/* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- */ /* * * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #ifndef _I915_DRV_H_ #define _I915_DRV_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for struct drm_dma_handle */ #include #include #include #include "i915_params.h" #include "i915_reg.h" #include "i915_utils.h" #include "intel_uncore.h" #include "intel_bios.h" #include "intel_dpll_mgr.h" #include "intel_uc.h" #include "intel_lrc.h" #include "intel_ringbuffer.h" #include "i915_gem.h" #include "i915_gem_context.h" #include "i915_gem_fence_reg.h" #include "i915_gem_object.h" #include "i915_gem_gtt.h" #include "i915_gem_render_state.h" #include "i915_gem_request.h" #include "i915_gem_timeline.h" #include "i915_vma.h" #include "intel_gvt.h" /* General customization: */ #define DRIVER_NAME "i915" #define DRIVER_DESC "Intel Graphics" #define DRIVER_DATE "20171023" #define DRIVER_TIMESTAMP 1508748913 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and * WARN_ON()) for hw state sanity checks to check for unexpected conditions * which may not necessarily be a user visible problem. This will either * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to * enable distros and users to tailor their preferred amount of i915 abrt * spam. */ #define I915_STATE_WARN(condition, format...) ({ \ int __ret_warn_on = !!(condition); \ if (unlikely(__ret_warn_on)) \ if (!WARN(i915_modparams.verbose_state_checks, format)) \ DRM_ERROR(format); \ unlikely(__ret_warn_on); \ }) #define I915_STATE_WARN_ON(x) \ I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") bool __i915_inject_load_failure(const char *func, int line); #define i915_inject_load_failure() \ __i915_inject_load_failure(__func__, __LINE__) typedef struct { uint32_t val; } uint_fixed_16_16_t; #define FP_16_16_MAX ({ \ uint_fixed_16_16_t fp; \ fp.val = UINT_MAX; \ fp; \ }) static inline bool is_fixed16_zero(uint_fixed_16_16_t val) { if (val.val == 0) return true; return false; } static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val) { uint_fixed_16_16_t fp; WARN_ON(val > U16_MAX); fp.val = val << 16; return fp; } static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp) { return DIV_ROUND_UP(fp.val, 1 << 16); } static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp) { return fp.val >> 16; } static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1, uint_fixed_16_16_t min2) { uint_fixed_16_16_t min; min.val = min(min1.val, min2.val); return min; } static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1, uint_fixed_16_16_t max2) { uint_fixed_16_16_t max; max.val = max(max1.val, max2.val); return max; } static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val) { uint_fixed_16_16_t fp; WARN_ON(val > U32_MAX); fp.val = (uint32_t) val; return fp; } static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val, uint_fixed_16_16_t d) { return DIV_ROUND_UP(val.val, d.val); } static inline uint32_t mul_round_up_u32_fixed16(uint32_t val, uint_fixed_16_16_t mul) { uint64_t intermediate_val; intermediate_val = (uint64_t) val * mul.val; intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16); WARN_ON(intermediate_val > U32_MAX); return (uint32_t) intermediate_val; } static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val, uint_fixed_16_16_t mul) { uint64_t intermediate_val; intermediate_val = (uint64_t) val.val * mul.val; intermediate_val = intermediate_val >> 16; return clamp_u64_to_fixed16(intermediate_val); } static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d) { uint64_t interm_val; interm_val = (uint64_t)val << 16; interm_val = DIV_ROUND_UP_ULL(interm_val, d); return clamp_u64_to_fixed16(interm_val); } static inline uint32_t div_round_up_u32_fixed16(uint32_t val, uint_fixed_16_16_t d) { uint64_t interm_val; interm_val = (uint64_t)val << 16; interm_val = DIV_ROUND_UP_ULL(interm_val, d.val); WARN_ON(interm_val > U32_MAX); return (uint32_t) interm_val; } static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val, uint_fixed_16_16_t mul) { uint64_t intermediate_val; intermediate_val = (uint64_t) val * mul.val; return clamp_u64_to_fixed16(intermediate_val); } static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1, uint_fixed_16_16_t add2) { uint64_t interm_sum; interm_sum = (uint64_t) add1.val + add2.val; return clamp_u64_to_fixed16(interm_sum); } static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1, uint32_t add2) { uint64_t interm_sum; uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2); interm_sum = (uint64_t) add1.val + interm_add2.val; return clamp_u64_to_fixed16(interm_sum); } static inline const char *yesno(bool v) { return v ? "yes" : "no"; } static inline const char *onoff(bool v) { return v ? "on" : "off"; } static inline const char *enableddisabled(bool v) { return v ? "enabled" : "disabled"; } enum pipe { INVALID_PIPE = -1, PIPE_A = 0, PIPE_B, PIPE_C, _PIPE_EDP, I915_MAX_PIPES = _PIPE_EDP }; #define pipe_name(p) ((p) + 'A') enum transcoder { TRANSCODER_A = 0, TRANSCODER_B, TRANSCODER_C, TRANSCODER_EDP, TRANSCODER_DSI_A, TRANSCODER_DSI_C, I915_MAX_TRANSCODERS }; static inline const char *transcoder_name(enum transcoder transcoder) { switch (transcoder) { case TRANSCODER_A: return "A"; case TRANSCODER_B: return "B"; case TRANSCODER_C: return "C"; case TRANSCODER_EDP: return "EDP"; case TRANSCODER_DSI_A: return "DSI A"; case TRANSCODER_DSI_C: return "DSI C"; default: return ""; } } static inline bool transcoder_is_dsi(enum transcoder transcoder) { return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C; } /* * Global legacy plane identifier. Valid only for primary/sprite * planes on pre-g4x, and only for primary planes on g4x+. */ enum plane { PLANE_A, PLANE_B, PLANE_C, }; #define plane_name(p) ((p) + 'A') #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A') /* * Per-pipe plane identifier. * I915_MAX_PLANES in the enum below is the maximum (across all platforms) * number of planes per CRTC. Not all platforms really have this many planes, * which means some arrays of size I915_MAX_PLANES may have unused entries * between the topmost sprite plane and the cursor plane. * * This is expected to be passed to various register macros * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care. */ enum plane_id { PLANE_PRIMARY, PLANE_SPRITE0, PLANE_SPRITE1, PLANE_SPRITE2, PLANE_CURSOR, I915_MAX_PLANES, }; #define for_each_plane_id_on_crtc(__crtc, __p) \ for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \ for_each_if ((__crtc)->plane_ids_mask & BIT(__p)) enum port { PORT_NONE = -1, PORT_A = 0, PORT_B, PORT_C, PORT_D, PORT_E, I915_MAX_PORTS }; #define port_name(p) ((p) + 'A') #define I915_NUM_PHYS_VLV 2 enum dpio_channel { DPIO_CH0, DPIO_CH1 }; enum dpio_phy { DPIO_PHY0, DPIO_PHY1, DPIO_PHY2, }; enum intel_display_power_domain { POWER_DOMAIN_PIPE_A, POWER_DOMAIN_PIPE_B, POWER_DOMAIN_PIPE_C, POWER_DOMAIN_PIPE_A_PANEL_FITTER, POWER_DOMAIN_PIPE_B_PANEL_FITTER, POWER_DOMAIN_PIPE_C_PANEL_FITTER, POWER_DOMAIN_TRANSCODER_A, POWER_DOMAIN_TRANSCODER_B, POWER_DOMAIN_TRANSCODER_C, POWER_DOMAIN_TRANSCODER_EDP, POWER_DOMAIN_TRANSCODER_DSI_A, POWER_DOMAIN_TRANSCODER_DSI_C, POWER_DOMAIN_PORT_DDI_A_LANES, POWER_DOMAIN_PORT_DDI_B_LANES, POWER_DOMAIN_PORT_DDI_C_LANES, POWER_DOMAIN_PORT_DDI_D_LANES, POWER_DOMAIN_PORT_DDI_E_LANES, POWER_DOMAIN_PORT_DDI_A_IO, POWER_DOMAIN_PORT_DDI_B_IO, POWER_DOMAIN_PORT_DDI_C_IO, POWER_DOMAIN_PORT_DDI_D_IO, POWER_DOMAIN_PORT_DDI_E_IO, POWER_DOMAIN_PORT_DSI, POWER_DOMAIN_PORT_CRT, POWER_DOMAIN_PORT_OTHER, POWER_DOMAIN_VGA, POWER_DOMAIN_AUDIO, POWER_DOMAIN_PLLS, POWER_DOMAIN_AUX_A, POWER_DOMAIN_AUX_B, POWER_DOMAIN_AUX_C, POWER_DOMAIN_AUX_D, POWER_DOMAIN_GMBUS, POWER_DOMAIN_MODESET, POWER_DOMAIN_INIT, POWER_DOMAIN_NUM, }; #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A) #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \ ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER) #define POWER_DOMAIN_TRANSCODER(tran) \ ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \ (tran) + POWER_DOMAIN_TRANSCODER_A) enum hpd_pin { HPD_NONE = 0, HPD_TV = HPD_NONE, /* TV is known to be unreliable */ HPD_CRT, HPD_SDVO_B, HPD_SDVO_C, HPD_PORT_A, HPD_PORT_B, HPD_PORT_C, HPD_PORT_D, HPD_PORT_E, HPD_NUM_PINS }; #define for_each_hpd_pin(__pin) \ for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) #define HPD_STORM_DEFAULT_THRESHOLD 5 struct i915_hotplug { struct work_struct hotplug_work; struct { unsigned long last_jiffies; int count; enum { HPD_ENABLED = 0, HPD_DISABLED = 1, HPD_MARK_DISABLED = 2 } state; } stats[HPD_NUM_PINS]; u32 event_bits; struct delayed_work reenable_work; struct intel_digital_port *irq_port[I915_MAX_PORTS]; u32 long_port_mask; u32 short_port_mask; struct work_struct dig_port_work; struct work_struct poll_init_work; bool poll_enabled; unsigned int hpd_storm_threshold; /* * if we get a HPD irq from DP and a HPD irq from non-DP * the non-DP HPD could block the workqueue on a mode config * mutex getting, that userspace may have taken. However * userspace is waiting on the DP workqueue to run which is * blocked behind the non-DP one. */ struct workqueue_struct *dp_wq; }; #define I915_GEM_GPU_DOMAINS \ (I915_GEM_DOMAIN_RENDER | \ I915_GEM_DOMAIN_SAMPLER | \ I915_GEM_DOMAIN_COMMAND | \ I915_GEM_DOMAIN_INSTRUCTION | \ I915_GEM_DOMAIN_VERTEX) #define for_each_pipe(__dev_priv, __p) \ for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) #define for_each_pipe_masked(__dev_priv, __p, __mask) \ for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \ for_each_if ((__mask) & (1 << (__p))) #define for_each_universal_plane(__dev_priv, __pipe, __p) \ for ((__p) = 0; \ (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \ (__p)++) #define for_each_sprite(__dev_priv, __p, __s) \ for ((__s) = 0; \ (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \ (__s)++) #define