// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include #include #include #include "i915_drv.h" #include "i915_hwmon.h" #include "i915_reg.h" #include "intel_mchbar_regs.h" #include "intel_pcode.h" #include "gt/intel_gt.h" #include "gt/intel_gt_regs.h" /* * SF_* - scale factors for particular quantities according to hwmon spec. * - voltage - millivolts * - power - microwatts * - curr - milliamperes * - energy - microjoules * - time - milliseconds */ #define SF_VOLTAGE 1000 #define SF_POWER 1000000 #define SF_CURR 1000 #define SF_ENERGY 1000000 #define SF_TIME 1000 struct hwm_reg { i915_reg_t gt_perf_status; i915_reg_t pkg_power_sku_unit; i915_reg_t pkg_power_sku; i915_reg_t pkg_rapl_limit; i915_reg_t energy_status_all; i915_reg_t energy_status_tile; }; struct hwm_energy_info { u32 reg_val_prev; long accum_energy; /* Accumulated energy for energy1_input */ }; struct hwm_drvdata { struct i915_hwmon *hwmon; struct intel_uncore *uncore; struct device *hwmon_dev; struct hwm_energy_info ei; /* Energy info for energy1_input */ char name[12]; int gt_n; }; struct i915_hwmon { struct hwm_drvdata ddat; struct hwm_drvdata ddat_gt[I915_MAX_GT]; struct mutex hwmon_lock; /* counter overflow logic and rmw */ struct hwm_reg rg; int scl_shift_power; int scl_shift_energy; int scl_shift_time; }; static void hwm_locked_with_pm_intel_uncore_rmw(struct hwm_drvdata *ddat, i915_reg_t reg, u32 clear, u32 set) { struct i915_hwmon *hwmon = ddat->hwmon; struct intel_uncore *uncore = ddat->uncore; intel_wakeref_t wakeref; mutex_lock(&hwmon->hwmon_lock); with_intel_runtime_pm(uncore->rpm, wakeref) intel_uncore_rmw(uncore, reg, clear, set); mutex_unlock(&hwmon->hwmon_lock); } /* * This function's return type of u64 allows for the case where the scaling * of the field taken from the 32-bit register value might cause a result to * exceed 32 bits. */ static u64 hwm_field_read_and_scale(struct hwm_drvdata *ddat, i915_reg_t rgadr, u32 field_msk, int nshift, u32 scale_factor) { struct intel_uncore *uncore = ddat->uncore; intel_wakeref_t wakeref; u32 reg_value; with_intel_runtime_pm(uncore->rpm, wakeref) reg_value = intel_uncore_read(uncore, rgadr); reg_value = REG_FIELD_GET(field_msk, reg_value); return mul_u64_u32_shr(reg_value, scale_factor, nshift); } static void hwm_field_scale_and_write(struct hwm_drvdata *ddat, i915_reg_t rgadr, u32 field_msk, int nshift, unsigned int scale_factor, long lval) { u32 nval; u32 bits_to_clear; u32 bits_to_set; /* Computation in 64-bits to avoid overflow. Round to nearest. */ nval = DIV_ROUND_CLOSEST_ULL((u64)lval << nshift, scale_factor); bits_to_clear = field_msk; bits_to_set = FIELD_PREP(field_msk, nval); hwm_locked_with_pm_intel_uncore_rmw(ddat, rgadr, bits_to_clear, bits_to_set); } /* * hwm_energy - Obtain energy value * * The underlying energy hardware register is 32-bits and is subject to * overflow. How long before overflow? For example, with an example * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and * a power draw of 1000 watts, the 32-bit counter will overflow in * approximately 4.36 minutes. * * Examples: * 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days * 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes * * The function significantly increases overflow duration (from 4.36 * minutes) by accumulating the energy register into a 'long' as allowed by * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()), * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before * energy1_input overflows. This at 1000 W is