/* * Copyright (c) International Business Machines Corp., 2006 * Copyright (c) Nokia Corporation, 2006, 2007 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See * the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Author: Artem Bityutskiy (Битюцкий Артём) */ /* * UBI input/output sub-system. * * This sub-system provides a uniform way to work with all kinds of the * underlying MTD devices. It also implements handy functions for reading and * writing UBI headers. * * We are trying to have a paranoid mindset and not to trust to what we read * from the flash media in order to be more secure and robust. So this * sub-system validates every single header it reads from the flash media. * * Some words about how the eraseblock headers are stored. * * The erase counter header is always stored at offset zero. By default, the * VID header is stored after the EC header at the closest aligned offset * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID * header at the closest aligned offset. But this default layout may be * changed. For example, for different reasons (e.g., optimization) UBI may be * asked to put the VID header at further offset, and even at an unaligned * offset. Of course, if the offset of the VID header is unaligned, UBI adds * proper padding in front of it. Data offset may also be changed but it has to * be aligned. * * About minimal I/O units. In general, UBI assumes flash device model where * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the * @ubi->mtd->writesize field. But as an exception, UBI admits of using another * (smaller) minimal I/O unit size for EC and VID headers to make it possible * to do different optimizations. * * This is extremely useful in case of NAND flashes which admit of several * write operations to one NAND page. In this case UBI can fit EC and VID * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI * users. * * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID * headers. * * Q: why not just to treat sub-page as a minimal I/O unit of this flash * device, e.g., make @ubi->min_io_size = 512 in the example above? * * A: because when writing a sub-page, MTD still writes a full 2K page but the * bytes which are not relevant to the sub-page are 0xFF. So, basically, * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. * Thus, we prefer to use sub-pages only for EC and VID headers. * * As it was noted above, the VID header may start at a non-aligned offset. * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, * the VID header may reside at offset 1984 which is the last 64 bytes of the * last sub-page (EC header is always at offset zero). This causes some * difficulties when reading and writing VID headers. * * Suppose we have a 64-byte buffer and we read a VID header at it. We change * the data and want to write this VID header out. As we can only write in * 512-byte chunks, we have to allocate one more buffer and copy our VID header * to offset 448 of this buffer. * * The I/O sub-system does the following trick in order to avoid this extra * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. * When the VID header is being written out, it shifts the VID header pointer * back and writes the whole sub-page. */ #include #include #include #include "ubi.h" #ifdef CONFIG_MTD_UBI_DEBUG static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum); static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, const struct ubi_ec_hdr *ec_hdr); static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, const struct ubi_vid_hdr *vid_hdr); #else #define paranoid_check_not_bad(ubi, pnum) 0 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0 #endif /** * ubi_io_read - read data from a physical eraseblock. * @ubi: UBI device description object * @buf: buffer where to store the read data * @pnum: physical eraseblock number to read from * @offset: offset within the physical eraseblock from where to read * @len: how many bytes to read * * This function reads data from offset @offset of physical eraseblock @pnum * and stores the read data in the @buf buffer. The following return codes are * possible: * * o %0 if all the requested data were successfully read; * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but * correctable bit-flips were detected; this is harmless but may indicate * that this eraseblock may become bad soon (but do not have to); * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for * example it can be an ECC error in case of NAND; this most probably means * that the data is corrupted; * o %-EIO if some I/O error occurred; * o other negative error codes in case of other errors. */ int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, int len) { int err, retries = 0; size_t read; loff_t addr; dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); ubi_assert(pnum >= 0 && pnum < ubi->peb_count); ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); ubi_assert(len > 0); err = paranoid_check_not_bad(ubi, pnum); if (err) return err; /* * Deliberately corrupt the buffer to improve robustness. Indeed, if we * do not do this, the following may happen: * 1. The buffer contains data from previous operation, e.g., read from * another PEB previously. The data looks like expected, e.g., if we * just do not read anything and return - the caller would not * notice this. E.g., if we are reading a VID header, the buffer may * contain a valid VID header from another PEB. * 2. The driver is buggy and returns us success or -EBADMSG or * -EUCLEAN, but it does not actually put any data to the buffer. * * This may confuse UBI or upper layers - they may think the buffer * contains valid data while in fact it is just old data. This is * especially possible because UBI (and UBIFS) relies on CRC, and * treats data as correct even in case of ECC errors if the CRC is * correct. * * Try to prevent this situation by changing the first byte of the * buffer. */ *((uint8_t *)buf) ^= 0xFF; addr = (loff_t)pnum * ubi->peb_size + offset; retry: err = mtd_read(ubi->mtd, addr, len, &read, buf); if (err) { const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; if (mtd_is_bitflip(err)) { /* * -EUCLEAN is reported if there was a bit-flip which * was corrected, so this is harmless. * * We do not report about it here unless debugging is * enabled. A corresponding message will be printed * later, when it is has been scrubbed. */ dbg_msg("fixable bit-flip detected at PEB %d", pnum); ubi_assert(len == read); return UBI_IO_BITFLIPS; } if (retries++ < UBI_IO_RETRIES) { dbg_io("error %d%s while reading %d bytes from PEB " "%d:%d, read only %zd bytes, retry", err, errstr, len, pnum, offset, read); yield(); goto retry; } ubi_err("error %d%s while reading %d bytes from PEB %d:%d, " "read %zd bytes", err, errstr, len, pnum, offset, read); dump_stack(); /* * The driver should never return -EBADMSG if it failed to read * all the requested data. But some buggy drivers might do * this, so we change it to -EIO. */ if (read != len && mtd_is_eccerr(err)) { ubi_assert(0); err = -EIO; } } else { ubi_assert(len == read); if (ubi_dbg_is_bitflip(ubi)) { dbg_gen("bit-flip (emulated)"); err = UBI_IO_BITFLIPS; } } return err; } /** * ubi_io_write - write data to a physical eraseblock. * @ubi: UBI device description object * @buf: buffer with the data to write * @pnum: physical eraseblock number to write to * @offset: offset within the physical eraseblock where to write * @len: how many bytes to write * * This function writes @len bytes of data from buffer @buf to offset @offset * of physical eraseblock @pnum. If all the data were successfully written, * zero is returned. If an error occurred, this function returns a negative * error code. If %-EIO is returned, the physical eraseblock most probably went * bad. * * Note, in case of an error, it is possible that something was still written * to the flash media, but may be some garbage. */ int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, int len) { int err; size_t written; loff_t addr; dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); ubi_assert(pnum >= 0 && pnum < ubi->peb_count); ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); ubi_assert(offset % ubi->hdrs_min_io_size == 0); ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); if (ubi->ro_mode) { ubi_err("read-only mode"); return -EROFS; } /* The below has to be compiled out if paranoid checks are disabled */ err = paranoid_check_not_bad(ubi, pnum); if (err) return err; /* The area we are writing to has to contain all 0xFF bytes */ err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); if (err) return err; if (offset >= ubi->leb_start) { /* * We write to the data area of the physical eraseblock. Make * sure it has valid EC and VID headers. */ err = paranoid_check_peb_ec_hdr(ubi, pnum); if (err) return err; err = paranoid_check_peb_vid_hdr(ubi, pnum); if (err) return err; } if (ubi_dbg_is_write_failure(ubi)) { dbg_err("cannot write %d bytes to PEB %d:%d " "(emulated)", len, pnum, offset); dump_stack(); return -EIO; } addr = (loff_t)pnum * ubi->peb_size + offset; err = mtd_write(ubi->mtd, addr, len, &written, buf); if (err) { ubi_err("error %d while writing %d bytes to PEB %d:%d, written " "%zd bytes", err, len, pnum, offset, written); dump_stack(); ubi_dump_flash(ubi, pnum, offset, len); } else ubi_assert(written == len); if (!err) { err = ubi_dbg_check_write(ubi, buf, pnum, offset, len); if (err) return err; /* * Since we always write sequentially, the rest of the PEB has * to contain only 0xFF bytes. */ offset += len; len = ubi->peb_size - offset; if (len) err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); } return err; } /** * erase_callback - MTD erasure call-back. * @ei: MTD erase information object. * * Note, even though MTD erase interface is asynchronous, all the current * implementations are synchronous anyway. */ static void erase_callback(struct erase_info *ei) { wake_up_interruptible((wait_queue_head_t *)ei->priv); } /** * do_sync_erase - synchronously erase a physical eraseblock. * @ubi: UBI device description object * @pnum: the physical eraseblock number to erase * * This function synchronously erases physical eraseblock @pnum and returns * zero in case of success and a negative error code in case of failure. If * %-EIO is returned, the physical eraseblock most probably went bad. */ static int do_sync_erase(struct ubi_device *ubi, int pnum) { int err, retries = 0; struct erase_info ei; wait_queue_head_t wq; dbg_io("erase PEB %d", pnum); ubi_assert(pnum >= 0 && pnum < ubi->peb_count); if (ubi->ro_mode) { ubi_err("read-only mode"); return -EROFS; } retry: init_waitqueue_head(&wq); memset(&ei, 0, sizeof(struct erase_info)); ei.mtd = ubi->mtd; ei.addr = (loff_t)pnum * ubi->peb_size; ei.len = ubi->peb_size; ei.callback = erase_callback; ei.priv = (unsigned long)&wq; err = mtd_erase(ubi->mtd, &ei); if (err) { if (retries++ < UBI_IO_RETRIES) { dbg_io("error %d while erasing PEB %d, retry", err, pnum); yield(); goto retry; } ubi_err("cannot erase PEB %d, error %d", pnum, err); dump_stack(); return err; } err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || ei.state == MTD_ERASE_FAILED); if (err) { ubi_err("interrupted PEB %d erasure", pnum); return -EINTR; } if (ei.state == MTD_ERASE_FAILED) { if (retries++ < UBI_IO_RETRIES) { dbg_io("error while erasing PEB %d, retry", pnum); yield(); goto retry; } ubi_err("cannot erase PEB %d", pnum); dump_stack(); return -EIO; } err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size); if (err) return err; if (ubi_dbg_is_erase_failure(ubi)) { dbg_err("cannot erase PEB %d (emulated)", pnum); return -EIO; } return 0; } /* Patterns to write to a physical eraseblock when torturing it */ static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; /** * torture_peb - test a supposedly bad physical eraseblock. * @ubi: UBI device description object * @pnum: the physical eraseblock number to test * * This function returns %-EIO if the physical eraseblock did not pass the * test, a positive number of erase operations done if the test was * successfully passed, and other negative error codes in case of other errors. */ static int torture_peb(struct ubi_device *ubi, int pnum) { int err, i, patt_count; ubi_msg("run torture test for PEB %d", pnum); patt_count = ARRAY_SIZE(patterns); ubi_assert(patt_count > 0); mutex_lock(&ubi->buf_mutex); for (i = 0; i < patt_count; i++) { err = do_sync_erase(ubi, pnum); if (err) goto out; /* Make sure the PEB contains only 0xFF bytes */ err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); if (err) goto out; err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); if (err == 0) { ubi_err("erased PEB %d, but a non-0xFF byte found", pnum); err = -EIO; goto out; } /* Write a pattern and check it */ memset(ubi->peb_buf, patterns[i], ubi->peb_size); err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); if (err) goto out; memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); if (err) goto out; err = ubi_check_pattern(ubi->peb_buf, patterns[i], ubi->peb_size); if (err == 0) { ubi_err("pattern %x checking failed for PEB %d", patterns[i], pnum); err = -EIO; goto out; } } err = patt_count; ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum); out: mutex_unlock(&ubi->buf_mutex); if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { /* * If a bit-flip or data integrity error was detected, the test * has not passed because it happened on a freshly erased * physical eraseblock which means something is wrong with it. */ ubi_err("read problems on freshly erased PEB %d, must be bad", pnum); err = -EIO; } return err; } /** * nor_erase_prepare - prepare a NOR flash PEB for erasure. * @ubi: UBI device description object * @pnum: physical eraseblock number to prepare * * NOR flash, or at least some of them, have peculiar embedded PEB erasure * algorithm: the PEB is first filled with zeroes, then it is erased. And * filling with zeroes starts from the end of the PEB. This was observed with * Spansion S29GL512N NOR flash. * * This means that in case of a power cut we may end up with intact data at the * beginning of the PEB, and all zeroes at the end of PEB. In other words, the * EC and VID headers are OK, but a large chunk of data at the end of PEB is * zeroed. This makes UBI mistakenly treat this PEB as used and associate it * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). * * This