for_each_port_masked(__port, __ports_mask) \ for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \ for_each_if ((__ports_mask) & (1 << (__port))) #define for_each_crtc(dev, crtc) \ list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head) #define for_each_intel_plane(dev, intel_plane) \ list_for_each_entry(intel_plane, \ &(dev)->mode_config.plane_list, \ base.head) #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \ list_for_each_entry(intel_plane, \ &(dev)->mode_config.plane_list, \ base.head) \ for_each_if ((plane_mask) & \ (1 << drm_plane_index(&intel_plane->base))) #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \ list_for_each_entry(intel_plane, \ &(dev)->mode_config.plane_list, \ base.head) \ for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe) #define for_each_intel_crtc(dev, intel_crtc) \ list_for_each_entry(intel_crtc, \ &(dev)->mode_config.crtc_list, \ base.head) #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \ list_for_each_entry(intel_crtc, \ &(dev)->mode_config.crtc_list, \ base.head) \ for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base))) #define for_each_intel_encoder(dev, intel_encoder) \ list_for_each_entry(intel_encoder, \ &(dev)->mode_config.encoder_list, \ base.head) #define for_each_intel_connector_iter(intel_connector, iter) \ while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter)))) #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \ list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \ for_each_if ((intel_encoder)->base.crtc == (__crtc)) #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \ list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \ for_each_if ((intel_connector)->base.encoder == (__encoder)) #define for_each_power_domain(domain, mask) \ for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ for_each_if (BIT_ULL(domain) & (mask)) #define for_each_power_well(__dev_priv, __power_well) \ for ((__power_well) = (__dev_priv)->power_domains.power_wells; \ (__power_well) - (__dev_priv)->power_domains.power_wells < \ (__dev_priv)->power_domains.power_well_count; \ (__power_well)++) #define for_each_power_well_rev(__dev_priv, __power_well) \ for ((__power_well) = (__dev_priv)->power_domains.power_wells + \ (__dev_priv)->power_domains.power_well_count - 1; \ (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \ (__power_well)--) #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \ for_each_power_well(__dev_priv, __power_well) \ for_each_if ((__power_well)->domains & (__domain_mask)) #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \ for_each_power_well_rev(__dev_priv, __power_well) \ for_each_if ((__power_well)->domains & (__domain_mask)) #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \ for ((__i) = 0; \ (__i) < (__state)->base.dev->mode_config.num_total_plane && \ ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \ (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \ (__i)++) \ for_each_if (plane_state) #define for_each_new_intel_crtc_in_state(__state, crtc, new_crtc_state, __i) \ for ((__i) = 0; \ (__i) < (__state)->base.dev->mode_config.num_crtc && \ ((crtc) = to_intel_crtc((__state)->base.crtcs[__i].ptr), \ (new_crtc_state) = to_intel_crtc_state((__state)->base.crtcs[__i].new_state), 1); \ (__i)++) \ for_each_if (crtc) #define for_each_oldnew_intel_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \ for ((__i) = 0; \ (__i) < (__state)->base.dev->mode_config.num_total_plane && \ ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \ (old_plane_state) = to_intel_plane_state((__state)->base.planes[__i].old_state), \ (new_plane_state) = to_intel_plane_state((__state)->base.planes[__i].new_state), 1); \ (__i)++) \ for_each_if (plane) struct drm_i915_private; struct i915_mm_struct; struct i915_mmu_object; struct drm_i915_file_private { struct drm_i915_private *dev_priv; struct drm_file *file; struct { spinlock_t lock; struct list_head request_list; /* 20ms is a fairly arbitrary limit (greater than the average frame time) * chosen to prevent the CPU getting more than a frame ahead of the GPU * (when using lax throttling for the frontbuffer). We also use it to * offer free GPU waitboosts for severely congested workloads. */ #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) } mm; struct idr context_idr; struct intel_rps_client { atomic_t boosts; } rps_client; unsigned int bsd_engine; /* Client can have a maximum of 3 contexts banned before * it is denied of creating new contexts. As one context * ban needs 4 consecutive hangs, and more if there is * progress in between, this is a last resort stop gap measure * to limit the badly behaving clients access to gpu. */ #define I915_MAX_CLIENT_CONTEXT_BANS 3 atomic_t context_bans; }; /* Used by dp and fdi links */ struct intel_link_m_n { uint32_t tu; uint32_t gmch_m; uint32_t gmch_n; uint32_t link_m; uint32_t link_n; }; void intel_link_compute_m_n(int bpp, int nlanes, int pixel_clock, int link_clock, struct intel_link_m_n *m_n, bool reduce_m_n); /* Interface history: * * 1.1: Original. * 1.2: Add Power Management * 1.3: Add vblank support * 1.4: Fix cmdbuffer path, add heap destroy * 1.5: Add vblank pipe configuration * 1.6: - New ioctl for scheduling buffer swaps on vertical blank * - Support vertical blank on secondary display pipe */ #define DRIVER_MAJOR 1 #define DRIVER_MINOR 6 #define DRIVER_PATCHLEVEL 0 struct opregion_header; struct opregion_acpi; struct opregion_swsci; struct opregion_asle; struct intel_opregion { struct opregion_header *header; struct opregion_acpi *acpi; struct opregion_swsci *swsci; u32 swsci_gbda_sub_functions; u32 swsci_sbcb_sub_functions; struct opregion_asle *asle; void *rvda; void *vbt_firmware; const void *vbt; u32 vbt_size; u32 *lid_state; struct work_struct asle_work; }; #define OPREGION_SIZE (8*1024) struct intel_overlay; struct intel_overlay_error_state; struct sdvo_device_mapping { u8 initialized; u8 dvo_port; u8 slave_addr; u8 dvo_wiring; u8 i2c_pin; u8 ddc_pin; }; struct intel_connector; struct intel_encoder; struct intel_atomic_state; struct intel_crtc_state; struct intel_initial_plane_config; struct intel_crtc; struct intel_limit; struct dpll; struct intel_cdclk_state; struct drm_i915_display_funcs { void (*get_cdclk)(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state); void (*set_cdclk)(struct drm_i915_private *dev_priv, const struct intel_cdclk_state *cdclk_state); int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane); int (*compute_pipe_wm)(struct intel_crtc_state *cstate); int (*compute_intermediate_wm)(struct drm_device *dev, struct intel_crtc *intel_crtc, struct intel_crtc_state *newstate); void (*initial_watermarks)(struct intel_atomic_state *state, struct intel_crtc_state *cstate); void (*atomic_update_watermarks)(struct intel_atomic_state *state, struct intel_crtc_state *cstate); void (*optimize_watermarks)(struct intel_atomic_state *state, struct intel_crtc_state *cstate); int (*compute_global_watermarks)(struct drm_atomic_state *state); void (*update_wm)(struct intel_crtc *crtc); int (*modeset_calc_cdclk)(struct drm_atomic_state *state); /* Returns the active state of the crtc, and if the crtc is active, * fills out the pipe-config with the hw state. */ bool (*get_pipe_config)(struct intel_crtc *, struct intel_crtc_state *); void (*get_initial_plane_config)(struct intel_crtc *, struct intel_initial_plane_config *); int (*crtc_compute_clock)(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state); void (*crtc_enable)(struct intel_crtc_state *pipe_config, struct drm_atomic_state *old_state); void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, struct drm_atomic_state *old_state); void (*update_crtcs)(struct drm_atomic_state *state); void (*audio_codec_enable)(struct drm_connector *connector, struct intel_encoder *encoder, const struct drm_display_mode *adjusted_mode); void (*audio_codec_disable)(struct intel_encoder *encoder); void (*fdi_link_train)(struct intel_crtc *crtc, const struct intel_crtc_state *crtc_state); void (*init_clock_gating)(struct drm_i915_private *dev_priv); void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); /* clock updates for mode set */ /* cursor updates */ /* render clock increase/decrease */ /* display clock increase/decrease */ /* pll clock increase/decrease */ void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); void (*load_luts)(struct drm_crtc_state *crtc_state); }; #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) #define CSR_VERSION_MAJOR(version) ((version) >> 16) #define CSR_VERSION_MINOR(version) ((version) & 0xffff) struct intel_csr { struct work_struct work; const char *fw_path; uint32_t *dmc_payload; uint32_t dmc_fw_size; uint32_t version; uint32_t mmio_count; i915_reg_t mmioaddr[8]; uint32_t mmiodata[8]; uint32_t dc_state; uint32_t allowed_dc_mask; }; #define DEV_INFO_FOR_EACH_FLAG(func) \ func(is_mobile); \ func(is_lp); \ func(is_alpha_support); \ /* Keep has_* in alphabetical order */ \ func(has_64bit_reloc); \ func(has_aliasing_ppgtt); \ func(has_csr); \ func(has_ddi); \ func(has_dp_mst); \ func(has_reset_engine); \ func(has_fbc); \ func(has_fpga_dbg); \ func(has_full_ppgtt); \ func(has_full_48bit_ppgtt); \ func(has_gmch_display); \ func(has_guc); \ func(has_guc_ct); \ func(has_hotplug); \ func(has_l3_dpf); \ func(has_llc); \ func(has_logical_ring_contexts); \ func(has_logical_ring_preemption); \ func(has_overlay); \ func(has_pooled_eu); \ func(has_psr); \ func(has_rc6); \ func(has_rc6p); \ func(has_resource_streamer); \ func(has_runtime_pm); \ func(has_snoop); \ func(unfenced_needs_alignment); \ func(cursor_needs_physical); \ func(hws_needs_physical); \ func(overlay_needs_physical); \ func(supports_tv); \ func(has_ipc); struct sseu_dev_info { u8 slice_mask; u8 subslice_mask; u8 eu_total; u8 eu_per_subslice; u8 