (HAS_PIPE_CXSR(dev)) { if (intel_crtc->lowfreq_avail) { DRM_DEBUG_KMS("enabling CxSR downclocking\n"); pipeconf |= PIPECONF_CXSR_DOWNCLOCK; } else { DRM_DEBUG_KMS("disabling CxSR downclocking\n"); } } if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { if (INTEL_INFO(dev)->gen < 4 || intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO)) pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; else pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; } else pipeconf |= PIPECONF_PROGRESSIVE; if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) && intel_crtc->config->limited_color_range) pipeconf |= PIPECONF_COLOR_RANGE_SELECT; I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf); POSTING_READ(PIPECONF(intel_crtc->pipe)); } static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; const intel_limit_t *limit; int refclk = 48000; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { if (intel_panel_use_ssc(dev_priv)) { refclk = dev_priv->vbt.lvds_ssc_freq; DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); } limit = &intel_limits_i8xx_lvds; } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) { limit = &intel_limits_i8xx_dvo; } else { limit = &intel_limits_i8xx_dac; } if (!crtc_state->clock_set && !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } i8xx_compute_dpll(crtc, crtc_state, NULL); return 0; } static int g4x_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; const intel_limit_t *limit; int refclk = 96000; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { if (intel_panel_use_ssc(dev_priv)) { refclk = dev_priv->vbt.lvds_ssc_freq; DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); } if (intel_is_dual_link_lvds(dev)) limit = &intel_limits_g4x_dual_channel_lvds; else limit = &intel_limits_g4x_single_channel_lvds; } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) || intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) { limit = &intel_limits_g4x_hdmi; } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) { limit = &intel_limits_g4x_sdvo; } else { /* The option is for other outputs */ limit = &intel_limits_i9xx_sdvo; } if (!crtc_state->clock_set && !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } i9xx_compute_dpll(crtc, crtc_state, NULL); return 0; } static int pnv_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; const intel_limit_t *limit; int refclk = 96000; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { if (intel_panel_use_ssc(dev_priv)) { refclk = dev_priv->vbt.lvds_ssc_freq; DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); } limit = &intel_limits_pineview_lvds; } else { limit = &intel_limits_pineview_sdvo; } if (!crtc_state->clock_set && !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } i9xx_compute_dpll(crtc, crtc_state, NULL); return 0; } static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; const intel_limit_t *limit; int refclk = 96000; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { if (intel_panel_use_ssc(dev_priv)) { refclk = dev_priv->vbt.lvds_ssc_freq; DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); } limit = &intel_limits_i9xx_lvds; } else { limit = &intel_limits_i9xx_sdvo; } if (!crtc_state->clock_set && !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } i9xx_compute_dpll(crtc, crtc_state, NULL); return 0; } static int chv_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { int refclk = 100000; const intel_limit_t *limit = &intel_limits_chv; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (crtc_state->has_dsi_encoder) return 0; if (!crtc_state->clock_set && !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } chv_compute_dpll(crtc, crtc_state); return 0; } static int vlv_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { int refclk = 100000; const intel_limit_t *limit = &intel_limits_vlv; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (crtc_state->has_dsi_encoder) return 0; if (!crtc_state->clock_set && !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } vlv_compute_dpll(crtc, crtc_state); return 0; } static void i9xx_get_pfit_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t tmp; if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev))) return; tmp = I915_READ(PFIT_CONTROL); if (!(tmp & PFIT_ENABLE)) return; /* Check whether the pfit is attached to our pipe. */ if (INTEL_INFO(dev)->gen < 4) { if (crtc->pipe != PIPE_B) return; } else { if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) return; } pipe_config->gmch_pfit.control = tmp; pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS); if (INTEL_INFO(dev)->gen < 5) pipe_config->gmch_pfit.lvds_border_bits = I915_READ(LVDS) & LVDS_BORDER_ENABLE; } static void vlv_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = pipe_config->cpu_transcoder; intel_clock_t clock; u32 mdiv; int refclk = 100000; /* In case of DSI, DPLL will not be used */ if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) return; mutex_lock(&dev_priv->sb_lock); mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); mutex_unlock(&dev_priv->sb_lock); clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; clock.m2 = mdiv & DPIO_M2DIV_MASK; clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); } static void i9xx_get_initial_plane_config(struct intel_crtc *crtc, struct intel_initial_plane_config *plane_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 val, base, offset; int pipe = crtc->pipe, plane = crtc->plane; int fourcc, pixel_format; unsigned int aligned_height; struct drm_framebuffer *fb; struct intel_framebuffer *intel_fb; val = I915_READ(DSPCNTR(plane)); if (!(val & DISPLAY_PLANE_ENABLE)) return; intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) { DRM_DEBUG_KMS("failed to alloc fb\n"); return; } fb = &intel_fb->base; if (INTEL_INFO(dev)->gen >= 4) { if (val & DISPPLANE_TILED) { plane_config->tiling = I915_TILING_X; fb->modifier[0] = I915_FORMAT_MOD_X_TILED; } } pixel_format = val & DISPPLANE_PIXFORMAT_MASK; fourcc = i9xx_format_to_fourcc(pixel_format); fb->pixel_format = fourcc; fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8; if (INTEL_INFO(dev)->gen >= 4) { if (plane_config->tiling) offset = I915_READ(DSPTILEOFF(plane)); else offset = I915_READ(DSPLINOFF(plane)); base = I915_READ(DSPSURF(plane)) & 0xfffff000; } else { base = I915_READ(DSPADDR(plane)); } plane_config->base = base; val = I915_READ(PIPESRC(pipe)); fb->width = ((val >> 16) & 0xfff) + 1; fb->height = ((val >> 0) & 0xfff) + 1; val = I915_READ(DSPSTRIDE(pipe)); fb->pitches[0] = val & 0xffffffc0; aligned_height = intel_fb_align_height(dev, fb->height, fb->pixel_format, fb->modifier[0]); plane_config->size = fb->pitches[0] * aligned_height; DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", pipe_name(pipe), plane, fb->width, fb->height, fb->bits_per_pixel, base, fb->pitches[0], plane_config->size); plane_config->fb = intel_fb; } static void chv_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = pipe_config->cpu_transcoder; enum dpio_channel port = vlv_pipe_to_channel(pipe); intel_clock_t clock; u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; int refclk = 100000; /* In case of DSI, DPLL will not be used */ if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) return; mutex_lock(&dev_priv->sb_lock); cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); mutex_unlock(&dev_priv->sb_lock); clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; clock.m2 = (pll_dw0 & 0xff) << 22; if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) clock.m2 |= pll_dw2 & 0x3fffff; clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); } static bool i9xx_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum intel_display_power_domain power_domain; uint32_t tmp; bool ret; power_domain = POWER_DOMAIN_PIPE(crtc->pipe); if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) return false; pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; pipe_config->shared_dpll = NULL; ret = false; tmp = I915_READ(PIPECONF(crtc->pipe)); if (!(tmp & PIPECONF_ENABLE)) goto out; if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { switch (tmp & PIPECONF_BPC_MASK) { case PIPECONF_6BPC: pipe_config->pipe_bpp = 18; break; case PIPECONF_8BPC: pipe_config->pipe_bpp = 24; break; case PIPECONF_10BPC: pipe_config->pipe_bpp = 30; break; default: break; } } if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) && (tmp & PIPECONF_COLOR_RANGE_SELECT)) pipe_config->limited_color_range = true; if (INTEL_INFO(dev)->gen < 4) pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; intel_get_pipe_timings(crtc, pipe_config); intel_get_pipe_src_size(crtc, pipe_config); i9xx_get_pfit_config(crtc, pipe_config); if (INTEL_INFO(dev)->gen >= 4) { /* No way to read it out on pipes B and C */ if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A) tmp = dev_priv->chv_dpll_md[crtc->pipe]; else tmp = I915_READ(DPLL_MD(crtc->pipe)); pipe_config->pixel_multiplier = ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; pipe_config->dpll_hw_state.dpll_md = tmp; } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) { tmp = I915_READ(DPLL(crtc->pipe)); pipe_config->pixel_multiplier = ((tmp & SDVO_MULTIPLIER_MASK) >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; } else { /* Note that on i915G/GM the pixel multiplier is in the sdvo * port and will be fixed up in the encoder->get_config * function. */ pipe_config->pixel_multiplier = 1; } pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe)); if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) { /* * DPLL_DVO_2X_MODE must be enabled for both DPLLs * on 830. Filter it out here so that we don't * report errors due to that. */ if (IS_I830(dev)) pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE; pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe)); pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe)); } else { /* Mask out read-only status bits. */ pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | DPLL_PORTC_READY_MASK | DPLL_PORTB_READY_MASK); } if (IS_CHERRYVIEW(dev)) chv_crtc_clock_get(crtc, pipe_config); else if (IS_VALLEYVIEW(dev)) vlv_crtc_clock_get(crtc, pipe_config); else i9xx_crtc_clock_get(crtc, pipe_config); /* * Normally the dotclock is filled in by the encoder .get_config() * but in case the pipe is enabled w/o any ports we need a sane * default. */ pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock / pipe_config->pixel_multiplier; ret = true; out: intel_display_power_put(dev_priv, power_domain); return ret; } static void ironlake_init_pch_refclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *encoder; u32 val, final; bool has_lvds = false; bool has_cpu_edp = false; bool has_panel = false; bool has_ck505 = false; bool can_ssc = false; /* We need to take the global config into account */ for_each_intel_encoder(dev, encoder) { switch (encoder->type) { case INTEL_OUTPUT_LVDS: has_panel = true; has_lvds = true; break; case INTEL_OUTPUT_EDP: has_panel = true; if (enc_to_dig_port(&encoder->base)->port == PORT_A) has_cpu_edp = true; break; default: break; } } if (HAS_PCH_IBX(dev)) { has_ck505 = dev_priv->vbt.display_clock_mode; can_ssc = has_ck505; } else { has_ck505 = false; can_ssc = true; } DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n", has_panel, has_lvds, has_ck505); /* Ironlake: try to setup display ref clock before DPLL * enabling. This is only under driver's control after * PCH B stepping, previous chipset stepping should be * ignoring this setting. */ val = I915_READ(PCH_DREF_CONTROL); /* As we must carefully and slowly disable/enable each source in turn, * compute the final state we want first and check if we need to * make any changes at all. */ final = val; final &= ~DREF_NONSPREAD_SOURCE_MASK; if (has_ck505) final |= DREF_NONSPREAD_CK505_ENABLE; else final |= DREF_NONSPREAD_SOURCE_ENABLE; final &= ~DREF_SSC_SOURCE_MASK; final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; final &= ~DREF_SSC1_ENABLE; if (has_panel) { final |= DREF_SSC_SOURCE_ENABLE; if (intel_panel_use_ssc(dev_priv) && can_ssc) final |= DREF_SSC1_ENABLE; if (has_cpu_edp) { if (intel_panel_use_ssc(dev_priv) && can_ssc) final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; else final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; } else final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; } else { final |= DREF_SSC_SOURCE_DISABLE; final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; } if (final == val) return; /* Always enable nonspread source */ val &= ~DREF_NONSPREAD_SOURCE_MASK; if (has_ck505) val |= DREF_NONSPREAD_CK505_ENABLE; else val |= DREF_NONSPREAD_SOURCE_ENABLE; if (has_panel) { val &= ~DREF_SSC_SOURCE_MASK; val |= DREF_SSC_SOURCE_ENABLE; /* SSC must be turned on before enabling the CPU output */ if (intel_panel_use_ssc(dev_priv) && can_ssc) { DRM_DEBUG_KMS("Using SSC on panel\n"); val |= DREF_SSC1_ENABLE; } else val &= ~DREF_SSC1_ENABLE; /* Get SSC going before enabling the outputs */ I915_WRITE(PCH_DREF_CONTROL, val); POSTING_READ(PCH_DREF_CONTROL); udelay(200); val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; /* Enable CPU source on CPU attached eDP */ if (has_cpu_edp) { if (intel_panel_use_ssc(dev_priv) && can_ssc) { DRM_DEBUG_KMS("Using SSC on eDP\n"); val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; } else val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; } else val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; I915_WRITE(PCH_DREF_CONTROL, val); POSTING_READ(PCH_DREF_CONTROL); udelay(200); } else { DRM_DEBUG_KMS("Disabling SSC entirely\n"); val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; /* Turn off CPU output */ val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; I915_WRITE(PCH_DREF_CONTROL, val); POSTING_READ(PCH_DREF_CONTROL); udelay(200); /* Turn off the SSC source */ val &= ~DREF_SSC_SOURCE_MASK; val |= DREF_SSC_SOURCE_DISABLE; /* Turn off SSC1 */ val &= ~DREF_SSC1_ENABLE; I915_WRITE(PCH_DREF_CONTROL, val); POSTING_READ(PCH_DREF_CONTROL); udelay(200); } BUG_ON(val != final); } static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) { uint32_t tmp; tmp = I915_READ(SOUTH_CHICKEN2); tmp |= FDI_MPHY_IOSFSB_RESET_CTL; I915_WRITE(SOUTH_CHICKEN2, tmp); if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) & FDI_MPHY_IOSFSB_RESET_STATUS, 100)) DRM_ERROR("FDI mPHY reset assert timeout\n"); tmp = I915_READ(SOUTH_CHICKEN2); tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; I915_WRITE(SOUTH_CHICKEN2, tmp); if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) & FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) DRM_ERROR("FDI mPHY reset de-assert timeout\n"); } /* WaMPhyProgramming:hsw */ static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) { uint32_t tmp; tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); tmp &= ~(0xFF << 24); tmp |= (0x12 << 24); intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); tmp |= (1 << 11); intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); tmp |= (1 << 11); intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); tmp |= (1 << 24) | (1 << 21) | (1 << 18); intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); tmp |= (1 << 24) | (1 << 21) | (1 << 18); intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); tmp &= ~(7 << 13); tmp |= (5 << 13); intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); tmp &= ~(7 << 13); tmp |= (5 << 13); intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); tmp &= ~0xFF; tmp |= 0x1C; intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); tmp &= ~0xFF; tmp |= 0x1C; intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); tmp &= ~(0xFF << 16); tmp |= (0x1C << 16); intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); tmp &= ~(0xFF << 16); tmp |= (0x1C << 16); intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); tmp |= (1 << 27); intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); tmp |= (1 << 27); intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); tmp &= ~(0xF << 28); tmp |= (4 << 28); intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); tmp &= ~(0xF << 28); tmp |= (4 << 28); intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); } /* Implements 3 different sequences from BSpec chapter "Display iCLK * Programming" based on the parameters passed: * - Sequence to enable CLKOUT_DP * - Sequence to enable CLKOUT_DP without spread * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O */ static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread, bool with_fdi) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t reg, tmp; if (WARN(with_fdi && !with_spread, "FDI requires downspread\n")) with_spread = true; if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n")) with_fdi = false; mutex_lock(&dev_priv->sb_lock); tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); tmp &= ~SBI_SSCCTL_DISABLE; tmp |= SBI_SSCCTL_PATHALT; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); udelay(24); if (with_spread) { tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); tmp &= ~SBI_SSCCTL_PATHALT; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); if (with_fdi) { lpt_reset_fdi_mphy(dev_priv); lpt_program_fdi_mphy(dev_priv); } } reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0; tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); mutex_unlock(&dev_priv->sb_lock); } /* Sequence to disable CLKOUT_DP */ static void lpt_disable_clkout_dp(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t reg, tmp; mutex_lock(&dev_priv->sb_lock); reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0; tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); if (!(tmp & SBI_SSCCTL_DISABLE)) { if (!(tmp & SBI_SSCCTL_PATHALT)) { tmp |= SBI_SSCCTL_PATHALT; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); udelay(32); } tmp |= SBI_SSCCTL_DISABLE; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); } mutex_unlock(&dev_priv->sb_lock); } #define BEND_IDX(steps) ((50 + (steps)) / 5) static const uint16_t sscdivintphase[] = { [BEND_IDX( 50)] = 0x3B23, [BEND_IDX( 45)] = 0x3B23, [BEND_IDX( 40)] = 0x3C23, [BEND_IDX( 35)] = 0x3C23, [BEND_IDX( 30)] = 0x3D23, [BEND_IDX( 25)] = 0x3D23, [BEND_IDX( 20)] = 0x3E23, [BEND_IDX( 15)] = 0x3E23, [BEND_IDX( 10)] = 0x3F23, [BEND_IDX( 5)] = 0x3F23, [BEND_IDX( 0)] = 0x0025, [BEND_IDX( -5)] = 0x0025, [BEND_IDX(-10)] = 0x0125, [BEND_IDX(-15)] = 0x0125, [BEND_IDX(-20)] = 0x0225, [BEND_IDX(-25)] = 0x0225, [BEND_IDX(-30)] = 0x0325, [BEND_IDX(-35)] = 0x0325, [BEND_IDX(-40)] = 0x0425, [BEND_IDX(-45)] = 0x0425, [BEND_IDX(-50)] = 0x0525, }; /* * Bend CLKOUT_DP * steps -50 to 50 inclusive, in steps of 5 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) * change in clock period = -(steps / 10) * 5.787 ps */ static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) { uint32_t tmp; int idx = BEND_IDX(steps); if (WARN_ON(steps % 5 != 0)) return; if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase))) return; mutex_lock(&dev_priv->sb_lock); if (steps % 10 != 0) tmp = 0xAAAAAAAB; else tmp = 0x00000000; intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); tmp &= 0xffff0000; tmp |= sscdivintphase[idx]; intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); mutex_unlock(&dev_priv->sb_lock); } #undef BEND_IDX static void lpt_init_pch_refclk(struct drm_device *dev) { struct intel_encoder *encoder; bool has_vga = false; for_each_intel_encoder(dev, encoder) { switch (encoder->type) { case INTEL_OUTPUT_ANALOG: has_vga = true; break; default: break; } } if (has_vga) { lpt_bend_clkout_dp(to_i915(dev), 0); lpt_enable_clkout_dp(dev, true, true); } else { lpt_disable_clkout_dp(dev); } } /* * Initialize reference clocks when the driver loads */ void intel_init_pch_refclk(struct drm_device *dev) { if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) ironlake_init_pch_refclk(dev); else if (HAS_PCH_LPT(dev)) lpt_init_pch_refclk(dev); } static void ironlake_set_pipeconf(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; uint32_t val; val = 0; switch (intel_crtc->config->pipe_bpp) { case 18: val |= PIPECONF_6BPC; break; case 24: val |= PIPECONF_8BPC; break; case 30: val |= PIPECONF_10BPC; break; case 36: val |= PIPECONF_12BPC; break; default: /* Case prevented by intel_choose_pipe_bpp_dither. */ BUG(); } if (intel_crtc->config->dither) val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) val |= PIPECONF_INTERLACED_ILK; else val |= PIPECONF_PROGRESSIVE; if (intel_crtc->config->limited_color_range) val |= PIPECONF_COLOR_RANGE_SELECT; I915_WRITE(PIPECONF(pipe), val); POSTING_READ(PIPECONF(pipe)); } static void haswell_set_pipeconf(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; u32 val = 0; if (IS_HASWELL(dev_priv) && intel_crtc->config->dither) val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) val |= PIPECONF_INTERLACED_ILK; else val |= PIPECONF_PROGRESSIVE; I915_WRITE(PIPECONF(cpu_transcoder), val); POSTING_READ(PIPECONF(cpu_transcoder)); } static void haswell_set_pipemisc(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) { u32 val = 0; switch (intel_crtc->config->pipe_bpp) { case 18: val |= PIPEMISC_DITHER_6_BPC; break; case 24: val |= PIPEMISC_DITHER_8_BPC; break; case 30: val |= PIPEMISC_DITHER_10_BPC; break; case 36: val |= PIPEMISC_DITHER_12_BPC; break; default: /* Case prevented by pipe_config_set_bpp. */ BUG(); } if (intel_crtc->config->dither) val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; I915_WRITE(PIPEMISC(intel_crtc->pipe), val); } } int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp) { /* * Account for spread spectrum to avoid * oversubscribing the link. Max center spread * is 2.5%; use 5% for safety's sake. */ u32 bps = target_clock * bpp * 21 / 20; return DIV_ROUND_UP(bps, link_bw * 8); } static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor) { return i9xx_dpll_compute_m(dpll) < factor * dpll->n; } static void ironlake_compute_dpll(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state, intel_clock_t *reduced_clock) { struct drm_crtc *crtc = &intel_crtc->base; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_atomic_state *state = crtc_state->base.state; struct drm_connector *connector; struct drm_connector_state *connector_state; struct intel_encoder *encoder; u32 dpll, fp, fp2; int factor, i; bool is_lvds = false, is_sdvo = false; for_each_connector_in_state(state, connector, connector_state, i) { if (connector_state->crtc != crtc_state->base.crtc) continue; encoder = to_intel_encoder(connector_state->best_encoder); switch (encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; case INTEL_OUTPUT_SDVO: case INTEL_OUTPUT_HDMI: is_sdvo = true; break; default: break; } } /* Enable autotuning of the PLL clock (if permissible) */ factor = 21; if (is_lvds) { if ((intel_panel_use_ssc(dev_priv) && dev_priv->vbt.lvds_ssc_freq == 100000) || (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev))) factor = 25; } else if (crtc_state->sdvo_tv_clock) factor = 20; fp = i9xx_dpll_compute_fp(&crtc_state->dpll); if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor)) fp |= FP_CB_TUNE; if (reduced_clock) { fp2 = i9xx_dpll_compute_fp(reduced_clock); if (reduced_clock->m < factor * reduced_clock->n) fp2 |= FP_CB_TUNE; } else { fp2 = fp; } dpll = 0; if (is_lvds) dpll |= DPLLB_MODE_LVDS; else dpll |= DPLLB_MODE_DAC_SERIAL; dpll |= (crtc_state->pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; if (is_sdvo) dpll |= DPLL_SDVO_HIGH_SPEED; if (crtc_state->has_dp_encoder) dpll |= DPLL_SDVO_HIGH_SPEED; /* compute bitmask from p1 value */ dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; /* also FPA1 */ dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; switch (crtc_state->dpll.p2) { case 5: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; break; case 7: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; break; case 10: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; break; case 14: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; break; } if (is_lvds && intel_panel_use_ssc(dev_priv)) dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; else dpll |= PLL_REF_INPUT_DREFCLK; dpll |= DPLL_VCO_ENABLE; crtc_state->dpll_hw_state.dpll = dpll; crtc_state->dpll_hw_state.fp0 = fp; crtc_state->dpll_hw_state.fp1 = fp2; } static int ironlake_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; intel_clock_t reduced_clock; bool has_reduced_clock = false; struct intel_shared_dpll *pll; const intel_limit_t *limit; int refclk = 120000; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); crtc->lowfreq_avail = false; /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ if (!crtc_state->has_pch_encoder) return 0; if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { if (intel_panel_use_ssc(dev_priv)) { DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", dev_priv->vbt.lvds_ssc_freq); refclk = dev_priv->vbt.lvds_ssc_freq; } if (intel_is_dual_link_lvds(dev)) { if (refclk == 100000) limit = &intel_limits_ironlake_dual_lvds_100m; else limit = &intel_limits_ironlake_dual_lvds; } else { if (refclk == 100000) limit = &intel_limits_ironlake_single_lvds_100m; else limit = &intel_limits_ironlake_single_lvds; } } else { limit = &intel_limits_ironlake_dac; } if (!crtc_state->clock_set && !