function is called before erasing NOR PEBs and it zeroes out EC and VID * magic numbers in order to invalidate them and prevent the failures. Returns * zero in case of success and a negative error code in case of failure. */ static int nor_erase_prepare(struct ubi_device *ubi, int pnum) { int err, err1; size_t written; loff_t addr; uint32_t data = 0; /* * Note, we cannot generally define VID header buffers on stack, * because of the way we deal with these buffers (see the header * comment in this file). But we know this is a NOR-specific piece of * code, so we can do this. But yes, this is error-prone and we should * (pre-)allocate VID header buffer instead. */ struct ubi_vid_hdr vid_hdr; /* * It is important to first invalidate the EC header, and then the VID * header. Otherwise a power cut may lead to valid EC header and * invalid VID header, in which case UBI will treat this PEB as * corrupted and will try to preserve it, and print scary warnings (see * the header comment in scan.c for more information). */ addr = (loff_t)pnum * ubi->peb_size; err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); if (!err) { addr += ubi->vid_hdr_aloffset; err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); if (!err) return 0; } /* * We failed to write to the media. This was observed with Spansion * S29GL512N NOR flash. Most probably the previously eraseblock erasure * was interrupted at a very inappropriate moment, so it became * unwritable. In this case we probably anyway have garbage in this * PEB. */ err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || err1 == UBI_IO_FF) { struct ubi_ec_hdr ec_hdr; err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || err1 == UBI_IO_FF) /* * Both VID and EC headers are corrupted, so we can * safely erase this PEB and not afraid that it will be * treated as a valid PEB in case of an unclean reboot. */ return 0; } /* * The PEB contains a valid VID header, but we cannot invalidate it. * Supposedly the flash media or the driver is screwed up, so return an * error. */ ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", pnum, err, err1); ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); return -EIO; } /** * ubi_io_sync_erase - synchronously erase a physical eraseblock. * @ubi: UBI device description object * @pnum: physical eraseblock number to erase * @torture: if this physical eraseblock has to be tortured * * This function synchronously erases physical eraseblock @pnum. If @torture * flag is not zero, the physical eraseblock is checked by means of writing * different patterns to it and reading them back. If the torturing is enabled, * the physical eraseblock is erased more than once. * * This function returns the number of erasures made in case of success, %-EIO * if the erasure failed or the torturing test failed, and other negative error * codes in case of other errors. Note, %-EIO means that the physical * eraseblock is bad. */ int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) { int err, ret = 0; ubi_assert(pnum >= 0 && pnum < ubi->peb_count); err = paranoid_check_not_bad(ubi, pnum); if (err != 0) return err; if (ubi->ro_mode) { ubi_err("read-only mode"); return -EROFS; } if (ubi->nor_flash) { err = nor_erase_prepare(ubi, pnum); if (err) return err; } if (torture) { ret = torture_peb(ubi, pnum); if (ret < 0) return ret; } err = do_sync_erase(ubi, pnum); if (err) return err; return ret + 1; } /** * ubi_io_is_bad - check if a physical eraseblock is bad. * @ubi: UBI device description object * @pnum: the physical eraseblock number to check * * This function returns a positive number if the physical eraseblock is bad, * zero if not, and a negative error code if an error occurred. */ int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) { struct mtd_info *mtd = ubi->mtd; ubi_assert(pnum >= 0 && pnum < ubi->peb_count); if (ubi->bad_allowed) { int ret; ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); if (ret < 0) ubi_err("error %d while checking if PEB %d is bad", ret, pnum); else if (ret) dbg_io("PEB %d is bad", pnum); return ret; } return 0; } /** * ubi_io_mark_bad - mark a physical eraseblock as bad. * @ubi: UBI device description object * @pnum: the physical eraseblock number to mark * * This function returns zero in case of success and a negative error code in * case of failure. */ int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) { int err; struct mtd_info *mtd = ubi->mtd; ubi_assert(pnum >= 0 && pnum < ubi->peb_count); if (ubi->ro_mode) { ubi_err("read-only mode"); return -EROFS; } if (!ubi->bad_allowed) return 0; err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); if (err) ubi_err("cannot mark PEB %d bad, error %d", pnum, err); return err; } /** * validate_ec_hdr - validate an erase counter header. * @ubi: UBI device