min_eu_in_pool; /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */ u8 subslice_7eu[3]; u8 has_slice_pg:1; u8 has_subslice_pg:1; u8 has_eu_pg:1; }; static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu) { return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask); } /* Keep in gen based order, and chronological order within a gen */ enum intel_platform { INTEL_PLATFORM_UNINITIALIZED = 0, INTEL_I830, INTEL_I845G, INTEL_I85X, INTEL_I865G, INTEL_I915G, INTEL_I915GM, INTEL_I945G, INTEL_I945GM, INTEL_G33, INTEL_PINEVIEW, INTEL_I965G, INTEL_I965GM, INTEL_G45, INTEL_GM45, INTEL_IRONLAKE, INTEL_SANDYBRIDGE, INTEL_IVYBRIDGE, INTEL_VALLEYVIEW, INTEL_HASWELL, INTEL_BROADWELL, INTEL_CHERRYVIEW, INTEL_SKYLAKE, INTEL_BROXTON, INTEL_KABYLAKE, INTEL_GEMINILAKE, INTEL_COFFEELAKE, INTEL_CANNONLAKE, INTEL_MAX_PLATFORMS }; struct intel_device_info { u16 device_id; u16 gen_mask; u8 gen; u8 gt; /* GT number, 0 if undefined */ u8 num_rings; u8 ring_mask; /* Rings supported by the HW */ enum intel_platform platform; u32 platform_mask; u32 display_mmio_offset; u8 num_pipes; u8 num_sprites[I915_MAX_PIPES]; u8 num_scalers[I915_MAX_PIPES]; unsigned int page_sizes; /* page sizes supported by the HW */ #define DEFINE_FLAG(name) u8 name:1 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG); #undef DEFINE_FLAG u16 ddb_size; /* in blocks */ /* Register offsets for the various display pipes and transcoders */ int pipe_offsets[I915_MAX_TRANSCODERS]; int trans_offsets[I915_MAX_TRANSCODERS]; int palette_offsets[I915_MAX_PIPES]; int cursor_offsets[I915_MAX_PIPES]; /* Slice/subslice/EU info */ struct sseu_dev_info sseu; struct color_luts { u16 degamma_lut_size; u16 gamma_lut_size; } color; }; struct intel_display_error_state; struct i915_gpu_state { struct kref ref; struct timeval time; struct timeval boottime; struct timeval uptime; struct drm_i915_private *i915; char error_msg[128]; bool simulated; bool awake; bool wakelock; bool suspended; int iommu; u32 reset_count; u32 suspend_count; struct intel_device_info device_info; struct i915_params params; /* Generic register state */ u32 eir; u32 pgtbl_er; u32 ier; u32 gtier[4], ngtier; u32 ccid; u32 derrmr; u32 forcewake; u32 error; /* gen6+ */ u32 err_int; /* gen7 */ u32 fault_data0; /* gen8, gen9 */ u32 fault_data1; /* gen8, gen9 */ u32 done_reg; u32 gac_eco; u32 gam_ecochk; u32 gab_ctl; u32 gfx_mode; u32 nfence; u64 fence[I915_MAX_NUM_FENCES]; struct intel_overlay_error_state *overlay; struct intel_display_error_state *display; struct drm_i915_error_object *semaphore; struct drm_i915_error_object *guc_log; struct drm_i915_error_engine { int engine_id; /* Software tracked state */ bool waiting; int num_waiters; unsigned long hangcheck_timestamp; bool hangcheck_stalled; enum intel_engine_hangcheck_action hangcheck_action; struct i915_address_space *vm; int num_requests; u32 reset_count; /* position of active request inside the ring */ u32 rq_head, rq_post, rq_tail; /* our own tracking of ring head and tail */ u32 cpu_ring_head; u32 cpu_ring_tail; u32 last_seqno; /* Register state */ u32 start; u32 tail; u32 head; u32 ctl; u32 mode; u32 hws; u32 ipeir; u32 ipehr; u32 bbstate; u32 instpm; u32 instps; u32 seqno; u64 bbaddr; u64 acthd; u32 fault_reg; u64 faddr; u32 rc_psmi; /* sleep state */ u32 semaphore_mboxes[I915_NUM_ENGINES - 1]; struct intel_instdone instdone; struct drm_i915_error_context { char comm[TASK_COMM_LEN]; pid_t pid; u32 handle; u32 hw_id; int priority; int ban_score; int active; int guilty; } context; struct drm_i915_error_object { u64 gtt_offset; u64 gtt_size; int page_count; int unused; u32 *pages[0]; } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page; struct drm_i915_error_object **user_bo; long user_bo_count; struct drm_i915_error_object *wa_ctx; struct drm_i915_error_request { long jiffies; pid_t pid; u32 context; int priority; int ban_score; u32 seqno; u32 head; u32 tail; } *requests, execlist[EXECLIST_MAX_PORTS]; unsigned int num_ports; struct drm_i915_error_waiter { char comm[TASK_COMM_LEN]; pid_t pid; u32 seqno; } *waiters; struct { u32 gfx_mode; union { u64 pdp[4]; u32 pp_dir_base; }; } vm_info; } engine[I915_NUM_ENGINES]; struct drm_i915_error_buffer { u32 size; u32 name; u32 rseqno[I915_NUM_ENGINES], wseqno; u64 gtt_offset; u32 read_domains; u32 write_domain; s32 fence_reg:I915_MAX_NUM_FENCE_BITS; u32 tiling:2; u32 dirty:1; u32 purgeable:1; u32 userptr:1; s32 engine:4; u32 cache_level:3; } *active_bo[I915_NUM_ENGINES], *pinned_bo; u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count; struct i915_address_space *active_vm[I915_NUM_ENGINES]; }; enum i915_cache_level { I915_CACHE_NONE = 0, I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc caches, eg sampler/render caches, and the large Last-Level-Cache. LLC is coherent with the CPU, but L3 is only visible to the GPU. */ I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ }; #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ enum fb_op_origin { ORIGIN_GTT, ORIGIN_CPU, ORIGIN_CS, ORIGIN_FLIP, ORIGIN_DIRTYFB, }; struct intel_fbc { /* This is always the inner lock when overlapping with struct_mutex and * it's the outer lock when overlapping with stolen_lock. */ struct mutex lock; unsigned threshold; unsigned int possible_framebuffer_bits; unsigned int busy_bits; unsigned int visible_pipes_mask; struct intel_crtc *crtc; struct drm_mm_node compressed_fb; struct drm_mm_node *compressed_llb; bool false_color; bool enabled; bool active; bool underrun_detected; struct work_struct underrun_work; /* * Due to the atomic rules we can't access some structures without the * appropriate locking, so we cache information here in order to avoid * these problems. */ struct intel_fbc_state_cache { struct i915_vma *vma; struct { unsigned int mode_flags; uint32_t hsw_bdw_pixel_rate; } crtc; struct { unsigned int rotation; int src_w; int src_h; bool visible; /* * Display surface base address adjustement for * pageflips. Note that on gen4+ this only adjusts up * to a tile, offsets within a tile are handled in * the hw itself (with the TILEOFF register). */ int adjusted_x; int adjusted_y; int y; } plane; struct { const struct drm_format_info *format; unsigned int stride; } fb; } state_cache; /* * This structure contains everything that's relevant to program the * hardware registers. When we want to figure out if we need to disable * and re-enable FBC for a new configuration we just check if there's * something different in the struct. The genx_fbc_activate functions * are supposed to read from it in order to program the registers. */ struct intel_fbc_reg_params { struct i915_vma *vma; struct { enum pipe pipe; enum plane plane; unsigned int fence_y_offset; } crtc; struct { const struct drm_format_info *format; unsigned int stride; } fb; int cfb_size; unsigned int gen9_wa_cfb_stride; } params; struct intel_fbc_work { bool scheduled; u32 scheduled_vblank; struct work_struct work; } work; const char *no_fbc_reason; }; /* * HIGH_RR is the highest eDP panel refresh rate read from EDID * LOW_RR is the lowest eDP panel refresh rate found from EDID * parsing for same resolution. */ enum drrs_refresh_rate_type { DRRS_HIGH_RR, DRRS_LOW_RR, DRRS_MAX_RR, /* RR count */ }; enum drrs_support_type { DRRS_NOT_SUPPORTED = 0, STATIC_DRRS_SUPPORT = 1, SEAMLESS_DRRS_SUPPORT = 2 }; struct intel_dp; struct i915_drrs { struct mutex mutex; struct delayed_work work; struct intel_dp *dp; unsigned busy_frontbuffer_bits; enum drrs_refresh_rate_type refresh_rate_type; enum drrs_support_type type; }; struct i915_psr { struct mutex lock; bool sink_support; bool source_ok; struct intel_dp *enabled; bool active; struct delayed_work work; unsigned busy_frontbuffer_bits; bool psr2_support; bool aux_frame_sync; bool link_standby; bool y_cord_support; bool colorimetry_support; bool alpm; void (*enable_source)(struct intel_dp *, const struct intel_crtc_state *); void (*disable_source)(struct intel_dp *, const struct intel_crtc_state *); void (*enable_sink)(struct intel_dp *); void (*activate)(struct intel_dp *); void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *); }; enum intel_pch { PCH_NONE = 0, /* No PCH present */ PCH_IBX, /* Ibexpeak PCH */ PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ PCH_SPT, /* Sunrisepoint PCH */ PCH_KBP, /* Kaby Lake PCH */ PCH_CNP, /* Cannon Lake PCH */ PCH_NOP, }; enum intel_sbi_destination { SBI_ICLK, SBI_MPHY, }; #define QUIRK_LVDS_SSC_DISABLE (1<<1) #define QUIRK_INVERT_BRIGHTNESS (1<<2) #define QUIRK_BACKLIGHT_PRESENT (1<<3) #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) #define QUIRK_INCREASE_T12_DELAY (1<<6) struct intel_fbdev; struct intel_fbc_work; struct intel_gmbus { struct i2c_adapter adapter; #define GMBUS_FORCE_BIT_RETRY (1U << 31) u32 force_bit; u32 reg0; i915_reg_t gpio_reg; struct i2c_algo_bit_data bit_algo; struct drm_i915_private *dev_priv; }; struct i915_suspend_saved_registers { u32 saveDSPARB; u32 saveFBC_CONTROL; u32 saveCACHE_MODE_0; u32 saveMI_ARB_STATE; u32 saveSWF0[16]; u32 saveSWF1[16]; u32 saveSWF3[3]; uint64_t saveFENCE[I915_MAX_NUM_FENCES]; u32 savePCH_PORT_HOTPLUG; u16 saveGCDGMBUS; }; struct vlv_s0ix_state { /* GAM */ u32 wr_watermark; u32 gfx_prio_ctrl; u32 arb_mode; u32 gfx_pend_tlb0; u32 gfx_pend_tlb1; u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; u32 media_max_req_count; u32 gfx_max_req_count; u32 render_hwsp; u32 ecochk; u32 bsd_hwsp; u32 blt_hwsp; u32 tlb_rd_addr; /* MBC */ u32 g3dctl; u32 gsckgctl; u32 mbctl; /* GCP */ u32 ucgctl1; u32 ucgctl3; u32 rcgctl1; u32 rcgctl2; u32 rstctl; u32 misccpctl; /* GPM */ u32 gfxpause; u32 rpdeuhwtc; u32 rpdeuc; u32 ecobus; u32 pwrdwnupctl; u32 rp_down_timeout; u32 rp_deucsw; u32 rcubmabdtmr; u32 rcedata; u32 spare2gh; /* Display 1 CZ domain */ u32 gt_imr; u32 gt_ier; u32 pm_imr; u32 pm_ier; u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; /* GT