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } ironlake_compute_dpll(crtc, crtc_state, has_reduced_clock ? &reduced_clock : NULL); pll = intel_get_shared_dpll(crtc, crtc_state, NULL); if (pll == NULL) { DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n", pipe_name(crtc->pipe)); return -EINVAL; } if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) && has_reduced_clock) crtc->lowfreq_avail = true; return 0; } static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, struct intel_link_m_n *m_n) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = crtc->pipe; m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe)); m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe)); m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe)) & ~TU_SIZE_MASK; m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe)); m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; } static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, enum transcoder transcoder, struct intel_link_m_n *m_n, struct intel_link_m_n *m2_n2) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = crtc->pipe; if (INTEL_INFO(dev)->gen >= 5) { m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder)); m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder)); m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder)) & ~TU_SIZE_MASK; m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder)); m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; /* Read M2_N2 registers only for gen < 8 (M2_N2 available for * gen < 8) and if DRRS is supported (to make sure the * registers are not unnecessarily read). */ if (m2_n2 && INTEL_INFO(dev)->gen < 8 && crtc->config->has_drrs) { m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder)); m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder)); m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder)) & ~TU_SIZE_MASK; m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder)); m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; } } else { m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe)); m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe)); m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe)) & ~TU_SIZE_MASK; m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe)); m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; } } void intel_dp_get_m_n(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { if (pipe_config->has_pch_encoder) intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); else intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, &pipe_config->dp_m_n, &pipe_config->dp_m2_n2); } static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, &pipe_config->fdi_m_n, NULL); } static void skylake_get_pfit_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state; uint32_t ps_ctrl = 0; int id = -1; int i; /* find scaler attached to this pipe */ for (i = 0; i < crtc->num_scalers; i++) { ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i)); if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) { id = i; pipe_config->pch_pfit.enabled = true; pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i)); pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i)); break; } } scaler_state->scaler_id = id; if (id >= 0) { scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); } else { scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); } } static void skylake_get_initial_plane_config(struct intel_crtc *crtc, struct intel_initial_plane_config *plane_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 val, base, offset, stride_mult, tiling; int pipe = crtc->pipe; int fourcc, pixel_format; unsigned int aligned_height; struct drm_framebuffer *fb; struct intel_framebuffer *intel_fb; intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) { DRM_DEBUG_KMS("failed to alloc fb\n"); return; } fb = &intel_fb->base; val = I915_READ(PLANE_CTL(pipe, 0)); if (!(val & PLANE_CTL_ENABLE)) goto error; pixel_format = val & PLANE_CTL_FORMAT_MASK; fourcc = skl_format_to_fourcc(pixel_format, val & PLANE_CTL_ORDER_RGBX, val & PLANE_CTL_ALPHA_MASK); fb->pixel_format = fourcc; fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8; tiling = val & PLANE_CTL_TILED_MASK; switch (tiling) { case PLANE_CTL_TILED_LINEAR: fb->modifier[0] = DRM_FORMAT_MOD_NONE; break; case PLANE_CTL_TILED_X: plane_config->tiling = I915_TILING_X; fb->modifier[0] = I915_FORMAT_MOD_X_TILED; break; case PLANE_CTL_TILED_Y: fb->modifier[0] = I915_FORMAT_MOD_Y_TILED; break; case PLANE_CTL_TILED_YF: fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED; break; default: MISSING_CASE(tiling); goto error; } base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000; plane_config->base = base; offset = I915_READ(PLANE_OFFSET(pipe, 0)); val = I915_READ(PLANE_SIZE(pipe, 0)); fb->height = ((val >> 16) & 0xfff) + 1; fb->width = ((val >> 0) & 0x1fff) + 1; val = I915_READ(PLANE_STRIDE(pipe, 0)); stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0], fb->pixel_format); fb->pitches[0] = (val & 0x3ff) * stride_mult; aligned_height = intel_fb_align_height(dev, fb->height, fb->pixel_format, fb->modifier[0]); plane_config->size = fb->pitches[0] * aligned_height; DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", pipe_name(pipe), fb->width, fb->height, fb->bits_per_pixel, base, fb->pitches[0], plane_config->size); plane_config->fb = intel_fb; return; error: kfree(fb); } static void ironlake_get_pfit_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t tmp; tmp = I915_READ(PF_CTL(crtc->pipe)); if (tmp & PF_ENABLE) { pipe_config->pch_pfit.enabled = true; pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe)); pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe)); /* We currently do not free assignements of panel fitters on * ivb/hsw (since we don't use the higher upscaling modes which * differentiates them) so just WARN about this case for now. */ if (IS_GEN7(dev)) { WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); } } } static void ironlake_get_initial_plane_config(struct intel_crtc *crtc, struct intel_initial_plane_config *plane_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 val, base, offset; int pipe = crtc->pipe; int fourcc, pixel_format; unsigned int aligned_height; struct drm_framebuffer *fb; struct intel_framebuffer *intel_fb; val = I915_READ(DSPCNTR(pipe)); if (!(val & DISPLAY_PLANE_ENABLE)) return; intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) { DRM_DEBUG_KMS("failed to alloc fb\n"); return; } fb = &intel_fb->base; if (INTEL_INFO(dev)->gen >= 4) { if (val & DISPPLANE_TILED) { plane_config->tiling = I915_TILING_X; fb->modifier[0] = I915_FORMAT_MOD_X_TILED; } } pixel_format = val & DISPPLANE_PIXFORMAT_MASK; fourcc = i9xx_format_to_fourcc(pixel_format); fb->pixel_format = fourcc; fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8; base = I915_READ(DSPSURF(pipe)) & 0xfffff000; if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { offset = I915_READ(DSPOFFSET(pipe)); } else { if (plane_config->tiling) offset = I915_READ(DSPTILEOFF(pipe)); else offset = I915_READ(DSPLINOFF(pipe)); } plane_config->base = base; val = I915_READ(PIPESRC(pipe)); fb->width = ((val >> 16) & 0xfff) + 1; fb->height = ((val >> 0) & 0xfff) + 1; val = I915_READ(DSPSTRIDE(pipe)); fb->pitches[0] = val & 0xffffffc0; aligned_height = intel_fb_align_height(dev, fb->height, fb->pixel_format, fb->modifier[0]); plane_config->size = fb->pitches[0] * aligned_height; DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", pipe_name(pipe), fb->width, fb->height, fb->bits_per_pixel, base, fb->pitches[0], plane_config->size); plane_config->fb = intel_fb; } static bool ironlake_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum intel_display_power_domain power_domain; uint32_t tmp; bool ret; power_domain = POWER_DOMAIN_PIPE(crtc->pipe); if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) return false; pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; pipe_config->shared_dpll = NULL; ret = false; tmp = I915_READ(PIPECONF(crtc->pipe)); if (!(tmp & PIPECONF_ENABLE)) goto out; switch (tmp & PIPECONF_BPC_MASK) { case PIPECONF_6BPC: pipe_config->pipe_bpp = 18; break; case PIPECONF_8BPC: pipe_config->pipe_bpp = 24; break; case PIPECONF_10BPC: pipe_config->pipe_bpp = 30; break; case PIPECONF_12BPC: pipe_config->pipe_bpp = 36; break; default: break; } if (tmp & PIPECONF_COLOR_RANGE_SELECT) pipe_config->limited_color_range = true; if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { struct intel_shared_dpll *pll; enum intel_dpll_id pll_id; pipe_config->has_pch_encoder = true; tmp = I915_READ(FDI_RX_CTL(crtc->pipe)); pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> FDI_DP_PORT_WIDTH_SHIFT) + 1; ironlake_get_fdi_m_n_config(crtc, pipe_config); if (HAS_PCH_IBX(dev_priv)) { pll_id = (enum intel_dpll_id) crtc->pipe; } else { tmp = I915_READ(PCH_DPLL_SEL); if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) pll_id = DPLL_ID_PCH_PLL_B; else pll_id= DPLL_ID_PCH_PLL_A; } pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, pll_id); pll = pipe_config->shared_dpll; WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll, &pipe_config->dpll_hw_state)); tmp = pipe_config->dpll_hw_state.dpll; pipe_config->pixel_multiplier = ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; ironlake_pch_clock_get(crtc, pipe_config); } else { pipe_config->pixel_multiplier = 1; } intel_get_pipe_timings(crtc, pipe_config); intel_get_pipe_src_size(crtc, pipe_config); ironlake_get_pfit_config(crtc, pipe_config); ret = true; out: intel_display_power_put(dev_priv, power_domain); return ret; } static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; struct intel_crtc *crtc; for_each_intel_crtc(dev, crtc) I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n", pipe_name(crtc->pipe)); I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n"); I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n"); I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n"); I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n"); I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n"); I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE, "CPU PWM1 enabled\n"); if (IS_HASWELL(dev)) I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE, "CPU PWM2 enabled\n"); I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE, "PCH PWM1 enabled\n"); I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE, "Utility pin enabled\n"); I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n"); /* * In theory we can still leave IRQs enabled, as long as only the HPD * interrupts remain enabled. We used to check for that, but since it's * gen-specific and since we only disable LCPLL after we fully disable * the interrupts, the check below should be enough. */ I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n"); } static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; if (IS_HASWELL(dev)) return I915_READ(D_COMP_HSW); else return I915_READ(D_COMP_BDW); } static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val) { struct drm_device *dev = dev_priv->dev; if (IS_HASWELL(dev)) { mutex_lock(&dev_priv->rps.hw_lock); if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val)) DRM_ERROR("Failed to write to D_COMP\n"); mutex_unlock(&dev_priv->rps.hw_lock); } else { I915_WRITE(D_COMP_BDW, val); POSTING_READ(D_COMP_BDW); } } /* * This function implements pieces of two sequences from BSpec: * - Sequence for display software to disable LCPLL * - Sequence for display software to allow package C8+ * The steps implemented here are just the steps that actually touch the LCPLL * register. Callers should take care of disabling all the display engine * functions, doing the mode unset, fixing interrupts, etc. */ static void hsw_disable_lcpll(struct drm_i915_private *dev_priv, bool switch_to_fclk, bool allow_power_down) { uint32_t val; assert_can_disable_lcpll(dev_priv); val = I915_READ(LCPLL_CTL); if (switch_to_fclk) { val |= LCPLL_CD_SOURCE_FCLK; I915_WRITE(LCPLL_CTL, val); if (wait_for_atomic_us(I915_READ(LCPLL_CTL) & LCPLL_CD_SOURCE_FCLK_DONE, 1)) DRM_ERROR("Switching to FCLK failed\n"); val = I915_READ(LCPLL_CTL); } val |= LCPLL_PLL_DISABLE; I915_WRITE(LCPLL_CTL, val); POSTING_READ(LCPLL_CTL); if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1)) DRM_ERROR("LCPLL still locked\n"); val = hsw_read_dcomp(dev_priv); val |= D_COMP_COMP_DISABLE; hsw_write_dcomp(dev_priv, val); ndelay(100); if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1)) DRM_ERROR("D_COMP RCOMP still in progress\n"); if (allow_power_down) { val = I915_READ(LCPLL_CTL); val |= LCPLL_POWER_DOWN_ALLOW; I915_WRITE(LCPLL_CTL, val); POSTING_READ(LCPLL_CTL); } } /* * Fully restores LCPLL, disallowing power down and switching back to LCPLL * source. */ static void hsw_restore_lcpll(struct drm_i915_private *dev_priv) { uint32_t val; val = I915_READ(LCPLL_CTL); if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK | LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK) return; /* * Make sure we're not on PC8 state before disabling PC8, otherwise * we'll hang the machine. To prevent PC8 state, just enable force_wake. */ intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); if (val & LCPLL_POWER_DOWN_ALLOW) { val &= ~LCPLL_POWER_DOWN_ALLOW; I915_WRITE(LCPLL_CTL, val); POSTING_READ(LCPLL_CTL); } val = hsw_read_dcomp(dev_priv); val |= D_COMP_COMP_FORCE; val &= ~D_COMP_COMP_DISABLE; hsw_write_dcomp(dev_priv, val); val = I915_READ(LCPLL_CTL); val &= ~LCPLL_PLL_DISABLE; I915_WRITE(LCPLL_CTL, val); if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5)) DRM_ERROR("LCPLL not locked yet\n"); if (val & LCPLL_CD_SOURCE_FCLK) { val = I915_READ(LCPLL_CTL); val &= ~LCPLL_CD_SOURCE_FCLK; I915_WRITE(LCPLL_CTL, val); if (wait_for_atomic_us((I915_READ(LCPLL_CTL) & LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) DRM_ERROR("Switching back to LCPLL failed\n"); } intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); intel_update_cdclk(dev_priv->dev); } /* * Package states C8 and deeper are really deep PC states that can only be * reached when all the devices on the system allow it, so even if the graphics * device allows PC8+, it doesn't mean the system will actually get to these * states. Our driver only allows PC8+ when going into runtime PM. * * The requirements for PC8+ are that all the outputs are disabled, the power * well is disabled and most interrupts are disabled, and these are also * requirements for runtime PM. When these conditions are met, we manually do * the other conditions: disable the interrupts, clocks and switch LCPLL refclk * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard * hang the machine. * * When we really reach PC8 or deeper states (not just when we allow it) we lose * the state of some registers, so when we come back from PC8+ we need to * restore this state. We don't get into PC8+ if we're not in RC6, so we don't * need to take care of the registers kept by RC6. Notice that this happens even * if we don't put the device in PCI D3 state (which is what currently happens * because of the runtime PM support). * * For more, read "Display Sequences for Package C8" on the hardware * documentation. */ void hsw_enable_pc8(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; uint32_t val; DRM_DEBUG_KMS("Enabling package C8+\n"); if (HAS_PCH_LPT_LP(dev)) { val = I915_READ(SOUTH_DSPCLK_GATE_D); val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; I915_WRITE(SOUTH_DSPCLK_GATE_D, val); } lpt_disable_clkout_dp(dev); hsw_disable_lcpll(dev_priv, true, true); } void hsw_disable_pc8(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; uint32_t val; DRM_DEBUG_KMS("Disabling package C8+\n"); hsw_restore_lcpll(dev_priv); lpt_init_pch_refclk(dev); if (HAS_PCH_LPT_LP(dev)) { val = I915_READ(SOUTH_DSPCLK_GATE_D); val |= PCH_LP_PARTITION_LEVEL_DISABLE; I915_WRITE(SOUTH_DSPCLK_GATE_D, val); } } static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state) { struct drm_device *dev = old_state->dev; struct intel_atomic_state *old_intel_state = to_intel_atomic_state(old_state); unsigned int req_cdclk = old_intel_state->dev_cdclk; broxton_set_cdclk(dev, req_cdclk); } /* compute the max rate for new configuration */ static int ilk_max_pixel_rate(struct drm_atomic_state *state) { struct intel_atomic_state *intel_state = to_intel_atomic_state(state); struct drm_i915_private *dev_priv = state->dev->dev_private; struct drm_crtc *crtc; struct drm_crtc_state *cstate; struct intel_crtc_state *crtc_state; unsigned max_pixel_rate = 0, i; enum pipe pipe; memcpy(intel_state->min_pixclk, dev_priv->min_pixclk, sizeof(intel_state->min_pixclk)); for_each_crtc_in_state(state, crtc, cstate, i) { int pixel_rate; crtc_state = to_intel_crtc_state(cstate); if (!crtc_state->base.enable) { intel_state->min_pixclk[i] = 0; continue; } pixel_rate = ilk_pipe_pixel_rate(crtc_state); /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled) pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95); intel_state->min_pixclk[i] = pixel_rate; } for_each_pipe(dev_priv, pipe) max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate); return max_pixel_rate; } static void broadwell_set_cdclk(struct drm_device *dev, int cdclk) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t val, data; int ret; if (WARN((I915_READ(LCPLL_CTL) & (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK | LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE | LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW | LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK, "trying to change cdclk frequency with cdclk not enabled\n")) return; mutex_lock(&dev_priv->rps.hw_lock); ret = sandybridge_pcode_write(dev_priv, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0); mutex_unlock(&dev_priv->rps.hw_lock); if (ret) { DRM_ERROR("failed to inform pcode about cdclk change\n"); return; } val = I915_READ(LCPLL_CTL); val |= LCPLL_CD_SOURCE_FCLK; I915_WRITE(LCPLL_CTL, val); if (wait_for_us(I915_READ(LCPLL_CTL) & LCPLL_CD_SOURCE_FCLK_DONE, 1)) DRM_ERROR("Switching to FCLK failed\n"); val = I915_READ(LCPLL_CTL); val &= ~LCPLL_CLK_FREQ_MASK; switch (cdclk) { case 450000: val |= LCPLL_CLK_FREQ_450; data = 0; break; case 540000: val |= LCPLL_CLK_FREQ_54O_BDW; data = 1; break; case 337500: val |= LCPLL_CLK_FREQ_337_5_BDW; data = 2; break; case 675000: val |= LCPLL_CLK_FREQ_675_BDW; data = 3; break; default: WARN(1, "invalid cdclk frequency\n"); return; } I915_WRITE(LCPLL_CTL, val); val = I915_READ(LCPLL_CTL); val &= ~LCPLL_CD_SOURCE_FCLK; I915_WRITE(LCPLL_CTL, val); if (wait_for_us((I915_READ(LCPLL_CTL) & LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) DRM_ERROR("Switching back to LCPLL failed\n"); mutex_lock(&dev_priv->rps.hw_lock); sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data); mutex_unlock(&dev_priv->rps.hw_lock); intel_update_cdclk(dev); WARN(cdclk != dev_priv->cdclk_freq, "cdclk requested %d kHz but got %d kHz\n", cdclk, dev_priv->cdclk_freq); } static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->dev); struct intel_atomic_state *intel_state = to_intel_atomic_state(state); int max_pixclk = ilk_max_pixel_rate(state); int cdclk; /* * FIXME should also account for plane ratio * once 64bpp pixel formats are supported. */ if (max_pixclk > 540000) cdclk = 675000; else if (max_pixclk > 450000) cdclk = 540000; else if (max_pixclk > 337500) cdclk = 450000; else cdclk = 337500; if (cdclk > dev_priv->max_cdclk_freq) { DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n", cdclk, dev_priv->max_cdclk_freq); return -EINVAL; } intel_state->cdclk = intel_state->dev_cdclk = cdclk; if (!intel_state->active_crtcs) intel_state->dev_cdclk = 337500; return 0; } static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state) { struct drm_device *dev = old_state->dev; struct intel_atomic_state *old_intel_state = to_intel_atomic_state(old_state); unsigned req_cdclk = old_intel_state->dev_cdclk; broadwell_set_cdclk(dev, req_cdclk); } static int haswell_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct intel_encoder *intel_encoder = intel_ddi_get_crtc_new_encoder(crtc_state); if (intel_encoder->type != INTEL_OUTPUT_DSI) { if (!intel_ddi_pll_select(crtc, crtc_state)) return -EINVAL; } crtc->lowfreq_avail = false; return 0; } static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { enum intel_dpll_id id; switch (port) { case PORT_A: pipe_config->ddi_pll_sel = SKL_DPLL0; id = DPLL_ID_SKL_DPLL0; break; case PORT_B: pipe_config->ddi_pll_sel = SKL_DPLL1; id = DPLL_ID_SKL_DPLL1; break; case PORT_C: pipe_config->ddi_pll_sel = SKL_DPLL2; id = DPLL_ID_SKL_DPLL2; break; default: DRM_ERROR("Incorrect port type\n"); return; } pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); } static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { enum intel_dpll_id id; u32 temp; temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); pipe_config->ddi_pll_sel = temp >> (port * 3 + 1); switch (pipe_config->ddi_pll_sel) { case SKL_DPLL0: id = DPLL_ID_SKL_DPLL0; break; case SKL_DPLL1: id = DPLL_ID_SKL_DPLL1; break; case SKL_DPLL2: id = DPLL_ID_SKL_DPLL2; break; case SKL_DPLL3: id = DPLL_ID_SKL_DPLL3; break; default: MISSING_CASE(pipe_config->ddi_pll_sel); return; } pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); } static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { enum intel_dpll_id id; pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port)); switch (pipe_config->ddi_pll_sel) { case PORT_CLK_SEL_WRPLL1: id = DPLL_ID_WRPLL1; break; case PORT_CLK_SEL_WRPLL2: id = DPLL_ID_WRPLL2; break; case PORT_CLK_SEL_SPLL: id = DPLL_ID_SPLL; break; case PORT_CLK_SEL_LCPLL_810: id = DPLL_ID_LCPLL_810; break; case PORT_CLK_SEL_LCPLL_1350: id = DPLL_ID_LCPLL_1350; break; case PORT_CLK_SEL_LCPLL_2700: id = DPLL_ID_LCPLL_2700; break; default: MISSING_CASE(pipe_config->ddi_pll_sel); /* fall through */ case PORT_CLK_SEL_NONE: return; } pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); } static bool hsw_get_transcoder_state(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config, unsigned long *power_domain_mask) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum intel_display_power_domain power_domain; u32 tmp; pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; /* * XXX: Do intel_display_power_get_if_enabled before reading this (for * consistency and less surprising code; it's in always on power). */ tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); if (tmp & TRANS_DDI_FUNC_ENABLE) { enum pipe trans_edp_pipe; switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { default: WARN(1, "unknown pipe linked to edp transcoder\n"); case TRANS_DDI_EDP_INPUT_A_ONOFF: case TRANS_DDI_EDP_INPUT_A_ON: trans_edp_pipe = PIPE_A; break; case TRANS_DDI_EDP_INPUT_B_ONOFF: trans_edp_pipe = PIPE_B; break; case TRANS_DDI_EDP_INPUT_C_ONOFF: trans_edp_pipe = PIPE_C; break; } if (trans_edp_pipe == crtc->pipe) pipe_config->cpu_transcoder = TRANSCODER_EDP; } power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) return false; *power_domain_mask |= BIT(power_domain); tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder)); return tmp & PIPECONF_ENABLE; } static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config, unsigned long *power_domain_mask) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum intel_display_power_domain power_domain; enum port port; enum transcoder cpu_transcoder; u32 tmp; pipe_config->has_dsi_encoder = false; for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { if (port == PORT_A) cpu_transcoder = TRANSCODER_DSI_A; else cpu_transcoder = TRANSCODER_DSI_C; power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) continue; *power_domain_mask |= BIT(power_domain); /* * The PLL needs to be enabled with a valid divider * configuration, otherwise accessing DSI registers will hang * the machine. See BSpec North Display Engine * registers/MIPI[BXT]. We can break out here early, since we * need the same DSI PLL to be enabled for both DSI ports. */ if (!intel_dsi_pll_is_enabled(dev_priv)) break; /* XXX: this works for video mode only */ tmp = I915_READ(BXT_MIPI_PORT_CTRL(port)); if (!(tmp & DPI_ENABLE)) continue; tmp = I915_READ(MIPI_CTRL(port)); if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) continue; pipe_config->cpu_transcoder = cpu_transcoder; pipe_config->has_dsi_encoder = true; break; } return pipe_config->has_dsi_encoder; } static void haswell_get_ddi_port_state(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_shared_dpll *pll; enum port port; uint32_t tmp; tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder)); port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT; if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) skylake_get_ddi_pll(dev_priv, port, pipe_config); else if (IS_BROXTON(dev)) bxt_get_ddi_pll(dev_priv, port, pipe_config); else haswell_get_ddi_pll(dev_priv, port, pipe_config); pll = pipe_config->shared_dpll; if (pll) { WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll, &pipe_config->dpll_hw_state)); } /* * Haswell has only FDI/PCH transcoder A. It is which is connected to * DDI E. So just check whether this pipe is wired to DDI E and whether * the PCH transcoder is on. */ if (INTEL_INFO(dev)->gen < 9 && (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) { pipe_config->has_pch_encoder = true; tmp = I915_READ(FDI_RX_CTL(PIPE_A)); pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> FDI_DP_PORT_WIDTH_SHIFT) + 1; ironlake_get_fdi_m_n_config(crtc, pipe_config); } } static bool haswell_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum intel_display_power_domain power_domain; unsigned long power_domain_mask; bool active; power_domain = POWER_DOMAIN_PIPE(crtc->pipe); if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) return false; power_domain_mask = BIT(power_domain); pipe_config->shared_dpll = NULL; active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask); if (IS_BROXTON(dev_priv)) { bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask); WARN_ON(active && pipe_config->has_dsi_encoder); if (pipe_config->has_dsi_encoder) active = true; } if (!active) goto out; if (!pipe_config->has_dsi_encoder) { haswell_get_ddi_port_state(crtc, pipe_config); intel_get_pipe_timings(crtc, pipe_config); } intel_get_pipe_src_size(crtc, pipe_config); pipe_config->gamma_mode = I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK; if (INTEL_INFO(dev)->gen >= 9) { skl_init_scalers(dev, crtc, pipe_config); } if (INTEL_INFO(dev)->gen >= 9) { pipe_config->scaler_state.scaler_id = -1; pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX); } power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); if (intel_display_power_get_if_enabled(dev_priv, power_domain)) { power_domain_mask |= BIT(power_domain); if (INTEL_INFO(dev)->gen >= 9) skylake_get_pfit_config(crtc, pipe_config); else ironlake_get_pfit_config(crtc, pipe_config); } if (IS_HASWELL(dev)) pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) && (I915_READ(IPS_CTL) & IPS_ENABLE); if (pipe_config->cpu_transcoder != TRANSCODER_EDP && !transcoder_is_dsi(pipe_config->cpu_transcoder)) { pipe_config->pixel_multiplier = I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1; } else { pipe_config->pixel_multiplier = 1; } out: for_each_power_domain(power_domain, power_domain_mask) intel_display_power_put(dev_priv, power_domain); return active; } static void i845_update_cursor(struct drm_crtc *crtc, u32 base, const struct intel_plane_state *plane_state) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); uint32_t cntl = 0, size = 0; if (plane_state && plane_state->visible) { unsigned int width = plane_state->base.crtc_w; unsigned int height = plane_state->base.crtc_h; unsigned int stride = roundup_pow_of_two(width) * 4; switch (stride) { default: WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n", width, stride); stride = 256; /* fallthrough */ case 256: case 512: case 1024: case 2048: break; } cntl |= CURSOR_ENABLE | CURSOR_GAMMA_ENABLE | CURSOR_FORMAT_ARGB | CURSOR_STRIDE(stride); size = (height << 12) | width; } if (intel_crtc->cursor_cntl != 0 && (intel_crtc->cursor_base != base || intel_crtc->cursor_size != size || intel_crtc->cursor_cntl != cntl)) { /* On these chipsets we can only modify the base/size/stride * whilst the cursor is disabled. */ I915_WRITE(CURCNTR(PIPE_A), 0); POSTING_READ(CURCNTR(PIPE_A)); intel_crtc->cursor_cntl = 0; } if (intel_crtc->cursor_base != base) { I915_WRITE(CURBASE(PIPE_A), base); intel_crtc->cursor_base = base; } if (intel_crtc->cursor_size != size) { I915_WRITE(CURSIZE, size); intel_crtc->cursor_size = size; } if (intel_crtc->cursor_cntl != cntl) { I915_WRITE(CURCNTR(PIPE_A), cntl); POSTING_READ(CURCNTR(PIPE_A)); intel_crtc->cursor_cntl = cntl; } } static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, const struct intel_plane_state *plane_state) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; uint32_t cntl = 0; if (plane_state && plane_state->visible) { cntl = MCURSOR_GAMMA_ENABLE; switch (plane_state->base.crtc_w) { case 64: cntl |= CURSOR_MODE_64_ARGB_AX; break; case 128: cntl |= CURSOR_MODE_128_ARGB_AX; break; case 256: cntl |= CURSOR_MODE_256_ARGB_AX; break; default: MISSING_CASE(plane_state->base.crtc_w); return; } cntl |= pipe << 28; /* Connect to correct pipe */ if (HAS_DDI(dev)) cntl |= CURSOR_PIPE_CSC_ENABLE; if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) cntl |= CURSOR_ROTATE_180; } if (intel_crtc->cursor_cntl != cntl) { I915_WRITE(CURCNTR(pipe), cntl); POSTING_READ(CURCNTR(pipe)); intel_crtc->cursor_cntl = cntl; } /* and commit changes on next vblank */ I915_WRITE(CURBASE(pipe), base); POSTING_READ(CURBASE(pipe)); intel_crtc->cursor_base = base; } /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */ static void intel_crtc_update_cursor(struct drm_crtc *crtc, const struct intel_plane_state *plane_state) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 base = intel_crtc->cursor_addr; u32 pos = 0; if (plane_state) { int x = plane_state->base.crtc_x; int y = plane_state->base.crtc_y; if (x < 0) { pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; x = -x; } pos |= x << CURSOR_X_SHIFT; if (y < 0) { pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; y = -y; } pos |= y << CURSOR_Y_SHIFT; /* ILK+ do this automagically */ if (HAS_GMCH_DISPLAY(dev) && plane_state->base.rotation == BIT(DRM_ROTATE_180)) { base += (plane_state->base.crtc_h * plane_state->base.crtc_w - 1) * 4; } } I915_WRITE(CURPOS(pipe), pos); if (IS_845G(dev) || IS_I865G(dev)) i845_update_cursor(crtc, base, plane_state); else i9xx_update_cursor(crtc, base, plane_state); } static bool cursor_size_ok(struct drm_device *dev, uint32_t width, uint32_t height) { if (width == 0 || height == 0) return false; /* * 845g/865g are special in that they are only limited by * the width of their cursors, the height is arbitrary up to * the precision of the register. Everything else requires * square cursors, limited to a few power-of-two sizes. */ if (IS_845G(dev) || IS_I865G(dev)) { if ((width & 63) != 0) return false; if (width > (IS_845G(dev) ? 