/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include "intel_guc_submission.h" #include "intel_lrc_reg.h" #include "i915_drv.h" #define GUC_PREEMPT_FINISHED 0x1 #define GUC_PREEMPT_BREADCRUMB_DWORDS 0x8 #define GUC_PREEMPT_BREADCRUMB_BYTES \ (sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS) /** * DOC: GuC-based command submission * * GuC client: * A intel_guc_client refers to a submission path through GuC. Currently, there * are two clients. One of them (the execbuf_client) is charged with all * submissions to the GuC, the other one (preempt_client) is responsible for * preempting the execbuf_client. This struct is the owner of a doorbell, a * process descriptor and a workqueue (all of them inside a single gem object * that contains all required pages for these elements). * * GuC stage descriptor: * During initialization, the driver allocates a static pool of 1024 such * descriptors, and shares them with the GuC. * Currently, there exists a 1:1 mapping between a intel_guc_client and a * guc_stage_desc (via the client's stage_id), so effectively only one * gets used. This stage descriptor lets the GuC know about the doorbell, * workqueue and process descriptor. Theoretically, it also lets the GuC * know about our HW contexts (context ID, etc...), but we actually * employ a kind of submission where the GuC uses the LRCA sent via the work * item instead (the single guc_stage_desc associated to execbuf client * contains information about the default kernel context only, but this is * essentially unused). This is called a "proxy" submission. * * The Scratch registers: * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes * a value to the action register (SOFT_SCRATCH_0) along with any data. It then * triggers an interrupt on the GuC via another register write (0xC4C8). * Firmware writes a success/fail code back to the action register after * processes the request. The kernel driver polls waiting for this update and * then proceeds. * See intel_guc_send() * * Doorbells: * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW) * mapped into process space. * * Work Items: * There are several types of work items that the host may place into a * workqueue, each with its own requirements and limitations. Currently only * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which * represents in-order queue. The kernel driver packs ring tail pointer and an * ELSP context descriptor dword into Work Item. * See guc_add_request() * */ static inline struct i915_priolist *to_priolist(struct rb_node *rb) { return rb_entry(rb, struct i915_priolist, node); } static inline bool is_high_priority(struct intel_guc_client *client) { return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH || client->priority == GUC_CLIENT_PRIORITY_HIGH); } static int reserve_doorbell(struct intel_guc_client *client) { unsigned long offset; unsigned long end; u16 id; GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID); /* * The bitmap tracks which doorbell registers are currently in use. * It is split into two halves; the first half is used for normal * priority contexts, the second half for high-priority ones. */ offset = 0; end = GUC_NUM_DOORBELLS / 2; if (is_high_priority(client)) { offset = end; end += offset; } id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset); if (id == end) return -ENOSPC; __set_bit(id, client->guc->doorbell_bitmap); client->doorbell_id = id; DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n", client->stage_id, yesno(is_high_priority(client)), id); return 0; } static bool has_doorbell(struct intel_guc_client *client) { if (client->doorbell_id == GUC_DOORBELL_INVALID) return false; return test_bit(client->doorbell_id, client->guc->doorbell_bitmap); } static void unreserve_doorbell(struct intel_guc_client *client) { GEM_BUG_ON(!has_doorbell(client)); __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap); client->doorbell_id = GUC_DOORBELL_INVALID; } /* * Tell the GuC to allocate or deallocate a specific doorbell */ static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id) { u32 action[] = { INTEL_GUC_ACTION_ALLOCATE_DOORBELL, stage_id }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id) { u32 action[] = { INTEL_GUC_ACTION_DEALLOCATE_DOORBELL, stage_id }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client) { struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr; return &base[client->stage_id]; } /* * Initialise, update, or clear doorbell data shared with the GuC * * These functions modify shared data and so need access to the mapped * client object which contains the page being used for the doorbell */ static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id) { struct guc_stage_desc *desc; /* Update the GuC's idea of the doorbell ID */ desc = __get_stage_desc(client); desc->db_id = new_id; } static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client) { return client->vaddr + client->doorbell_offset; } static void __create_doorbell(struct intel_guc_client *client) { struct guc_doorbell_info *doorbell; doorbell = __get_doorbell(client); doorbell->db_status = GUC_DOORBELL_ENABLED; doorbell->cookie = 0; } static void __destroy_doorbell(struct intel_guc_client *client) { struct drm_i915_private *dev_priv = guc_to_i915(client->guc); struct guc_doorbell_info *doorbell; u16 db_id = client->doorbell_id; doorbell = __get_doorbell(client); doorbell->db_status = GUC_DOORBELL_DISABLED; doorbell->cookie = 0; /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit * to go to zero after updating db_status before we call the GuC to * release the doorbell */ if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10)) WARN_ONCE(true, "Doorbell never became invalid after disable\n"); } static int create_doorbell(struct intel_guc_client *client) { int ret; if (WARN_ON(!has_doorbell(client))) return -ENODEV; /* internal setup error, should never happen */ __update_doorbell_desc(client, client->doorbell_id); __create_doorbell(client); ret = __guc_allocate_doorbell(client->guc, client->stage_id); if (ret) { __destroy_doorbell(client); __update_doorbell_desc(client, GUC_DOORBELL_INVALID); DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n", client->stage_id, ret); return ret; } return 0; } static int destroy_doorbell(struct intel_guc_client *client) { int ret; GEM_BUG_ON(!has_doorbell(client)); __destroy_doorbell(client); ret = __guc_deallocate_doorbell(client->guc, client->stage_id); if (ret) DRM_ERROR("Couldn't destroy client %u doorbell: %d\n", client->stage_id, ret); __update_doorbell_desc(client, GUC_DOORBELL_INVALID); return ret; } static unsigned long __select_cacheline(struct intel_guc *guc) { unsigned long offset; /* Doorbell uses a single cache line within a page */ offset = offset_in_page(guc->db_cacheline); /* Moving to next cache line to reduce contention */ guc->db_cacheline += cache_line_size(); DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n", offset, guc->db_cacheline, cache_line_size()); return offset; } static inline struct guc_process_desc * __get_process_desc(struct intel_guc_client *client) { return client->vaddr + client->proc_desc_offset; } /* * Initialise the process descriptor shared with the GuC firmware. */ static void guc_proc_desc_init(struct intel_guc *guc, struct intel_guc_client *client) { struct guc_process_desc *desc; desc = memset(__get_process_desc(client), 0, sizeof(*desc)); /* * XXX: pDoorbell and WQVBaseAddress are pointers in process address * space for ring3 clients (set them as in mmap_ioctl) or kernel * space for kernel clients (map on demand instead? May make debug * easier to have it mapped). */ desc->wq_base_addr = 0; desc->db_base_addr = 0; desc->stage_id = client->stage_id; desc->wq_size_bytes = GUC_WQ_SIZE; desc->wq_status = WQ_STATUS_ACTIVE; desc->priority = client->priority; } static int guc_stage_desc_pool_create(struct intel_guc *guc) { struct i915_vma *vma; void *vaddr; vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(struct guc_stage_desc) * GUC_MAX_STAGE_DESCRIPTORS)); if (IS_ERR(vma)) return PTR_ERR(vma); vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); if (IS_ERR(vaddr)) { i915_vma_unpin_and_release(&vma); return PTR_ERR(vaddr); } guc->stage_desc_pool = vma; guc->stage_desc_pool_vaddr = vaddr; ida_init(&guc->stage_ids); return 0; } static void guc_stage_desc_pool_destroy(struct intel_guc *guc) { ida_destroy(&guc->stage_ids); i915_gem_object_unpin_map(guc->stage_desc_pool->obj); i915_vma_unpin_and_release(&guc->stage_desc_pool); } /* * Initialise/clear the stage descriptor shared with the GuC firmware. * * This descriptor tells