SA CZ domain */ u32 tilectl; u32 gt_fifoctl; u32 gtlc_wake_ctrl; u32 gtlc_survive; u32 pmwgicz; /* Display 2 CZ domain */ u32 gu_ctl0; u32 gu_ctl1; u32 pcbr; u32 clock_gate_dis2; }; struct intel_rps_ei { ktime_t ktime; u32 render_c0; u32 media_c0; }; struct intel_rps { /* * work, interrupts_enabled and pm_iir are protected by * dev_priv->irq_lock */ struct work_struct work; bool interrupts_enabled; u32 pm_iir; /* PM interrupt bits that should never be masked */ u32 pm_intrmsk_mbz; /* Frequencies are stored in potentially platform dependent multiples. * In other words, *_freq needs to be multiplied by X to be interesting. * Soft limits are those which are used for the dynamic reclocking done * by the driver (raise frequencies under heavy loads, and lower for * lighter loads). Hard limits are those imposed by the hardware. * * A distinction is made for overclocking, which is never enabled by * default, and is considered to be above the hard limit if it's * possible at all. */ u8 cur_freq; /* Current frequency (cached, may not == HW) */ u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ u8 max_freq_softlimit; /* Max frequency permitted by the driver */ u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ u8 min_freq; /* AKA RPn. Minimum frequency */ u8 boost_freq; /* Frequency to request when wait boosting */ u8 idle_freq; /* Frequency to request when we are idle */ u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ u8 rp1_freq; /* "less than" RP0 power/freqency */ u8 rp0_freq; /* Non-overclocked max frequency. */ u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ u8 up_threshold; /* Current %busy required to uplock */ u8 down_threshold; /* Current %busy required to downclock */ int last_adj; enum { LOW_POWER, BETWEEN, HIGH_POWER } power; bool enabled; atomic_t num_waiters; atomic_t boosts; /* manual wa residency calculations */ struct intel_rps_ei ei; }; struct intel_rc6 { bool enabled; }; struct intel_llc_pstate { bool enabled; }; struct intel_gen6_power_mgmt { struct intel_rps rps; struct intel_rc6 rc6; struct intel_llc_pstate llc_pstate; struct delayed_work autoenable_work; }; /* defined intel_pm.c */ extern spinlock_t mchdev_lock; struct intel_ilk_power_mgmt { u8 cur_delay; u8 min_delay; u8 max_delay; u8 fmax; u8 fstart; u64 last_count1; unsigned long last_time1; unsigned long chipset_power; u64 last_count2; u64 last_time2; unsigned long gfx_power; u8 corr; int c_m; int r_t; }; struct drm_i915_private; struct i915_power_well; struct i915_power_well_ops { /* * Synchronize the well's hw state to match the current sw state, for * example enable/disable it based on the current refcount. Called * during driver init and resume time, possibly after first calling * the enable/disable handlers. */ void (*sync_hw)(struct drm_i915_private *dev_priv, struct i915_power_well *power_well); /* * Enable the well and resources that depend on it (for example * interrupts located on the well). Called after the 0->1 refcount * transition. */ void (*enable)(struct drm_i915_private *dev_priv, struct i915_power_well *power_well); /* * Disable the well and resources that depend on it. Called after * the 1->0 refcount transition. */ void (*disable)(struct drm_i915_private *dev_priv, struct i915_power_well *power_well); /* Returns the hw enabled state. */ bool (*is_enabled)(struct drm_i915_private *dev_priv, struct i915_power_well *power_well); }; /* Power well structure for haswell */ struct i915_power_well { const char *name; bool always_on; /* power well enable/disable usage count */ int count; /* cached hw enabled state */ bool hw_enabled; u64 domains; /* unique identifier for this power well */ enum i915_power_well_id id; /* * Arbitraty data associated with this power well. Platform and power * well specific. */ union { struct { enum dpio_phy phy; } bxt; struct { /* Mask of pipes whose IRQ logic is backed by the pw */ u8 irq_pipe_mask; /* The pw is backing the VGA functionality */ bool has_vga:1; bool has_fuses:1; } hsw; }; const struct i915_power_well_ops *ops; }; struct i915_power_domains { /* * Power wells needed for initialization at driver init and suspend * time are on. They are kept on until after the first modeset. */ bool init_power_on; bool initializing; int power_well_count; struct mutex lock; int domain_use_count[POWER_DOMAIN_NUM]; struct i915_power_well *power_wells; }; #define MAX_L3_SLICES 2 struct intel_l3_parity { u32 *remap_info[MAX_L3_SLICES]; struct work_struct error_work; int which_slice; }; struct i915_gem_mm { /** Memory allocator for GTT stolen memory */ struct drm_mm stolen; /** Protects the usage of the GTT stolen memory allocator. This is * always the inner lock when overlapping with struct_mutex. */ struct mutex stolen_lock; /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ spinlock_t obj_lock; /** List of all objects in gtt_space. Used to restore gtt * mappings on resume */ struct list_head bound_list; /** * List of objects which are not bound to the GTT (thus * are idle and not used by the GPU). These objects may or may * not actually have any pages attached. */ struct list_head unbound_list; /** List of all objects in gtt_space, currently mmaped by userspace. * All objects within this list must also be on bound_list. */ struct list_head userfault_list; /** * List of objects which are pending destruction. */ struct llist_head free_list; struct work_struct free_work; spinlock_t free_lock; /** * Small stash of WC pages */ struct pagevec wc_stash; /** Usable portion of the GTT for GEM */ dma_addr_t stolen_base; /* limited to low memory (32-bit) */ /** * tmpfs instance used for shmem backed objects */ struct vfsmount *gemfs; /** PPGTT used for aliasing the PPGTT with the GTT */ struct i915_hw_ppgtt *aliasing_ppgtt; struct notifier_block oom_notifier; struct notifier_block vmap_notifier; struct shrinker shrinker; /** LRU list of objects with fence regs on them. */ struct list_head fence_list; /** * Workqueue to fault in userptr pages, flushed by the execbuf * when required but otherwise left to userspace to try again * on EAGAIN. */ struct workqueue_struct *userptr_wq; u64 unordered_timeline; /* the indicator for dispatch video commands on two BSD rings */ atomic_t bsd_engine_dispatch_index; /** Bit 6 swizzling required for X tiling */ uint32_t bit_6_swizzle_x; /** Bit 6 swizzling required for Y tiling */ uint32_t bit_6_swizzle_y; /* accounting, useful for userland debugging */ spinlock_t object_stat_lock; u64 object_memory; u32 object_count; }; struct drm_i915_error_state_buf { struct drm_i915_private *i915; unsigned bytes; unsigned size; int err; u8 *buf; loff_t start; loff_t pos; }; #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ struct i915_gpu_error { /* For hangcheck timer */ #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */ #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD) struct delayed_work hangcheck_work; /* For reset and error_state handling. */ spinlock_t lock; /* Protected by the above dev->gpu_error.lock. */ struct i915_gpu_state *first_error; atomic_t pending_fb_pin; unsigned long missed_irq_rings; /** * State variable controlling the reset flow and count * * This is a counter which gets incremented when reset is triggered, * * Before the reset commences, the I915_RESET_BACKOFF bit is set * meaning that any waiters holding onto the struct_mutex should * relinquish the lock immediately in order for the reset to start. * * If reset is not completed succesfully, the I915_WEDGE bit is * set meaning that hardware is terminally sour and there is no * recovery. All waiters on the reset_queue will be woken when * that happens. * * This counter is used by the wait_seqno code to notice that reset * event happened and it needs to restart the entire ioctl (since most * likely the seqno it waited for won't ever signal anytime soon). * * This is important for lock-free wait paths, where no contended lock * naturally enforces the correct ordering between the bail-out of the * waiter and the gpu reset work code. */ unsigned long reset_count; /** * flags: Control various stages of the GPU reset * * #I915_RESET_BACKOFF - When we start a reset, we want to stop any * other users acquiring the struct_mutex. To do this we set the * #I915_RESET_BACKOFF bit in the error flags when we detect a reset * and then check for that bit before acquiring the struct_mutex (in * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a * secondary role in preventing two concurrent global reset attempts. * * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the * struct_mutex. We try to acquire the struct_mutex in the reset worker, * but it may be held by some long running waiter (that we cannot * interrupt without causing trouble). Once we are ready to do the GPU * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If * they already hold the struct_mutex and want to participate they can * inspect the bit and do the reset directly, otherwise the worker * waits for the struct_mutex. * * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to * acquire the struct_mutex to reset an engine, we need an explicit * flag to prevent two concurrent reset attempts in the same engine. * As the number of engines continues to grow, allocate the flags from * the most significant bits. * * #I915_WEDGED - If reset fails and we can no longer use the GPU, * we set the #I915_WEDGED bit. Prior to command submission, e.g. * i915_gem_request_alloc(), this bit is checked and the sequence * aborted (with -EIO reported to userspace) if set. */ unsigned long flags; #define I915_RESET_BACKOFF 0 #define I915_RESET_HANDOFF 1 #define I915_RESET_MODESET 2 #define I915_WEDGED (BITS_PER_LONG - 1) #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES) /** Number of times an engine has been reset */ u32 