an overflow duration of 278 years. */ static void hwm_energy(struct hwm_drvdata *ddat, long *energy) { struct intel_uncore *uncore = ddat->uncore; struct i915_hwmon *hwmon = ddat->hwmon; struct hwm_energy_info *ei = &ddat->ei; intel_wakeref_t wakeref; i915_reg_t rgaddr; u32 reg_val; if (ddat->gt_n >= 0) rgaddr = hwmon->rg.energy_status_tile; else rgaddr = hwmon->rg.energy_status_all; mutex_lock(&hwmon->hwmon_lock); with_intel_runtime_pm(uncore->rpm, wakeref) reg_val = intel_uncore_read(uncore, rgaddr); if (reg_val >= ei->reg_val_prev) ei->accum_energy += reg_val - ei->reg_val_prev; else ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val; ei->reg_val_prev = reg_val; *energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY, hwmon->scl_shift_energy); mutex_unlock(&hwmon->hwmon_lock); } static ssize_t hwm_power1_max_interval_show(struct device *dev, struct device_attribute *attr, char *buf) { struct hwm_drvdata *ddat = dev_get_drvdata(dev); struct i915_hwmon *hwmon = ddat->hwmon; intel_wakeref_t wakeref; u32 r, x, y, x_w = 2; /* 2 bits */ u64 tau4, out; with_intel_runtime_pm(ddat->uncore->rpm, wakeref) r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit); x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r); y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r); /* * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17) * = (4 | x) << (y - 2) * where (y - 2) ensures a 1.x fixed point representation of 1.x * However because y can be < 2, we compute * tau4 = (4 | x) << y * but add 2 when doing the final right shift to account for units */ tau4 = ((1 << x_w) | x) << y; /* val in hwmon interface units (millisec) */ out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w); return sysfs_emit(buf, "%llu\n", out); } static ssize_t hwm_power1_max_interval_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct hwm_drvdata *ddat = dev_get_drvdata(dev); struct i915_hwmon *hwmon = ddat->hwmon; u32 x, y, rxy, x_w = 2; /* 2 bits */ u64 tau4, r, max_win; unsigned long val; int ret; ret = kstrtoul(buf, 0, &val); if (ret) return ret; /* * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds */ #define PKG_MAX_WIN_DEFAULT 0x12ull /* * val must be < max in hwmon interface units. The steps below are * explained in i915_power1_max_interval_show() */ r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT); x = REG_FIELD_GET(PKG_MAX_WIN_X, r); y = REG_FIELD_GET(PKG_MAX_WIN_Y, r); tau4 = ((1 << x_w) | x) << y; max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w); if (val > max_win) return -EINVAL; /* val in hw units */ val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME); /* Convert to 1.x * power(2,y) */ if (!val) return -EINVAL; y = ilog2(val); /* x = (val - (1 << y)) >> (y - 2); */ x = (val - (1ul << y)) << x_w >> y; rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y); hwm_locked_with_pm_intel_uncore_rmw(ddat, hwmon->rg.pkg_rapl_limit, PKG_PWR_LIM_1_TIME, rxy); return count; } static SENSOR_DEVICE_ATTR(power1_max_interval, 0664, hwm_power1_max_interval_show, hwm_power1_max_interval_store, 0); static struct attribute *hwm_attributes[] = { &sensor_dev_attr_power1_max_interval.dev_attr.attr, NULL }; static umode_t hwm_attributes_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = kobj_to_dev(kobj); struct hwm_drvdata *ddat = dev_get_drvdata(dev); struct i915_hwmon *hwmon = ddat->hwmon; if (attr == &sensor_dev_attr_power1_max_interval.dev_attr.attr) return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? attr->mode : 0; return 