64 : 512)) return false; if (height > 1023) return false; } else { switch (width | height) { case 256: case 128: if (IS_GEN2(dev)) return false; case 64: break; default: return false; } } return true; } /* VESA 640x480x72Hz mode to set on the pipe */ static struct drm_display_mode load_detect_mode = { DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), }; struct drm_framebuffer * __intel_framebuffer_create(struct drm_device *dev, struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj) { struct intel_framebuffer *intel_fb; int ret; intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) return ERR_PTR(-ENOMEM); ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj); if (ret) goto err; return &intel_fb->base; err: kfree(intel_fb); return ERR_PTR(ret); } static struct drm_framebuffer * intel_framebuffer_create(struct drm_device *dev, struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj) { struct drm_framebuffer *fb; int ret; ret = i915_mutex_lock_interruptible(dev); if (ret) return ERR_PTR(ret); fb = __intel_framebuffer_create(dev, mode_cmd, obj); mutex_unlock(&dev->struct_mutex); return fb; } static u32 intel_framebuffer_pitch_for_width(int width, int bpp) { u32 pitch = DIV_ROUND_UP(width * bpp, 8); return ALIGN(pitch, 64); } static u32 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp) { u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp); return PAGE_ALIGN(pitch * mode->vdisplay); } static struct drm_framebuffer * intel_framebuffer_create_for_mode(struct drm_device *dev, struct drm_display_mode *mode, int depth, int bpp) { struct drm_framebuffer *fb; struct drm_i915_gem_object *obj; struct drm_mode_fb_cmd2 mode_cmd = { 0 }; obj = i915_gem_alloc_object(dev, intel_framebuffer_size_for_mode(mode, bpp)); if (obj == NULL) return ERR_PTR(-ENOMEM); mode_cmd.width = mode->hdisplay; mode_cmd.height = mode->vdisplay; mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp); mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth); fb = intel_framebuffer_create(dev, &mode_cmd, obj); if (IS_ERR(fb)) drm_gem_object_unreference_unlocked(&obj->base); return fb; } static struct drm_framebuffer * mode_fits_in_fbdev(struct drm_device *dev, struct drm_display_mode *mode) { #ifdef CONFIG_DRM_FBDEV_EMULATION struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; struct drm_framebuffer *fb; if (!dev_priv->fbdev) return NULL; if (!dev_priv->fbdev->fb) return NULL; obj = dev_priv->fbdev->fb->obj; BUG_ON(!obj); fb = &dev_priv->fbdev->fb->base; if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay, fb->bits_per_pixel)) return NULL; if (obj->base.size < mode->vdisplay * fb->pitches[0]) return NULL; drm_framebuffer_reference(fb); return fb; #else return NULL; #endif } static int intel_modeset_setup_plane_state(struct drm_atomic_state *state, struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_framebuffer *fb, int x, int y) { struct drm_plane_state *plane_state; int hdisplay, vdisplay; int ret; plane_state = drm_atomic_get_plane_state(state, crtc->primary); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); if (mode) drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay); else hdisplay = vdisplay = 0; ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL); if (ret) return ret; drm_atomic_set_fb_for_plane(plane_state, fb); plane_state->crtc_x = 0; plane_state->crtc_y = 0; plane_state->crtc_w = hdisplay; plane_state->crtc_h = vdisplay; plane_state->src_x = x << 16; plane_state->src_y = y << 16; plane_state->src_w = hdisplay << 16; plane_state->src_h = vdisplay << 16; return 0; } bool intel_get_load_detect_pipe(struct drm_connector *connector, struct drm_display_mode *mode, struct intel_load_detect_pipe *old, struct drm_modeset_acquire_ctx *ctx) { struct intel_crtc *intel_crtc; struct intel_encoder *intel_encoder = intel_attached_encoder(connector); struct drm_crtc *possible_crtc; struct drm_encoder *encoder = &intel_encoder->base; struct drm_crtc *crtc = NULL; struct drm_device *dev = encoder->dev; struct drm_framebuffer *fb; struct drm_mode_config *config = &dev->mode_config; struct drm_atomic_state *state = NULL, *restore_state = NULL; struct drm_connector_state *connector_state; struct intel_crtc_state *crtc_state; int ret, i = -1; DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, connector->name, encoder->base.id, encoder->name); old->restore_state = NULL; retry: ret = drm_modeset_lock(&config->connection_mutex, ctx); if (ret) goto fail; /* * Algorithm gets a little messy: * * - if the connector already has an assigned crtc, use it (but make * sure it's on first) * * - try to find the first unused crtc that can drive this connector, * and use that if we find one */ /* See if we already have a CRTC for this connector */ if (connector->state->crtc) { crtc = connector->state->crtc; ret = drm_modeset_lock(&crtc->mutex, ctx); if (ret) goto fail; /* Make sure the crtc and connector are running */ goto found; } /* Find an unused one (if possible) */ for_each_crtc(dev, possible_crtc) { i++; if (!(encoder->possible_crtcs & (1 << i))) continue; ret = drm_modeset_lock(&possible_crtc->mutex, ctx); if (ret) goto fail; if (possible_crtc->state->enable) { drm_modeset_unlock(&possible_crtc->mutex); continue; } crtc = possible_crtc; break; } /* * If we didn't find an unused CRTC, don't use any. */ if (!crtc) { DRM_DEBUG_KMS("no pipe available for load-detect\n"); goto fail; } found: intel_crtc = to_intel_crtc(crtc); ret = drm_modeset_lock(&crtc->primary->mutex, ctx); if (ret) goto fail; state = drm_atomic_state_alloc(dev); restore_state = drm_atomic_state_alloc(dev); if (!state || !restore_state) { ret = -ENOMEM; goto fail; } state->acquire_ctx = ctx; restore_state->acquire_ctx = ctx; connector_state = drm_atomic_get_connector_state(state, connector); if (IS_ERR(connector_state)) { ret = PTR_ERR(connector_state); goto fail; } ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); if (ret) goto fail; crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto fail; } crtc_state->base.active = crtc_state->base.enable = true; if (!mode) mode = &load_detect_mode; /* We need a framebuffer large enough to accommodate all accesses * that the plane may generate whilst we perform load detection. * We can not rely on the fbcon either being present (we get called * during its initialisation to detect all boot displays, or it may * not even exist) or that it is large enough to satisfy the * requested mode. */ fb = mode_fits_in_fbdev(dev, mode); if (fb == NULL) { DRM_DEBUG_KMS("creating tmp fb for load-detection\n"); fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32); } else DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n"); if (IS_ERR(fb)) { DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n"); goto fail; } ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0); if (ret) goto fail; drm_framebuffer_unreference(fb); ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode); if (ret) goto fail; ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); if (!ret) ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); if (!ret) ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary)); if (ret) { DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret); goto fail; } ret = drm_atomic_commit(state); if (ret) { DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); goto fail; } old->restore_state = restore_state; /* let the connector get through one full cycle before testing */ intel_wait_for_vblank(dev, intel_crtc->pipe); return true; fail: drm_atomic_state_free(state); drm_atomic_state_free(restore_state); restore_state = state = NULL; if (ret == -EDEADLK) { drm_modeset_backoff(ctx); goto retry; } return false; } void intel_release_load_detect_pipe(struct drm_connector *connector, struct intel_load_detect_pipe *old, struct drm_modeset_acquire_ctx *ctx) { struct intel_encoder *intel_encoder = intel_attached_encoder(connector); struct drm_encoder *encoder = &intel_encoder->base; struct drm_atomic_state *state = old->restore_state; int ret; DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, connector->name, encoder->base.id, encoder->name); if (!state) return; ret = drm_atomic_commit(state); if (ret) { DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret); drm_atomic_state_free(state); } } static int i9xx_pll_refclk(struct drm_device *dev, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = dev->dev_private; u32 dpll = pipe_config->dpll_hw_state.dpll; if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) return dev_priv->vbt.lvds_ssc_freq; else if (HAS_PCH_SPLIT(dev)) return 120000; else if (!IS_GEN2(dev)) return 96000; else return 48000; } /* Returns the clock of the currently programmed mode of the given pipe. */ static void i9xx_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = pipe_config->cpu_transcoder; u32 dpll = pipe_config->dpll_hw_state.dpll; u32 fp; intel_clock_t clock; int port_clock; int refclk = i9xx_pll_refclk(dev, pipe_config); if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = pipe_config->dpll_hw_state.fp0; else fp = pipe_config->dpll_hw_state.fp1; clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; if (IS_PINEVIEW(dev)) { clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; } else { clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; } if (!IS_GEN2(dev)) { if (IS_PINEVIEW(dev)) clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); else clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> DPLL_FPA01_P1_POST_DIV_SHIFT); switch (dpll & DPLL_MODE_MASK) { case DPLLB_MODE_DAC_SERIAL: clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 5 : 10; break; case DPLLB_MODE_LVDS: clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 7 : 14; break; default: DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " "mode\n", (int)(dpll & DPLL_MODE_MASK)); return; } if (IS_PINEVIEW(dev)) port_clock = pnv_calc_dpll_params(refclk, &clock); else port_clock = i9xx_calc_dpll_params(refclk, &clock); } else { u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS); bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); if (is_lvds) { clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> DPLL_FPA01_P1_POST_DIV_SHIFT); if (lvds & LVDS_CLKB_POWER_UP) clock.p2 = 7; else clock.p2 = 14; } else { if (dpll & PLL_P1_DIVIDE_BY_TWO) clock.p1 = 2; else { clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; } if (dpll & PLL_P2_DIVIDE_BY_4) clock.p2 = 4; else clock.p2 = 2; } port_clock = i9xx_calc_dpll_params(refclk, &clock); } /* * This value includes pixel_multiplier. We will use * port_clock to compute adjusted_mode.crtc_clock in the * encoder's get_config() function. */ pipe_config->port_clock = port_clock; } int intel_dotclock_calculate(int link_freq, const struct intel_link_m_n *m_n) { /* * The calculation for the data clock is: * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp * But we want to avoid losing precison if possible, so: * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) * * and the link clock is simpler: * link_clock = (m * link_clock) / n */ if (!m_n->link_n) return 0; return div_u64((u64)m_n->link_m * link_freq, m_n->link_n); } static void ironlake_pch_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* read out port_clock from the DPLL */ i9xx_crtc_clock_get(crtc, pipe_config); /* * In case there is an active pipe without active ports, * we may need some idea for the dotclock anyway. * Calculate one based on the FDI configuration. */ pipe_config->base.adjusted_mode.crtc_clock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), &pipe_config->fdi_m_n); } /** Returns the currently programmed mode of the given pipe. */ struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev, struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; struct drm_display_mode *mode; struct intel_crtc_state *pipe_config; int htot = I915_READ(HTOTAL(cpu_transcoder)); int hsync = I915_READ(HSYNC(cpu_transcoder)); int vtot = I915_READ(VTOTAL(cpu_transcoder)); int vsync = I915_READ(VSYNC(cpu_transcoder)); enum pipe pipe = intel_crtc->pipe; mode = kzalloc(sizeof(*mode), GFP_KERNEL); if (!mode) return NULL; pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL); if (!pipe_config) { kfree(mode); return NULL; } /* * Construct a pipe_config sufficient for getting the clock info * back out of crtc_clock_get. * * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need * to use a real value here instead. */ pipe_config->cpu_transcoder = (enum transcoder) pipe; pipe_config->pixel_multiplier = 1; pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe)); pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe)); pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe)); i9xx_crtc_clock_get(intel_crtc, pipe_config); mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier; mode->hdisplay = (htot & 0xffff) + 1; mode->htotal = ((htot & 0xffff0000) >> 16) + 1; mode->hsync_start = (hsync & 0xffff) + 1; mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; mode->vdisplay = (vtot & 0xffff) + 1; mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; mode->vsync_start = (vsync & 0xffff) + 1; mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; drm_mode_set_name(mode); kfree(pipe_config); return mode; } void intel_mark_busy(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (dev_priv->mm.busy) return; intel_runtime_pm_get(dev_priv); i915_update_gfx_val(dev_priv); if (INTEL_INFO(dev)->gen >= 6) gen6_rps_busy(dev_priv); dev_priv->mm.busy = true; } void intel_mark_idle(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!dev_priv->mm.busy) return; dev_priv->mm.busy = false; if (INTEL_INFO(dev)->gen >= 6) gen6_rps_idle(dev->dev_private); intel_runtime_pm_put(dev_priv); } static void intel_crtc_destroy(struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_device *dev = crtc->dev; struct intel_unpin_work *work; spin_lock_irq(&dev->event_lock); work = intel_crtc->unpin_work; intel_crtc->unpin_work = NULL; spin_unlock_irq(&dev->event_lock); if (work) { cancel_work_sync(&work->work); kfree(work); } drm_crtc_cleanup(crtc); kfree(intel_crtc); } static void intel_unpin_work_fn(struct work_struct *__work) { struct intel_unpin_work *work = container_of(__work, struct intel_unpin_work, work); struct intel_crtc *crtc = to_intel_crtc(work->crtc); struct drm_device *dev = crtc->base.dev; struct drm_plane *primary = crtc->base.primary; mutex_lock(&dev->struct_mutex); intel_unpin_fb_obj(work->old_fb, primary->state->rotation); drm_gem_object_unreference(&work->pending_flip_obj->base); if (work->flip_queued_req) i915_gem_request_assign(&work->flip_queued_req, NULL); mutex_unlock(&dev->struct_mutex); intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit); intel_fbc_post_update(crtc); drm_framebuffer_unreference(work->old_fb); BUG_ON(atomic_read(&crtc->unpin_work_count) == 0); atomic_dec(&crtc->unpin_work_count); kfree(work); } static void do_intel_finish_page_flip(struct drm_device *dev, struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_unpin_work *work; unsigned long flags; /* Ignore early vblank irqs */ if (intel_crtc == NULL) return; /* * This is called both by irq handlers and the reset code (to complete * lost pageflips) so needs the full irqsave spinlocks. */ spin_lock_irqsave(&dev->event_lock, flags); work = intel_crtc->unpin_work; /* Ensure we don't miss a work->pending update ... */ smp_rmb(); if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) { spin_unlock_irqrestore(&dev->event_lock, flags); return; } page_flip_completed(intel_crtc); spin_unlock_irqrestore(&dev->event_lock, flags); } void intel_finish_page_flip(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; do_intel_finish_page_flip(dev, crtc); } void intel_finish_page_flip_plane(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane]; do_intel_finish_page_flip(dev, crtc); } /* Is 'a' after or equal to 'b'? */ static bool g4x_flip_count_after_eq(u32 a, u32 b) { return !((a - b) & 0x80000000); } static bool page_flip_finished(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned reset_counter; reset_counter = i915_reset_counter(&dev_priv->gpu_error); if (crtc->reset_counter != reset_counter) return true; /* * The relevant registers doen't exist on pre-ctg. * As the flip done interrupt doesn't trigger for mmio * flips on gmch platforms, a flip count check isn't * really needed there. But since ctg has the registers, * include it in the check anyway. */ if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev)) return true; /* * BDW signals flip done immediately if the plane * is disabled, even if the plane enable is already * armed to occur at the next vblank :( */ /* * A DSPSURFLIVE check isn't enough in case the mmio and CS flips * used the same base address. In that case the mmio flip might * have completed, but the CS hasn't even executed the flip yet. * * A flip count check isn't enough as the CS might have updated * the base address just after start of vblank, but before we * managed to process the interrupt. This means we'd complete the * CS flip too soon. * * Combining both checks should get us a good enough result. It may * still happen that the CS flip has been executed, but has not * yet actually completed. But in case the base address is the same * anyway, we don't really care. */ return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) == crtc->unpin_work->gtt_offset && g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)), crtc->unpin_work->flip_count); } void intel_prepare_page_flip(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]); unsigned long flags; /* * This is called both by irq handlers and the reset code (to complete * lost pageflips) so needs the full irqsave spinlocks. * * NB: An MMIO update of the plane base pointer will also * generate a page-flip completion irq, i.e. every modeset * is also accompanied by a spurious intel_prepare_page_flip(). */ spin_lock_irqsave(&dev->event_lock, flags); if (intel_crtc->unpin_work && page_flip_finished(intel_crtc)) atomic_inc_not_zero(&intel_crtc->unpin_work->pending); spin_unlock_irqrestore(&dev->event_lock, flags); } static inline void intel_mark_page_flip_active(struct intel_unpin_work *work) { /* Ensure that the work item is consistent when activating it ... */ smp_wmb(); atomic_set(&work->pending, INTEL_FLIP_PENDING); /* and that it is marked active as soon as the irq could fire. */ smp_wmb(); } static int intel_gen2_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct drm_i915_gem_request *req, uint32_t flags) { struct intel_engine_cs *engine = req->engine; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); u32 flip_mask; int ret; ret = intel_ring_begin(req, 6); if (ret) return ret; /* Can't queue multiple flips, so wait for the previous * one to finish before executing the next. */ if (intel_crtc->plane) flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; else flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask); intel_ring_emit(engine, MI_NOOP); intel_ring_emit(engine, MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); intel_ring_emit(engine, fb->pitches[0]); intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset); intel_ring_emit(engine, 0); /* aux display base address, unused */ intel_mark_page_flip_active(intel_crtc->unpin_work); return 0; } static int intel_gen3_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct drm_i915_gem_request *req, uint32_t flags) { struct intel_engine_cs *engine = req->engine; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); u32 flip_mask; int ret; ret = intel_ring_begin(req, 6); if (ret) return ret; if (intel_crtc->plane) flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; else flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask); intel_ring_emit(engine, MI_NOOP); intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); intel_ring_emit(engine, fb->pitches[0]); intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset); intel_ring_emit(engine, MI_NOOP); intel_mark_page_flip_active(intel_crtc->unpin_work); return 0; } static int intel_gen4_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct drm_i915_gem_request *req, uint32_t flags) { struct intel_engine_cs *engine = req->engine; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); uint32_t pf, pipesrc; int ret; ret = intel_ring_begin(req, 4); if (ret) return ret; /* i965+ uses the linear or tiled offsets from the * Display Registers (which do not change across a page-flip) * so we need only reprogram the base address. */ intel_ring_emit(engine, MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); intel_ring_emit(engine, fb->pitches[0]); intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset | obj->tiling_mode); /* XXX Enabling the panel-fitter across page-flip is so far * untested on non-native modes, so ignore it for now. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE; */ pf = 0; pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; intel_ring_emit(engine, pf | pipesrc); intel_mark_page_flip_active(intel_crtc->unpin_work); return 0; } static int intel_gen6_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct drm_i915_gem_request *req, uint32_t flags) { struct intel_engine_cs *engine = req->engine; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); uint32_t pf, pipesrc; int ret; ret = intel_ring_begin(req, 4); if (ret) return ret; intel_ring_emit(engine, MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode); intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset); /* Contrary to the suggestions in the documentation, * "Enable Panel Fitter" does not seem to be required when page * flipping with a non-native mode, and worse causes a normal * modeset to fail. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE; */ pf = 0; pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; intel_ring_emit(engine, pf | pipesrc); intel_mark_page_flip_active(intel_crtc->unpin_work); return 0; } static int intel_gen7_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct drm_i915_gem_request *req, uint32_t flags) { struct intel_engine_cs *engine = req->engine; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); uint32_t plane_bit = 0; int len, ret; switch (intel_crtc->plane) { case PLANE_A: plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A; break; case PLANE_B: plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B; break; case PLANE_C: plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C; break; default: WARN_ONCE(1, "unknown plane in flip command\n"); return -ENODEV; } len = 4; if (engine->id == RCS) { len += 6; /* * On Gen 8, SRM is now taking an extra dword to accommodate * 48bits addresses, and we need a NOOP for the batch size to * stay even. */ if (IS_GEN8(dev)) len += 2; } /* * BSpec MI_DISPLAY_FLIP for IVB: * "The full packet must be contained within the same cache line." * * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same * cacheline, if we ever start emitting more commands before * the MI_DISPLAY_FLIP we may need to first emit everything else, * then do the cacheline alignment, and finally emit the * MI_DISPLAY_FLIP. */ ret = intel_ring_cacheline_align(req); if (ret) return ret; ret = intel_ring_begin(req, len); if (ret) return ret; /* Unmask the flip-done completion message. Note that the bspec says that * we should do this for both the BCS and RCS, and that we must not unmask * more than one flip event at any time (or ensure that one flip message * can be sent by waiting for flip-done prior to queueing new flips). * Experimentation says that BCS works despite DERRMR masking all * flip-done completion events and that unmasking all planes at once * for the RCS also doesn't appear to drop events. Setting the DERRMR * to zero does lead to lockups within MI_DISPLAY_FLIP. */ if (engine->id == RCS) { intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit_reg(engine, DERRMR); intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE | DERRMR_PIPEB_PRI_FLIP_DONE | DERRMR_PIPEC_PRI_FLIP_DONE)); if (IS_GEN8(dev)) intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT); else intel_ring_emit(engine, MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT); intel_ring_emit_reg(engine, DERRMR); intel_ring_emit(engine, engine->scratch.gtt_offset + 256); if (IS_GEN8(dev)) { intel_ring_emit(engine, 0); intel_ring_emit(engine, MI_NOOP); } } intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit); intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode)); intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset); intel_ring_emit(engine, (MI_NOOP)); intel_mark_page_flip_active(intel_crtc->unpin_work); return 0; } static bool use_mmio_flip(struct intel_engine_cs *engine, struct drm_i915_gem_object *obj) { /* * This is not being used for older platforms, because * non-availability of flip done interrupt forces us to use * CS flips. Older platforms derive flip done using some clever * tricks involving the flip_pending status bits and vblank irqs. * So using MMIO flips there would disrupt this mechanism. */ if (engine == NULL) return true; if (INTEL_INFO(engine->dev)->gen < 5) return false; if (i915.use_mmio_flip < 0) return false; else if (i915.use_mmio_flip > 0) return true; else if (i915.enable_execlists) return true; else if (obj->base.dma_buf && !