reset_engine_count[I915_NUM_ENGINES]; /** * Waitqueue to signal when a hang is detected. Used to for waiters * to release the struct_mutex for the reset to procede. */ wait_queue_head_t wait_queue; /** * Waitqueue to signal when the reset has completed. Used by clients * that wait for dev_priv->mm.wedged to settle. */ wait_queue_head_t reset_queue; /* For missed irq/seqno simulation. */ unsigned long test_irq_rings; }; enum modeset_restore { MODESET_ON_LID_OPEN, MODESET_DONE, MODESET_SUSPENDED, }; #define DP_AUX_A 0x40 #define DP_AUX_B 0x10 #define DP_AUX_C 0x20 #define DP_AUX_D 0x30 #define DDC_PIN_B 0x05 #define DDC_PIN_C 0x04 #define DDC_PIN_D 0x06 struct ddi_vbt_port_info { /* * This is an index in the HDMI/DVI DDI buffer translation table. * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't * populate this field. */ #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff uint8_t hdmi_level_shift; uint8_t supports_dvi:1; uint8_t supports_hdmi:1; uint8_t supports_dp:1; uint8_t supports_edp:1; uint8_t alternate_aux_channel; uint8_t alternate_ddc_pin; uint8_t dp_boost_level; uint8_t hdmi_boost_level; }; enum psr_lines_to_wait { PSR_0_LINES_TO_WAIT = 0, PSR_1_LINE_TO_WAIT, PSR_4_LINES_TO_WAIT, PSR_8_LINES_TO_WAIT }; struct intel_vbt_data { struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ /* Feature bits */ unsigned int int_tv_support:1; unsigned int lvds_dither:1; unsigned int lvds_vbt:1; unsigned int int_crt_support:1; unsigned int lvds_use_ssc:1; unsigned int display_clock_mode:1; unsigned int fdi_rx_polarity_inverted:1; unsigned int panel_type:4; int lvds_ssc_freq; unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ enum drrs_support_type drrs_type; struct { int rate; int lanes; int preemphasis; int vswing; bool low_vswing; bool initialized; bool support; int bpp; struct edp_power_seq pps; } edp; struct { bool full_link; bool require_aux_wakeup; int idle_frames; enum psr_lines_to_wait lines_to_wait; int tp1_wakeup_time; int tp2_tp3_wakeup_time; } psr; struct { u16 pwm_freq_hz; bool present; bool active_low_pwm; u8 min_brightness; /* min_brightness/255 of max */ u8 controller; /* brightness controller number */ enum intel_backlight_type type; } backlight; /* MIPI DSI */ struct { u16 panel_id; struct mipi_config *config; struct mipi_pps_data *pps; u16 bl_ports; u16 cabc_ports; u8 seq_version; u32 size; u8 *data; const u8 *sequence[MIPI_SEQ_MAX]; } dsi; int crt_ddc_pin; int child_dev_num; struct child_device_config *child_dev; struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; struct sdvo_device_mapping sdvo_mappings[2]; }; enum intel_ddb_partitioning { INTEL_DDB_PART_1_2, INTEL_DDB_PART_5_6, /* IVB+ */ }; struct intel_wm_level { bool enable; uint32_t pri_val; uint32_t spr_val; uint32_t cur_val; uint32_t fbc_val; }; struct ilk_wm_values { uint32_t wm_pipe[3]; uint32_t wm_lp[3]; uint32_t wm_lp_spr[3]; uint32_t wm_linetime[3]; bool enable_fbc_wm; enum intel_ddb_partitioning partitioning; }; struct g4x_pipe_wm { uint16_t plane[I915_MAX_PLANES]; uint16_t fbc; }; struct g4x_sr_wm { uint16_t plane; uint16_t cursor; uint16_t fbc; }; struct vlv_wm_ddl_values { uint8_t plane[I915_MAX_PLANES]; }; struct vlv_wm_values { struct g4x_pipe_wm pipe[3]; struct g4x_sr_wm sr; struct vlv_wm_ddl_values ddl[3]; uint8_t level; bool cxsr; }; struct g4x_wm_values { struct g4x_pipe_wm pipe[2]; struct g4x_sr_wm sr; struct g4x_sr_wm hpll; bool cxsr; bool hpll_en; bool fbc_en; }; struct skl_ddb_entry { uint16_t start, end; /* in number of blocks, 'end' is exclusive */ }; static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) { return entry->end - entry->start; } static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, const struct skl_ddb_entry *e2) { if (e1->start == e2->start && e1->end == e2->end) return true; return false; } struct skl_ddb_allocation { struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */ struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; }; struct skl_wm_values { unsigned dirty_pipes; struct skl_ddb_allocation ddb; }; struct skl_wm_level { bool plane_en; uint16_t plane_res_b; uint8_t plane_res_l; }; /* Stores plane specific WM parameters */ struct skl_wm_params { bool x_tiled, y_tiled; bool rc_surface; uint32_t width; uint8_t cpp; uint32_t plane_pixel_rate; uint32_t y_min_scanlines; uint32_t plane_bytes_per_line; uint_fixed_16_16_t plane_blocks_per_line; uint_fixed_16_16_t y_tile_minimum; uint32_t linetime_us; }; /* * This struct helps tracking the state needed for runtime PM, which puts the * device in PCI D3 state. Notice that when this happens, nothing on the * graphics device works, even register access, so we don't get interrupts nor * anything else. * * Every piece of our code that needs to actually touch the hardware needs to * either call intel_runtime_pm_get or call intel_display_power_get with the * appropriate power domain. * * Our driver uses the autosuspend delay feature, which means we'll only really * suspend if we stay with zero refcount for a certain amount of time. The * default value is currently very conservative (see intel_runtime_pm_enable), but * it can be changed with the standard runtime PM files from sysfs. * * The irqs_disabled variable becomes true exactly after we disable the IRQs and * goes back to false exactly before we reenable the IRQs. We use this variable * to check if someone is trying to enable/disable IRQs while they're supposed * to be disabled. This shouldn't happen and we'll print some error messages in * case it happens. * * For more, read the Documentation/power/runtime_pm.txt. */ struct i915_runtime_pm { atomic_t wakeref_count; bool suspended; bool irqs_enabled; }; enum intel_pipe_crc_source { INTEL_PIPE_CRC_SOURCE_NONE, INTEL_PIPE_CRC_SOURCE_PLANE1, INTEL_PIPE_CRC_SOURCE_PLANE2, INTEL_PIPE_CRC_SOURCE_PF, INTEL_PIPE_CRC_SOURCE_PIPE, /* TV/DP on pre-gen5/vlv can't use the pipe source. */ INTEL_PIPE_CRC_SOURCE_TV, INTEL_PIPE_CRC_SOURCE_DP_B, INTEL_PIPE_CRC_SOURCE_DP_C, INTEL_PIPE_CRC_SOURCE_DP_D, INTEL_PIPE_CRC_SOURCE_AUTO, INTEL_PIPE_CRC_SOURCE_MAX, }; struct intel_pipe_crc_entry { uint32_t frame; uint32_t crc[5]; }; #define INTEL_PIPE_CRC_ENTRIES_NR 128 struct intel_pipe_crc { spinlock_t lock; bool opened; /* exclusive access to the result file */ struct intel_pipe_crc_entry *entries; enum intel_pipe_crc_source source; int head, tail; wait_queue_head_t wq; int skipped; }; struct i915_frontbuffer_tracking { spinlock_t lock; /* * Tracking bits for delayed frontbuffer flushing du to gpu activity or * scheduled flips. */ unsigned busy_bits; unsigned flip_bits; }; struct i915_wa_reg { i915_reg_t addr; u32 value; /* bitmask representing WA bits */ u32 mask; }; #define I915_MAX_WA_REGS 16 struct i915_workarounds { struct i915_wa_reg reg[I915_MAX_WA_REGS]; u32 count; u32 hw_whitelist_count[I915_NUM_ENGINES]; }; struct i915_virtual_gpu { bool active; u32 caps; }; /* used in computing the new watermarks state */ struct intel_wm_config { unsigned int num_pipes_active; bool sprites_enabled; bool sprites_scaled; }; struct i915_oa_format { u32 format; int size; }; struct i915_oa_reg { i915_reg_t addr; u32 value; }; struct i915_oa_config { char uuid[UUID_STRING_LEN + 1]; int id; const struct i915_oa_reg *mux_regs; u32 mux_regs_len; const struct i915_oa_reg *b_counter_regs; u32 b_counter_regs_len; const struct i915_oa_reg *flex_regs; u32 flex_regs_len; struct attribute_group sysfs_metric; struct attribute *attrs[2]; struct device_attribute sysfs_metric_id; atomic_t ref_count; }; struct i915_perf_stream; /** * struct i915_perf_stream_ops - the OPs to support a specific stream type */ struct i915_perf_stream_ops { /** * @enable: Enables the collection of HW samples, either in response to * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened * without `I915_PERF_FLAG_DISABLED`. */ void (*enable)(struct i915_perf_stream *stream); /** * @disable: Disables the collection of HW samples, either in response * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying * the stream. */ void (*disable)(struct i915_perf_stream *stream); /** * @poll_wait: Call poll_wait, passing a wait queue that will be woken * once there is something ready to read() for the stream */ void (*poll_wait)(struct i915_perf_stream *stream, struct file *file, poll_table *wait); /** * @wait_unlocked: For handling a blocking read, wait until there is * something to ready to read() for the stream. E.g. wait on the same * wait queue that would be passed to poll_wait(). */ int (*wait_unlocked)(struct i915_perf_stream *stream); /** * @read: Copy buffered metrics as records to userspace * **buf**: the userspace, destination buffer * **count**: the number of bytes to copy, requested by userspace * **offset**: zero at the start of the read, updated as the read * proceeds, it represents how many bytes have been copied so far and * the buffer offset for copying the next record. * * Copy as many buffered i915 perf samples and records for this stream * to userspace as will fit in the given buffer. * * Only write complete records; returning -%ENOSPC if there isn't room * for a complete record. * * Return any error condition that results in a short read such as * -%ENOSPC or -%EFAULT, even though these may be squashed before * returning to userspace. */ int (*read)(struct i915_perf_stream *stream, char __user *buf, size_t count, size_t *offset); /** * @destroy: Cleanup any stream specific resources. * * The stream will always be disabled before this is called. */ void (*destroy)(struct i915_perf_stream *stream); }; /** * struct i915_perf_stream - state for a single open stream FD */ struct i915_perf_stream { /** * @dev_priv: i915 drm device */ struct drm_i915_private *dev_priv; /** * @link: Links the stream into ``&drm_i915_private->streams`` */ struct list_head link; /** * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` * properties