description object * @ec_hdr: the erase counter header to check * * This function returns zero if the erase counter header is OK, and %1 if * not. */ static int validate_ec_hdr(const struct ubi_device *ubi, const struct ubi_ec_hdr *ec_hdr) { long long ec; int vid_hdr_offset, leb_start; ec = be64_to_cpu(ec_hdr->ec); vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); leb_start = be32_to_cpu(ec_hdr->data_offset); if (ec_hdr->version != UBI_VERSION) { ubi_err("node with incompatible UBI version found: " "this UBI version is %d, image version is %d", UBI_VERSION, (int)ec_hdr->version); goto bad; } if (vid_hdr_offset != ubi->vid_hdr_offset) { ubi_err("bad VID header offset %d, expected %d", vid_hdr_offset, ubi->vid_hdr_offset); goto bad; } if (leb_start != ubi->leb_start) { ubi_err("bad data offset %d, expected %d", leb_start, ubi->leb_start); goto bad; } if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { ubi_err("bad erase counter %lld", ec); goto bad; } return 0; bad: ubi_err("bad EC header"); ubi_dump_ec_hdr(ec_hdr); dump_stack(); return 1; } /** * ubi_io_read_ec_hdr - read and check an erase counter header. * @ubi: UBI device description object * @pnum: physical eraseblock to read from * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter * header * @verbose: be verbose if the header is corrupted or was not found * * This function reads erase counter header from physical eraseblock @pnum and * stores it in @ec_hdr. This function also checks CRC checksum of the read * erase counter header. The following codes may be returned: * * o %0 if the CRC checksum is correct and the header was successfully read; * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected * and corrected by the flash driver; this is harmless but may indicate that * this eraseblock may become bad soon (but may be not); * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was * a data integrity error (uncorrectable ECC error in case of NAND); * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) * o a negative error code in case of failure. */ int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, struct ubi_ec_hdr *ec_hdr, int verbose) { int err, read_err; uint32_t crc, magic, hdr_crc; dbg_io("read EC header from PEB %d", pnum); ubi_assert(pnum >= 0 && pnum < ubi->peb_count); read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); if (read_err) { if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) return read_err; /* * We read all the data, but either a correctable bit-flip * occurred, or MTD reported a data integrity error * (uncorrectable ECC error in case of NAND). The former is * harmless, the later may mean that the read data is * corrupted. But we have a CRC check-sum and we will detect * this. If the EC header is still OK, we just report this as * there was a bit-flip, to force scrubbing. */ } magic = be32_to_cpu(ec_hdr->magic); if (magic != UBI_EC_HDR_MAGIC) { if (mtd_is_eccerr(read_err)) return UBI_IO_BAD_HDR_EBADMSG; /* * The magic field is wrong. Let's check if we have read all * 0xFF. If yes, this physical eraseblock is assumed to be * empty. */ if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { /* The physical eraseblock is supposedly empty */ if (verbose) ubi_warn("no EC header found at PEB %d, " "only 0xFF bytes", pnum); dbg_bld("no EC header found at PEB %d, " "only 0xFF bytes", pnum); if (!read_err) return UBI_IO_FF; else return UBI_IO_FF_BITFLIPS; } /* * This is not a valid erase counter header, and these are not * 0xFF bytes. Report that the header is corrupted. */ if (verbose) { ubi_warn("bad magic number at PEB %d: %08x instead of " "%08x", pnum, magic, UBI_EC_HDR_MAGIC); ubi_dump_ec_hdr(ec_hdr); } dbg_bld("bad magic number at PEB %d: %08x instead of " "%08x", pnum, magic, UBI_EC_HDR_MAGIC); return UBI_IO_BAD_HDR; } crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); if (hdr_crc != crc) { if (verbose) { ubi_warn("bad EC header CRC at PEB %d, calculated " "%#08x, read %#08x", pnum, crc, hdr_crc); ubi_dump_ec_hdr(ec_hdr); } dbg_bld("bad EC header CRC at PEB %d, calculated " "%#08x, read %#08x", pnum, crc, hdr_crc); if (!read_err) return UBI_IO_BAD_HDR; else return UBI_IO_BAD_HDR_EBADMSG; } /* And of course validate what has just been read from the media */ err = validate_ec_hdr(ubi, ec_hdr); if (err) { ubi_err("validation failed for PEB %d", pnum); return -EINVAL; } /* * If there was %-EBADMSG, but the header CRC is still OK, report about * a bit-flip to force scrubbing on this PEB. */ return read_err ? UBI_IO_BITFLIPS : 0; } /** * ubi_io_write_ec_hdr - write an erase counter header. * @ubi: UBI device description object * @pnum: physical eraseblock to write to * @ec_hdr: the erase counter header to write * * This function writes erase counter header described by @ec_hdr to physical * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec * field. * * This function returns zero in case of success and a negative error code in * case of failure. If %-EIO is returned, the physical eraseblock most probably * went bad. */ int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, struct ubi_ec_hdr *ec_hdr) { int err; uint32_t crc; dbg_io("write EC header to PEB %d", pnum); ubi_assert(pnum >= 0 && pnum < ubi->peb_count); ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); ec_hdr->version = UBI_VERSION; ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); ec_hdr->hdr_crc = cpu_to_be32(crc); err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); if (err) return err; err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); return err; } /** * validate_vid_hdr - validate a volume identifier header. * @ubi: UBI device description object * @vid_hdr: the volume identifier header to check * * This function checks that data stored in the volume identifier header * @vid_hdr. Returns zero if the VID header is OK and %1 if not. */ static int validate_vid_hdr(const struct ubi_device *ubi, const struct ubi_vid_hdr *vid_hdr) { int vol_type = vid_hdr->vol_type; int copy_flag = vid_hdr->copy_flag; int vol_id = be32_to_cpu(vid_hdr->vol_id); int lnum = be32_to_cpu(vid_hdr->lnum); int compat = vid_hdr->compat; int data_size = be32_to_cpu(vid_hdr->data_size); int used_ebs = be32_to_cpu(vid_hdr->used_ebs); int data_pad = be32_to_cpu(vid_hdr->data_pad); int data_crc = be32_to_cpu(vid_hdr->data_crc); int usable_leb_size = ubi->leb_size - data_pad; if (copy_flag != 0 && copy_flag != 1) { dbg_err("bad copy_flag"); goto bad; } if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || data_pad < 0) { dbg_err("negative values"); goto bad; } if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { dbg_err("bad vol_id"); goto bad; } if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { dbg_err("bad compat"); goto bad; } if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && compat != UBI_COMPAT_REJECT) { dbg_err("bad compat"); goto bad; } if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { dbg_err("bad vol_type"); goto bad; } if (data_pad >= ubi->leb_size / 2) { dbg_err("bad data_pad"); goto bad; } if (vol_type == UBI_VID_STATIC) { /* * Although from high-level point of view static volumes may * contain zero bytes of data, but no VID headers can contain * zero at these fields, because they empty volumes do not have * mapped logical eraseblocks. */ if (used_ebs == 0) { dbg_err("zero used_ebs"); goto bad; } if (data_size == 0) { dbg_err("zero data_size"); goto bad; } if (lnum < used_ebs - 1) { if (data_size != usable_leb_size) { dbg_err("bad data_size"); goto bad; } } else if (lnum == used_ebs - 1) { if (data_size == 0) { dbg_err("bad data_size at last LEB"); goto bad; } } else { dbg_err("too high lnum"); goto bad; } } else { if (copy_flag == 0) { if (data_crc != 0) { dbg_err("non-zero data CRC"); goto bad; } if (data_size != 0) { dbg_err("non-zero data_size"); goto bad; } } else { if (data_size == 0) { dbg_err("zero data_size of copy"); goto bad; } } if (used_ebs != 0) { dbg_err("bad used_ebs"); goto bad; } } return 0; bad: ubi_err("bad VID header"); ubi_dump_vid_hdr(vid_hdr); dump_stack(); return 1; } /** * ubi_io_read_vid_hdr - read and check a volume identifier header. * @ubi: UBI device description object * @pnum: physical eraseblock number to read from * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume * identifier header * @verbose: be verbose if the header is corrupted or wasn't found * * This function reads the volume identifier header from physical eraseblock * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read * volume identifier header. The error codes are the same as in * 'ubi_io_read_ec_hdr()'. * * Note, the implementation of this function is also very similar to * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. */ int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, struct ubi_vid_hdr *vid_hdr, int verbose) { int err, read_err; uint32_t crc, magic, hdr_crc; void *p; dbg_io("read VID header from PEB %d", pnum); ubi_assert(pnum >= 0 && pnum < ubi->peb_count); p = (char *)vid_hdr - ubi->vid_hdr_shift; read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, ubi->vid_hdr_alsize); if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) return read_err; magic = be32_to_cpu(vid_hdr->magic); if (magic != UBI_VID_HDR_MAGIC) { if (mtd_is_eccerr(read_err)) return UBI_IO_BAD_HDR_EBADMSG; if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { if (verbose) ubi_warn("no VID header found at PEB %d, " "only 0xFF bytes", pnum); dbg_bld("no VID header found at PEB %d, " "only 0xFF bytes", pnum); if (!read_err) return UBI_IO_FF; else return UBI_IO_FF_BITFLIPS; } if (verbose) { ubi_warn("bad magic number at PEB %d: %08x instead of " "%08x", pnum, magic, UBI_VID_HDR_MAGIC); ubi_dump_vid_hdr(vid_hdr); } dbg_bld("bad magic number at PEB %d: %08x instead of " "%08x", pnum, magic, UBI_VID_HDR_MAGIC); return UBI_IO_BAD_HDR; } crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); if (hdr_crc != crc) { if (verbose) { ubi_warn("bad CRC at PEB %d, calculated %#08x, " "read %#08x", pnum, crc, hdr_crc); ubi_dump_vid_hdr(vid_hdr); } dbg_bld("bad CRC at PEB %d, calculated %#08x, " "read %#08x", pnum, crc, hdr_crc); if (!read_err) return UBI_IO_BAD_HDR; else return UBI_IO_BAD_HDR_EBADMSG; } err = validate_vid_hdr(ubi, vid_hdr); if (err) { ubi_err("validation failed for PEB %d", pnum); return -EINVAL; } return read_err ? UBI_IO_BITFLIPS : 0; } /** * ubi_io_write_vid_hdr - write a volume identifier header. * @ubi: UBI device description object * @pnum: the physical eraseblock number to write to * @vid_hdr: the volume identifier header to write * * This function writes the volume identifier header described by @vid_hdr to * physical eraseblock @pnum. This function automatically fills the * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates * header CRC checksum and stores it at vid_hdr->hdr_crc. * * This function returns zero in case of success and a negative error code in * case of failure. If %-EIO is returned, the physical eraseblock probably went * bad. */ int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, struct ubi_vid_hdr *vid_hdr) { int err; uint32_t crc; void *p; dbg_io("write VID header to PEB %d", pnum); ubi_assert(pnum >= 0 && pnum < ubi->peb_count); err = paranoid_check_peb_ec_hdr(ubi, pnum); if (err) return err; vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); vid_hdr->version = UBI_VERSION; crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); vid_hdr->hdr_crc = cpu_to_be32(crc); err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); if (err) return err; p = (char *)vid_hdr - ubi->vid_hdr_shift; err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, ubi->vid_hdr_alsize); return err; } #ifdef CONFIG_MTD_UBI_DEBUG /** * paranoid_check_not_bad - ensure that a physical eraseblock is not bad. * @ubi: UBI device description object * @pnum: physical eraseblock number to check * * This function returns zero if the physical eraseblock is good, %-EINVAL if * it is bad and a negative error code if an error occurred. */ static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum) { int err; if (!ubi->dbg->chk_io) return 0; err = ubi_io_is_bad(ubi, pnum); if (!err) return err; ubi_err("paranoid check failed for PEB %d", pnum); dump_stack(); return err > 0 ? -EINVAL : err; } /** * paranoid_check_ec_hdr - check if an erase counter header is all right. * @ubi: UBI device description object * @pnum: physical eraseblock number the erase counter header belongs to * @ec_hdr: the erase counter header to check * * This function returns zero if the erase counter header contains valid * values, and %-EINVAL if not. */ static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, const struct ubi_ec_hdr *ec_hdr) { int err; uint32_t magic; if (!ubi->dbg->chk_io) return 0; magic = be32_to_cpu(ec_hdr->magic); if (magic != UBI_EC_HDR_MAGIC) { ubi_err("bad magic %#08x, must be %#08x", magic, UBI_EC_HDR_MAGIC); goto fail; } err = validate_ec_hdr(ubi, ec_hdr); if (err) { ubi_err("paranoid check failed for PEB %d", pnum); goto fail; } return 0; fail: ubi_dump_ec_hdr(ec_hdr); dump_stack(); return -EINVAL; } /** * paranoid_check_peb_ec_hdr - check erase counter header. * @ubi: UBI device description object * @pnum: the physical eraseblock number to check * * This function returns zero if the erase counter header is all right and and * a negative error code if not or if an error occurred. */ static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) { int err; uint32_t crc, hdr_crc; struct ubi_ec_hdr *ec_hdr; if (!ubi->dbg->chk_io) return 0; ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); if (!ec_hdr) return -ENOMEM; err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) goto exit; crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); if (hdr_crc != crc) { ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); ubi_err("paranoid check failed for PEB %d", pnum); ubi_dump_ec_hdr(ec_hdr); dump_stack(); err = -EINVAL; goto exit; } err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); exit: kfree(ec_hdr); return err; } /** * paranoid_check_vid_hdr - check that a volume identifier header is all right. * @ubi: UBI device description object * @pnum: physical eraseblock number the volume identifier header belongs to * @vid_hdr: the volume identifier header to check * * This function returns zero if the volume identifier header is all right, and * %-EINVAL if not. */ static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, const struct ubi_vid_hdr *vid_hdr) { int err; uint32_t magic; if (!ubi->dbg->chk_io) return 0; magic = be32_to_cpu(vid_hdr->magic); if (magic != UBI_VID_HDR_MAGIC) { ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", magic, pnum, UBI_VID_HDR_MAGIC); goto fail; } err = validate_vid_hdr(ubi, vid_hdr); if (err) { ubi_err("paranoid check failed for PEB %d", pnum); goto fail; } return err; fail: ubi_err("paranoid check failed for PEB %d", pnum); ubi_dump_vid_hdr(vid_hdr); dump_stack(); return -EINVAL; } /** * paranoid_check_peb_vid_hdr - check volume identifier header. * @ubi: UBI device description object * @pnum: the physical eraseblock number to check * * This function returns zero if the volume identifier header is all right, * and a negative error code if not or if an error occurred. */ static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) { int err; uint32_t crc, hdr_crc; struct ubi_vid_hdr *vid_hdr; void *p; if (!ubi->dbg->chk_io) return 0; vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); if (!vid_hdr) return -ENOMEM; p = (char *)vid_hdr - ubi->vid_hdr_shift; err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, ubi->vid_hdr_alsize); if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) goto exit; crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); if (hdr_crc != crc) { ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " "read %#08x", pnum, crc, hdr_crc); ubi_err("paranoid check failed for PEB %d", pnum); ubi_dump_vid_hdr(vid_hdr); dump_stack(); err = -EINVAL; goto exit; } err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); exit: ubi_free_vid_hdr(ubi, vid_hdr); return err; } /** * ubi_dbg_check_write - make sure write succeeded. * @ubi: UBI device description object * @buf: buffer with data which were written * @pnum: physical eraseblock number the data were written to * @offset: offset within the physical eraseblock the data were written to * @len: how many bytes were written * * This functions reads data which were recently written and compares it with * the original data buffer - the data have to match. Returns zero if the data * match and a negative error code if not or in case of failure. */ int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, int len) { int err, i; size_t read; void *buf1; loff_t addr = (loff_t)pnum * ubi->peb_size + offset; if (!ubi->dbg->chk_io) return 0; buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); if (!buf1) { ubi_err("cannot allocate memory to check writes"); return 0; } err = mtd_read(ubi->mtd, addr, len, &read, buf1); if (err && !mtd_is_bitflip(err)) goto out_free; for (i = 0; i < len; i++) { uint8_t c = ((uint8_t *)buf)[i]; uint8_t c1 = ((uint8_t *)buf1)[i]; int dump_len; if (c == c1) continue; ubi_err("paranoid check failed for PEB %d:%d, len %d", pnum, offset, len); ubi_msg("data differ at position %d", i); dump_len = max_t(int, 128, len - i); ubi_msg("hex dump of the original buffer from %d to %d", i, i + dump_len); print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf + i, dump_len, 1); ubi_msg("hex dump of the read buffer from %d to %d", i, i + dump_len); print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf1 + i, dump_len, 1); dump_stack(); err = -EINVAL; goto out_free; } vfree(buf1); return 0; out_free: vfree(buf1); return err; } /** * ubi_dbg_check_all_ff - check that a region of flash is empty. * @ubi: UBI device description object * @pnum: the physical eraseblock number to check * @offset: the starting offset within the physical eraseblock to check * @len: the length of the region to check * * This function returns zero if only 0xFF bytes are present at offset * @offset of the physical eraseblock @pnum, and a negative error code if not * or if an error occurred. */ int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) { size_t read; int err; void *buf; loff_t addr = (loff_t)pnum * ubi->peb_size + offset; if (!ubi->dbg->chk_io) return 0; buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); if (!buf) { ubi_err("cannot allocate memory to check for 0xFFs"); return 0; } err = mtd_read(ubi->mtd, addr, len, &read, buf); if (err && !mtd_is_bitflip(err)) { ubi_err("error %d while reading %d bytes from PEB %d:%d, " "read %zd bytes", err, len, pnum, offset, read); goto error; } err = ubi_check_pattern(buf, 0xFF, len); if (err == 0) { ubi_err("flash region at PEB %d:%d, length %d does not " "contain all 0xFF bytes", pnum, offset, len); goto fail; } vfree(buf); return 0; fail: ubi_err("paranoid check failed for PEB %d", pnum); ubi_msg("hex dump of the %d-%d region", offset, offset + len); print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); err = -EINVAL; error: dump_stack(); vfree(buf); return err; } #endif /* CONFIG_MTD_UBI_DEBUG */