the GuC where (in GGTT space) to find the important * data structures relating to this client (doorbell, process descriptor, * write queue, etc). */ static void guc_stage_desc_init(struct intel_guc *guc, struct intel_guc_client *client) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct intel_engine_cs *engine; struct i915_gem_context *ctx = client->owner; struct guc_stage_desc *desc; unsigned int tmp; u32 gfx_addr; desc = __get_stage_desc(client); memset(desc, 0, sizeof(*desc)); desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE | GUC_STAGE_DESC_ATTR_KERNEL; if (is_high_priority(client)) desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT; desc->stage_id = client->stage_id; desc->priority = client->priority; desc->db_id = client->doorbell_id; for_each_engine_masked(engine, dev_priv, client->engines, tmp) { struct intel_context *ce = to_intel_context(ctx, engine); u32 guc_engine_id = engine->guc_id; struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id]; /* TODO: We have a design issue to be solved here. Only when we * receive the first batch, we know which engine is used by the * user. But here GuC expects the lrc and ring to be pinned. It * is not an issue for default context, which is the only one * for now who owns a GuC client. But for future owner of GuC * client, need to make sure lrc is pinned prior to enter here. */ if (!ce->state) break; /* XXX: continue? */ /* * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy * submission or, in other words, not using a direct submission * model) the KMD's LRCA is not used for any work submission. * Instead, the GuC uses the LRCA of the user mode context (see * guc_add_request below). */ lrc->context_desc = lower_32_bits(ce->lrc_desc); /* The state page is after PPHWSP */ lrc->ring_lrca = intel_guc_ggtt_offset(guc, ce->state) + LRC_STATE_PN * PAGE_SIZE; /* XXX: In direct submission, the GuC wants the HW context id * here. In proxy submission, it wants the stage id */ lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) | (guc_engine_id << GUC_ELC_ENGINE_OFFSET); lrc->ring_begin = intel_guc_ggtt_offset(guc, ce->ring->vma); lrc->ring_end = lrc->ring_begin + ce->ring->size - 1; lrc->ring_next_free_location = lrc->ring_begin; lrc->ring_current_tail_pointer_value = 0; desc->engines_used |= (1 << guc_engine_id); } DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n", client->engines, desc->engines_used); WARN_ON(desc->engines_used == 0); /* * The doorbell, process descriptor, and workqueue are all parts * of the client object, which the GuC will reference via the GGTT */ gfx_addr = intel_guc_ggtt_offset(guc, client->vma); desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) + client->doorbell_offset; desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client)); desc->db_trigger_uk = gfx_addr + client->doorbell_offset; desc->process_desc = gfx_addr + client->proc_desc_offset; desc->wq_addr = gfx_addr + GUC_DB_SIZE; desc->wq_size = GUC_WQ_SIZE; desc->desc_private = ptr_to_u64(client); } static void guc_stage_desc_fini(struct intel_guc *guc, struct intel_guc_client *client) { struct guc_stage_desc *desc; desc = __get_stage_desc(client); memset(desc, 0, sizeof(*desc)); } /* Construct a Work Item and append it to the GuC's Work Queue */ static void guc_wq_item_append(struct intel_guc_client *client, u32 target_engine, u32 context_desc, u32 ring_tail, u32 fence_id) { /* wqi_len is in DWords, and does not include the one-word header */ const size_t wqi_size = sizeof(struct guc_wq_item); const u32 wqi_len = wqi_size / sizeof(u32) - 1; struct guc_process_desc *desc = __get_process_desc(client); struct guc_wq_item *wqi; u32 wq_off; lockdep_assert_held(&client->wq_lock); /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we * should not have the case where structure wqi is across page, neither * wrapped to the beginning. This simplifies the implementation below. * * XXX: if not the case, we need save data to a temp wqi and copy it to * workqueue buffer dw by dw. */ BUILD_BUG_ON(wqi_size != 16); /* Free space is guaranteed. */ wq_off = READ_ONCE(desc->tail); GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head), GUC_WQ_SIZE) < wqi_size); GEM_BUG_ON(wq_off & (wqi_size - 1)); /* WQ starts from the page after doorbell / process_desc */ wqi = client->vaddr + wq_off + GUC_DB_SIZE; /* Now fill in the 4-word work queue item */ wqi->header = WQ_TYPE_INORDER | (wqi_len << WQ_LEN_SHIFT) | (target_engine << WQ_TARGET_SHIFT) | WQ_NO_WCFLUSH_WAIT; wqi->context_desc = context_desc; wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT; GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX); wqi->fence_id = fence_id; /* Make the update visible to GuC */ WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1)); } static void guc_reset_wq(struct intel_guc_client *client) { struct guc_process_desc *desc = __get_process_desc(client); desc->head = 0; desc->tail = 0; } static void guc_ring_doorbell(struct intel_guc_client *client) { struct guc_doorbell_info *db; u32 cookie; lockdep_assert_held(&client->wq_lock); /* pointer of current doorbell cacheline */ db = __get_doorbell(client); /* * We're not expecting the doorbell cookie to change behind our back, * we also need to treat 0 as a reserved value. */ cookie = READ_ONCE(db->cookie); WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie); /* XXX: doorbell was lost and need to acquire it again */ GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED); } static void guc_add_request(struct intel_guc *guc, struct i915_request *rq) { struct intel_guc_client *client = guc->execbuf_client; struct intel_engine_cs *engine = rq->engine; u32 ctx_desc = lower_32_bits(intel_lr_context_descriptor(rq->ctx, engine)); u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64); spin_lock(&client->wq_lock); guc_wq_item_append(client, engine->guc_id, ctx_desc, ring_tail, rq->global_seqno); guc_ring_doorbell(client); client->submissions[engine->id] += 1; spin_unlock(&client->wq_lock); } /* * When we're doing submissions using regular execlists backend, writing to * ELSP from CPU side is enough to make sure that writes to ringbuffer pages * pinned in mappable aperture portion of GGTT are visible to command streamer. * Writes done by GuC on our behalf are not guaranteeing such ordering, * therefore, to ensure the flush, we're issuing a POSTING READ. */ static void flush_ggtt_writes(struct i915_vma *vma) { struct drm_i915_private *dev_priv = to_i915(vma->obj->base.dev); if (i915_vma_is_map_and_fenceable(vma)) POSTING_READ_FW(GUC_STATUS); } static void inject_preempt_context(struct work_struct *work) { struct guc_preempt_work *preempt_work = container_of(work, typeof(*preempt_work), work); struct intel_engine_cs *engine = preempt_work->engine; struct intel_guc *guc = container_of(preempt_work, typeof(*guc), preempt_work[engine->id]); struct intel_guc_client *client = guc->preempt_client; struct guc_stage_desc *stage_desc = __get_stage_desc(client); u32 ctx_desc = lower_32_bits(intel_lr_context_descriptor(client->owner, engine)); u32 data[7]; /* * The ring contains commands to write GUC_PREEMPT_FINISHED into HWSP. * See guc_fill_preempt_context(). */ spin_lock_irq(&client->wq_lock); guc_wq_item_append(client, engine->guc_id, ctx_desc, GUC_PREEMPT_BREADCRUMB_BYTES / sizeof(u64), 0); spin_unlock_irq(&client->wq_lock); /* * If GuC firmware performs an engine reset while that engine had * a preemption pending, it will set the terminated attribute bit * on our preemption stage descriptor. GuC firmware retains all * pending work items for a high-priority GuC client, unlike the * normal-priority GuC client where work items are dropped. It * wants to make sure the preempt-to-idle work doesn't run when * scheduling resumes, and uses this bit to inform its scheduler * and presumably us as well. Our job is to clear it for the next * preemption after reset, otherwise that and future preemptions * will never complete. We'll just clear it every time. */ stage_desc->attribute &= ~GUC_STAGE_DESC_ATTR_TERMINATED; data[0] = INTEL_GUC_ACTION_REQUEST_PREEMPTION; data[1] = client->stage_id; data[2] = INTEL_GUC_PREEMPT_OPTION_DROP_WORK_Q | INTEL_GUC_PREEMPT_OPTION_DROP_SUBMIT_Q; data[3] = engine->guc_id; data[4] = guc->execbuf_client->priority; data[5] = guc->execbuf_client->stage_id; data[6] = intel_guc_ggtt_offset(guc, guc->shared_data); if (WARN_ON(intel_guc_send(guc, data, ARRAY_SIZE(data)))) { execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT); tasklet_schedule(&engine->execlists.tasklet); } } /* * We're using user interrupt and HWSP value to mark that