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv, false)) return true; else return engine != i915_gem_request_get_engine(obj->last_write_req); } static void skl_do_mmio_flip(struct intel_crtc *intel_crtc, unsigned int rotation, struct intel_unpin_work *work) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_framebuffer *fb = intel_crtc->base.primary->fb; const enum pipe pipe = intel_crtc->pipe; u32 ctl, stride, tile_height; ctl = I915_READ(PLANE_CTL(pipe, 0)); ctl &= ~PLANE_CTL_TILED_MASK; switch (fb->modifier[0]) { case DRM_FORMAT_MOD_NONE: break; case I915_FORMAT_MOD_X_TILED: ctl |= PLANE_CTL_TILED_X; break; case I915_FORMAT_MOD_Y_TILED: ctl |= PLANE_CTL_TILED_Y; break; case I915_FORMAT_MOD_Yf_TILED: ctl |= PLANE_CTL_TILED_YF; break; default: MISSING_CASE(fb->modifier[0]); } /* * The stride is either expressed as a multiple of 64 bytes chunks for * linear buffers or in number of tiles for tiled buffers. */ if (intel_rotation_90_or_270(rotation)) { /* stride = Surface height in tiles */ tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0); stride = DIV_ROUND_UP(fb->height, tile_height); } else { stride = fb->pitches[0] / intel_fb_stride_alignment(dev_priv, fb->modifier[0], fb->pixel_format); } /* * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on * PLANE_SURF updates, the update is then guaranteed to be atomic. */ I915_WRITE(PLANE_CTL(pipe, 0), ctl); I915_WRITE(PLANE_STRIDE(pipe, 0), stride); I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset); POSTING_READ(PLANE_SURF(pipe, 0)); } static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc, struct intel_unpin_work *work) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_framebuffer *intel_fb = to_intel_framebuffer(intel_crtc->base.primary->fb); struct drm_i915_gem_object *obj = intel_fb->obj; i915_reg_t reg = DSPCNTR(intel_crtc->plane); u32 dspcntr; dspcntr = I915_READ(reg); if (obj->tiling_mode != I915_TILING_NONE) dspcntr |= DISPPLANE_TILED; else dspcntr &= ~DISPPLANE_TILED; I915_WRITE(reg, dspcntr); I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset); POSTING_READ(DSPSURF(intel_crtc->plane)); } /* * XXX: This is the temporary way to update the plane registers until we get * around to using the usual plane update functions for MMIO flips */ static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip) { struct intel_crtc *crtc = mmio_flip->crtc; struct intel_unpin_work *work; spin_lock_irq(&crtc->base.dev->event_lock); work = crtc->unpin_work; spin_unlock_irq(&crtc->base.dev->event_lock); if (work == NULL) return; intel_mark_page_flip_active(work); intel_pipe_update_start(crtc); if (INTEL_INFO(mmio_flip->i915)->gen >= 9) skl_do_mmio_flip(crtc, mmio_flip->rotation, work); else /* use_mmio_flip() retricts MMIO flips to ilk+ */ ilk_do_mmio_flip(crtc, work); intel_pipe_update_end(crtc); } static void intel_mmio_flip_work_func(struct work_struct *work) { struct intel_mmio_flip *mmio_flip = container_of(work, struct intel_mmio_flip, work); struct intel_framebuffer *intel_fb = to_intel_framebuffer(mmio_flip->crtc->base.primary->fb); struct drm_i915_gem_object *obj = intel_fb->obj; if (mmio_flip->req) { WARN_ON(__i915_wait_request(mmio_flip->req, false, NULL, &mmio_flip->i915->rps.mmioflips)); i915_gem_request_unreference__unlocked(mmio_flip->req); } /* For framebuffer backed by dmabuf, wait for fence */ if (obj->base.dma_buf) WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv, false, false, MAX_SCHEDULE_TIMEOUT) < 0); intel_do_mmio_flip(mmio_flip); kfree(mmio_flip); } static int intel_queue_mmio_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_i915_gem_object *obj) { struct intel_mmio_flip *mmio_flip; mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL); if (mmio_flip == NULL) return -ENOMEM; mmio_flip->i915 = to_i915(dev); mmio_flip->req = i915_gem_request_reference(obj->last_write_req); mmio_flip->crtc = to_intel_crtc(crtc); mmio_flip->rotation = crtc->primary->state->rotation; INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func); schedule_work(&mmio_flip->work); return 0; } static int intel_default_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct drm_i915_gem_request *req, uint32_t flags) { return -ENODEV; } static bool __intel_pageflip_stall_check(struct drm_device *dev, struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_unpin_work *work = intel_crtc->unpin_work; u32 addr; if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE) return true; if (atomic_read(&work->pending) < INTEL_FLIP_PENDING) return false; if (!work->enable_stall_check) return false; if (work->flip_ready_vblank == 0) { if (work->flip_queued_req && !i915_gem_request_completed(work->flip_queued_req, true)) return false; work->flip_ready_vblank = drm_crtc_vblank_count(crtc); } if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3) return false; /* Potential stall - if we see that the flip has happened, * assume a missed interrupt. */ if (INTEL_INFO(dev)->gen >= 4) addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane))); else addr = I915_READ(DSPADDR(intel_crtc->plane)); /* There is a potential issue here with a false positive after a flip * to the same address. We could address this by checking for a * non-incrementing frame counter. */ return addr == work->gtt_offset; } void intel_check_page_flip(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_unpin_work *work; WARN_ON(!in_interrupt()); if (crtc == NULL) return; spin_lock(&dev->event_lock); work = intel_crtc->unpin_work; if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) { WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n", work->flip_queued_vblank, drm_vblank_count(dev, pipe)); page_flip_completed(intel_crtc); work = NULL; } if (work != NULL && drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1) intel_queue_rps_boost_for_request(dev, work->flip_queued_req); spin_unlock(&dev->event_lock); } static int intel_crtc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t page_flip_flags) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_framebuffer *old_fb = crtc->primary->fb; struct drm_i915_gem_object *obj = intel_fb_obj(fb); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_plane *primary = crtc->primary; enum pipe pipe = intel_crtc->pipe; struct intel_unpin_work *work; struct intel_engine_cs *engine; bool mmio_flip; struct drm_i915_gem_request *request = NULL; int ret; /* * drm_mode_page_flip_ioctl() should already catch this, but double * check to be safe. In the future we may enable pageflipping from * a disabled primary plane. */ if (WARN_ON(intel_fb_obj(old_fb) == NULL)) return -EBUSY; /* Can't change pixel format via MI display flips. */ if (fb->pixel_format != crtc->primary->fb->pixel_format) return -EINVAL; /* * TILEOFF/LINOFF registers can't be changed via MI display flips. * Note that pitch changes could also affect these register. */ if (INTEL_INFO(dev)->gen > 3 && (fb->offsets[0] != crtc->primary->fb->offsets[0] || fb->pitches[0] != crtc->primary->fb->pitches[0])) return -EINVAL; if (i915_terminally_wedged(&dev_priv->gpu_error)) goto out_hang; work = kzalloc(sizeof(*work), GFP_KERNEL); if (work == NULL) return -ENOMEM; work->event = event; work->crtc = crtc; work->old_fb = old_fb; INIT_WORK(&work->work, intel_unpin_work_fn); ret = drm_crtc_vblank_get(crtc); if (ret) goto free_work; /* We borrow the event spin lock for protecting unpin_work */ spin_lock_irq(&dev->event_lock); if (intel_crtc->unpin_work) { /* Before declaring the flip queue wedged, check if * the hardware completed the operation behind our backs. */ if (__intel_pageflip_stall_check(dev, crtc)) { DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n"); page_flip_completed(intel_crtc); } else { DRM_DEBUG_DRIVER("flip queue: crtc already busy\n"); spin_unlock_irq(&dev->event_lock); drm_crtc_vblank_put(crtc); kfree(work); return -EBUSY; } } intel_crtc->unpin_work = work; spin_unlock_irq(&dev->event_lock); if (atomic_read(&intel_crtc->unpin_work_count) >= 2) flush_workqueue(dev_priv->wq); /* Reference the objects for the scheduled work. */ drm_framebuffer_reference(work->old_fb); drm_gem_object_reference(&obj->base); crtc->primary->fb = fb; update_state_fb(crtc->primary); intel_fbc_pre_update(intel_crtc); work->pending_flip_obj = obj; ret = i915_mutex_lock_interruptible(dev); if (ret) goto cleanup; intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error); if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) { ret = -EIO; goto cleanup; } atomic_inc(&intel_crtc->unpin_work_count); if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1; if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { engine = &dev_priv->engine[BCS]; if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode) /* vlv: DISPLAY_FLIP fails to change tiling */ engine = NULL; } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) { engine = &dev_priv->engine[BCS]; } else if (INTEL_INFO(dev)->gen >= 7) { engine = i915_gem_request_get_engine(obj->last_write_req); if (engine == NULL || engine->id != RCS) engine = &dev_priv->engine[BCS]; } else { engine = &dev_priv->engine[RCS]; } mmio_flip = use_mmio_flip(engine, obj); /* When using CS flips, we want to emit semaphores between rings. * However, when using mmio flips we will create a task to do the * synchronisation, so all we want here is to pin the framebuffer * into the display plane and skip any waits. */ if (!mmio_flip) { ret = i915_gem_object_sync(obj, engine, &request); if (ret) goto cleanup_pending; } ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation); if (ret) goto cleanup_pending; work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj, 0); work->gtt_offset += intel_crtc->dspaddr_offset; if (mmio_flip) { ret = intel_queue_mmio_flip(dev, crtc, obj); if (ret) goto cleanup_unpin; i915_gem_request_assign(&work->flip_queued_req, obj->last_write_req); } else { if (!request) { request = i915_gem_request_alloc(engine, NULL); if (IS_ERR(request)) { ret = PTR_ERR(request); goto cleanup_unpin; } } ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request, page_flip_flags); if (ret) goto cleanup_unpin; i915_gem_request_assign(&work->flip_queued_req, request); } if (request) i915_add_request_no_flush(request); work->flip_queued_vblank = drm_crtc_vblank_count(crtc); work->enable_stall_check = true; i915_gem_track_fb(intel_fb_obj(work->old_fb), obj, to_intel_plane(primary)->frontbuffer_bit); mutex_unlock(&dev->struct_mutex); intel_frontbuffer_flip_prepare(dev, to_intel_plane(primary)->frontbuffer_bit); trace_i915_flip_request(intel_crtc->plane, obj); return 0; cleanup_unpin: intel_unpin_fb_obj(fb, crtc->primary->state->rotation); cleanup_pending: if (!IS_ERR_OR_NULL(request)) i915_add_request_no_flush(request); atomic_dec(&intel_crtc->unpin_work_count); mutex_unlock(&dev->struct_mutex); cleanup: crtc->primary->fb = old_fb; update_state_fb(crtc->primary); drm_gem_object_unreference_unlocked(&obj->base); drm_framebuffer_unreference(work->old_fb); spin_lock_irq(&dev->event_lock); intel_crtc->unpin_work = NULL; spin_unlock_irq(&dev->event_lock); drm_crtc_vblank_put(crtc); free_work: kfree(work); if (ret == -EIO) { struct drm_atomic_state *state; struct drm_plane_state *plane_state; out_hang: state = drm_atomic_state_alloc(dev); if (!state) return -ENOMEM; state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc); retry: plane_state = drm_atomic_get_plane_state(state, primary); ret = PTR_ERR_OR_ZERO(plane_state); if (!ret) { drm_atomic_set_fb_for_plane(plane_state, fb); ret = drm_atomic_set_crtc_for_plane(plane_state, crtc); if (!ret) ret = drm_atomic_commit(state); } if (ret == -EDEADLK) { drm_modeset_backoff(state->acquire_ctx); drm_atomic_state_clear(state); goto retry; } if (ret) drm_atomic_state_free(state); if (ret == 0 && event) { spin_lock_irq(&dev->event_lock); drm_send_vblank_event(dev, pipe, event); spin_unlock_irq(&dev->event_lock); } } return ret; } /** * intel_wm_need_update - Check whether watermarks need updating * @plane: drm plane * @state: new plane state * * Check current plane state versus the new one to determine whether * watermarks need to be recalculated. * * Returns true or false. */ static bool intel_wm_need_update(struct drm_plane *plane, struct drm_plane_state *state) { struct intel_plane_state *new = to_intel_plane_state(state); struct intel_plane_state *cur = to_intel_plane_state(plane->state); /* Update watermarks on tiling or size changes. */ if (new->visible != cur->visible) return true; if (!cur->base.fb || !new->base.fb) return false; if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] || cur->base.rotation != new->base.rotation || drm_rect_width(&new->src) != drm_rect_width(&cur->src) || drm_rect_height(&new->src) != drm_rect_height(&cur->src) || drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) || drm_rect_height(&new->dst) != drm_rect_height(&cur->dst)) return true; return false; } static bool needs_scaling(struct intel_plane_state *state) { int src_w = drm_rect_width(&state->src) >> 16; int src_h = drm_rect_height(&state->src) >> 16; int dst_w = drm_rect_width(&state->dst); int dst_h = drm_rect_height(&state->dst); return (src_w != dst_w || src_h != dst_h); } int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state, struct drm_plane_state *plane_state) { struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state); struct drm_crtc *crtc = crtc_state->crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_plane *plane = plane_state->plane; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_plane_state *old_plane_state = to_intel_plane_state(plane->state); int idx = intel_crtc->base.base.id, ret; bool mode_changed = needs_modeset(crtc_state); bool was_crtc_enabled = crtc->state->active; bool is_crtc_enabled = crtc_state->active; bool turn_off, turn_on, visible, was_visible; struct drm_framebuffer *fb = plane_state->fb; if (crtc_state && INTEL_INFO(dev)->gen >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) { ret = skl_update_scaler_plane( to_intel_crtc_state(crtc_state), to_intel_plane_state(plane_state)); if (ret) return ret; } was_visible = old_plane_state->visible; visible = to_intel_plane_state(plane_state)->visible; if (!was_crtc_enabled && WARN_ON(was_visible)) was_visible = false; /* * Visibility is calculated as if the crtc was on, but * after scaler setup everything depends on it being off * when the crtc isn't active. */ if (!is_crtc_enabled) to_intel_plane_state(plane_state)->visible = visible = false; if (!was_visible && !visible) return 0; if (fb != old_plane_state->base.fb) pipe_config->fb_changed = true; turn_off = was_visible && (!visible || mode_changed); turn_on = visible && (!was_visible || mode_changed); DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx, plane->base.id, fb ? fb->base.id : -1); DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n", plane->base.id, was_visible, visible, turn_off, turn_on, mode_changed); if (turn_on) { pipe_config->update_wm_pre = true; /* must disable cxsr around plane enable/disable */ if (plane->type != DRM_PLANE_TYPE_CURSOR) pipe_config->disable_cxsr = true; } else if (turn_off) { pipe_config->update_wm_post = true; /* must disable cxsr around plane enable/disable */ if (plane->type != DRM_PLANE_TYPE_CURSOR) pipe_config->disable_cxsr = true; } else if (intel_wm_need_update(plane, plane_state)) { /* FIXME bollocks */ pipe_config->update_wm_pre = true; pipe_config->update_wm_post = true; } /* Pre-gen9 platforms need two-step watermark updates */ if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) && INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks) to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true; if (visible || was_visible) pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit; /* * WaCxSRDisabledForSpriteScaling:ivb * * cstate->update_wm was already set above, so this flag will * take effect when we commit and program watermarks. */ if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) && needs_scaling(to_intel_plane_state(plane_state)) && !needs_scaling(old_plane_state)) pipe_config->disable_lp_wm = true; return 0; } static bool encoders_cloneable(const struct intel_encoder *a, const struct intel_encoder *b) { /* masks could be asymmetric, so check both ways */ return a == b || (a->cloneable & (1 << b->type) && b->cloneable & (1 << a->type)); } static bool check_single_encoder_cloning(struct drm_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct intel_encoder *source_encoder; struct drm_connector *connector; struct drm_connector_state *connector_state; int i; for_each_connector_in_state(state, connector, connector_state, i) { if (connector_state->crtc != &crtc->base) continue; source_encoder = to_intel_encoder(connector_state->best_encoder); if (!encoders_cloneable(encoder, source_encoder)) return false; } return true; } static bool check_encoder_cloning(struct drm_atomic_state *state, struct intel_crtc *crtc) { struct intel_encoder *encoder; struct drm_connector *connector; struct drm_connector_state *connector_state; int i; for_each_connector_in_state(state, connector, connector_state, i) { if (connector_state->crtc != &crtc->base) continue; encoder = to_intel_encoder(connector_state->best_encoder); if (!check_single_encoder_cloning(state, crtc, encoder)) return false; } return true; } static int intel_crtc_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *crtc_state) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state); struct drm_atomic_state *state = crtc_state->state; int ret; bool mode_changed = needs_modeset(crtc_state); if (mode_changed && !check_encoder_cloning(state, intel_crtc)) { DRM_DEBUG_KMS("rejecting invalid cloning configuration\n"); return -EINVAL; } if (mode_changed && !crtc_state->active) pipe_config->update_wm_post = true; if (mode_changed && crtc_state->enable && dev_priv->display.crtc_compute_clock && !WARN_ON(pipe_config->shared_dpll)) { ret = dev_priv->display.crtc_compute_clock(intel_crtc, pipe_config); if (ret) return ret; } if (crtc_state->color_mgmt_changed) { ret = intel_color_check(crtc, crtc_state); if (ret) return ret; } ret = 0; if (dev_priv->display.compute_pipe_wm) { ret = dev_priv->display.compute_pipe_wm(pipe_config); if (ret) { DRM_DEBUG_KMS("Target pipe watermarks are invalid\n"); return ret; } } if (dev_priv->display.compute_intermediate_wm && !to_intel_atomic_state(state)->skip_intermediate_wm) { if (WARN_ON(!dev_priv->display.compute_pipe_wm)) return 0; /* * Calculate 'intermediate' watermarks that satisfy both the * old state and the new state. We can program these * immediately. */ ret = dev_priv->display.compute_intermediate_wm(crtc->dev, intel_crtc, pipe_config); if (ret) { DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n"); return ret; } } if (INTEL_INFO(dev)->gen >= 9) { if (mode_changed) ret = skl_update_scaler_crtc(pipe_config); if (!ret) ret = intel_atomic_setup_scalers(dev, intel_crtc, pipe_config); } return ret; } static const struct drm_crtc_helper_funcs intel_helper_funcs = { .mode_set_base_atomic = intel_pipe_set_base_atomic, .atomic_begin = intel_begin_crtc_commit, .atomic_flush = intel_finish_crtc_commit, .atomic_check = intel_crtc_atomic_check, }; static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) { struct intel_connector *connector; for_each_intel_connector(dev, connector) { if (connector->base.encoder) { connector->base.state->best_encoder = connector->base.encoder; connector->base.state->crtc = connector->base.encoder->crtc; } else { connector->base.state->best_encoder = NULL; connector->base.state->crtc = NULL; } } } static void connected_sink_compute_bpp(struct intel_connector *connector, struct intel_crtc_state *pipe_config) { int bpp = pipe_config->pipe_bpp; DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n", connector->base.base.id, connector->base.name); /* Don't use an invalid EDID bpc value */ if (connector->base.display_info.bpc && connector->base.display_info.bpc * 3 < bpp) { DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n", bpp, connector->base.display_info.bpc*3); pipe_config->pipe_bpp = connector->base.display_info.bpc*3; } /* Clamp bpp to default limit on screens without EDID 1.4 */ if (connector->base.display_info.bpc == 0) { int type = connector->base.connector_type; int clamp_bpp = 24; /* Fall back to 18 bpp when DP sink capability is unknown. */ if (type == DRM_MODE_CONNECTOR_DisplayPort || type == DRM_MODE_CONNECTOR_eDP) clamp_bpp = 18; if (bpp > clamp_bpp) { DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n", bpp, clamp_bpp); pipe_config->pipe_bpp = clamp_bpp; } } } static int compute_baseline_pipe_bpp(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_atomic_state *state; struct drm_connector *connector; struct drm_connector_state *connector_state; int bpp, i; if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))) bpp = 10*3; else if (INTEL_INFO(dev)->gen >= 5) bpp = 12*3; else bpp = 8*3; pipe_config->pipe_bpp = bpp; state = pipe_config->base.state; /* Clamp display bpp to EDID value */ for_each_connector_in_state(state, connector, connector_state, i) { if (connector_state->crtc != &crtc->base) continue; connected_sink_compute_bpp(to_intel_connector(connector), pipe_config); } return bpp; } static void intel_dump_crtc_timings(const struct drm_display_mode *mode) { DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, " "type: 0x%x flags: 0x%x\n", mode->crtc_clock, mode->crtc_hdisplay, mode->crtc_hsync_start, mode->crtc_hsync_end, mode->crtc_htotal, mode->crtc_vdisplay, mode->crtc_vsync_start, mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags); } static void intel_dump_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config, const char *context) { struct drm_device *dev = crtc->base.dev; struct drm_plane *plane; struct intel_plane *intel_plane; struct intel_plane_state *state; struct drm_framebuffer *fb; DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id, context, pipe_config, pipe_name(crtc->pipe)); DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder)); DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n", pipe_config->pipe_bpp, pipe_config->dither); DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", pipe_config->has_pch_encoder, pipe_config->fdi_lanes, pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n, pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n, pipe_config->fdi_m_n.tu); DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", pipe_config->has_dp_encoder, pipe_config->lane_count, pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n, pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n, pipe_config->dp_m_n.tu); DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n", pipe_config->has_dp_encoder, pipe_config->lane_count, pipe_config->dp_m2_n2.gmch_m, pipe_config->dp_m2_n2.gmch_n, pipe_config->dp_m2_n2.link_m, pipe_config->dp_m2_n2.link_n, pipe_config->dp_m2_n2.tu); DRM_DEBUG_KMS("audio: %i, infoframes: %i\n", pipe_config->has_audio, pipe_config->has_infoframe); DRM_DEBUG_KMS("requested mode:\n"); drm_mode_debug_printmodeline(&pipe_config->base.mode); DRM_DEBUG_KMS("adjusted mode:\n"); drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode); intel_dump_crtc_timings(&pipe_config->base.adjusted_mode); DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock); DRM_DEBUG_KMS("pipe src size: %dx%d\n", pipe_config->pipe_src_w, pipe_config->pipe_src_h); DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", crtc->num_scalers, pipe_config->scaler_state.scaler_users, pipe_config->scaler_state.scaler_id); DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", pipe_config->gmch_pfit.control, pipe_config->gmch_pfit.pgm_ratios, pipe_config->gmch_pfit.lvds_border_bits); DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n", pipe_config->pch_pfit.pos, pipe_config->pch_pfit.size, pipe_config->pch_pfit.enabled ? "enabled" : "disabled"); DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled); DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide); if (IS_BROXTON(dev)) { DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x," "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, " "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n", pipe_config->ddi_pll_sel, pipe_config->dpll_hw_state.ebb0, pipe_config->dpll_hw_state.ebb4, pipe_config->dpll_hw_state.pll0, pipe_config->dpll_hw_state.pll1, pipe_config->dpll_hw_state.pll2, pipe_config->dpll_hw_state.pll3, pipe_config->dpll_hw_state.pll6, pipe_config->dpll_hw_state.pll8, pipe_config->dpll_hw_state.pll9, pipe_config->dpll_hw_state.pll10, pipe_config->dpll_hw_state.pcsdw12); } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) { DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: " "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n", pipe_config->ddi_pll_sel, pipe_config->dpll_hw_state.ctrl1, pipe_config->dpll_hw_state.cfgcr1, pipe_config->dpll_hw_state.cfgcr2); } else if (HAS_DDI(dev)) { DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n", pipe_config->ddi_pll_sel, pipe_config->dpll_hw_state.wrpll, pipe_config->dpll_hw_state.spll); } else { DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, " "fp0: 0x%x, fp1: 0x%x\n", pipe_config->dpll_hw_state.dpll, pipe_config->dpll_hw_state.dpll_md, pipe_config->dpll_hw_state.fp0, pipe_config->dpll_hw_state.fp1); } DRM_DEBUG_KMS("planes on this crtc\n"); list_for_each_entry(plane, &dev->mode_config.plane_list, head) { intel_plane = to_intel_plane(plane); if (intel_plane->pipe != crtc->pipe) continue; state = to_intel_plane_state(plane->state); fb = state->base.fb; if (!fb) { DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d " "disabled, scaler_id = %d\n", plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD", plane->base.id, intel_plane->pipe, (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1, drm_plane_index(plane), state->scaler_id); continue; } DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled", plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD", plane->base.id, intel_plane->pipe, crtc->base.primary == plane ? 