0; } static const struct attribute_group hwm_attrgroup = { .attrs = hwm_attributes, .is_visible = hwm_attributes_visible, }; static const struct attribute_group *hwm_groups[] = { &hwm_attrgroup, NULL }; static const struct hwmon_channel_info *hwm_info[] = { HWMON_CHANNEL_INFO(in, HWMON_I_INPUT), HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT), HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT), HWMON_CHANNEL_INFO(curr, HWMON_C_CRIT), NULL }; static const struct hwmon_channel_info *hwm_gt_info[] = { HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT), NULL }; /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */ static int hwm_pcode_read_i1(struct drm_i915_private *i915, u32 *uval) { return snb_pcode_read_p(&i915->uncore, PCODE_POWER_SETUP, POWER_SETUP_SUBCOMMAND_READ_I1, 0, uval); } static int hwm_pcode_write_i1(struct drm_i915_private *i915, u32 uval) { return snb_pcode_write_p(&i915->uncore, PCODE_POWER_SETUP, POWER_SETUP_SUBCOMMAND_WRITE_I1, 0, uval); } static umode_t hwm_in_is_visible(const struct hwm_drvdata *ddat, u32 attr) { struct drm_i915_private *i915 = ddat->uncore->i915; switch (attr) { case hwmon_in_input: return IS_DG1(i915) || IS_DG2(i915) ? 0444 : 0; default: return 0; } } static int hwm_in_read(struct hwm_drvdata *ddat, u32 attr, long *val) { struct i915_hwmon *hwmon = ddat->hwmon; intel_wakeref_t wakeref; u32 reg_value; switch (attr) { case hwmon_in_input: with_intel_runtime_pm(ddat->uncore->rpm, wakeref) reg_value = intel_uncore_read(ddat->uncore, hwmon->rg.gt_perf_status); /* HW register value in units of 2.5 millivolt */ *val = DIV_ROUND_CLOSEST(REG_FIELD_GET(GEN12_VOLTAGE_MASK, reg_value) * 25, 10); return 0; default: return -EOPNOTSUPP; } } static umode_t hwm_power_is_visible(const struct hwm_drvdata *ddat, u32 attr, int chan) { struct drm_i915_private *i915 = ddat->uncore->i915; struct i915_hwmon *hwmon = ddat->hwmon; u32 uval; switch (attr) { case hwmon_power_max: return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? 0664 : 0; case hwmon_power_rated_max: return i915_mmio_reg_valid(hwmon->rg.pkg_power_sku) ? 0444 : 0; case hwmon_power_crit: return (hwm_pcode_read_i1(i915, &uval) || !(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644; default: return 0; } } static int hwm_power_read(struct hwm_drvdata *ddat, u32 attr, int chan, long *val) { struct i915_hwmon *hwmon = ddat->hwmon; int ret; u32 uval; switch (attr) { case hwmon_power_max: *val = hwm_field_read_and_scale(ddat, hwmon->rg.pkg_rapl_limit, PKG_PWR_LIM_1, hwmon->scl_shift_power, SF_POWER); return 0; case hwmon_power_rated_max: *val = hwm_field_read_and_scale(ddat, hwmon->rg.pkg_power_sku, PKG_PKG_TDP, hwmon->scl_shift_power, SF_POWER); return 0; case hwmon_power_crit: ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval); if (ret) return ret; if (!(uval & POWER_SETUP_I1_WATTS)) return -ENODEV; *val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval), SF_POWER, POWER_SETUP_I1_SHIFT); return 0; default: return -EOPNOTSUPP; } } static int hwm_power_write(struct hwm_drvdata *ddat, u32 attr, int chan, long val) { struct i915_hwmon *hwmon = ddat->hwmon; u32 uval; switch (attr) { case hwmon_power_max: hwm_field_scale_and_write(ddat, hwmon->rg.pkg_rapl_limit, PKG_PWR_LIM_1, hwmon->scl_shift_power, SF_POWER, val); return 0; case hwmon_power_crit: uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_POWER); return hwm_pcode_write_i1(ddat->uncore->i915, uval); default: return -EOPNOTSUPP; } } static umode_t hwm_energy_is_visible(const struct hwm_drvdata *ddat, u32 attr) { struct i915_hwmon *hwmon = ddat->hwmon; i915_reg_t rgaddr; switch (attr) { case hwmon_energy_input: if (ddat->gt_n >= 0) rgaddr = hwmon->rg.energy_status_tile; else rgaddr = hwmon->rg.energy_status_all; return i915_mmio_reg_valid(rgaddr) ? 