/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Copyright SUSE Linux Products GmbH 2010 * * Authors: Alexander Graf */ #ifndef __ASM_KVM_BOOK3S_64_H__ #define __ASM_KVM_BOOK3S_64_H__ #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu) { preempt_disable(); return &get_paca()->shadow_vcpu; } static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu) { preempt_enable(); } #endif #define SPAPR_TCE_SHIFT 12 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE #define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */ #endif #define VRMA_VSID 0x1ffffffUL /* 1TB VSID reserved for VRMA */ /* * We use a lock bit in HPTE dword 0 to synchronize updates and * accesses to each HPTE, and another bit to indicate non-present * HPTEs. */ #define HPTE_V_HVLOCK 0x40UL #define HPTE_V_ABSENT 0x20UL /* * We use this bit in the guest_rpte field of the revmap entry * to indicate a modified HPTE. */ #define HPTE_GR_MODIFIED (1ul << 62) /* These bits are reserved in the guest view of the HPTE */ #define HPTE_GR_RESERVED HPTE_GR_MODIFIED static inline long try_lock_hpte(__be64 *hpte, unsigned long bits) { unsigned long tmp, old; __be64 be_lockbit, be_bits; /* * We load/store in native endian, but the HTAB is in big endian. If * we byte swap all data we apply on the PTE we're implicitly correct * again. */ be_lockbit = cpu_to_be64(HPTE_V_HVLOCK); be_bits = cpu_to_be64(bits); asm volatile(" ldarx %0,0,%2\n" " and. %1,%0,%3\n" " bne 2f\n" " or %0,%0,%4\n" " stdcx. %0,0,%2\n" " beq+ 2f\n" " mr %1,%3\n" "2: isync" : "=&r" (tmp), "=&r" (old) : "r" (hpte), "r" (be_bits), "r" (be_lockbit) : "cc", "memory"); return old == 0; } static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v) { hpte_v &= ~HPTE_V_HVLOCK; asm volatile(PPC_RELEASE_BARRIER "" : : : "memory"); hpte[0] = cpu_to_be64(hpte_v); } /* Without barrier */ static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v) { hpte_v &= ~HPTE_V_HVLOCK; hpte[0] = cpu_to_be64(hpte_v); } static inline int __hpte_actual_psize(unsigned int lp, int psize) { int i, shift; unsigned int mask; /* start from 1 ignoring MMU_PAGE_4K */ for (i = 1; i < MMU_PAGE_COUNT; i++) { /* invalid penc */ if (mmu_psize_defs[psize].penc[i] == -1) continue; /* * encoding bits per actual page size * PTE LP actual page size * rrrr rrrz >=8KB * rrrr rrzz >=16KB * rrrr rzzz >=32KB * rrrr zzzz >=64KB * ....... */ shift = mmu_psize_defs[i].shift - LP_SHIFT; if (shift > LP_BITS) shift = LP_BITS; mask = (1 << shift) - 1; if ((lp & mask) == mmu_psize_defs[psize].penc[i]) return i; } return -1; } static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r, unsigned long pte_index) { int b_psize = MMU_PAGE_4K, a_psize = MMU_PAGE_4K; unsigned int penc; unsigned long rb = 0, va_low, sllp; unsigned int lp = (r >> LP_SHIFT) & ((1 << LP_BITS) - 1); if (v & HPTE_V_LARGE) { for (b_psize = 0; b_psize < MMU_PAGE_COUNT; b_psize++) { /* valid entries have a shift value */ if (!mmu_psize_defs[b_psize].shift) continue; a_psize = __hpte_actual_psize(lp, b_psize); if (a_psize != -1) break; } } /* * Ignore the top 14 bits of va * v have top two bits covering segment size, hence move * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits. * AVA field in v also have the lower 23 bits ignored. * For base page size 4K we need 14 .. 65 bits (so need to * collect extra 11 bits) * For others we need 14..14+i */ /* This covers 14..54 bits of va*/ rb = (v & ~0x7fUL) << 16; /* AVA field */ rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */ /* * AVA in v had cleared lower 23 bits. We need to derive * that from pteg index */ va_low = pte_index >> 3; if (v & HPTE_V_SECONDARY) va_low = ~va_low; /* * get the vpn bits from va_low using reverse of hashing. * In v we have va with 23 bits dropped and then left shifted * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need * right shift it with (SID_SHIFT - (23 - 7)) */ if (!(v & HPTE_V_1TB_SEG)) va_low ^= v >> (SID_SHIFT - 16); else va_low ^= v >> (SID_SHIFT_1T - 16); va_low &= 0x7ff; switch (b_psize) { case MMU_PAGE_4K: sllp = ((mmu_psize_defs[a_psize].sllp & SLB_VSID_L) >> 6) | ((mmu_psize_defs[a_psize].sllp & SLB_VSID_LP) >> 4); rb |= sllp << 5; /* AP field */ rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */ break; default: { int aval_shift; /* * remaining bits of AVA/LP fields * Also contain the rr bits of LP */ rb |= (va_low << mmu_psize_defs[b_psize].shift) & 0x7ff000; /* * Now clear not needed LP bits based on actual psize */ rb &= ~((1ul << mmu_psize_defs[a_psize].shift) - 1); /* * AVAL field 58..77 - base_page_shift bits of va * we have space for 58..64 bits, Missing bits should * be zero filled. +1 is to take care of L bit shift */ aval_shift = 64 - (77 - mmu_psize_defs[b_psize].shift) + 1; rb |= ((va_low << aval_shift) & 0xfe); rb |= 1; /* L field */ penc = mmu_psize_defs[b_psize].penc[a_psize]; rb |= penc << 12; /* LP field */ break; } } rb |= (v >> 54) & 0x300; /* B field */ return rb; } static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l, bool is_base_size) { int size, a_psize; /* Look at the 8 bit LP value */ unsigned int lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1); /* only handle 4k, 64k and 16M pages for now */ if (!