0 : intel_plane->plane + 1, drm_plane_index(plane)); DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x", fb->base.id, fb->width, fb->height, fb->pixel_format); DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n", state->scaler_id, state->src.x1 >> 16, state->src.y1 >> 16, drm_rect_width(&state->src) >> 16, drm_rect_height(&state->src) >> 16, state->dst.x1, state->dst.y1, drm_rect_width(&state->dst), drm_rect_height(&state->dst)); } } static bool check_digital_port_conflicts(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct drm_connector *connector; unsigned int used_ports = 0; /* * Walk the connector list instead of the encoder * list to detect the problem on ddi platforms * where there's just one encoder per digital port. */ drm_for_each_connector(connector, dev) { struct drm_connector_state *connector_state; struct intel_encoder *encoder; connector_state = drm_atomic_get_existing_connector_state(state, connector); if (!connector_state) connector_state = connector->state; if (!connector_state->best_encoder) continue; encoder = to_intel_encoder(connector_state->best_encoder); WARN_ON(!connector_state->crtc); switch (encoder->type) { unsigned int port_mask; case INTEL_OUTPUT_UNKNOWN: if (WARN_ON(!HAS_DDI(dev))) break; case INTEL_OUTPUT_DISPLAYPORT: case INTEL_OUTPUT_HDMI: case INTEL_OUTPUT_EDP: port_mask = 1 << enc_to_dig_port(&encoder->base)->port; /* the same port mustn't appear more than once */ if (used_ports & port_mask) return false; used_ports |= port_mask; default: break; } } return true; } static void clear_intel_crtc_state(struct intel_crtc_state *crtc_state) { struct drm_crtc_state tmp_state; struct intel_crtc_scaler_state scaler_state; struct intel_dpll_hw_state dpll_hw_state; struct intel_shared_dpll *shared_dpll; uint32_t ddi_pll_sel; bool force_thru; /* FIXME: before the switch to atomic started, a new pipe_config was * kzalloc'd. Code that depends on any field being zero should be * fixed, so that the crtc_state can be safely duplicated. For now, * only fields that are know to not cause problems are preserved. */ tmp_state = crtc_state->base; scaler_state = crtc_state->scaler_state; shared_dpll = crtc_state->shared_dpll; dpll_hw_state = crtc_state->dpll_hw_state; ddi_pll_sel = crtc_state->ddi_pll_sel; force_thru = crtc_state->pch_pfit.force_thru; memset(crtc_state, 0, sizeof *crtc_state); crtc_state->base = tmp_state; crtc_state->scaler_state = scaler_state; crtc_state->shared_dpll = shared_dpll; crtc_state->dpll_hw_state = dpll_hw_state; crtc_state->ddi_pll_sel = ddi_pll_sel; crtc_state->pch_pfit.force_thru = force_thru; } static int intel_modeset_pipe_config(struct drm_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_atomic_state *state = pipe_config->base.state; struct intel_encoder *encoder; struct drm_connector *connector; struct drm_connector_state *connector_state; int base_bpp, ret = -EINVAL; int i; bool retry = true; clear_intel_crtc_state(pipe_config); pipe_config->cpu_transcoder = (enum transcoder) to_intel_crtc(crtc)->pipe; /* * Sanitize sync polarity flags based on requested ones. If neither * positive or negative polarity is requested, treat this as meaning * negative polarity. */ if (!(pipe_config->base.adjusted_mode.flags & (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; if (!(pipe_config->base.adjusted_mode.flags & (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc), pipe_config); if (base_bpp < 0) goto fail; /* * Determine the real pipe dimensions. Note that stereo modes can * increase the actual pipe size due to the frame doubling and * insertion of additional space for blanks between the frame. This * is stored in the crtc timings. We use the requested mode to do this * computation to clearly distinguish it from the adjusted mode, which * can be changed by the connectors in the below retry loop. */ drm_crtc_get_hv_timing(&pipe_config->base.mode, &pipe_config->pipe_src_w, &pipe_config->pipe_src_h); encoder_retry: /* Ensure the port clock defaults are reset when retrying. */ pipe_config->port_clock = 0; pipe_config->pixel_multiplier = 1; /* Fill in default crtc timings, allow encoders to overwrite them. */ drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode, CRTC_STEREO_DOUBLE); /* Pass our mode to the connectors and the CRTC to give them a chance to * adjust it according to limitations or connector properties, and also * a chance to reject the mode entirely. */ for_each_connector_in_state(state, connector, connector_state, i) { if (connector_state->crtc != crtc) continue; encoder = to_intel_encoder(connector_state->best_encoder); if (!(encoder->compute_config(encoder, pipe_config))) { DRM_DEBUG_KMS("Encoder config failure\n"); goto fail; } } /* Set default port clock if not overwritten by the encoder. Needs to be * done afterwards in case the encoder adjusts the mode. */ if (!pipe_config->port_clock) pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock * pipe_config->pixel_multiplier; ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); if (ret < 0) { DRM_DEBUG_KMS("CRTC fixup failed\n"); goto fail; } if (ret == RETRY) { if (WARN(!retry, "loop in pipe configuration computation\n")) { ret = -EINVAL; goto fail; } DRM_DEBUG_KMS("CRTC bw constrained, retrying\n"); retry = false; goto encoder_retry; } /* Dithering seems to not pass-through bits correctly when it should, so * only enable it on 6bpc panels. */ pipe_config->dither = pipe_config->pipe_bpp == 6*3; DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n", base_bpp, pipe_config->pipe_bpp, pipe_config->dither); fail: return ret; } static void intel_modeset_update_crtc_state(struct drm_atomic_state *state) { struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; int i; /* Double check state. */ for_each_crtc_in_state(state, crtc, crtc_state, i) { to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state); /* Update hwmode for vblank functions */ if (crtc->state->active) crtc->hwmode = crtc->state->adjusted_mode; else crtc->hwmode.crtc_clock = 0; /* * Update legacy state to satisfy fbc code. This can * be removed when fbc uses the atomic state. */ if (drm_atomic_get_existing_plane_state(state, crtc->primary)) { struct drm_plane_state *plane_state = crtc->primary->state; crtc->primary->fb = plane_state->fb; crtc->x = plane_state->src_x >> 16; crtc->y = plane_state->src_y >> 16; } } } static bool intel_fuzzy_clock_check(int clock1, int clock2) { int diff; if (clock1 == clock2) return true; if (!clock1 || !clock2) return false; diff = abs(clock1 - clock2); if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) return true; return false; } #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \ list_for_each_entry((intel_crtc), \ &(dev)->mode_config.crtc_list, \ base.head) \ for_each_if (mask & (1 <<(intel_crtc)->pipe)) static bool intel_compare_m_n(unsigned int m, unsigned int n, unsigned int m2, unsigned int n2, bool exact) { if (m == m2 && n == n2) return true; if (exact || !m || !n || !m2 || !n2) return false; BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); if (n > n2) { while (n > n2) { m2 <<= 1; n2 <<= 1; } } else if (n < n2) { while (n < n2) { m <<= 1; n <<= 1; } } if (n != n2) return false; return intel_fuzzy_clock_check(m, m2); } static bool intel_compare_link_m_n(const struct intel_link_m_n *m_n, struct intel_link_m_n *m2_n2, bool adjust) { if (m_n->tu == m2_n2->tu && intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, m2_n2->gmch_m, m2_n2->gmch_n, !adjust) && intel_compare_m_n(m_n->link_m, m_n->link_n, m2_n2->link_m, m2_n2->link_n, !adjust)) { if (adjust) *m2_n2 = *m_n; return true; } return false; } static bool intel_pipe_config_compare(struct drm_device *dev, struct intel_crtc_state *current_config, struct intel_crtc_state *pipe_config, bool adjust) { bool ret = true; #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \ do { \ if (!adjust) \ DRM_ERROR(fmt, ##__VA_ARGS__); \ else \ DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \ } while (0) #define PIPE_CONF_CHECK_X(name) \ if (current_config->name != pipe_config->name) { \ INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ "(expected 0x%08x, found 0x%08x)\n", \ current_config->name, \ pipe_config->name); \ ret = false; \ } #define PIPE_CONF_CHECK_I(name) \ if (current_config->name != pipe_config->name) { \ INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ "(expected %i, found %i)\n", \ current_config->name, \ pipe_config->name); \ ret = false; \ } #define PIPE_CONF_CHECK_P(name) \ if (current_config->name != pipe_config->name) { \ INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ "(expected %p, found %p)\n", \ current_config->name, \ pipe_config->name); \ ret = false; \ } #define PIPE_CONF_CHECK_M_N(name) \ if (!intel_compare_link_m_n(¤t_config->name, \ &pipe_config->name,\ adjust)) { \ INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ "(expected tu %i gmch %i/%i link %i/%i, " \ "found tu %i, gmch %i/%i link %i/%i)\n", \ current_config->name.tu, \ current_config->name.gmch_m, \ current_config->name.gmch_n, \ current_config->name.link_m, \ current_config->name.link_n, \ pipe_config->name.tu, \ pipe_config->name.gmch_m, \ pipe_config->name.gmch_n, \ pipe_config->name.link_m, \ pipe_config->name.link_n); \ ret = false; \ } /* This is required for BDW+ where there is only one set of registers for * switching between high and low RR. * This macro can be used whenever a comparison has to be made between one * hw state and multiple sw state variables. */ #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \ if (!intel_compare_link_m_n(¤t_config->name, \ &pipe_config->name, adjust) && \ !intel_compare_link_m_n(¤t_config->alt_name, \ &pipe_config->name, adjust)) { \ INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ "(expected tu %i gmch %i/%i link %i/%i, " \ "or tu %i gmch %i/%i link %i/%i, " \ "found tu %i, gmch %i/%i link %i/%i)\n", \ current_config->name.tu, \ current_config->name.gmch_m, \ current_config->name.gmch_n, \ current_config->name.link_m, \ current_config->name.link_n, \ current_config->alt_name.tu, \ current_config->alt_name.gmch_m, \ current_config->alt_name.gmch_n, \ current_config->alt_name.link_m, \ current_config->alt_name.link_n, \ pipe_config->name.tu, \ pipe_config->name.gmch_m, \ pipe_config->name.gmch_n, \ pipe_config->name.link_m, \ pipe_config->name.link_n); \ ret = false; \ } #define PIPE_CONF_CHECK_FLAGS(name, mask) \ if ((current_config->name ^ pipe_config->name) & (mask)) { \ INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \ "(expected %i, found %i)\n", \ current_config->name & (mask), \ pipe_config->name & (mask)); \ ret = false; \ } #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \ if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ "(expected %i, found %i)\n", \ current_config->name, \ pipe_config->name); \ ret = false; \ } #define PIPE_CONF_QUIRK(quirk) \ ((current_config->quirks | pipe_config->quirks) & (quirk)) PIPE_CONF_CHECK_I(cpu_transcoder); PIPE_CONF_CHECK_I(has_pch_encoder); PIPE_CONF_CHECK_I(fdi_lanes); PIPE_CONF_CHECK_M_N(fdi_m_n); PIPE_CONF_CHECK_I(has_dp_encoder); PIPE_CONF_CHECK_I(lane_count); if (INTEL_INFO(dev)->gen < 8) { PIPE_CONF_CHECK_M_N(dp_m_n); if (current_config->has_drrs) PIPE_CONF_CHECK_M_N(dp_m2_n2); } else PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); PIPE_CONF_CHECK_I(has_dsi_encoder); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end); PIPE_CONF_CHECK_I(pixel_multiplier); PIPE_CONF_CHECK_I(has_hdmi_sink); if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) PIPE_CONF_CHECK_I(limited_color_range); PIPE_CONF_CHECK_I(has_infoframe); PIPE_CONF_CHECK_I(has_audio); PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, DRM_MODE_FLAG_INTERLACE); if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, DRM_MODE_FLAG_PHSYNC); PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, DRM_MODE_FLAG_NHSYNC); PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, DRM_MODE_FLAG_PVSYNC); PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, DRM_MODE_FLAG_NVSYNC); } PIPE_CONF_CHECK_X(gmch_pfit.control); /* pfit ratios are autocomputed by the hw on gen4+ */ if (INTEL_INFO(dev)->gen < 4) PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); if (!adjust) { PIPE_CONF_CHECK_I(pipe_src_w); PIPE_CONF_CHECK_I(pipe_src_h); PIPE_CONF_CHECK_I(pch_pfit.enabled); if (current_config->pch_pfit.enabled) { PIPE_CONF_CHECK_X(pch_pfit.pos); PIPE_CONF_CHECK_X(pch_pfit.size); } PIPE_CONF_CHECK_I(scaler_state.scaler_id); } /* BDW+ don't expose a synchronous way to read the state */ if (IS_HASWELL(dev)) PIPE_CONF_CHECK_I(ips_enabled); PIPE_CONF_CHECK_I(double_wide); PIPE_CONF_CHECK_X(ddi_pll_sel); PIPE_CONF_CHECK_P(shared_dpll); PIPE_CONF_CHECK_X(dpll_hw_state.dpll); PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); PIPE_CONF_CHECK_X(dpll_hw_state.fp0); PIPE_CONF_CHECK_X(dpll_hw_state.fp1); PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); PIPE_CONF_CHECK_X(dpll_hw_state.spll); PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) PIPE_CONF_CHECK_I(pipe_bpp); PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock); PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); #undef PIPE_CONF_CHECK_X #undef PIPE_CONF_CHECK_I #undef PIPE_CONF_CHECK_P #undef PIPE_CONF_CHECK_FLAGS #undef PIPE_CONF_CHECK_CLOCK_FUZZY #undef PIPE_CONF_QUIRK #undef INTEL_ERR_OR_DBG_KMS return ret; } static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, const struct intel_crtc_state *pipe_config) { if (pipe_config->has_pch_encoder) { int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), &pipe_config->fdi_m_n); int dotclock = pipe_config->base.adjusted_mode.crtc_clock; /* * FDI already provided one idea for the dotclock. * Yell if the encoder disagrees. */ WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock), "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", fdi_dotclock, dotclock); } } static void verify_wm_state(struct drm_crtc *crtc, struct drm_crtc_state *new_state) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct skl_ddb_allocation hw_ddb, *sw_ddb; struct skl_ddb_entry *hw_entry, *sw_entry; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); const enum pipe pipe = intel_crtc->pipe; int plane; if (INTEL_INFO(dev)->gen < 9 || !new_state->active) return; skl_ddb_get_hw_state(dev_priv, &hw_ddb); sw_ddb = &dev_priv->wm.skl_hw.ddb; /* planes */ for_each_plane(dev_priv, pipe, plane) { hw_entry = &hw_ddb.plane[pipe][plane]; sw_entry = &sw_ddb->plane[pipe][plane]; if (skl_ddb_entry_equal(hw_entry, sw_entry)) continue; DRM_ERROR("mismatch in DDB state pipe %c plane %d " "(expected (%u,%u), found (%u,%u))\n", pipe_name(pipe), plane + 1, sw_entry->start, sw_entry->end, hw_entry->start, hw_entry->end); } /* cursor */ hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR]; sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR]; if (!skl_ddb_entry_equal(hw_entry, sw_entry)) { DRM_ERROR("mismatch in DDB state pipe %c cursor " "(expected (%u,%u), found (%u,%u))\n", pipe_name(pipe), sw_entry->start, sw_entry->end, hw_entry->start, hw_entry->end); } } static void verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc) { struct drm_connector *connector; drm_for_each_connector(connector, dev) { struct drm_encoder *encoder = connector->encoder; struct drm_connector_state *state = connector->state; if (state->crtc != crtc) continue; intel_connector_verify_state(to_intel_connector(connector)); I915_STATE_WARN(state->best_encoder != encoder, "connector's atomic encoder doesn't match legacy encoder\n"); } } static void verify_encoder_state(struct drm_device *dev) { struct intel_encoder *encoder; struct intel_connector *connector; for_each_intel_encoder(dev, encoder) { bool enabled = false; enum pipe pipe; DRM_DEBUG_KMS("[ENCODER:%d:%s]\n", encoder->base.base.id, encoder->base.name); for_each_intel_connector(dev, connector) { if (connector->base.state->best_encoder != &encoder->base) continue; enabled = true; I915_STATE_WARN(connector->base.state->crtc != encoder->base.crtc, "connector's crtc doesn't match encoder crtc\n"); } I915_STATE_WARN(!!encoder->base.crtc != enabled, "encoder's enabled state mismatch " "(expected %i, found %i)\n", !!encoder->base.crtc, enabled); if (!encoder->base.crtc) { bool active; active = encoder->get_hw_state(encoder, &pipe); I915_STATE_WARN(active, "encoder detached but still enabled on pipe %c.\n", pipe_name(pipe)); } } } static void verify_crtc_state(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state, struct drm_crtc_state *new_crtc_state) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *encoder; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_crtc_state *pipe_config, *sw_config; struct drm_atomic_state *old_state; bool active; old_state = old_crtc_state->state; __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state); pipe_config = to_intel_crtc_state(old_crtc_state); memset(pipe_config, 0, sizeof(*pipe_config)); pipe_config->base.crtc = crtc; pipe_config->base.state = old_state; DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id); active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config); /* hw state is inconsistent with the pipe quirk */ if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) active = new_crtc_state->active; I915_STATE_WARN(new_crtc_state->active != active, "crtc active state doesn't match with hw state " "(expected %i, found %i)\n", new_crtc_state->active, active); I915_STATE_WARN(intel_crtc->active != new_crtc_state->active, "transitional active state does not match atomic hw state " "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active); for_each_encoder_on_crtc(dev, crtc, encoder) { enum pipe pipe; active = encoder->get_hw_state(encoder, &pipe); I915_STATE_WARN(active != new_crtc_state->active, "[ENCODER:%i] active %i with crtc active %i\n", encoder->base.base.id, active, new_crtc_state->active); I915_STATE_WARN(active && intel_crtc->pipe != pipe, "Encoder connected to wrong pipe %c\n", pipe_name(pipe)); if (active) encoder->get_config(encoder, pipe_config); } if (!new_crtc_state->active) return; intel_pipe_config_sanity_check(dev_priv, pipe_config); sw_config = to_intel_crtc_state(crtc->state); if (!intel_pipe_config_compare(dev, sw_config, pipe_config, false)) { I915_STATE_WARN(1, "pipe state doesn't match!\n"); intel_dump_pipe_config(intel_crtc, pipe_config, "[hw state]"); intel_dump_pipe_config(intel_crtc, sw_config, "[sw state]"); } } static void verify_single_dpll_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct drm_crtc *crtc, struct drm_crtc_state *new_state) { struct intel_dpll_hw_state dpll_hw_state; unsigned crtc_mask; bool active; memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); DRM_DEBUG_KMS("%s\n", pll->name); active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state); if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) { I915_STATE_WARN(!pll->on && pll->active_mask, "pll in active use but not on in sw tracking\n"); I915_STATE_WARN(pll->on && !pll->active_mask, "pll is on but not used by any active crtc\n"); I915_STATE_WARN(pll->on != active, "pll on state mismatch (expected %i, found %i)\n", pll->on, active); } if (!crtc) { I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask, "more active pll users than references: %x vs %x\n", pll->active_mask, pll->config.crtc_mask); return; } crtc_mask = 1 << drm_crtc_index(crtc); if (new_state->active) I915_STATE_WARN(!(pll->active_mask & crtc_mask), "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", pipe_name(drm_crtc_index(crtc)), pll->active_mask); else I915_STATE_WARN(pll->active_mask & crtc_mask, "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", pipe_name(drm_crtc_index(crtc)), pll->active_mask); I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask), "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", crtc_mask, pll->config.crtc_mask); I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state, sizeof(dpll_hw_state)), "pll hw state mismatch\n"); } static void verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state, struct drm_crtc_state *new_crtc_state) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state); struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state); if (new_state->shared_dpll) verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state); if (old_state->shared_dpll && old_state->shared_dpll != new_state->shared_dpll) { unsigned crtc_mask = 1 << drm_crtc_index(crtc); struct intel_shared_dpll *pll = old_state->shared_dpll; I915_STATE_WARN(pll->active_mask & crtc_mask, "pll active mismatch (didn't expect pipe %c in active mask)\n", pipe_name(drm_crtc_index(crtc))); I915_STATE_WARN(pll->config.crtc_mask & crtc_mask, "pll enabled crtcs mismatch (found %x in enabled mask)\n", pipe_name(drm_crtc_index(crtc))); } } static void intel_modeset_verify_crtc(struct drm_crtc *crtc, struct drm_crtc_state *old_state, struct drm_crtc_state *new_state) { if (!needs_modeset(new_state) && !to_intel_crtc_state(new_state)->update_pipe) return; verify_wm_state(crtc, new_state); verify_connector_state(crtc->dev, crtc); verify_crtc_state(crtc, old_state, new_state); verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state); } static void verify_disabled_dpll_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int i; for (i = 0; i < dev_priv->num_shared_dpll; i++) verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL); } static void intel_modeset_verify_disabled(struct drm_device *dev) { verify_encoder_state(dev); verify_connector_state(dev, NULL); verify_disabled_dpll_state(dev); } static void update_scanline_offset(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; /* * The scanline counter increments at the leading edge of hsync. * * On most platforms it starts counting from vtotal-1 on the * first active line. That means the scanline counter value is * always one less than what we would expect. Ie. just after * start of vblank, which also occurs at start of hsync (on the * last active line), the scanline counter will read vblank_start-1. * * On gen2 the scanline counter starts counting from 1 instead * of vtotal-1, so we have to subtract one (or rather add vtotal-1 * to keep the value positive), instead of adding one. * * On HSW+ the behaviour of the scanline counter depends on the output * type. For DP ports it behaves like most other platforms, but on HDMI * there's an extra 1 line difference. So we need to add two instead of * one to the value. */ if (IS_GEN2(dev)) { const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode; int vtotal; vtotal = adjusted_mode->crtc_vtotal; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) vtotal /= 2; crtc->scanline_offset = vtotal - 1; } else if (HAS_DDI(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) { crtc->scanline_offset = 2; } else crtc->scanline_offset = 1; } static void intel_modeset_clear_plls(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_shared_dpll_config *shared_dpll = NULL; struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; int i; if (!dev_priv->display.crtc_compute_clock) return; for_each_crtc_in_state(state, crtc, crtc_state, i) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_shared_dpll *old_dpll = to_intel_crtc_state(crtc->state)->shared_dpll; if (!needs_modeset(crtc_state)) continue; to_intel_crtc_state(crtc_state)->shared_dpll = NULL; if (!old_dpll) continue; if (!shared_dpll) shared_dpll = intel_atomic_get_shared_dpll_state(state); intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc); } } /* * This implements the workaround described in the "notes" section of the mode * set sequence documentation. When going from no pipes or single pipe to * multiple pipes, and planes are enabled after the pipe, we need to wait at * least 2 vblanks on the first pipe before enabling planes on the second pipe. */ static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state; struct intel_crtc *intel_crtc; struct drm_crtc *crtc; struct intel_crtc_state *first_crtc_state = NULL; struct intel_crtc_state *other_crtc_state = NULL; enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; int i; /* look at all crtc's that are going to be enabled in during modeset */ for_each_crtc_in_state(state, crtc, crtc_state, i) { intel_crtc = to_intel_crtc(crtc); if (!crtc_state->active || !needs_modeset(crtc_state)) continue; if (first_crtc_state) { other_crtc_state = to_intel_crtc_state(crtc_state); break; } else { first_crtc_state = to_intel_crtc_state(crtc_state); first_pipe = intel_crtc->pipe; } } /* No workaround needed? */ if (!first_crtc_state) return 0; /* w/a possibly needed, check how many crtc's are already enabled. */ for_each_intel_crtc(state->dev, intel_crtc) { struct intel_crtc_state *pipe_config; pipe_config = intel_atomic_get_crtc_state(state, intel_crtc); if (IS_ERR(pipe_config)) return PTR_ERR(pipe_config); pipe_config->hsw_workaround_pipe = INVALID_PIPE; if (!pipe_config->base.active || needs_modeset(&pipe_config->base)) continue; /* 2 or more enabled crtcs means no need for w/a */ if (enabled_pipe != INVALID_PIPE) return 0; enabled_pipe = intel_crtc->pipe; } if (enabled_pipe != INVALID_PIPE) first_crtc_state->hsw_workaround_pipe = enabled_pipe; else if (other_crtc_state) other_crtc_state->hsw_workaround_pipe = first_pipe; return 0; } static int intel_modeset_all_pipes(struct drm_atomic_state *state) { struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; int ret = 0; /* add all active pipes to the state */ for_each_crtc(state->dev, crtc) { crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); if (!crtc_state->active || needs_modeset(crtc_state)) continue; crtc_state->mode_changed = true; ret = drm_atomic_add_affected_connectors(state, crtc); if (ret) break; ret = drm_atomic_add_affected_planes(state, crtc); if (ret) break; } return ret; } static int intel_modeset_checks(struct drm_atomic_state *state) { struct intel_atomic_state *intel_state = to_intel_atomic_state(state); struct drm_i915_private *dev_priv = state->dev->dev_private; struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; int ret = 0, i; if (!check_digital_port_conflicts(state)) { DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n"); return -EINVAL; } intel_state->modeset = true; intel_state->active_crtcs = dev_priv->active_crtcs; for_each_crtc_in_state(state, crtc, crtc_state, i) { if (crtc_state->active) intel_state->active_crtcs |= 1 << i; else intel_state->active_crtcs &= ~(1 << i); } /* * See if the config requires any additional preparation, e.g. * to adjust global state with pipes off. We need to do this * here so we can get the modeset_pipe updated config for the new * mode set on this crtc. For other crtcs we need to use the * adjusted_mode bits in the crtc directly. */ if (dev_priv->display.modeset_calc_cdclk) { ret = dev_priv->display.modeset_calc_cdclk(state); if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq) ret = intel_modeset_all_pipes(state); if (ret < 0) return ret; DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n", intel_state->cdclk, intel_state->dev_cdclk); } else to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq; intel_modeset_clear_plls(state); if (IS_HASWELL(dev_priv)) return haswell_mode_set_planes_workaround(state); return 0; } /* * Handle calculation of various watermark data at the end of the atomic check * phase. The code here should be run after the per-crtc and per-plane 'check' * handlers to ensure that all derived state has been updated. */ static void calc_watermark_data(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct intel_atomic_state *intel_state = to_intel_atomic_state(state); struct drm_crtc *crtc; struct drm_crtc_state *cstate; struct drm_plane *plane; struct drm_plane_state *pstate; /* * Calculate watermark configuration details now that derived * plane/crtc state is all properly updated. */ drm_for_each_crtc(crtc, dev) { cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?: crtc->state; if (cstate->active) intel_state->wm_config.num_pipes_active++; } drm_for_each_legacy_plane(plane, dev) { pstate = drm_atomic_get_existing_plane_state(state, plane) ?: plane->state; if (!to_intel_plane_state(pstate)->visible) continue; intel_state->wm_config.sprites_enabled = true; if (pstate->crtc_w != pstate->src_w >> 16 || pstate->crtc_h != pstate->src_h >> 16) intel_state->wm_config.sprites_scaled = true; } } /** * intel_atomic_check - validate state object * @dev: drm device * @state: state to validate */ static int intel_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_atomic_state *intel_state = to_intel_atomic_state(state); struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; int ret, i; bool any_ms = false; ret = drm_atomic_helper_check_modeset(dev, state); if (ret) return ret; for_each_crtc_in_state(state, crtc, crtc_state, i) { struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state); /* Catch I915_MODE_FLAG_INHERITED */ if (crtc_state->mode.private_flags != crtc->state->mode.private_flags) crtc_state->mode_changed = true; if (!crtc_state->enable) { if (needs_modeset(crtc_state)) any_ms = true; continue; } if (!needs_modeset(crtc_state)) continue; /* FIXME: For only active_changed we shouldn't need to do any * state recomputation at all. */ ret = drm_atomic_add_affected_connectors(state, crtc); if (ret) return ret; ret = intel_modeset_pipe_config(crtc, pipe_config); if (ret) return ret; if (i915.fastboot && intel_pipe_config_compare(dev, to_intel_crtc_state(crtc->state), pipe_config, true)) { crtc_state->mode_changed = false; to_intel_crtc_state(crtc_state)->update_pipe = true; } if (needs_modeset(crtc_state)) { any_ms = true; ret = drm_atomic_add_affected_planes(state, crtc); if (ret) return ret; } intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config, needs_modeset(crtc_state) ? "[modeset]" : "[fastset]"); } if (any_ms) { ret = intel_modeset_checks(state); if (ret) return ret; } else intel_state->cdclk = dev_priv->cdclk_freq; ret = drm_atomic_helper_check_planes(dev, state); if (ret) return ret; intel_fbc_choose_crtc(dev_priv, state); calc_watermark_data(state); return 0; } static int intel_atomic_prepare_commit(struct drm_device *dev, struct drm_atomic_state *state, bool async) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_plane_state *plane_state; struct drm_crtc_state *crtc_state; struct drm_plane *plane; struct drm_crtc *crtc; int i, ret; if (async) { DRM_DEBUG_KMS("i915 does not yet support async commit\n"); return -EINVAL; } for_each_crtc_in_state(state, crtc, crtc_state, i) { ret = intel_crtc_wait_for_pending_flips(crtc); if (ret) return ret; if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2) flush_workqueue(dev_priv->wq); } ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; ret = drm_atomic_helper_prepare_planes(dev, state); mutex_unlock(&dev->struct_mutex); if (!ret && !async) { for_each_plane_in_state(state, plane, plane_state, i) { struct intel_plane_state *intel_plane_state = to_intel_plane_state(plane_state); if (!intel_plane_state->wait_req) continue; ret = __i915_wait_request(intel_plane_state->wait_req, true, NULL, NULL); if (ret) { /* Any hang should be swallowed by the wait */ WARN_ON(ret == -EIO); mutex_lock(&dev->struct_mutex); drm_atomic_helper_cleanup_planes(dev, state); mutex_unlock(&dev->struct_mutex); break; } } } return ret; } static void intel_atomic_wait_for_vblanks(struct drm_device *dev, struct drm_i915_private *dev_priv, unsigned crtc_mask) { unsigned last_vblank_count[I915_MAX_PIPES]; enum pipe pipe; int ret; if (!crtc_mask) return; for_each_pipe(dev_priv, pipe) { struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; if (!((1 << pipe) & crtc_mask)) continue; ret = drm_crtc_vblank_get(crtc); if (WARN_ON(ret != 0)) { crtc_mask &= ~(1 << pipe); continue; } last_vblank_count[pipe] = drm_crtc_vblank_count(crtc); } for_each_pipe(dev_priv, pipe) { struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; long lret; if (!((1 << pipe) & crtc_mask)) continue; lret = wait_event_timeout(dev->vblank[pipe].queue, last_vblank_count[pipe] != drm_crtc_vblank_count(crtc), msecs_to_jiffies(50)); WARN_ON(!lret); drm_crtc_vblank_put(crtc); } } static bool needs_vblank_wait(struct intel_crtc_state *crtc_state) { /* fb updated, need to unpin old fb */ if (crtc_state->fb_changed) return true; /* wm changes, need vblank before final wm's */ if (crtc_state->update_wm_post) return true; /* * cxsr is re-enabled after vblank. * This is already handled by crtc_state->update_wm_post, * but added for clarity. */ if (crtc_state->disable_cxsr) return true; return false; } /** * intel_atomic_commit - commit validated state object * @dev: DRM device * @state: the top-level driver state object * @async: asynchronous commit * * This function commits a top-level state object that has been validated * with drm_atomic_helper_check(). * * FIXME: Atomic modeset support for i915 is not yet complete. At the moment * we can only handle plane-related operations and do not yet support * asynchronous commit. * * RETURNS * Zero for success or -errno. */ static int intel_atomic_commit(struct drm_device *dev, struct drm_atomic_state *state, bool async) { struct intel_atomic_state *intel_state = to_intel_atomic_state(state); struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc_state *old_crtc_state; struct drm_crtc *crtc; struct intel_crtc_state *intel_cstate; int ret = 0, i; bool hw_check = intel_state->modeset; unsigned long put_domains[I915_MAX_PIPES] = {}; unsigned crtc_vblank_mask = 0; ret = intel_atomic_prepare_commit(dev, state, async); if (ret) { DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret); return ret; } drm_atomic_helper_swap_state(dev, state); dev_priv->wm.config = intel_state->wm_config; intel_shared_dpll_commit(state); if (intel_state->modeset) { memcpy(dev_priv->min_pixclk, intel_state->min_pixclk, sizeof(intel_state->min_pixclk)); dev_priv->active_crtcs = intel_state->active_crtcs; dev_priv->atomic_cdclk_freq = intel_state->cdclk; intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); } for_each_crtc_in_state(state, crtc, old_crtc_state, i) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); if (needs_modeset(crtc->state) || to_intel_crtc_state(crtc->state)->update_pipe) { hw_check = true; put_domains[to_intel_crtc(crtc)->pipe] = modeset_get_crtc_power_domains(crtc, to_intel_crtc_state(crtc->state)); } if (!needs_modeset(crtc->state)) continue; intel_pre_plane_update(to_intel_crtc_state(old_crtc_state)); if (old_crtc_state->active) { intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask); dev_priv->display.crtc_disable(crtc); intel_crtc->active = false; intel_fbc_disable(intel_crtc); intel_disable_shared_dpll(intel_crtc); /* * Underruns don't always raise * interrupts, so check manually. */ intel_check_cpu_fifo_underruns(dev_priv); intel_check_pch_fifo_underruns(dev_priv); if (!crtc->state->active) intel_update_watermarks(crtc); } } /* Only after disabling all output pipelines that will be changed can we * update the the output configuration. */ intel_modeset_update_crtc_state(state); if (intel_state->modeset) { drm_atomic_helper_update_legacy_modeset_state(state->dev, state); if (dev_priv->display.modeset_commit_cdclk && intel_state->dev_cdclk != dev_priv->cdclk_freq) dev_priv->display.modeset_commit_cdclk(state); intel_modeset_verify_disabled(dev); } /* Now enable the clocks, plane, pipe, and connectors that we set up. */ for_each_crtc_in_state(state, crtc, old_crtc_state, i) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); bool modeset = needs_modeset(crtc->state); struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state); bool update_pipe = !modeset && pipe_config->update_pipe; if (modeset && crtc->state->active) { update_scanline_offset(to_intel_crtc(crtc)); dev_priv->display.crtc_enable(crtc); } if (!modeset) intel_pre_plane_update(to_intel_crtc_state(old_crtc_state)); if (crtc->state->active && drm_atomic_get_existing_plane_state(state, crtc->primary)) intel_fbc_enable(intel_crtc); if (crtc->state->active && (crtc->state->planes_changed || update_pipe)) drm_atomic_helper_commit_planes_on_crtc(old_crtc_state); if (pipe_config->base.active && needs_vblank_wait(pipe_config)) crtc_vblank_mask |= 1 << i; } /* FIXME: add subpixel order */ if (!state->legacy_cursor_update) intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask); /* * Now that the vblank has passed, we can go ahead and program the * optimal watermarks on platforms that need two-step watermark * programming. * * TODO: Move this (and other cleanup) to an async worker eventually. */ for_each_crtc_in_state(state, crtc, old_crtc_state, i) { intel_cstate = to_intel_crtc_state(crtc->state); if (dev_priv->display.optimize_watermarks) dev_priv->display.optimize_watermarks(intel_cstate); } for_each_crtc_in_state(state, crtc, old_crtc_state, i) { intel_post_plane_update(to_intel_crtc_state(old_crtc_state)); if (put_domains[i]) modeset_put_power_domains(dev_priv, put_domains[i]); intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state); } if (intel_state->modeset) intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET); mutex_lock(&dev->struct_mutex); drm_atomic_helper_cleanup_planes(dev, state); mutex_unlock(&dev->struct_mutex); drm_atomic_state_free(state); /* As one of the primary mmio accessors, KMS has a high likelihood * of triggering bugs in unclaimed access. After we finish * modesetting, see if an error has been flagged, and if so * enable debugging for the next modeset - and hope we catch * the culprit. * * XXX note that we assume display power is on at this point. * This might hold true now but we need to add pm helper to check * unclaimed only when the hardware is on, as atomic commits * can happen also when the device is completely off. */ intel_uncore_arm_unclaimed_mmio_detection(dev_priv); return 0; } void intel_crtc_restore_mode(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_atomic_state *state; struct drm_crtc_state *crtc_state; int ret; state = drm_atomic_state_alloc(dev); if (!state) { DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory", crtc->base.id); return; } state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc); retry: crtc_state = drm_atomic_get_crtc_state(state, crtc); ret = PTR_ERR_OR_ZERO(crtc_state); if (!ret) { if (!crtc_state->active) goto out; crtc_state->mode_changed = true; ret = drm_atomic_commit(state); } if (ret == -EDEADLK) { drm_atomic_state_clear(state); drm_modeset_backoff(state->acquire_ctx); goto retry; } if (ret) out: drm_atomic_state_free(state); } #undef for_each_intel_crtc_masked static const struct drm_crtc_funcs intel_crtc_funcs = { .gamma_set = drm_atomic_helper_legacy_gamma_set, .set_config = drm_atomic_helper_set_config, .set_property = drm_atomic_helper_crtc_set_property, .destroy = intel_crtc_destroy, .page_flip = intel_crtc_page_flip, .atomic_duplicate_state = intel_crtc_duplicate_state, .atomic_destroy_state = intel_crtc_destroy_state, }; /** * intel_prepare_plane_fb - Prepare fb for usage on plane * @plane: drm plane to prepare for * @fb: framebuffer to prepare for presentation * * Prepares a framebuffer for usage on a display plane. Generally this * involves pinning the underlying object and updating the frontbuffer tracking * bits. Some older platforms need special physical address handling for * cursor planes. * * Must be called with struct_mutex held. * * Returns 0 on success, negative error code on failure. */ int intel_prepare_plane_fb(struct drm_plane *plane, const struct drm_plane_state *new_state) { struct drm_device *dev = plane->dev; struct drm_framebuffer *fb = new_state->fb; struct intel_plane *intel_plane = to_intel_plane(plane); struct drm_i915_gem_object *obj = intel_fb_obj(fb); struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb); int ret = 0; if (!obj && !old_obj) return 0; if (old_obj) { struct drm_crtc_state *crtc_state = drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc); /* Big Hammer, we also need to ensure that any pending * MI_WAIT_FOR_EVENT inside a user batch buffer on the * current scanout is retired before unpinning the old * framebuffer. Note that we rely on userspace rendering * into the buffer attached to the pipe they are waiting * on. If not, userspace generates a GPU hang with IPEHR * point to the MI_WAIT_FOR_EVENT. * * This should only fail upon a hung GPU, in which case we * can safely continue. */ if (needs_modeset(crtc_state)) ret = i915_gem_object_wait_rendering(old_obj, true); if (ret) { /* GPU hangs should have been swallowed by the wait */ WARN_ON(ret == -EIO); return ret; } } /* For framebuffer backed by dmabuf, wait for fence */ if (obj && obj->base.dma_buf) { long lret; lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv, false, true, MAX_SCHEDULE_TIMEOUT); if (lret == -ERESTARTSYS) return lret; WARN(lret < 0, "waiting returns %li\n", lret); } if (!obj) { ret = 0; } else if (plane->type == DRM_PLANE_TYPE_CURSOR && INTEL_INFO(dev)->cursor_needs_physical) { int align = IS_I830(dev) ? 16 * 1024 : 256; ret = i915_gem_object_attach_phys(obj, align); if (ret) DRM_DEBUG_KMS("failed to attach phys object\n"); } else { ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation); } if (ret == 0) { if (obj) { struct intel_plane_state *plane_state = to_intel_plane_state(new_state); i915_gem_request_assign(&plane_state->wait_req, obj->last_write_req); } i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit); } return ret; } /** * intel_cleanup_plane_fb - Cleans up an fb after plane use * @plane: drm plane to clean up for * @fb: old framebuffer that was on plane * * Cleans up a framebuffer that has just been removed from a plane. * * Must be called with struct_mutex held. */ void intel_cleanup_plane_fb(struct drm_plane *plane, const struct drm_plane_state *old_state) { struct drm_device *dev = plane->dev; struct intel_plane *intel_plane = to_intel_plane(plane); struct intel_plane_state *old_intel_state; struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb); struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb); old_intel_state = to_intel_plane_state(old_state); if (!obj && !old_obj) return; if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR || !INTEL_INFO(dev)->cursor_needs_physical)) intel_unpin_fb_obj(old_state->fb, old_state->rotation); /* prepare_fb aborted? */ if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) || (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit))) i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit); i915_gem_request_assign(&old_intel_state->wait_req, NULL); } int skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state) { int max_scale; struct drm_device *dev; struct drm_i915_private *dev_priv; int crtc_clock, cdclk; if (!intel_crtc || !crtc_state->base.enable) return DRM_PLANE_HELPER_NO_SCALING; dev = intel_crtc->base.dev; dev_priv = dev->dev_private; crtc_clock = crtc_state->base.adjusted_mode.crtc_clock; cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk; if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock)) return DRM_PLANE_HELPER_NO_SCALING; /* * skl max scale is lower of: * close to 3 but not 3, -1 is for that purpose * or * cdclk/crtc_clock */ max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock)); return max_scale; } static int intel_check_primary_plane(struct drm_plane *plane, struct intel_crtc_state *crtc_state, struct intel_plane_state *state) { struct drm_crtc *crtc = state->base.crtc; struct drm_framebuffer *fb = state->base.fb; int min_scale = DRM_PLANE_HELPER_NO_SCALING; int max_scale = DRM_PLANE_HELPER_NO_SCALING; bool can_position = false; if (INTEL_INFO(plane->dev)->gen >= 9) { /* use scaler when colorkey is not required */ if (state->ckey.flags == I915_SET_COLORKEY_NONE) { min_scale = 1; max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state); } can_position = true; } return drm_plane_helper_check_update(plane, crtc, fb, &state->src, &state->dst, &state->clip, min_scale, max_scale, can_position, true, &state->visible); } static void intel_begin_crtc_commit(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state) { struct drm_device *dev = crtc->dev; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_crtc_state *old_intel_state = to_intel_crtc_state(old_crtc_state); bool modeset = needs_modeset(crtc->state); /* Perform vblank evasion around commit operation */ intel_pipe_update_start(intel_crtc); if (modeset) return; if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) { intel_color_set_csc(crtc->state); intel_color_load_luts(crtc->state); } if (to_intel_crtc_state(crtc->state)->update_pipe) intel_update_pipe_config(intel_crtc, old_intel_state); else if (INTEL_INFO(dev)->gen >= 9) skl_detach_scalers(intel_crtc); } static void intel_finish_crtc_commit(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); intel_pipe_update_end(intel_crtc); } /** * intel_plane_destroy - destroy a plane * @plane: plane to destroy * * Common destruction function for all types of planes (primary, cursor, * sprite). */ void intel_plane_destroy(struct drm_plane *plane) { struct intel_plane *intel_plane = to_intel_plane(plane); drm_plane_cleanup(plane); kfree(intel_plane); } const struct drm_plane_funcs intel_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = intel_plane_destroy, .set_property = drm_atomic_helper_plane_set_property, .atomic_get_property = intel_plane_atomic_get_property, .atomic_set_property = intel_plane_atomic_set_property, .atomic_duplicate_state = intel_plane_duplicate_state, .atomic_destroy_state = intel_plane_destroy_state, }; static struct drm_plane *intel_primary_plane_create(struct drm_device *dev, int pipe) { struct intel_plane *primary = NULL; struct intel_plane_state *state = NULL; const uint32_t *intel_primary_formats; unsigned int num_formats; int ret; primary = kzalloc(sizeof(*primary), GFP_KERNEL); if (!primary) goto fail; state = intel_create_plane_state(&primary->base); if (!state) goto fail; primary->base.state = &state->base; primary->can_scale = false; primary->max_downscale = 1; if (INTEL_INFO(dev)->gen >= 9) { primary->can_scale = true; state->scaler_id = -1; } primary->pipe = pipe; primary->plane = pipe; primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe); primary->check_plane = intel_check_primary_plane; if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) primary->plane = !pipe; if (INTEL_INFO(dev)->gen >= 9) { intel_primary_formats = skl_primary_formats; num_formats = ARRAY_SIZE(skl_primary_formats); primary->update_plane = skylake_update_primary_plane; primary->disable_plane = skylake_disable_primary_plane; } else if (HAS_PCH_SPLIT(dev)) { intel_primary_formats = i965_primary_formats; num_formats = ARRAY_SIZE(i965_primary_formats); primary->update_plane = ironlake_update_primary_plane; primary->disable_plane = i9xx_disable_primary_plane; } else if (INTEL_INFO(dev)->gen >= 4) { intel_primary_formats = i965_primary_formats; num_formats = ARRAY_SIZE(i965_primary_formats); primary->update_plane = i9xx_update_primary_plane; primary->disable_plane = i9xx_disable_primary_plane; } else { intel_primary_formats = i8xx_primary_formats; num_formats = ARRAY_SIZE(i8xx_primary_formats); primary->update_plane = i9xx_update_primary_plane; primary->disable_plane = i9xx_disable_primary_plane; } ret = drm_universal_plane_init(dev, &primary->base, 0, &intel_plane_funcs, intel_primary_formats, num_formats, DRM_PLANE_TYPE_PRIMARY, NULL); if (ret) goto fail; if (INTEL_INFO(dev)->gen >= 4) intel_create_rotation_property(dev, primary); drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs); return &primary->base; fail: kfree(state); kfree(primary); return NULL; } void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane) { if (!dev->mode_config.rotation_property) { unsigned long flags = BIT(DRM_ROTATE_0) | BIT(DRM_ROTATE_180); if (INTEL_INFO(dev)->gen >= 9) flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270); dev->mode_config.rotation_property = drm_mode_create_rotation_property(dev, flags); } if (dev->mode_config.rotation_property) drm_object_attach_property(&plane->base.base, dev->mode_config.rotation_property, plane->base.state->rotation); } static int intel_check_cursor_plane(struct drm_plane *plane, struct intel_crtc_state *crtc_state, struct intel_plane_state *state) { struct drm_crtc *crtc = crtc_state->base.crtc; struct drm_framebuffer *fb = state->base.fb; struct drm_i915_gem_object *obj = intel_fb_obj(fb); enum pipe pipe = to_intel_plane(plane)->pipe; unsigned stride; int ret; ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src, &state->dst, &state->clip, DRM_PLANE_HELPER_NO_SCALING, DRM_PLANE_HELPER_NO_SCALING, true, true, &state->visible); if (ret) return ret; /* if we want to turn off the cursor ignore width and height */ if (!obj) return 0; /* Check for which cursor types we support */ if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) { DRM_DEBUG("Cursor dimension %dx%d not supported\n", state->base.crtc_w, state->base.crtc_h); return -EINVAL; } stride = roundup_pow_of_two(state->base.crtc_w) * 4; if (obj->base.size < stride * state->base.crtc_h) { DRM_DEBUG_KMS("buffer is too small\n"); return -ENOMEM; } if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) { DRM_DEBUG_KMS("cursor cannot be tiled\n"); return -EINVAL; } /* * There's something wrong with the cursor on CHV pipe C. * If it straddles the left edge of the screen then * moving it away from the edge or disabling it often * results in a pipe underrun, and often that can lead to * dead pipe (constant underrun reported, and it scans * out just a solid color). To recover from that, the * display power well must be turned off and on again. * Refuse the put the cursor into that compromised position. */ if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C && state->visible && state->base.crtc_x < 0) { DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n"); return -EINVAL; } return 0; } static void intel_disable_cursor_plane(struct drm_plane *plane, struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); intel_crtc->cursor_addr = 0; intel_crtc_update_cursor(crtc, NULL); } static void intel_update_cursor_plane(struct drm_plane *plane, const struct intel_crtc_state *crtc_state, const struct intel_plane_state *state) { struct drm_crtc *crtc = crtc_state->base.crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_device *dev = plane->dev; struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb); uint32_t addr; if (!obj) addr = 0; else if (!INTEL_INFO(dev)->cursor_needs_physical) addr = i915_gem_obj_ggtt_offset(obj); else addr = obj->phys_handle->busaddr; intel_crtc->cursor_addr = addr; intel_crtc_update_cursor(crtc, state); } static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev, int pipe) { struct intel_plane *cursor = NULL; struct intel_plane_state *state = NULL; int ret; cursor = kzalloc(sizeof(*cursor), GFP_KERNEL); if (!cursor) goto fail; state = intel_create_plane_state(&cursor->base); if (!state) goto fail; cursor->base.state = &state->base; cursor->can_scale = false; cursor->max_downscale = 1; cursor->pipe = pipe; cursor->plane = pipe; cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe); cursor->check_plane = intel_check_cursor_plane; cursor->update_plane = intel_update_cursor_plane; cursor->disable_plane = intel_disable_cursor_plane; ret = drm_universal_plane_init(dev, &cursor->base, 0, &intel_plane_funcs, intel_cursor_formats, ARRAY_SIZE(intel_cursor_formats), DRM_PLANE_TYPE_CURSOR, NULL); if (ret) goto fail; if (INTEL_INFO(dev)->gen >= 4) { if (!dev->mode_config.rotation_property) dev->mode_config.rotation_property = drm_mode_create_rotation_property(dev, BIT(DRM_ROTATE_0) | BIT(DRM_ROTATE_180)); if (dev->mode_config.rotation_property) drm_object_attach_property(&cursor->base.base, dev->mode_config.rotation_property, state->base.rotation); } if (INTEL_INFO(dev)->gen >=9) state->scaler_id = -1; drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); return &cursor->base; fail: kfree(state); kfree(cursor); return NULL; } static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state) { int i; struct intel_scaler *intel_scaler; struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; for (i = 0; i < intel_crtc->num_scalers; i++) { intel_scaler = &scaler_state->scalers[i]; intel_scaler->in_use = 0; intel_scaler->mode = PS_SCALER_MODE_DYN; } scaler_state->scaler_id = -1; } static void intel_crtc_init(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc; struct intel_crtc_state *crtc_state = NULL; struct drm_plane *primary = NULL; struct drm_plane *cursor = NULL; int