0444 : 0; default: return 0; } } static int hwm_energy_read(struct hwm_drvdata *ddat, u32 attr, long *val) { switch (attr) { case hwmon_energy_input: hwm_energy(ddat, val); return 0; default: return -EOPNOTSUPP; } } static umode_t hwm_curr_is_visible(const struct hwm_drvdata *ddat, u32 attr) { struct drm_i915_private *i915 = ddat->uncore->i915; u32 uval; switch (attr) { case hwmon_curr_crit: return (hwm_pcode_read_i1(i915, &uval) || (uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644; default: return 0; } } static int hwm_curr_read(struct hwm_drvdata *ddat, u32 attr, long *val) { int ret; u32 uval; switch (attr) { case hwmon_curr_crit: ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval); if (ret) return ret; if (uval & POWER_SETUP_I1_WATTS) return -ENODEV; *val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval), SF_CURR, POWER_SETUP_I1_SHIFT); return 0; default: return -EOPNOTSUPP; } } static int hwm_curr_write(struct hwm_drvdata *ddat, u32 attr, long val) { u32 uval; switch (attr) { case hwmon_curr_crit: uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_CURR); return hwm_pcode_write_i1(ddat->uncore->i915, uval); default: return -EOPNOTSUPP; } } static umode_t hwm_is_visible(const void *drvdata, enum hwmon_sensor_types type, u32 attr, int channel) { struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata; switch (type) { case hwmon_in: return hwm_in_is_visible(ddat, attr); case hwmon_power: return hwm_power_is_visible(ddat, attr, channel); case hwmon_energy: return hwm_energy_is_visible(ddat, attr); case hwmon_curr: return hwm_curr_is_visible(ddat, attr); default: return 0; } } static int hwm_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct hwm_drvdata *ddat = dev_get_drvdata(dev); switch (type) { case hwmon_in: return hwm_in_read(ddat, attr, val); case hwmon_power: return hwm_power_read(ddat, attr, channel, val); case hwmon_energy: return hwm_energy_read(ddat, attr, val); case hwmon_curr: return hwm_curr_read(ddat, attr, val); default: return -EOPNOTSUPP; } } static int hwm_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct hwm_drvdata *ddat = dev_get_drvdata(dev); switch (type) { case hwmon_power: return hwm_power_write(ddat, attr, channel, val); case hwmon_curr: return hwm_curr_write(ddat, attr, val); default: return -EOPNOTSUPP; } } static const struct hwmon_ops hwm_ops = { .is_visible = hwm_is_visible, .read = hwm_read, .write = hwm_write, }; static const struct hwmon_chip_info hwm_chip_info = { .ops = &hwm_ops, .info = hwm_info, }; static umode_t hwm_gt_is_visible(const void *drvdata, enum hwmon_sensor_types type, u32 attr, int channel) { struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata; switch (type) { case hwmon_energy: return hwm_energy_is_visible(ddat, attr); default: return 0; } } static int hwm_gt_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct hwm_drvdata *ddat = dev_get_drvdata(dev); switch (type) { case hwmon_energy: return hwm_energy_read(ddat, attr, val); default: return -EOPNOTSUPP; } } static const struct hwmon_ops hwm_gt_ops = { .is_visible = hwm_gt_is_visible, .read = hwm_gt_read, }; static const struct hwmon_chip_info hwm_gt_chip_info = { .ops = &hwm_gt_ops, .info = hwm_gt_info, }; static void