preemption has * finished and GPU is idle. Normally, we could unwind and continue similar to * execlists submission path. Unfortunately, with GuC we also need to wait for * it to finish its own postprocessing, before attempting to submit. Otherwise * GuC may silently ignore our submissions, and thus we risk losing request at * best, executing out-of-order and causing kernel panic at worst. */ #define GUC_PREEMPT_POSTPROCESS_DELAY_MS 10 static void wait_for_guc_preempt_report(struct intel_engine_cs *engine) { struct intel_guc *guc = &engine->i915->guc; struct guc_shared_ctx_data *data = guc->shared_data_vaddr; struct guc_ctx_report *report = &data->preempt_ctx_report[engine->guc_id]; WARN_ON(wait_for_atomic(report->report_return_status == INTEL_GUC_REPORT_STATUS_COMPLETE, GUC_PREEMPT_POSTPROCESS_DELAY_MS)); /* * GuC is expecting that we're also going to clear the affected context * counter, let's also reset the return status to not depend on GuC * resetting it after recieving another preempt action */ report->affected_count = 0; report->report_return_status = INTEL_GUC_REPORT_STATUS_UNKNOWN; } /** * guc_submit() - Submit commands through GuC * @engine: engine associated with the commands * * The only error here arises if the doorbell hardware isn't functioning * as expected, which really shouln't happen. */ static void guc_submit(struct intel_engine_cs *engine) { struct intel_guc *guc = &engine->i915->guc; struct intel_engine_execlists * const execlists = &engine->execlists; struct execlist_port *port = execlists->port; unsigned int n; for (n = 0; n < execlists_num_ports(execlists); n++) { struct i915_request *rq; unsigned int count; rq = port_unpack(&port[n], &count); if (rq && count == 0) { port_set(&port[n], port_pack(rq, ++count)); flush_ggtt_writes(rq->ring->vma); guc_add_request(guc, rq); } } } static void port_assign(struct execlist_port *port, struct i915_request *rq) { GEM_BUG_ON(port_isset(port)); port_set(port, i915_request_get(rq)); } static inline int rq_prio(const struct i915_request *rq) { return rq->sched.attr.priority; } static inline int port_prio(const struct execlist_port *port) { return rq_prio(port_request(port)); } static void guc_dequeue(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; struct execlist_port *port = execlists->port; struct i915_request *last = NULL; const struct execlist_port * const last_port = &execlists->port[execlists->port_mask]; bool submit = false; struct rb_node *rb; spin_lock_irq(&engine->timeline.lock); rb = execlists->first; GEM_BUG_ON(rb_first(&execlists->queue) != rb); if (port_isset(port)) { if (intel_engine_has_preemption(engine)) { struct guc_preempt_work *preempt_work = &engine->i915->guc.preempt_work[engine->id]; int prio = execlists->queue_priority; if (__execlists_need_preempt(prio, port_prio(port))) { execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT); queue_work(engine->i915->guc.preempt_wq, &preempt_work->work); goto unlock; } } port++; if (port_isset(port)) goto unlock; } GEM_BUG_ON(port_isset(port)); while (rb) { struct i915_priolist *p = to_priolist(rb); struct i915_request *rq, *rn; list_for_each_entry_safe(rq, rn, &p->requests, sched.link) { if (last && rq->ctx != last->ctx) { if (port == last_port) { __list_del_many(&p->requests, &rq->sched.link); goto done; } if (submit) port_assign(port, last); port++; } INIT_LIST_HEAD(&rq->sched.link); __i915_request_submit(rq); trace_i915_request_in(rq, port_index(port, execlists)); last = rq; submit = true; } rb = rb_next(rb); rb_erase(&p->node, &execlists->queue); INIT_LIST_HEAD(&p->requests); if (p->priority != I915_PRIORITY_NORMAL) kmem_cache_free(engine->i915->priorities, p); } done: execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN; execlists->first = rb; if (submit) { port_assign(port, last); execlists_user_begin(execlists, execlists->port); guc_submit(engine); } /* We must always keep the beast fed if we have work piled up */ GEM_BUG_ON(port_isset(execlists->port) && !