ret; intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL); if (intel_crtc == NULL) return; crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL); if (!crtc_state) goto fail; intel_crtc->config = crtc_state; intel_crtc->base.state = &crtc_state->base; crtc_state->base.crtc = &intel_crtc->base; /* initialize shared scalers */ if (INTEL_INFO(dev)->gen >= 9) { if (pipe == PIPE_C) intel_crtc->num_scalers = 1; else intel_crtc->num_scalers = SKL_NUM_SCALERS; skl_init_scalers(dev, intel_crtc, crtc_state); } primary = intel_primary_plane_create(dev, pipe); if (!primary) goto fail; cursor = intel_cursor_plane_create(dev, pipe); if (!cursor) goto fail; ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary, cursor, &intel_crtc_funcs, NULL); if (ret) goto fail; /* * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port * is hooked to pipe B. Hence we want plane A feeding pipe B. */ intel_crtc->pipe = pipe; intel_crtc->plane = pipe; if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) { DRM_DEBUG_KMS("swapping pipes & planes for FBC\n"); intel_crtc->plane = !pipe; } intel_crtc->cursor_base = ~0; intel_crtc->cursor_cntl = ~0; intel_crtc->cursor_size = ~0; intel_crtc->wm.cxsr_allowed = true; BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL); dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base; dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base; drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); intel_color_init(&intel_crtc->base); WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe); return; fail: if (primary) drm_plane_cleanup(primary); if (cursor) drm_plane_cleanup(cursor); kfree(crtc_state); kfree(intel_crtc); } enum pipe intel_get_pipe_from_connector(struct intel_connector *connector) { struct drm_encoder *encoder = connector->base.encoder; struct drm_device *dev = connector->base.dev; WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); if (!encoder || WARN_ON(!encoder->crtc)) return INVALID_PIPE; return to_intel_crtc(encoder->crtc)->pipe; } int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; struct drm_crtc *drmmode_crtc; struct intel_crtc *crtc; drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id); if (!drmmode_crtc) { DRM_ERROR("no such CRTC id\n"); return -ENOENT; } crtc = to_intel_crtc(drmmode_crtc); pipe_from_crtc_id->pipe = crtc->pipe; return 0; } static int intel_encoder_clones(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct intel_encoder *source_encoder; int index_mask = 0; int entry = 0; for_each_intel_encoder(dev, source_encoder) { if (encoders_cloneable(encoder, source_encoder)) index_mask |= (1 << entry); entry++; } return index_mask; } static bool has_edp_a(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!IS_MOBILE(dev)) return false; if ((I915_READ(DP_A) & DP_DETECTED) == 0) return false; if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE)) return false; return true; } static bool intel_crt_present(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (INTEL_INFO(dev)->gen >= 9) return false; if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev)) return false; if (IS_CHERRYVIEW(dev)) return false; if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) return false; /* DDI E can't be used if DDI A requires 4 lanes */ if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) return false; if (!dev_priv->vbt.int_crt_support) return false; return true; } static void intel_setup_outputs(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *encoder; bool dpd_is_edp = false; intel_lvds_init(dev); if (intel_crt_present(dev)) intel_crt_init(dev); if (IS_BROXTON(dev)) { /* * FIXME: Broxton doesn't support port detection via the * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to * detect the ports. */ intel_ddi_init(dev, PORT_A); intel_ddi_init(dev, PORT_B); intel_ddi_init(dev, PORT_C); intel_dsi_init(dev); } else if (HAS_DDI(dev)) { int found; /* * Haswell uses DDI functions to detect digital outputs. * On SKL pre-D0 the strap isn't connected, so we assume * it's there. */ found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; /* WaIgnoreDDIAStrap: skl */ if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) intel_ddi_init(dev, PORT_A); /* DDI B, C and D detection is indicated by the SFUSE_STRAP * register */ found = I915_READ(SFUSE_STRAP); if (found & SFUSE_STRAP_DDIB_DETECTED) intel_ddi_init(dev, PORT_B); if (found & SFUSE_STRAP_DDIC_DETECTED) intel_ddi_init(dev, PORT_C); if (found & SFUSE_STRAP_DDID_DETECTED) intel_ddi_init(dev, PORT_D); /* * On SKL we don't have a way to detect DDI-E so we rely on VBT. */ if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) && (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp || dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi || dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi)) intel_ddi_init(dev, PORT_E); } else if (HAS_PCH_SPLIT(dev)) { int found; dpd_is_edp = intel_dp_is_edp(dev, PORT_D); if (has_edp_a(dev)) intel_dp_init(dev, DP_A, PORT_A); if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) { /* PCH SDVOB multiplex with HDMIB */ found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B); if (!found) intel_hdmi_init(dev, PCH_HDMIB, PORT_B); if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) intel_dp_init(dev, PCH_DP_B, PORT_B); } if (I915_READ(PCH_HDMIC) & SDVO_DETECTED) intel_hdmi_init(dev, PCH_HDMIC, PORT_C); if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED) intel_hdmi_init(dev, PCH_HDMID, PORT_D); if (I915_READ(PCH_DP_C) & DP_DETECTED) intel_dp_init(dev, PCH_DP_C, PORT_C); if (I915_READ(PCH_DP_D) & DP_DETECTED) intel_dp_init(dev, PCH_DP_D, PORT_D); } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { /* * The DP_DETECTED bit is the latched state of the DDC * SDA pin at boot. However since eDP doesn't require DDC * (no way to plug in a DP->HDMI dongle) the DDC pins for * eDP ports may have been muxed to an alternate function. * Thus we can't rely on the DP_DETECTED bit alone to detect * eDP ports. Consult the VBT as well as DP_DETECTED to * detect eDP ports. */ if (I915_READ(VLV_HDMIB) & SDVO_DETECTED && !intel_dp_is_edp(dev, PORT_B)) intel_hdmi_init(dev, VLV_HDMIB, PORT_B); if (I915_READ(VLV_DP_B) & DP_DETECTED || intel_dp_is_edp(dev, PORT_B)) intel_dp_init(dev, VLV_DP_B, PORT_B); if (I915_READ(VLV_HDMIC) & SDVO_DETECTED && !intel_dp_is_edp(dev, PORT_C)) intel_hdmi_init(dev, VLV_HDMIC, PORT_C); if (I915_READ(VLV_DP_C) & DP_DETECTED || intel_dp_is_edp(dev, PORT_C)) intel_dp_init(dev, VLV_DP_C, PORT_C); if (IS_CHERRYVIEW(dev)) { /* eDP not supported on port D, so don't check VBT */ if (I915_READ(CHV_HDMID) & SDVO_DETECTED) intel_hdmi_init(dev, CHV_HDMID, PORT_D); if (I915_READ(CHV_DP_D) & DP_DETECTED) intel_dp_init(dev, CHV_DP_D, PORT_D); } intel_dsi_init(dev); } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) { bool found = false; if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { DRM_DEBUG_KMS("probing SDVOB\n"); found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B); if (!found && IS_G4X(dev)) { DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); intel_hdmi_init(dev, GEN4_HDMIB, PORT_B); } if (!found && IS_G4X(dev)) intel_dp_init(dev, DP_B, PORT_B); } /* Before G4X SDVOC doesn't have its own detect register */ if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { DRM_DEBUG_KMS("probing SDVOC\n"); found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C); } if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) { if (IS_G4X(dev)) { DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); intel_hdmi_init(dev, GEN4_HDMIC, PORT_C); } if (IS_G4X(dev)) intel_dp_init(dev, DP_C, PORT_C); } if (IS_G4X(dev) && (I915_READ(DP_D) & DP_DETECTED)) intel_dp_init(dev, DP_D, PORT_D); } else if (IS_GEN2(dev)) intel_dvo_init(dev); if (SUPPORTS_TV(dev)) intel_tv_init(dev); intel_psr_init(dev); for_each_intel_encoder(dev, encoder) { encoder->base.possible_crtcs = encoder->crtc_mask; encoder->base.possible_clones = intel_encoder_clones(encoder); } intel_init_pch_refclk(dev); drm_helper_move_panel_connectors_to_head(dev); } static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) { struct drm_device *dev = fb->dev; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); drm_framebuffer_cleanup(fb); mutex_lock(&dev->struct_mutex); WARN_ON(!intel_fb->obj->framebuffer_references--); drm_gem_object_unreference(&intel_fb->obj->base); mutex_unlock(&dev->struct_mutex); kfree(intel_fb); } static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, struct drm_file *file, unsigned int *handle) { struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj = intel_fb->obj; if (obj->userptr.mm) { DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n"); return -EINVAL; } return drm_gem_handle_create(file, &obj->base, handle); } static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, struct drm_file *file, unsigned flags, unsigned color, struct drm_clip_rect *clips, unsigned num_clips) { struct drm_device *dev = fb->dev; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj = intel_fb->obj; mutex_lock(&dev->struct_mutex); intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB); mutex_unlock(&dev->struct_mutex); return 0; } static const struct drm_framebuffer_funcs intel_fb_funcs = { .destroy = intel_user_framebuffer_destroy, .create_handle = intel_user_framebuffer_create_handle, .dirty = intel_user_framebuffer_dirty, }; static u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier, uint32_t pixel_format) { u32 gen = INTEL_INFO(dev)->gen; if (gen >= 9) { int cpp = drm_format_plane_cpp(pixel_format, 0); /* "The stride in bytes must not exceed the of the size of 8K * pixels and 32K bytes." */ return min(8192 * cpp, 32768); } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) { return 32*1024; } else if (gen >= 4) { if (fb_modifier == I915_FORMAT_MOD_X_TILED) return 16*1024; else return 32*1024; } else if (gen >= 3) { if (fb_modifier == I915_FORMAT_MOD_X_TILED) return 8*1024; else return 16*1024; } else { /* XXX DSPC is limited to 4k tiled */ return 8*1024; } } static int intel_framebuffer_init(struct drm_device *dev, struct intel_framebuffer *intel_fb, struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = to_i915(dev); unsigned int aligned_height; int ret; u32 pitch_limit, stride_alignment; WARN_ON(!mutex_is_locked(&dev->struct_mutex)); if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { /* Enforce that fb modifier and tiling mode match, but only for * X-tiled. This is needed for FBC. */ if (!!(obj->tiling_mode == I915_TILING_X) != !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) { DRM_DEBUG("tiling_mode doesn't match fb modifier\n"); return -EINVAL; } } else { if (obj->tiling_mode == I915_TILING_X) mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; else if (obj->tiling_mode == I915_TILING_Y) { DRM_DEBUG("No Y tiling for legacy addfb\n"); return -EINVAL; } } /* Passed in modifier sanity checking. */ switch (mode_cmd->modifier[0]) { case I915_FORMAT_MOD_Y_TILED: case I915_FORMAT_MOD_Yf_TILED: if (INTEL_INFO(dev)->gen < 9) { DRM_DEBUG("Unsupported tiling 0x%llx!\n", mode_cmd->modifier[0]); return -EINVAL; } case DRM_FORMAT_MOD_NONE: case I915_FORMAT_MOD_X_TILED: break; default: DRM_DEBUG("Unsupported fb modifier 0x%llx!\n", mode_cmd->modifier[0]); return -EINVAL; } stride_alignment = intel_fb_stride_alignment(dev_priv, mode_cmd->modifier[0], mode_cmd->pixel_format); if (mode_cmd->pitches[0] & (stride_alignment - 1)) { DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n", mode_cmd->pitches[0], stride_alignment); return -EINVAL; } pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0], mode_cmd->pixel_format); if (mode_cmd->pitches[0] > pitch_limit) { DRM_DEBUG("%s pitch (%u) must be at less than %d\n", mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ? "tiled" : "linear", mode_cmd->pitches[0], pitch_limit); return -EINVAL; } if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED && mode_cmd->pitches[0] != obj->stride) { DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n", mode_cmd->pitches[0], obj->stride); return -EINVAL; } /* Reject formats not supported by any plane early. */ switch (mode_cmd->pixel_format) { case DRM_FORMAT_C8: case DRM_FORMAT_RGB565: case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: break; case DRM_FORMAT_XRGB1555: if (INTEL_INFO(dev)->gen > 3) { DRM_DEBUG("unsupported pixel format: %s\n", drm_get_format_name(mode_cmd->pixel_format)); return -EINVAL; } break; case DRM_FORMAT_ABGR8888: if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && INTEL_INFO(dev)->gen < 9) { DRM_DEBUG("unsupported pixel format: %s\n", drm_get_format_name(mode_cmd->pixel_format)); return -EINVAL; } break; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_XBGR2101010: if (INTEL_INFO(dev)->gen < 4) { DRM_DEBUG("unsupported pixel format: %s\n", drm_get_format_name(mode_cmd->pixel_format)); return -EINVAL; } break; case DRM_FORMAT_ABGR2101010: if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) { DRM_DEBUG("unsupported pixel format: %s\n", drm_get_format_name(mode_cmd->pixel_format)); return -EINVAL; } break; case DRM_FORMAT_YUYV: case DRM_FORMAT_UYVY: case DRM_FORMAT_YVYU: case DRM_FORMAT_VYUY: if (INTEL_INFO(dev)->gen < 5) { DRM_DEBUG("unsupported pixel format: %s\n", drm_get_format_name(mode_cmd->pixel_format)); return -EINVAL; } break; default: DRM_DEBUG("unsupported pixel format: %s\n", drm_get_format_name(mode_cmd->pixel_format)); return -EINVAL; } /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ if (mode_cmd->offsets[0] != 0) return -EINVAL; aligned_height = intel_fb_align_height(dev, mode_cmd->height, mode_cmd->pixel_format, mode_cmd->modifier[0]); /* FIXME drm helper for size checks (especially planar formats)? */ if (obj->base.size < aligned_height * mode_cmd->pitches[0]) return -EINVAL; drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd); intel_fb->obj = obj; intel_fill_fb_info(dev_priv, &intel_fb->base); ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs); if (ret) { DRM_ERROR("framebuffer init failed %d\n", ret); return ret; } intel_fb->obj->framebuffer_references++; return 0; } static struct drm_framebuffer * intel_user_framebuffer_create(struct drm_device *dev, struct drm_file *filp, const struct drm_mode_fb_cmd2 *user_mode_cmd) { struct drm_framebuffer *fb; struct drm_i915_gem_object *obj; struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd.handles[0])); if (&obj->base == NULL) return ERR_PTR(-ENOENT); fb = intel_framebuffer_create(dev, &mode_cmd, obj); if (IS_ERR(fb)) drm_gem_object_unreference_unlocked(&obj->base); return fb; } #ifndef CONFIG_DRM_FBDEV_EMULATION static inline void intel_fbdev_output_poll_changed(struct drm_device *dev) { } #endif static const struct drm_mode_config_funcs intel_mode_funcs = { .fb_create = intel_user_framebuffer_create, .output_poll_changed = intel_fbdev_output_poll_changed, .atomic_check = intel_atomic_check, .atomic_commit = intel_atomic_commit, .atomic_state_alloc = intel_atomic_state_alloc, .atomic_state_clear = intel_atomic_state_clear, }; /** * intel_init_display_hooks - initialize the display modesetting hooks * @dev_priv: device private */ void intel_init_display_hooks(struct drm_i915_private *dev_priv) { if (INTEL_INFO(dev_priv)->gen >= 9) { dev_priv->display.get_pipe_config = haswell_get_pipe_config; dev_priv->display.get_initial_plane_config = skylake_get_initial_plane_config; dev_priv->display.crtc_compute_clock = haswell_crtc_compute_clock; dev_priv->display.crtc_enable = haswell_crtc_enable; dev_priv->display.crtc_disable = haswell_crtc_disable; } else if (HAS_DDI(dev_priv)) { dev_priv->display.get_pipe_config = haswell_get_pipe_config; dev_priv->display.get_initial_plane_config = ironlake_get_initial_plane_config; dev_priv->display.crtc_compute_clock = haswell_crtc_compute_clock; dev_priv->display.crtc_enable = haswell_crtc_enable; dev_priv->display.crtc_disable = haswell_crtc_disable; } else if (HAS_PCH_SPLIT(dev_priv)) { dev_priv->display.get_pipe_config = ironlake_get_pipe_config; dev_priv->display.get_initial_plane_config = ironlake_get_initial_plane_config; dev_priv->display.crtc_compute_clock = ironlake_crtc_compute_clock; dev_priv->display.crtc_enable = ironlake_crtc_enable; dev_priv->display.crtc_disable = ironlake_crtc_disable; } else if (IS_CHERRYVIEW(dev_priv)) { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; dev_priv->display.crtc_enable = valleyview_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } else if (IS_VALLEYVIEW(dev_priv)) { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; dev_priv->display.crtc_enable = valleyview_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } else if (IS_G4X(dev_priv)) { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; dev_priv->display.crtc_enable = i9xx_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } else if (IS_PINEVIEW(dev_priv)) { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; dev_priv->display.crtc_enable = i9xx_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } else if (!IS_GEN2(dev_priv)) { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; dev_priv->display.crtc_enable = i9xx_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } else { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; dev_priv->display.crtc_enable = i9xx_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } /* Returns the core display clock speed */ if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) dev_priv->display.get_display_clock_speed = skylake_get_display_clock_speed; else if (IS_BROXTON(dev_priv)) dev_priv->display.get_display_clock_speed = broxton_get_display_clock_speed; else if (IS_BROADWELL(dev_priv)) dev_priv->display.get_display_clock_speed = broadwell_get_display_clock_speed; else if (IS_HASWELL(dev_priv)) dev_priv->display.get_display_clock_speed = haswell_get_display_clock_speed; else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) dev_priv->display.get_display_clock_speed = valleyview_get_display_clock_speed; else if (IS_GEN5(dev_priv)) dev_priv->display.get_display_clock_speed = ilk_get_display_clock_speed; else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) || IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) dev_priv->display.get_display_clock_speed = i945_get_display_clock_speed; else if (IS_GM45(dev_priv)) dev_priv->display.get_display_clock_speed = gm45_get_display_clock_speed; else if (IS_CRESTLINE(dev_priv)) dev_priv->display.get_display_clock_speed = i965gm_get_display_clock_speed; else if (IS_PINEVIEW(dev_priv)) dev_priv->display.get_display_clock_speed = pnv_get_display_clock_speed; else if (IS_G33(dev_priv) || IS_G4X(dev_priv)) dev_priv->display.get_display_clock_speed = g33_get_display_clock_speed; else if (IS_I915G(dev_priv)) dev_priv->display.get_display_clock_speed = i915_get_display_clock_speed; else if (IS_I945GM(dev_priv) || IS_845G(dev_priv)) dev_priv->display.get_display_clock_speed = i9xx_misc_get_display_clock_speed; else if (IS_I915GM(dev_priv)) dev_priv->display.get_display_clock_speed = i915gm_get_display_clock_speed; else if (IS_I865G(dev_priv)) dev_priv->display.get_display_clock_speed = i865_get_display_clock_speed; else if (IS_I85X(dev_priv)) dev_priv->display.get_display_clock_speed = i85x_get_display_clock_speed; else { /* 830 */ WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n"); dev_priv->display.get_display_clock_speed = i830_get_display_clock_speed; } if (IS_GEN5(dev_priv)) { dev_priv->display.fdi_link_train = ironlake_fdi_link_train; } else if (IS_GEN6(dev_priv)) { dev_priv->display.fdi_link_train = gen6_fdi_link_train; } else if (IS_IVYBRIDGE(dev_priv)) { /* FIXME: detect B0+ stepping and use auto training */ dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { dev_priv->display.fdi_link_train = hsw_fdi_link_train; if (IS_BROADWELL(dev_priv)) { dev_priv->display.modeset_commit_cdclk = broadwell_modeset_commit_cdclk; dev_priv->display.modeset_calc_cdclk = broadwell_modeset_calc_cdclk; } } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { dev_priv->display.modeset_commit_cdclk = valleyview_modeset_commit_cdclk; dev_priv->display.modeset_calc_cdclk = valleyview_modeset_calc_cdclk; } else if (IS_BROXTON(dev_priv)) { dev_priv->display.modeset_commit_cdclk = broxton_modeset_commit_cdclk; dev_priv->display.modeset_calc_cdclk = broxton_modeset_calc_cdclk; } switch (INTEL_INFO(dev_priv)->gen) { case 2: dev_priv->display.queue_flip = intel_gen2_queue_flip; break; case 3: dev_priv->display.queue_flip = intel_gen3_queue_flip; break; case 4: case 5: dev_priv->display.queue_flip = intel_gen4_queue_flip; break; case 6: dev_priv->display.queue_flip = intel_gen6_queue_flip; break; case 7: case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */ dev_priv->display.queue_flip = intel_gen7_queue_flip; break; case 9: /* Drop through - unsupported since execlist only. */ default: /* Default just returns -ENODEV to indicate unsupported */ dev_priv->display.queue_flip = intel_default_queue_flip; } } /* * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend, * resume, or other times. This quirk makes sure that's the case for * affected systems. */ static void quirk_pipea_force(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->quirks |= QUIRK_PIPEA_FORCE; DRM_INFO("applying pipe a force quirk\n"); } static void quirk_pipeb_force(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->quirks |= QUIRK_PIPEB_FORCE; DRM_INFO("applying pipe b force quirk\n"); } /* * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason */ static void quirk_ssc_force_disable(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE; DRM_INFO("applying lvds SSC disable quirk\n"); } /* * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight * brightness value */ static void quirk_invert_brightness(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS; DRM_INFO("applying inverted panel brightness quirk\n"); } /* Some VBT's incorrectly indicate no backlight is present */ static void quirk_backlight_present(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT; DRM_INFO("applying backlight present quirk\n"); } struct intel_quirk { int device; int subsystem_vendor; int subsystem_device; void (*hook)(struct drm_device *dev); }; /* For systems that don't have a meaningful PCI subdevice/subvendor ID */ struct intel_dmi_quirk { void (*hook)(struct drm_device *dev); const struct dmi_system_id (*dmi_id_list)[]; }; static int intel_dmi_reverse_brightness(const struct dmi_system_id *id) { DRM_INFO("Backlight polarity reversed on %s\n", id->ident); return 1; } static const struct intel_dmi_quirk intel_dmi_quirks[] = { { .dmi_id_list = &(const struct dmi_system_id[]) { { .callback = intel_dmi_reverse_brightness, .ident = "NCR Corporation", .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, ""), }, }, { } /* terminating entry */ }, .hook = quirk_invert_brightness, }, }; static struct intel_quirk intel_quirks[] = { /* Toshiba Protege R-205, S-209 needs pipe A force quirk */ { 0x2592, 0x1179, 0x0001, quirk_pipea_force }, /* ThinkPad T60 needs pipe A force quirk (bug #16494) */ { 0x2782, 0x17aa, 0x201a, quirk_pipea_force }, /* 830 needs to leave pipe A & dpll A up */ { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, /* 830 needs to leave pipe B & dpll B up */ { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force }, /* Lenovo U160 cannot use SSC on LVDS */ { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable }, /* Sony Vaio Y cannot use SSC on LVDS */ { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable }, /* Acer Aspire 5734Z must invert backlight brightness */ { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness }, /* Acer/eMachines G725 */ { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness }, /* Acer/eMachines e725 */ { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness }, /* Acer/Packard Bell NCL20 */ { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness }, /* Acer Aspire 4736Z */ { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness }, /* Acer Aspire 5336 */ { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness }, /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */ { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present }, /* Acer C720 Chromebook (Core i3 4005U) */ { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present }, /* Apple Macbook 2,1 (Core 2 T7400) */ { 0x27a2, 0x8086, 0x7270, quirk_backlight_present }, /* Apple Macbook 4,1 */ { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present }, /* Toshiba CB35 Chromebook (Celeron 2955U) */ { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present }, /* HP Chromebook 14 (Celeron 2955U) */ { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present }, /* Dell Chromebook 11 */ { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present }, /* Dell Chromebook 11 (2015 version) */ { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present }, }; static void intel_init_quirks(struct drm_device *dev) { struct pci_dev *d = dev->pdev; int i; for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) { struct intel_quirk *q = &intel_quirks[i]; if (d->device == q->device && (d->subsystem_vendor == q->subsystem_vendor || q->subsystem_vendor == PCI_ANY_ID) && (d->subsystem_device == q->subsystem_device || q->subsystem_device == PCI_ANY_ID)) q->hook(dev); } for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) { if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0) intel_dmi_quirks[i].hook(dev); } } /* Disable the VGA plane that we never use */ static void i915_disable_vga(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u8 sr1; i915_reg_t vga_reg = i915_vgacntrl_reg(dev); /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */ vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); outb(SR01, VGA_SR_INDEX); sr1 = inb(VGA_SR_DATA); outb(sr1 | 1<<5, VGA_SR_DATA); vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); udelay(300); I915_WRITE(vga_reg, VGA_DISP_DISABLE); POSTING_READ(vga_reg); } void intel_modeset_init_hw(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; intel_update_cdclk(dev); dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq; intel_init_clock_gating(dev); intel_enable_gt_powersave(dev); } /* * Calculate what we think the watermarks should be for the state we've read * out of the hardware and then immediately program those watermarks so that * we ensure the hardware settings match our internal state. * * We can calculate what we think WM's should be by creating a duplicate of the * current state (which was constructed during hardware readout) and running it * through the atomic check code to calculate new watermark values in the * state object. */ static void sanitize_watermarks(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_atomic_state *state; struct drm_crtc *crtc; struct drm_crtc_state *cstate; struct drm_modeset_acquire_ctx ctx; int ret; int i; /* Only supported on platforms that use atomic watermark design */ if (!dev_priv->display.optimize_watermarks) return; /* * We need to hold connection_mutex before calling duplicate_state so * that the connector loop is protected. */ drm_modeset_acquire_init(&ctx, 0); retry: ret = drm_modeset_lock_all_ctx(dev, &ctx); if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); goto retry; } else if (WARN_ON(ret)) { goto fail; } state = drm_atomic_helper_duplicate_state(dev, &ctx); if (WARN_ON(IS_ERR(state))) goto fail; /* * Hardware readout is the only time we don't want to calculate * intermediate watermarks (since we don't trust the current * watermarks). */ to_intel_atomic_state(state)->skip_intermediate_wm = true; ret = intel_atomic_check(dev, state); if (ret) { /* * If we fail here, it means that the hardware appears to be * programmed in a way that shouldn't be possible, given our * understanding of watermark requirements. This might mean a * mistake in the hardware readout code or a mistake in the * watermark calculations for a given platform. Raise a WARN * so that this is noticeable. * * If this actually happens, we'll have to just leave the * BIOS-programmed watermarks untouched and hope for the best. */ WARN(true, "Could not determine valid watermarks for inherited state\n"); goto fail; } /* Write calculated watermark values back */ to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config; for_each_crtc_in_state(state, crtc, cstate, i) { struct intel_crtc_state *cs = to_intel_crtc_state(cstate); cs->wm.need_postvbl_update = true; dev_priv->display.optimize_watermarks(cs); } drm_atomic_state_free(state); fail: drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); } void intel_modeset_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct i915_ggtt *ggtt = &dev_priv->ggtt; int sprite, ret; enum pipe pipe; struct intel_crtc *crtc; drm_mode_config_init(dev); dev->mode_config.min_width = 0; dev->mode_config.min_height = 0; dev->mode_config.preferred_depth = 24; dev->mode_config.prefer_shadow = 1; dev->mode_config.allow_fb_modifiers = true; dev->mode_config.funcs = &intel_mode_funcs; intel_init_quirks(dev); intel_init_pm(dev); if (INTEL_INFO(dev)->num_pipes == 0) return; /* * There may be no VBT; and if the BIOS enabled SSC we can * just keep using it to avoid unnecessary flicker. Whereas if the * BIOS isn't using it, don't assume it will work even if the VBT * indicates as much. */ if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) { bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) & DREF_SSC1_ENABLE); if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n", bios_lvds_use_ssc ? "en" : "dis", dev_priv->vbt.lvds_use_ssc ? "en" : "dis"); dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; } } if (IS_GEN2(dev)) { dev->mode_config.max_width = 2048; dev->mode_config.max_height = 2048; } else if (IS_GEN3(dev)) { dev->mode_config.max_width = 4096; dev->mode_config.max_height = 4096; } else { dev->mode_config.max_width = 8192; dev->mode_config.max_height = 8192; } if (IS_845G(dev) || IS_I865G(dev)) { dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512; dev->mode_config.cursor_height = 1023; } else if (IS_GEN2(dev)) { dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH; dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT; } else { dev->mode_config.cursor_width = MAX_CURSOR_WIDTH; dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT; } dev->mode_config.fb_base = ggtt->mappable_base; DRM_DEBUG_KMS("%d display pipe%s available.