(h & HPTE_V_LARGE)) return 1ul << 12; else { for (size = 0; size < MMU_PAGE_COUNT; size++) { /* valid entries have a shift value */ if (!mmu_psize_defs[size].shift) continue; a_psize = __hpte_actual_psize(lp, size); if (a_psize != -1) { if (is_base_size) return 1ul << mmu_psize_defs[size].shift; return 1ul << mmu_psize_defs[a_psize].shift; } } } return 0; } static inline unsigned long hpte_page_size(unsigned long h, unsigned long l) { return __hpte_page_size(h, l, 0); } static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l) { return __hpte_page_size(h, l, 1); } static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize) { return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT; } static inline int hpte_is_writable(unsigned long ptel) { unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP); return pp != PP_RXRX && pp != PP_RXXX; } static inline unsigned long hpte_make_readonly(unsigned long ptel) { if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX) ptel = (ptel & ~HPTE_R_PP) | PP_RXXX; else ptel |= PP_RXRX; return ptel; } static inline int hpte_cache_flags_ok(unsigned long ptel, unsigned long io_type) { unsigned int wimg = ptel & HPTE_R_WIMG; /* Handle SAO */ if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) && cpu_has_feature(CPU_FTR_ARCH_206)) wimg = HPTE_R_M; if (!io_type) return wimg == HPTE_R_M; return (wimg & (HPTE_R_W | HPTE_R_I)) == io_type; } /* * If it's present and writable, atomically set dirty and referenced bits and * return the PTE, otherwise return 0. If we find a transparent hugepage * and if it is marked splitting we return 0; */ static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing, unsigned int hugepage) { pte_t old_pte, new_pte = __pte(0); while (1) { old_pte = pte_val(*ptep); /* * wait until _PAGE_BUSY is clear then set it atomically */ if (unlikely(old_pte & _PAGE_BUSY)) { cpu_relax(); continue; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* If hugepage and is trans splitting return None */ if (unlikely(hugepage && pmd_trans_splitting(pte_pmd(old_pte)))) return __pte(0); #endif /* If pte is not present return None */ if (unlikely(!(old_pte & _PAGE_PRESENT))) return __pte(0); new_pte = pte_mkyoung(old_pte); if (writing && pte_write(old_pte)) new_pte = pte_mkdirty(new_pte); if (old_pte == __cmpxchg_u64((unsigned long *)ptep, old_pte, new_pte)) break; } return new_pte; } /* Return HPTE cache control bits corresponding to Linux pte bits */ static inline unsigned long hpte_cache_bits(unsigned long pte_val) { #if _PAGE_NO_CACHE == HPTE_R_I && _PAGE_WRITETHRU == HPTE_R_W return pte_val & (HPTE_R_W | HPTE_R_I); #else return ((pte_val & _PAGE_NO_CACHE) ? HPTE_R_I : 0) + ((pte_val & _PAGE_WRITETHRU) ? HPTE_R_W : 0); #endif } static inline bool hpte_read_permission(unsigned long pp, unsigned long key) { if (key) return PP_RWRX <= pp && pp <= PP_RXRX; return 1; } static inline bool hpte_write_permission(unsigned long pp, unsigned long key) { if (key) return pp == PP_RWRW; return pp <= PP_RWRW; } static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr) { unsigned long skey; skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) | ((hpte_r & HPTE_R_KEY_LO) >> 9); return (amr >> (62 - 2 * skey)) & 3; } static inline void lock_rmap(unsigned long *rmap) { do { while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap)) cpu_relax(); } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap)); } static inline void unlock_rmap(unsigned long *rmap) { __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap); } static inline bool slot_is_aligned(struct kvm_memory_slot *memslot, unsigned long pagesize) { unsigned long mask = (pagesize >> PAGE_SHIFT) - 1; if (pagesize <= PAGE_SIZE) return 1; return !(memslot->base_gfn & mask) && !(memslot->npages & mask); } /* * This works for 4k, 64k and 16M pages on POWER7, * and 4k and 16M pages on PPC970. */ static inline unsigned long slb_pgsize_encoding(unsigned long psize) { unsigned long senc = 0; if (psize > 0x1000) { senc = SLB_VSID_L; if (psize == 0x10000) senc |= SLB_VSID_LP_01; } return senc; } static inline int is_vrma_hpte(unsigned long hpte_v) { return (hpte_v & ~0xffffffUL) == (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16))); } #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE /* * Note modification of an HPTE; set the HPTE modified bit * if anyone is interested. */ static inline void note_hpte_modification(struct kvm *kvm, struct revmap_entry *rev) { if (atomic_read(&kvm->arch.hpte_mod_interest)) rev->guest_rpte |= HPTE_GR_MODIFIED; } /* * Like kvm_memslots(), but for use in real mode when we can't do * any RCU stuff (since the secondary threads are offline from the * kernel's point of view), and we can't print anything. * Thus we use rcu_dereference_raw() rather than rcu_dereference_check(). */ static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm) { return rcu_dereference_raw_notrace(kvm->memslots); } #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ #endif /* __ASM_KVM_BOOK3S_64_H__ */