hwm_get_preregistration_info(struct drm_i915_private *i915) { struct i915_hwmon *hwmon = i915->hwmon; struct intel_uncore *uncore = &i915->uncore; struct hwm_drvdata *ddat = &hwmon->ddat; intel_wakeref_t wakeref; u32 val_sku_unit = 0; struct intel_gt *gt; long energy; int i; /* Available for all Gen12+/dGfx */ hwmon->rg.gt_perf_status = GEN12_RPSTAT1; if (IS_DG1(i915) || IS_DG2(i915)) { hwmon->rg.pkg_power_sku_unit = PCU_PACKAGE_POWER_SKU_UNIT; hwmon->rg.pkg_power_sku = PCU_PACKAGE_POWER_SKU; hwmon->rg.pkg_rapl_limit = PCU_PACKAGE_RAPL_LIMIT; hwmon->rg.energy_status_all = PCU_PACKAGE_ENERGY_STATUS; hwmon->rg.energy_status_tile = INVALID_MMIO_REG; } else if (IS_XEHPSDV(i915)) { hwmon->rg.pkg_power_sku_unit = GT0_PACKAGE_POWER_SKU_UNIT; hwmon->rg.pkg_power_sku = INVALID_MMIO_REG; hwmon->rg.pkg_rapl_limit = GT0_PACKAGE_RAPL_LIMIT; hwmon->rg.energy_status_all = GT0_PLATFORM_ENERGY_STATUS; hwmon->rg.energy_status_tile = GT0_PACKAGE_ENERGY_STATUS; } else { hwmon->rg.pkg_power_sku_unit = INVALID_MMIO_REG; hwmon->rg.pkg_power_sku = INVALID_MMIO_REG; hwmon->rg.pkg_rapl_limit = INVALID_MMIO_REG; hwmon->rg.energy_status_all = INVALID_MMIO_REG; hwmon->rg.energy_status_tile = INVALID_MMIO_REG; } with_intel_runtime_pm(uncore->rpm, wakeref) { /* * The contents of register hwmon->rg.pkg_power_sku_unit do not change, * so read it once and store the shift values. */ if (i915_mmio_reg_valid(hwmon->rg.pkg_power_sku_unit)) val_sku_unit = intel_uncore_read(uncore, hwmon->rg.pkg_power_sku_unit); } hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit); hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit); hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit); /* * Initialize 'struct hwm_energy_info', i.e. set fields to the * first value of the energy register read */ if (i915_mmio_reg_valid(hwmon->rg.energy_status_all)) hwm_energy(ddat, &energy); if (i915_mmio_reg_valid(hwmon->rg.energy_status_tile)) { for_each_gt(gt, i915, i) hwm_energy(&hwmon->ddat_gt[i], &energy); } } void i915_hwmon_register(struct drm_i915_private *i915) { struct device *dev = i915->drm.dev; struct i915_hwmon *hwmon; struct device *hwmon_dev; struct hwm_drvdata *ddat; struct hwm_drvdata *ddat_gt; struct intel_gt *gt; int i; /* hwmon is available only for dGfx */ if (!IS_DGFX(i915)) return; hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL); if (!hwmon) return; i915->hwmon = hwmon; mutex_init(&hwmon->hwmon_lock); ddat = &hwmon->ddat; ddat->hwmon = hwmon; ddat->uncore = &i915->uncore; snprintf(ddat->name, sizeof(ddat->name), "i915"); ddat->gt_n = -1; for_each_gt(gt, i915, i) { ddat_gt = hwmon->ddat_gt + i; ddat_gt->hwmon = hwmon; ddat_gt->uncore = gt->uncore; snprintf(ddat_gt->name, sizeof(ddat_gt->name), "i915_gt%u", i); ddat_gt->gt_n = i; } hwm_get_preregistration_info(i915); /* hwmon_dev points to device hwmon */ hwmon_dev = devm_hwmon_device_register_with_info(dev, ddat->name, ddat, &hwm_chip_info, hwm_groups); if (IS_ERR(hwmon_dev)) { i915->hwmon = NULL; return; } ddat->hwmon_dev = hwmon_dev; for_each_gt(gt, i915, i) { ddat_gt = hwmon->ddat_gt + i; /* * Create per-gt directories only if a per-gt attribute is * visible. Currently this is only energy */ if (!hwm_gt_is_visible(ddat_gt, hwmon_energy, hwmon_energy_input, 0)) continue; hwmon_dev = devm_hwmon_device_register_with_info(dev, ddat_gt->name, ddat_gt, &hwm_gt_chip_info, NULL); if (!IS_ERR(hwmon_dev)) ddat_gt->hwmon_dev = hwmon_dev; } } void i915_hwmon_unregister(struct drm_i915_private *i915) { fetch_and_zero(&i915->hwmon); }