given when opening a stream, representing the contents * of a single sample as read() by userspace. */ u32 sample_flags; /** * @sample_size: Considering the configured contents of a sample * combined with the required header size, this is the total size * of a single sample record. */ int sample_size; /** * @ctx: %NULL if measuring system-wide across all contexts or a * specific context that is being monitored. */ struct i915_gem_context *ctx; /** * @enabled: Whether the stream is currently enabled, considering * whether the stream was opened in a disabled state and based * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. */ bool enabled; /** * @ops: The callbacks providing the implementation of this specific * type of configured stream. */ const struct i915_perf_stream_ops *ops; /** * @oa_config: The OA configuration used by the stream. */ struct i915_oa_config *oa_config; }; /** * struct i915_oa_ops - Gen specific implementation of an OA unit stream */ struct i915_oa_ops { /** * @is_valid_b_counter_reg: Validates register's address for * programming boolean counters for a particular platform. */ bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, u32 addr); /** * @is_valid_mux_reg: Validates register's address for programming mux * for a particular platform. */ bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); /** * @is_valid_flex_reg: Validates register's address for programming * flex EU filtering for a particular platform. */ bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); /** * @init_oa_buffer: Resets the head and tail pointers of the * circular buffer for periodic OA reports. * * Called when first opening a stream for OA metrics, but also may be * called in response to an OA buffer overflow or other error * condition. * * Note it may be necessary to clear the full OA buffer here as part of * maintaining the invariable that new reports must be written to * zeroed memory for us to be able to reliable detect if an expected * report has not yet landed in memory. (At least on Haswell the OA * buffer tail pointer is not synchronized with reports being visible * to the CPU) */ void (*init_oa_buffer)(struct drm_i915_private *dev_priv); /** * @enable_metric_set: Selects and applies any MUX configuration to set * up the Boolean and Custom (B/C) counters that are part of the * counter reports being sampled. May apply system constraints such as * disabling EU clock gating as required. */ int (*enable_metric_set)(struct drm_i915_private *dev_priv, const struct i915_oa_config *oa_config); /** * @disable_metric_set: Remove system constraints associated with using * the OA unit. */ void (*disable_metric_set)(struct drm_i915_private *dev_priv); /** * @oa_enable: Enable periodic sampling */ void (*oa_enable)(struct drm_i915_private *dev_priv); /** * @oa_disable: Disable periodic sampling */ void (*oa_disable)(struct drm_i915_private *dev_priv); /** * @read: Copy data from the circular OA buffer into a given userspace * buffer. */ int (*read)(struct i915_perf_stream *stream, char __user *buf, size_t count, size_t *offset); /** * @oa_hw_tail_read: read the OA tail pointer register * * In particular this enables us to share all the fiddly code for * handling the OA unit tail pointer race that affects multiple * generations. */ u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); }; struct intel_cdclk_state { unsigned int cdclk, vco, ref; u8 voltage_level; }; struct drm_i915_private { struct drm_device drm; struct kmem_cache *objects; struct kmem_cache *vmas; struct kmem_cache *luts; struct kmem_cache *requests; struct kmem_cache *dependencies; struct kmem_cache *priorities; const struct intel_device_info info; void __iomem *regs; struct intel_uncore uncore; struct i915_virtual_gpu vgpu; struct intel_gvt *gvt; struct intel_huc huc; struct intel_guc guc; struct intel_csr csr; struct intel_gmbus gmbus[GMBUS_NUM_PINS]; /** gmbus_mutex protects against concurrent usage of the single hw gmbus * controller on different i2c buses. */ struct mutex gmbus_mutex; /** * Base address of the gmbus and gpio block. */ uint32_t gpio_mmio_base; /* MMIO base address for MIPI regs */ uint32_t mipi_mmio_base; uint32_t psr_mmio_base; uint32_t pps_mmio_base; wait_queue_head_t gmbus_wait_queue; struct pci_dev *bridge_dev; struct intel_engine_cs *engine[I915_NUM_ENGINES]; /* Context used internally to idle the GPU and setup initial state */ struct i915_gem_context *kernel_context; /* Context only to be used for injecting preemption commands */ struct i915_gem_context *preempt_context; struct i915_vma *semaphore; struct drm_dma_handle *status_page_dmah; struct resource mch_res; /* protects the irq masks */ spinlock_t irq_lock; bool display_irqs_enabled; /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ struct pm_qos_request pm_qos; /* Sideband mailbox protection */ struct mutex sb_lock; /** Cached value of IMR to avoid reads in updating the bitfield */ union { u32 irq_mask; u32 de_irq_mask[I915_MAX_PIPES]; }; u32 gt_irq_mask; u32 pm_imr; u32 pm_ier; u32 pm_rps_events; u32 pm_guc_events; u32 pipestat_irq_mask[I915_MAX_PIPES]; struct i915_hotplug hotplug; struct intel_fbc fbc; struct i915_drrs drrs; struct intel_opregion opregion; struct intel_vbt_data vbt; bool preserve_bios_swizzle; /* overlay */ struct intel_overlay *overlay; /* backlight registers and fields in struct intel_panel */ struct mutex backlight_lock; /* LVDS info */ bool no_aux_handshake; /* protects panel power sequencer state */ struct mutex pps_mutex; struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ int num_fence_regs; /* 8 on pre-965, 16 otherwise */ unsigned int fsb_freq, mem_freq, is_ddr3; unsigned int skl_preferred_vco_freq; unsigned int max_cdclk_freq; unsigned int max_dotclk_freq; unsigned int rawclk_freq; unsigned int hpll_freq; unsigned int czclk_freq; struct { /* * The current logical cdclk state. * See intel_atomic_state.cdclk.logical * * For reading holding any crtc lock is sufficient, * for writing must hold all of them. */ struct intel_cdclk_state logical; /* * The current actual cdclk state. * See intel_atomic_state.cdclk.actual */ struct intel_cdclk_state actual; /* The current hardware cdclk state */ struct intel_cdclk_state hw; } cdclk; /** * wq - Driver workqueue for GEM. * * NOTE: Work items scheduled here are not allowed to grab any modeset * locks, for otherwise the flushing done in the pageflip code will * result in deadlocks. */ struct workqueue_struct *wq; /* Display functions */ struct drm_i915_display_funcs display; /* PCH chipset type */ enum intel_pch pch_type; unsigned short pch_id; unsigned long quirks; enum modeset_restore modeset_restore; struct mutex modeset_restore_lock; struct drm_atomic_state *modeset_restore_state; struct drm_modeset_acquire_ctx reset_ctx; struct list_head vm_list; /* Global list of all address spaces */ struct i915_ggtt ggtt; /* VM representing the global address space */ struct i915_gem_mm mm; DECLARE_HASHTABLE(mm_structs, 7); struct mutex mm_lock; struct intel_ppat ppat; /* Kernel Modesetting */ struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; #ifdef CONFIG_DEBUG_FS struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; #endif /* dpll and cdclk state is protected by connection_mutex */ int num_shared_dpll; struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; const struct intel_dpll_mgr *dpll_mgr; /* * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. * Must be global rather than per dpll, because on some platforms * plls share registers. */ struct mutex dpll_lock; unsigned int active_crtcs; /* minimum acceptable cdclk for each pipe */ int min_cdclk[I915_MAX_PIPES]; /* minimum acceptable voltage level for each pipe */ u8 min_voltage_level[I915_MAX_PIPES]; int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; struct i915_workarounds workarounds; struct i915_frontbuffer_tracking fb_tracking; struct intel_atomic_helper { struct llist_head free_list; struct work_struct free_work; } atomic_helper; u16 orig_clock; bool mchbar_need_disable; struct intel_l3_parity l3_parity; /* Cannot be determined by PCIID. You must always read a register. */ u32 edram_cap; /* * Protects RPS/RC6 register access and PCU communication. * Must be taken after struct_mutex if nested. Note that * this lock may be held for long periods of time when * talking to hw - so only take it when talking to hw! */ struct mutex pcu_lock; /* gen6+ GT PM state */ struct intel_gen6_power_mgmt gt_pm; /* ilk-only ips/rps state. Everything in here is protected by the global * mchdev_lock in intel_pm.c */ struct intel_ilk_power_mgmt ips; struct i915_power_domains power_domains; struct i915_psr psr; struct i915_gpu_error gpu_error; struct drm_i915_gem_object *vlv_pctx; /* list of fbdev register on this device */ struct intel_fbdev *fbdev; struct work_struct fbdev_suspend_work; struct drm_property *broadcast_rgb_property; struct drm_property *force_audio_property; /* hda/i915 audio component */ struct i915_audio_component *audio_component; bool audio_component_registered; /** * av_mutex - mutex for audio/video sync * */ struct mutex av_mutex; struct { struct list_head list; struct llist_head free_list; struct work_struct free_work; /* The hw wants to have a stable context identifier for the * lifetime of the context (for OA, PASID, faults, etc). * This is limited in execlists to 21 bits. */ struct ida hw_ida; #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ } contexts; u32 fdi_rx_config; /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ u32 chv_phy_control; /* * Shadows for CHV DPLL_MD regs to keep the state * checker somewhat working in the presence hardware * crappiness (can't read out DPLL_MD for pipes B & C). */ u32 chv_dpll_md[I915_MAX_PIPES]; u32 bxt_phy_grc; u32 suspend_count; bool suspended_to_idle; struct