\n", INTEL_INFO(dev)->num_pipes, INTEL_INFO(dev)->num_pipes > 1 ? "s" : ""); for_each_pipe(dev_priv, pipe) { intel_crtc_init(dev, pipe); for_each_sprite(dev_priv, pipe, sprite) { ret = intel_plane_init(dev, pipe, sprite); if (ret) DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n", pipe_name(pipe), sprite_name(pipe, sprite), ret); } } intel_update_czclk(dev_priv); intel_update_rawclk(dev_priv); intel_update_cdclk(dev); intel_shared_dpll_init(dev); /* Just disable it once at startup */ i915_disable_vga(dev); intel_setup_outputs(dev); drm_modeset_lock_all(dev); intel_modeset_setup_hw_state(dev); drm_modeset_unlock_all(dev); for_each_intel_crtc(dev, crtc) { struct intel_initial_plane_config plane_config = {}; if (!crtc->active) continue; /* * Note that reserving the BIOS fb up front prevents us * from stuffing other stolen allocations like the ring * on top. This prevents some ugliness at boot time, and * can even allow for smooth boot transitions if the BIOS * fb is large enough for the active pipe configuration. */ dev_priv->display.get_initial_plane_config(crtc, &plane_config); /* * If the fb is shared between multiple heads, we'll * just get the first one. */ intel_find_initial_plane_obj(crtc, &plane_config); } /* * Make sure hardware watermarks really match the state we read out. * Note that we need to do this after reconstructing the BIOS fb's * since the watermark calculation done here will use pstate->fb. */ sanitize_watermarks(dev); } static void intel_enable_pipe_a(struct drm_device *dev) { struct intel_connector *connector; struct drm_connector *crt = NULL; struct intel_load_detect_pipe load_detect_temp; struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx; /* We can't just switch on the pipe A, we need to set things up with a * proper mode and output configuration. As a gross hack, enable pipe A * by enabling the load detect pipe once. */ for_each_intel_connector(dev, connector) { if (connector->encoder->type == INTEL_OUTPUT_ANALOG) { crt = &connector->base; break; } } if (!crt) return; if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx)) intel_release_load_detect_pipe(crt, &load_detect_temp, ctx); } static bool intel_check_plane_mapping(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 val; if (INTEL_INFO(dev)->num_pipes == 1) return true; val = I915_READ(DSPCNTR(!crtc->plane)); if ((val & DISPLAY_PLANE_ENABLE) && (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe)) return false; return true; } static bool intel_crtc_has_encoders(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct intel_encoder *encoder; for_each_encoder_on_crtc(dev, &crtc->base, encoder) return true; return false; } static bool intel_encoder_has_connectors(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct intel_connector *connector; for_each_connector_on_encoder(dev, &encoder->base, connector) return true; return false; } static void intel_sanitize_crtc(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; /* Clear any frame start delays used for debugging left by the BIOS */ if (!transcoder_is_dsi(cpu_transcoder)) { i915_reg_t reg = PIPECONF(cpu_transcoder); I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK); } /* restore vblank interrupts to correct state */ drm_crtc_vblank_reset(&crtc->base); if (crtc->active) { struct intel_plane *plane; drm_crtc_vblank_on(&crtc->base); /* Disable everything but the primary plane */ for_each_intel_plane_on_crtc(dev, crtc, plane) { if (plane->base.type == DRM_PLANE_TYPE_PRIMARY) continue; plane->disable_plane(&plane->base, &crtc->base); } } /* We need to sanitize the plane -> pipe mapping first because this will * disable the crtc (and hence change the state) if it is wrong. Note * that gen4+ has a fixed plane -> pipe mapping. */ if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) { bool plane; DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n", crtc->base.base.id); /* Pipe has the wrong plane attached and the plane is active. * Temporarily change the plane mapping and disable everything * ... */ plane = crtc->plane; to_intel_plane_state(crtc->base.primary->state)->visible = true; crtc->plane = !plane; intel_crtc_disable_noatomic(&crtc->base); crtc->plane = plane; } if (dev_priv->quirks & QUIRK_PIPEA_FORCE && crtc->pipe == PIPE_A && !crtc->active) { /* BIOS forgot to enable pipe A, this mostly happens after * resume. Force-enable the pipe to fix this, the update_dpms * call below we restore the pipe to the right state, but leave * the required bits on. */ intel_enable_pipe_a(dev); } /* Adjust the state of the output pipe according to whether we * have active connectors/encoders. */ if (crtc->active && !intel_crtc_has_encoders(crtc)) intel_crtc_disable_noatomic(&crtc->base); if (crtc->active || HAS_GMCH_DISPLAY(dev)) { /* * We start out with underrun reporting disabled to avoid races. * For correct bookkeeping mark this on active crtcs. * * Also on gmch platforms we dont have any hardware bits to * disable the underrun reporting. Which means we need to start * out with underrun reporting disabled also on inactive pipes, * since otherwise we'll complain about the garbage we read when * e.g. coming up after runtime pm. * * No protection against concurrent access is required - at * worst a fifo underrun happens which also sets this to false. */ crtc->cpu_fifo_underrun_disabled = true; crtc->pch_fifo_underrun_disabled = true; } } static void intel_sanitize_encoder(struct intel_encoder *encoder) { struct intel_connector *connector; struct drm_device *dev = encoder->base.dev; /* We need to check both for a crtc link (meaning that the * encoder is active and trying to read from a pipe) and the * pipe itself being active. */ bool has_active_crtc = encoder->base.crtc && to_intel_crtc(encoder->base.crtc)->active; if (intel_encoder_has_connectors(encoder) && !has_active_crtc) { DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n", encoder->base.base.id, encoder->base.name); /* Connector is active, but has no active pipe. This is * fallout from our resume register restoring. Disable * the encoder manually again. */ if (encoder->base.crtc) { DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n", encoder->base.base.id, encoder->base.name); encoder->disable(encoder); if (encoder->post_disable) encoder->post_disable(encoder); } encoder->base.crtc = NULL; /* Inconsistent output/port/pipe state happens presumably due to * a bug in one of the get_hw_state functions. Or someplace else * in our code, like the register restore mess on resume. Clamp * things to off as a safer default. */ for_each_intel_connector(dev, connector) { if (connector->encoder != encoder) continue; connector->base.dpms = DRM_MODE_DPMS_OFF; connector->base.encoder = NULL; } } /* Enabled encoders without active connectors will be fixed in * the crtc fixup. */ } void i915_redisable_vga_power_on(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; i915_reg_t vga_reg = i915_vgacntrl_reg(dev); if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) { DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n"); i915_disable_vga(dev); } } void i915_redisable_vga(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* This function can be called both from intel_modeset_setup_hw_state or * at a very early point in our resume sequence, where the power well * structures are not yet restored. Since this function is at a very * paranoid "someone might have enabled VGA while we were not looking" * level, just check if the power well is enabled instead of trying to * follow the "don't touch the power well if we don't need it" policy * the rest of the driver uses. */ if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA)) return; i915_redisable_vga_power_on(dev); intel_display_power_put(dev_priv, POWER_DOMAIN_VGA); } static bool primary_get_hw_state(struct intel_plane *plane) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE; } /* FIXME read out full plane state for all planes */ static void readout_plane_state(struct intel_crtc *crtc) { struct drm_plane *primary = crtc->base.primary; struct intel_plane_state *plane_state = to_intel_plane_state(primary->state); plane_state->visible = crtc->active && primary_get_hw_state(to_intel_plane(primary)); if (plane_state->visible) crtc->base.state->plane_mask |= 1 << drm_plane_index(primary); } static void intel_modeset_readout_hw_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe; struct intel_crtc *crtc; struct intel_encoder *encoder; struct intel_connector *connector; int i; dev_priv->active_crtcs = 0; for_each_intel_crtc(dev, crtc) { struct intel_crtc_state *crtc_state = crtc->config; int pixclk = 0; __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base); memset(crtc_state, 0, sizeof(*crtc_state)); crtc_state->base.crtc = &crtc->base; crtc_state->base.active = crtc_state->base.enable = dev_priv->display.get_pipe_config(crtc, crtc_state); crtc->base.enabled = crtc_state->base.enable; crtc->active = crtc_state->base.active; if (crtc_state->base.active) { dev_priv->active_crtcs |= 1 << crtc->pipe; if (IS_BROADWELL(dev_priv)) { pixclk = ilk_pipe_pixel_rate(crtc_state); /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ if (crtc_state->ips_enabled) pixclk = DIV_ROUND_UP(pixclk * 100, 95); } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv)) pixclk = crtc_state->base.adjusted_mode.crtc_clock; else WARN_ON(dev_priv->display.modeset_calc_cdclk); } dev_priv->min_pixclk[crtc->pipe] = pixclk; readout_plane_state(crtc); DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n", crtc->base.base.id, crtc->active ? "enabled" : "disabled"); } for (i = 0; i < dev_priv->num_shared_dpll; i++) { struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; pll->on = pll->funcs.get_hw_state(dev_priv, pll, &pll->config.hw_state); pll->config.crtc_mask = 0; for_each_intel_crtc(dev, crtc) { if (crtc->active && crtc->config->shared_dpll == pll) pll->config.crtc_mask |= 1 << crtc->pipe; } pll->active_mask = pll->config.crtc_mask; DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n", pll->name, pll->config.crtc_mask, pll->on); } for_each_intel_encoder(dev, encoder) { pipe = 0; if (encoder->get_hw_state(encoder, &pipe)) { crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); encoder->base.crtc = &crtc->base; encoder->get_config(encoder, crtc->config); } else { encoder->base.crtc = NULL; } DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", encoder->base.base.id, encoder->base.name, encoder->base.crtc ? "enabled" : "disabled", pipe_name(pipe)); } for_each_intel_connector(dev, connector) { if (connector->get_hw_state(connector)) { connector->base.dpms = DRM_MODE_DPMS_ON; encoder = connector->encoder; connector->base.encoder = &encoder->base; if (encoder->base.crtc && encoder->base.crtc->state->active) { /* * This has to be done during hardware readout * because anything calling .crtc_disable may * rely on the connector_mask being accurate. */ encoder->base.crtc->state->connector_mask |= 1 << drm_connector_index(&connector->base); encoder->base.crtc->state->encoder_mask |= 1 << drm_encoder_index(&encoder->base); } } else { connector->base.dpms = DRM_MODE_DPMS_OFF; connector->base.encoder = NULL; } DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n", connector->base.base.id, connector->base.name, connector->base.encoder ? "enabled" : "disabled"); } for_each_intel_crtc(dev, crtc) { crtc->base.hwmode = crtc->config->base.adjusted_mode; memset(&crtc->base.mode, 0, sizeof(crtc->base.mode)); if (crtc->base.state->active) { intel_mode_from_pipe_config(&crtc->base.mode, crtc->config); intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config); WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode)); /* * The initial mode needs to be set in order to keep * the atomic core happy. It wants a valid mode if the * crtc's enabled, so we do the above call. * * At this point some state updated by the connectors * in their ->detect() callback has not run yet, so * no recalculation can be done yet. * * Even if we could do a recalculation and modeset * right now it would cause a double modeset if * fbdev or userspace chooses a different initial mode. * * If that happens, someone indicated they wanted a * mode change, which means it's safe to do a full * recalculation. */ crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED; drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode); update_scanline_offset(crtc); } intel_pipe_config_sanity_check(dev_priv, crtc->config); } } /* Scan out the current hw modeset state, * and sanitizes it to the current state */ static void intel_modeset_setup_hw_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe; struct intel_crtc *crtc; struct intel_encoder *encoder; int i; intel_modeset_readout_hw_state(dev); /* HW state is read out, now we need to sanitize this mess. */ for_each_intel_encoder(dev, encoder) { intel_sanitize_encoder(encoder); } for_each_pipe(dev_priv, pipe) { crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); intel_sanitize_crtc(crtc); intel_dump_pipe_config(crtc, crtc->config, "[setup_hw_state]"); } intel_modeset_update_connector_atomic_state(dev); for (i = 0; i < dev_priv->num_shared_dpll; i++) { struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; if (!pll->on || pll->active_mask) continue; DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name); pll->funcs.disable(dev_priv, pll); pll->on = false; } if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) vlv_wm_get_hw_state(dev); else if (IS_GEN9(dev)) skl_wm_get_hw_state(dev); else if (HAS_PCH_SPLIT(dev)) ilk_wm_get_hw_state(dev); for_each_intel_crtc(dev, crtc) { unsigned long put_domains; put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config); if (WARN_ON(put_domains)) modeset_put_power_domains(dev_priv, put_domains); } intel_display_set_init_power(dev_priv, false); intel_fbc_init_pipe_state(dev_priv); } void intel_display_resume(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_atomic_state *state = dev_priv->modeset_restore_state; struct drm_modeset_acquire_ctx ctx; int ret; bool setup = false; dev_priv->modeset_restore_state = NULL; /* * This is a cludge because with real atomic modeset mode_config.mutex * won't be taken. Unfortunately some probed state like * audio_codec_enable is still protected by mode_config.mutex, so lock * it here for now. */ mutex_lock(&dev->mode_config.mutex); drm_modeset_acquire_init(&ctx, 0); retry: ret = drm_modeset_lock_all_ctx(dev, &ctx); if (ret == 0 && !setup) { setup = true; intel_modeset_setup_hw_state(dev); i915_redisable_vga(dev); } if (ret == 0 && state) { struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; int i; state->acquire_ctx = &ctx; for_each_crtc_in_state(state, crtc, crtc_state, i) { /* * Force recalculation even if we restore * current state. With fast modeset this may not result * in a modeset when the state is compatible. */ crtc_state->mode_changed = true; } ret = drm_atomic_commit(state); } if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); goto retry; } drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); mutex_unlock(&dev->mode_config.mutex); if (ret) { DRM_ERROR("Restoring old state failed with %i\n", ret); drm_atomic_state_free(state); } } void intel_modeset_gem_init(struct drm_device *dev) { struct drm_crtc *c; struct drm_i915_gem_object *obj; int ret; intel_init_gt_powersave(dev); intel_modeset_init_hw(dev); intel_setup_overlay(dev); /* * Make sure any fbs we allocated at startup are properly * pinned & fenced. When we do the allocation it's too early * for this. */ for_each_crtc(dev, c) { obj = intel_fb_obj(c->primary->fb); if (obj == NULL) continue; mutex_lock(&dev->struct_mutex); ret = intel_pin_and_fence_fb_obj(c->primary->fb, c->primary->state->rotation); mutex_unlock(&dev->struct_mutex); if (ret) { DRM_ERROR("failed to pin boot fb on pipe %d\n", to_intel_crtc(c)->pipe); drm_framebuffer_unreference(c->primary->fb); c->primary->fb = NULL; c->primary->crtc = c->primary->state->crtc = NULL; update_state_fb(c->primary); c->state->plane_mask &= ~(1 << drm_plane_index(c->primary)); } } intel_backlight_register(dev); } void intel_connector_unregister(struct intel_connector *intel_connector) { struct drm_connector *connector = &intel_connector->base; intel_panel_destroy_backlight(connector); drm_connector_unregister(connector); } void intel_modeset_cleanup(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_connector *connector; intel_disable_gt_powersave(dev); intel_backlight_unregister(dev); /* * Interrupts and polling as the first thing to avoid creating havoc. * Too much stuff here (turning of connectors, ...) would * experience fancy races otherwise. */ intel_irq_uninstall(dev_priv); /* * Due to the hpd irq storm handling the hotplug work can re-arm the * poll handlers. Hence disable polling after hpd handling is shut down. */ drm_kms_helper_poll_fini(dev); intel_unregister_dsm_handler(); intel_fbc_global_disable(dev_priv); /* flush any delayed tasks or pending work */ flush_scheduled_work(); /* destroy the backlight and sysfs files before encoders/connectors */ for_each_intel_connector(dev, connector) connector->unregister(connector); drm_mode_config_cleanup(dev); intel_cleanup_overlay(dev); intel_cleanup_gt_powersave(dev); intel_teardown_gmbus(dev); } /* * Return which encoder is currently attached for connector. */ struct drm_encoder *intel_best_encoder(struct drm_connector *connector) { return &intel_attached_encoder(connector)->base; } void intel_connector_attach_encoder(struct intel_connector *connector, struct intel_encoder *encoder) { connector->encoder = encoder; drm_mode_connector_attach_encoder(&connector->base, &encoder->base); } /* * set vga decode state - true == enable VGA decode */ int intel_modeset_vga_set_state(struct drm_device *dev, bool state) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL; u16 gmch_ctrl; if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) { DRM_ERROR("failed to read control word\n"); return -EIO; } if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state) return 0; if (state) gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; else gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) { DRM_ERROR("failed to write control word\n"); return -EIO; } return 0; } struct intel_display_error_state { u32 power_well_driver; int num_transcoders; struct intel_cursor_error_state { u32 control; u32 position; u32 base; u32 size; } cursor[I915_MAX_PIPES]; struct intel_pipe_error_state { bool power_domain_on; u32 source; u32 stat; } pipe[I915_MAX_PIPES]; struct intel_plane_error_state { u32 control; u32 stride; u32 size; u32 pos; u32 addr; u32 surface; u32 tile_offset; } plane[I915_MAX_PIPES]; struct intel_transcoder_error_state { bool power_domain_on; enum transcoder cpu_transcoder; u32 conf; u32 htotal; u32 hblank; u32 hsync; u32 vtotal; u32 vblank; u32 vsync; } transcoder[4]; }; struct intel_display_error_state * intel_display_capture_error_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_display_error_state *error; int transcoders[] = { TRANSCODER_A, TRANSCODER_B, TRANSCODER_C, TRANSCODER_EDP, }; int i; if (INTEL_INFO(dev)->num_pipes == 0) return NULL; error = kzalloc(sizeof(*error), GFP_ATOMIC); if (error == NULL) return NULL; if (IS_HASWELL(dev) || IS_BROADWELL(dev)) error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER); for_each_pipe(dev_priv, i) { error->pipe[i].power_domain_on = __intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(i)); if (!error->pipe[i].power_domain_on) continue; error->cursor[i].control = I915_READ(CURCNTR(i)); error->cursor[i].position = I915_READ(CURPOS(i)); error->cursor[i].base = I915_READ(CURBASE(i)); error->plane[i].control = I915_READ(DSPCNTR(i)); error->plane[i].stride = I915_READ(DSPSTRIDE(i)); if (INTEL_INFO(dev)->gen <= 3) { error->plane[i].size = I915_READ(DSPSIZE(i)); error->plane[i].pos = I915_READ(DSPPOS(i)); } if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) error->plane[i].addr = I915_READ(DSPADDR(i)); if (INTEL_INFO(dev)->gen >= 4) { error->plane[i].surface = I915_READ(DSPSURF(i)); error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); } error->pipe[i].source = I915_READ(PIPESRC(i)); if (HAS_GMCH_DISPLAY(dev)) error->pipe[i].stat = I915_READ(PIPESTAT(i)); } /* Note: this does not include DSI transcoders. */ error->num_transcoders = INTEL_INFO(dev)->num_pipes; if (HAS_DDI(dev_priv)) error->num_transcoders++; /* Account for eDP. */ for (i = 0; i < error->num_transcoders; i++) { enum transcoder cpu_transcoder = transcoders[i]; error->transcoder[i].power_domain_on = __intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_TRANSCODER(cpu_transcoder)); if (!error->transcoder[i].power_domain_on) continue; error->transcoder[i].cpu_transcoder = cpu_transcoder; error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder)); error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder)); error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder)); error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder)); error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder)); error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder)); error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder)); } return error; } #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) void intel_display_print_error_state(struct drm_i915_error_state_buf *m, struct drm_device *dev, struct intel_display_error_state *error) { struct drm_i915_private *dev_priv = dev->dev_private; int i; if (!error) return; err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes); if (IS_HASWELL(dev) || IS_BROADWELL(dev)) err_printf(m, "PWR_WELL_CTL2: %08x\n", error->power_well_driver); for_each_pipe(dev_priv, i) { err_printf(m, "Pipe [%d]:\n", i); err_printf(m, " Power: %s\n", onoff(error->pipe[i].power_domain_on)); err_printf(m, " SRC: %08x\n", error->pipe[i].source); err_printf(m, " STAT: %08x\n", error->pipe[i].stat); err_printf(m, "Plane [%d]:\n", i); err_printf(m, " CNTR: %08x\n", error->plane[i].control); err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); if (INTEL_INFO(dev)->gen <= 3) { err_printf(m, " SIZE: %08x\n", error->plane[i].size); err_printf(m, " POS: %08x\n", error->plane[i].pos); } if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) err_printf(m, " ADDR: %08x\n", error->plane[i].addr); if (INTEL_INFO(dev)->gen >= 4) { err_printf(m, " SURF: %08x\n", error->plane[i].surface); err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); } err_printf(m, "Cursor [%d]:\n", i); err_printf(m, " CNTR: %08x\n", error->cursor[i].control); err_printf(m, " POS: %08x\n", error->cursor[i].position); err_printf(m, " BASE: %08x\n", error->cursor[i].base); } for (i = 0; i < error->num_transcoders; i++) { err_printf(m, "CPU transcoder: %s\n", transcoder_name(error->transcoder[i].cpu_transcoder)); err_printf(m, " Power: %s\n", onoff(error->transcoder[i].power_domain_on)); err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); } }