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER)); GEM_BUG_ON(execlists->first && !port_isset(execlists->port)); unlock: spin_unlock_irq(&engine->timeline.lock); } static void guc_submission_tasklet(unsigned long data) { struct intel_engine_cs * const engine = (struct intel_engine_cs *)data; struct intel_engine_execlists * const execlists = &engine->execlists; struct execlist_port *port = execlists->port; struct i915_request *rq; rq = port_request(port); while (rq && i915_request_completed(rq)) { trace_i915_request_out(rq); i915_request_put(rq); port = execlists_port_complete(execlists, port); if (port_isset(port)) { execlists_user_begin(execlists, port); rq = port_request(port); } else { execlists_user_end(execlists); rq = NULL; } } if (execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT) && intel_read_status_page(engine, I915_GEM_HWS_PREEMPT_INDEX) == GUC_PREEMPT_FINISHED) { execlists_cancel_port_requests(&engine->execlists); execlists_unwind_incomplete_requests(execlists); wait_for_guc_preempt_report(engine); execlists_clear_active(execlists, EXECLISTS_ACTIVE_PREEMPT); intel_write_status_page(engine, I915_GEM_HWS_PREEMPT_INDEX, 0); } if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT)) guc_dequeue(engine); } /* * Everything below here is concerned with setup & teardown, and is * therefore not part of the somewhat time-critical batch-submission * path of guc_submit() above. */ /* Check that a doorbell register is in the expected state */ static bool doorbell_ok(struct intel_guc *guc, u16 db_id) { struct drm_i915_private *dev_priv = guc_to_i915(guc); u32 drbregl; bool valid; GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID); drbregl = I915_READ(GEN8_DRBREGL(db_id)); valid = drbregl & GEN8_DRB_VALID; if (test_bit(db_id, guc->doorbell_bitmap) == valid) return true; DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n", db_id, drbregl, yesno(valid)); return false; } static bool guc_verify_doorbells(struct intel_guc *guc) { u16 db_id; for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id) if (!doorbell_ok(guc, db_id)) return false; return true; } static int guc_clients_doorbell_init(struct intel_guc *guc) { int ret; ret = create_doorbell(guc->execbuf_client); if (ret) return ret; if (guc->preempt_client) { ret = create_doorbell(guc->preempt_client); if (ret) { destroy_doorbell(guc->execbuf_client); return ret; } } return 0; } static void guc_clients_doorbell_fini(struct intel_guc *guc) { /* * By the time we're here, GuC has already been reset. * Instead of trying (in vain) to communicate with it, let's just * cleanup the doorbell HW and our internal state. */ if (guc->preempt_client) { __destroy_doorbell(guc->preempt_client); __update_doorbell_desc(guc->preempt_client, GUC_DOORBELL_INVALID); } __destroy_doorbell(guc->execbuf_client); __update_doorbell_desc(guc->execbuf_client, GUC_DOORBELL_INVALID); } /** * guc_client_alloc() - Allocate an intel_guc_client * @dev_priv: driver private data structure * @engines: The set of engines to enable for this client * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW * The kernel client to replace ExecList submission is created with * NORMAL priority. Priority of a client for scheduler can be HIGH, * while a preemption context can use CRITICAL. * @ctx: the context that owns the client (we use the default render * context) * * Return: An intel_guc_client object if success, else NULL. */ static struct intel_guc_client * guc_client_alloc(struct drm_i915_private *dev_priv, u32 engines, u32 priority, struct i915_gem_context *ctx) { struct intel_guc_client *client; struct intel_guc *guc = &dev_priv->guc; struct i915_vma *vma; void *vaddr; int ret; client = kzalloc(sizeof(*client), GFP_KERNEL); if (!client) return ERR_PTR(-ENOMEM); client->guc = guc; client->owner = ctx; client->engines = engines; client->priority = priority; client->doorbell_id = GUC_DOORBELL_INVALID; spin_lock_init(&client->wq_lock); ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS, GFP_KERNEL); if (ret < 0) goto err_client; client->stage_id = ret; /* The first page is doorbell/proc_desc. Two followed pages are wq. */ vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err_id; } /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */ client->vma = vma; vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); goto err_vma; } client->vaddr = vaddr; client->doorbell_offset = __select_cacheline(guc); /* * Since the doorbell only requires a single cacheline, we can save * space by putting the application process descriptor in the same * page. Use the half of the page that doesn't include the doorbell. */ if (client->doorbell_offset >= (GUC_DB_SIZE / 2)) client->proc_desc_offset = 0; else client->proc_desc_offset = (GUC_DB_SIZE / 2); guc_proc_desc_init(guc, client); guc_stage_desc_init(guc, client); ret = reserve_doorbell(client); if (ret) goto err_vaddr; DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n", priority, client, client->engines, client->stage_id); DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n", client->doorbell_id, client->doorbell_offset); return client; err_vaddr: i915_gem_object_unpin_map(client->vma->obj); err_vma: i915_vma_unpin_and_release(&client->vma); err_id: ida_simple_remove(&guc->stage_ids, client->stage_id); err_client: kfree(client); return ERR_PTR(ret); } static void guc_client_free(struct intel_guc_client *client) { unreserve_doorbell(client); guc_stage_desc_fini(client->guc, client); i915_gem_object_unpin_map(client->vma->obj); i915_vma_unpin_and_release(&client->vma); ida_simple_remove(&client->guc->stage_ids, client->stage_id); kfree(client); } static inline bool ctx_save_restore_disabled(struct intel_context *ce) { u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1]; #define SR_DISABLED \ _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \ CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) return (sr & SR_DISABLED) == SR_DISABLED; #undef SR_DISABLED } static void guc_fill_preempt_context(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct intel_guc_client *client = guc->preempt_client; struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, dev_priv, id) { struct intel_context *ce = to_intel_context(client->owner, engine); u32 addr = intel_hws_preempt_done_address(engine); u32 *cs; GEM_BUG_ON(!ce->pin_count); /* * We rely on this context image *not* being saved after * preemption. This ensures that the RING_HEAD / RING_TAIL * remain pointing at initial values forever. */ GEM_BUG_ON(!ctx_save_restore_disabled(ce)); cs = ce->ring->vaddr; if (id == RCS) { cs = gen8_emit_ggtt_write_rcs(cs, GUC_PREEMPT_FINISHED, addr); } else { cs = gen8_emit_ggtt_write(cs, GUC_PREEMPT_FINISHED, addr); *cs++ = MI_NOOP; *cs++ = MI_NOOP; } *cs++ = MI_USER_INTERRUPT; *cs++ = MI_NOOP; GEM_BUG_ON((void *)cs - ce->ring->vaddr != GUC_PREEMPT_BREADCRUMB_BYTES); flush_ggtt_writes(ce->ring->vma); } } static int guc_clients_create(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct intel_guc_client *client; GEM_BUG_ON(guc->execbuf_client); GEM_BUG_ON(guc->preempt_client); client = guc_client_alloc(dev_priv, INTEL_INFO(dev_priv)->ring_mask, GUC_CLIENT_PRIORITY_KMD_NORMAL, dev_priv->kernel_context); if (IS_ERR(client)) { DRM_ERROR("Failed to create GuC client for submission!\n"); return PTR_ERR(client); } guc->execbuf_client = client; if (dev_priv->preempt_context) { client = guc_client_alloc(dev_priv, INTEL_INFO(dev_priv)->ring_mask, GUC_CLIENT_PRIORITY_KMD_HIGH, dev_priv->preempt_context); if (IS_ERR(client)) { DRM_ERROR("Failed to create GuC client for preemption!\n"); guc_client_free(guc->execbuf_client); guc->execbuf_client = NULL; return PTR_ERR(client); } guc->preempt_client = client; guc_fill_preempt_context(guc); } return 0; } static void guc_clients_destroy(struct intel_guc *guc) { struct intel_guc_client *client; client = fetch_and_zero(&guc->preempt_client); if (client) guc_client_free(client); client = fetch_and_zero(&guc->execbuf_client); guc_client_free(client); } /* * Set up the memory resources to be shared with the GuC (via the GGTT) * at firmware loading time. */ int intel_guc_submission_init(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct intel_engine_cs *engine; enum intel_engine_id id; int ret; if (guc->stage_desc_pool) return 0; ret = guc_stage_desc_pool_create(guc); if (ret) return ret; /* * Keep static analysers happy, let them know that we allocated the * vma after testing that it didn't exist earlier. */ GEM_BUG_ON(!guc->stage_desc_pool); WARN_ON(!guc_verify_doorbells(guc)); ret = guc_clients_create(guc); if (ret) return ret; for_each_engine(engine, dev_priv, id) { guc->preempt_work[id].engine = engine; INIT_WORK(&guc->preempt_work[id].work, inject_preempt_context); } return 0; } void intel_guc_submission_fini(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, dev_priv, id) cancel_work_sync(&guc->preempt_work[id].work); guc_clients_destroy(guc); WARN_ON(!guc_verify_doorbells(guc)); guc_stage_desc_pool_destroy(guc); } static void guc_interrupts_capture(struct drm_i915_private *dev_priv) { struct intel_rps *rps = &dev_priv->gt_pm.rps; struct intel_engine_cs *engine; enum intel_engine_id id; int irqs; /* tell all command streamers to forward interrupts (but not vblank) * to GuC */ irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING); for_each_engine(engine, dev_priv, id) I915_WRITE(RING_MODE_GEN7(engine), irqs); /* route USER_INTERRUPT to Host, all others are sent to GuC. */ irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT; /* These three registers have the same bit definitions */ I915_WRITE(GUC_BCS_RCS_IER, ~irqs); I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs); I915_WRITE(GUC_WD_VECS_IER, ~irqs); /* * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all * (unmasked) PM interrupts to the GuC. All other bits of this * register *disable* generation of a specific interrupt. * * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when * writing to the PM interrupt mask register, i.e. interrupts * that must not be disabled. * * If the GuC is handling these interrupts, then we must not let * the PM code disable ANY interrupt that the GuC is expecting. * So for each ENABLED (0) bit in this register, we must SET the * bit in pm_intrmsk_mbz so that it's left enabled for the GuC. * GuC needs ARAT expired interrupt unmasked hence it is set in * pm_intrmsk_mbz. * * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will * result in the register bit being left SET! */ rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK; rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; } static void guc_interrupts_release(struct drm_i915_private *dev_priv) { struct intel_rps *rps = &dev_priv->gt_pm.rps; struct intel_engine_cs *engine; enum intel_engine_id id; int irqs; /* * tell all command streamers NOT to forward interrupts or vblank * to GuC. */ irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER); irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING); for_each_engine(engine, dev_priv, id) I915_WRITE(RING_MODE_GEN7(engine), irqs); /* route all GT interrupts to the host */ I915_WRITE(GUC_BCS_RCS_IER, 0); I915_WRITE(GUC_VCS2_VCS1_IER, 0); I915_WRITE(GUC_WD_VECS_IER, 0); rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK; } static void guc_submission_park(struct intel_engine_cs *engine) { intel_engine_unpin_breadcrumbs_irq(engine); } static void guc_submission_unpark(struct intel_engine_cs *engine) { intel_engine_pin_breadcrumbs_irq(engine); } int intel_guc_submission_enable(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct intel_engine_cs *engine; enum intel_engine_id id; int err; /* * We're using GuC work items for submitting work through GuC. Since * we're coalescing multiple requests from a single context into a * single work item prior to assigning it to execlist_port, we can * never have more work items than the total number of ports (for all * engines). The GuC firmware is controlling the HEAD of work queue, * and it is guaranteed that it will remove the work item from the * queue before our request is completed. */ BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.port) * sizeof(struct guc_wq_item) * I915_NUM_ENGINES > GUC_WQ_SIZE); GEM_BUG_ON(!guc->execbuf_client); guc_reset_wq(guc->execbuf_client); if (guc->preempt_client) guc_reset_wq(guc->preempt_client); err = intel_guc_sample_forcewake(guc); if (err) return err; err = guc_clients_doorbell_init(guc); if (err) return err; /* Take over from manual control of ELSP (execlists) */ guc_interrupts_capture(dev_priv); for_each_engine(engine, dev_priv, id) { struct intel_engine_execlists * const execlists = &engine->execlists; execlists->tasklet.func = guc_submission_tasklet; engine->park = guc_submission_park; engine->unpark = guc_submission_unpark; engine->flags &= ~I915_ENGINE_SUPPORTS_STATS; } return 0; } void intel_guc_submission_disable(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); GEM_BUG_ON(dev_priv->gt.awake); /* GT should be parked first */ guc_interrupts_release(dev_priv); guc_clients_doorbell_fini(guc); /* Revert back to manual ELSP submission */ intel_engines_reset_default_submission(dev_priv); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/intel_guc.c" #endif