i915_suspend_saved_registers regfile; struct vlv_s0ix_state vlv_s0ix_state; enum { I915_SAGV_UNKNOWN = 0, I915_SAGV_DISABLED, I915_SAGV_ENABLED, I915_SAGV_NOT_CONTROLLED } sagv_status; struct { /* * Raw watermark latency values: * in 0.1us units for WM0, * in 0.5us units for WM1+. */ /* primary */ uint16_t pri_latency[5]; /* sprite */ uint16_t spr_latency[5]; /* cursor */ uint16_t cur_latency[5]; /* * Raw watermark memory latency values * for SKL for all 8 levels * in 1us units. */ uint16_t skl_latency[8]; /* current hardware state */ union { struct ilk_wm_values hw; struct skl_wm_values skl_hw; struct vlv_wm_values vlv; struct g4x_wm_values g4x; }; uint8_t max_level; /* * Should be held around atomic WM register writing; also * protects * intel_crtc->wm.active and * cstate->wm.need_postvbl_update. */ struct mutex wm_mutex; /* * Set during HW readout of watermarks/DDB. Some platforms * need to know when we're still using BIOS-provided values * (which we don't fully trust). */ bool distrust_bios_wm; } wm; struct i915_runtime_pm runtime_pm; struct { bool initialized; struct kobject *metrics_kobj; struct ctl_table_header *sysctl_header; /* * Lock associated with adding/modifying/removing OA configs * in dev_priv->perf.metrics_idr. */ struct mutex metrics_lock; /* * List of dynamic configurations, you need to hold * dev_priv->perf.metrics_lock to access it. */ struct idr metrics_idr; /* * Lock associated with anything below within this structure * except exclusive_stream. */ struct mutex lock; struct list_head streams; struct { /* * The stream currently using the OA unit. If accessed * outside a syscall associated to its file * descriptor, you need to hold * dev_priv->drm.struct_mutex. */ struct i915_perf_stream *exclusive_stream; u32 specific_ctx_id; struct hrtimer poll_check_timer; wait_queue_head_t poll_wq; bool pollin; /** * For rate limiting any notifications of spurious * invalid OA reports */ struct ratelimit_state spurious_report_rs; bool periodic; int period_exponent; int timestamp_frequency; struct i915_oa_config test_config; struct { struct i915_vma *vma; u8 *vaddr; u32 last_ctx_id; int format; int format_size; /** * Locks reads and writes to all head/tail state * * Consider: the head and tail pointer state * needs to be read consistently from a hrtimer * callback (atomic context) and read() fop * (user context) with tail pointer updates * happening in atomic context and head updates * in user context and the (unlikely) * possibility of read() errors needing to * reset all head/tail state. * * Note: Contention or performance aren't * currently a significant concern here * considering the relatively low frequency of * hrtimer callbacks (5ms period) and that * reads typically only happen in response to a * hrtimer event and likely complete before the * next callback. * * Note: This lock is not held *while* reading * and copying data to userspace so the value * of head observed in htrimer callbacks won't * represent any partial consumption of data. */ spinlock_t ptr_lock; /** * One 'aging' tail pointer and one 'aged' * tail pointer ready to used for reading. * * Initial values of 0xffffffff are invalid * and imply that an update is required * (and should be ignored by an attempted * read) */ struct { u32 offset; } tails[2]; /** * Index for the aged tail ready to read() * data up to. */ unsigned int aged_tail_idx; /** * A monotonic timestamp for when the current * aging tail pointer was read; used to * determine when it is old enough to trust. */ u64 aging_timestamp; /** * Although we can always read back the head * pointer register, we prefer to avoid * trusting the HW state, just to avoid any * risk that some hardware condition could * somehow bump the head pointer unpredictably * and cause us to forward the wrong OA buffer * data to userspace. */ u32 head; } oa_buffer; u32 gen7_latched_oastatus1; u32 ctx_oactxctrl_offset; u32 ctx_flexeu0_offset; /** * The RPT_ID/reason field for Gen8+ includes a bit * to determine if the CTX ID in the report is valid * but the specific bit differs between Gen 8 and 9 */ u32 gen8_valid_ctx_bit; struct i915_oa_ops ops; const struct i915_oa_format *oa_formats; } oa; } perf; /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ struct { void (*resume)(struct drm_i915_private *); void (*cleanup_engine)(struct intel_engine_cs *engine); struct list_head timelines; struct i915_gem_timeline global_timeline; u32 active_requests; /** * Is the GPU currently considered idle, or busy executing * userspace requests? Whilst idle, we allow runtime power * management to power down the hardware and display clocks. * In order to reduce the effect on performance, there * is a slight delay before we do so. */ bool awake; /** * We leave the user IRQ off as much as possible, * but this means that requests will finish and never * be retired once the system goes idle. Set a timer to * fire periodically while the ring is running. When it * fires, go retire requests. */ struct delayed_work retire_work; /** * When we detect an idle GPU, we want to turn on * powersaving features. So once we see that there * are no more requests outstanding and no more * arrive within a small period of time, we fire * off the idle_work. */ struct delayed_work idle_work; ktime_t last_init_time; } gt; /* perform PHY state sanity checks? */ bool chv_phy_assert[2]; bool ipc_enabled; /* Used to save the pipe-to-encoder mapping for audio */ struct intel_encoder *av_enc_map[I915_MAX_PIPES]; /* necessary resource sharing with HDMI LPE audio driver. */ struct { struct platform_device *platdev; int irq; } lpe_audio; /* * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch * will be rejected. Instead look for a better place. */ }; static inline struct drm_i915_private *to_i915(const struct drm_device *dev) { return container_of(dev, struct drm_i915_private, drm); } static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) { return to_i915(dev_get_drvdata(kdev)); } static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) { return container_of(guc, struct drm_i915_private, guc); } static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) { return container_of(huc, struct drm_i915_private, huc); } /* Simple iterator over all initialised engines */ #define for_each_engine(engine__, dev_priv__, id__) \ for ((id__) = 0; \ (id__) < I915_NUM_ENGINES; \ (id__)++) \ for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) /* Iterator over subset of engines selected by mask */ #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \ tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; ) enum hdmi_force_audio { HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ HDMI_AUDIO_OFF, /* force turn off HDMI audio */ HDMI_AUDIO_AUTO, /* trust EDID */ HDMI_AUDIO_ON, /* force turn on HDMI audio */ }; #define I915_GTT_OFFSET_NONE ((u32)-1) /* * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is * considered to be the frontbuffer for the given plane interface-wise. This * doesn't mean that the hw necessarily already scans it out, but that any * rendering (by the cpu or gpu) will land in the frontbuffer eventually. * * We have one bit per pipe and per scanout plane type. */ #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \ (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) #define INTEL_FRONTBUFFER_CURSOR(pipe) \ (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \ (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) /* * Optimised SGL iterator for GEM objects */ static __always_inline struct sgt_iter { struct scatterlist *sgp; union { unsigned long pfn; dma_addr_t dma; }; unsigned int curr; unsigned int max; } __sgt_iter(struct scatterlist *sgl, bool dma) { struct sgt_iter s = { .sgp = sgl }; if (s.sgp) { s.max = s.curr = s.sgp->offset; s.max += s.sgp->length; if (dma) s.dma = sg_dma_address(s.sgp); else s.pfn = page_to_pfn(sg_page(s.sgp)); } return s; } static inline struct scatterlist *____sg_next(struct scatterlist *sg) { ++sg; if (unlikely(sg_is_chain(sg))) sg = sg_chain_ptr(sg); return sg; } /** * __sg_next - return the next scatterlist entry in a list * @sg: The current sg entry * * Description: * If the entry is the last, return NULL; otherwise, step to the next * element in the array (@sg@+1). If that's a chain pointer, follow it; * otherwise just return the pointer to the current element. **/ static inline struct scatterlist *__sg_next(struct scatterlist *sg) { #ifdef CONFIG_DEBUG_SG BUG_ON(sg->sg_magic != SG_MAGIC); #endif return sg_is_last(sg) ? NULL : ____sg_next(sg); } /** * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table * @__dmap: DMA address (output) * @__iter: 'struct sgt_iter' (iterator state, internal) * @__sgt: sg_table to iterate over (input) */ #define for_each_sgt_dma(__dmap, __iter, __sgt) \ for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ ((__dmap) = (__iter).dma + (__iter).curr); \ (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0) /** * for_each_sgt_page - iterate over the pages of the given sg_table * @__pp: page pointer (output) * @__iter: 'struct sgt_iter' (iterator state, internal) * @__sgt: sg_table to iterate over (input) */ #define for_each_sgt_page(__pp, __iter, __sgt) \ for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ ((__pp) = (__iter).pfn == 0 ? NULL : \ pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0) static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg) { unsigned int page_sizes; page_sizes = 0; while (sg) { GEM_BUG_ON(sg->offset); GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE)); page_sizes |= sg->length; sg = __sg_next(sg); } return page_sizes; } static inline unsigned int i915_sg_segment_size(void) { unsigned int size = swiotlb_max_segment(); if (size == 0) return SCATTERLIST_MAX_SEGMENT; size = rounddown(size, PAGE_SIZE); /* swiotlb_max_segment_size can return 1 byte when it means one page. */ if (size < PAGE_SIZE) size = PAGE_SIZE; return size; } static inline const struct intel_device_info * intel_info(const struct drm_i915_private *dev_priv) { return &dev_priv->info; } #define INTEL_INFO(dev_priv) intel_info((dev_priv)) #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen) #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id) #define REVID_FOREVER 0xff #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) #define GEN_FOREVER (0) #define INTEL_GEN_MASK(s, e) ( \ BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \ BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \ GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \ (s) != GEN_FOREVER ? (s) - 1 : 0) \ ) /* * Returns true if Gen is in inclusive range [Start, End]. * * Use GEN_FOREVER for unbound start and or end. */ #define IS_GEN(dev_priv, s, e) \ (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e)))) /* * Return true if revision is in range [since,until] inclusive. * * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. */ #define IS_REVID(p, since, until) \ (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p)) #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ (dev_priv)->info.gt == 1) #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE) #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile) #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) /* ULX machines are also considered ULT. */ #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ (INTEL_DEVID(dev_priv) & 0xf) == 0xe) #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ (dev_priv)->info.gt == 3) #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ (dev_priv)->info.gt == 3) /* ULX machines are also considered ULT. */ #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ INTEL_DEVID(dev_priv) == 0x0A1E) #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ INTEL_DEVID(dev_priv) == 0x1913 || \ INTEL_DEVID(dev_priv) == 0x1916 || \ INTEL_DEVID(dev_priv) == 0x1921 || \ INTEL_DEVID(dev_priv) == 0x1926) #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ INTEL_DEVID(dev_priv) == 0x1915 || \ INTEL_DEVID(dev_priv) == 0x191E) #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ INTEL_DEVID(dev_priv) == 0x5913 || \ INTEL_DEVID(dev_priv) == 0x5916 || \ INTEL_DEVID(dev_priv) == 0x5921 || \ INTEL_DEVID(dev_priv) == 0x5926) #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ INTEL_DEVID(dev_priv) == 0x5915 || \ INTEL_DEVID(dev_priv) == 0x591E) #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ (dev_priv)->info.gt == 2) #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ (dev_priv)->info.gt == 3) #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ (dev_priv)->info.gt == 4) #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ (dev_priv)->info.gt == 2) #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ (dev_priv)->info.gt == 3) #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \ (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0) #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ (dev_priv)->info.gt == 2) #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) #define SKL_REVID_A0 0x0 #define SKL_REVID_B0 0x1 #define SKL_REVID_C0 0x2 #define SKL_REVID_D0 0x3 #define SKL_REVID_E0 0x4 #define SKL_REVID_F0 0x5 #define SKL_REVID_G0 0x6 #define SKL_REVID_H0 0x7 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) #define BXT_REVID_A0 0x0 #define BXT_REVID_A1 0x1 #define BXT_REVID_B0 0x3 #define BXT_REVID_B_LAST 0x8 #define BXT_REVID_C0 0x9 #define IS_BXT_REVID(dev_priv, since, until) \ (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) #define KBL_REVID_A0 0x0 #define KBL_REVID_B0 0x1 #define KBL_REVID_C0 0x2 #define KBL_REVID_D0 0x3 #define KBL_REVID_E0 0x4 #define IS_KBL_REVID(dev_priv, since, until) \ (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) #define GLK_REVID_A0 0x0 #define GLK_REVID_A1 0x1 #define IS_GLK_REVID(dev_priv, since, until) \ (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) #define CNL_REVID_A0 0x0 #define CNL_REVID_B0 0x1 #define CNL_REVID_C0 0x2 #define IS_CNL_REVID(p, since, until) \ (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) /* * The genX designation typically refers to the render engine, so render * capability related checks should use IS_GEN, while display and other checks * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular * chips, etc.). */ #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1))) #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2))) #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3))) #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4))) #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5))) #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6))) #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7))) #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8))) #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9))) #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv)) #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv)) #define ENGINE_MASK(id) BIT(id) #define RENDER_RING ENGINE_MASK(RCS) #define BSD_RING ENGINE_MASK(VCS) #define BLT_RING ENGINE_MASK(BCS) #define VEBOX_RING ENGINE_MASK(VECS) #define BSD2_RING ENGINE_MASK(VCS2) #define ALL_ENGINES (~0) #define HAS_ENGINE(dev_priv, id) \ (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id))) #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc) #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop) #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical) #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ ((dev_priv)->info.has_logical_ring_contexts) #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \ ((dev_priv)->info.has_logical_ring_preemption) #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt) #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2) #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3) #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ GEM_BUG_ON((sizes) == 0); \ ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \ }) #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay) #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ ((dev_priv)->info.overlay_needs_physical) /* Early gen2 have a totally busted CS tlb and require pinned batches. */ #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) /* WaRsDisableCoarsePowerGating:skl,bxt */ #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) /* * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts * even when in MSI mode. This results in spurious interrupt warnings if the * legacy irq no. is shared with another device. The kernel then disables that * interrupt source and so prevents the other device from working properly. * * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX * interrupts. */ #define HAS_AUX_IRQ(dev_priv) true #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4) /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte * rows, which changed the alignment requirements and fence programming. */ #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \ !(IS_I915G(dev_priv) || \ IS_I915GM(dev_priv))) #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv) #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug) #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc) #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7) #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst) #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi) #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg) #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr) #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6) #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p) #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr) #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm) #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc) #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc) /* * For now, anything with a GuC requires uCode loading, and then supports * command submission once loaded. But these are logically independent * properties, so we have separate macros to test them. */ #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc) #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct) #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer) #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu) #define INTEL_PCH_DEVICE_ID_MASK 0xff80 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) #define HAS_PCH_CNP_LP(dev_priv) \ ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) #define HAS_PCH_LPT_LP(dev_priv) \ ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) #define HAS_PCH_LPT_H(dev_priv) \ ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE) #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display) #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) /* DPF == dynamic parity feature */ #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf) #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2 : HAS_L3_DPF(dev_priv)) #define GT_FREQUENCY_MULTIPLIER 50 #define GEN9_FREQ_SCALER 3 #include "i915_trace.h" static inline bool intel_vtd_active(void) { #ifdef CONFIG_INTEL_IOMMU if (intel_iommu_gfx_mapped) return true; #endif return false; } static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) { return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); } static inline bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) { return IS_BROXTON(dev_priv) && intel_vtd_active(); } int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, int enable_ppgtt); bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value); /* i915_drv.c */ void __printf(3, 4) __i915_printk(struct drm_i915_private *dev_priv, const char *level, const char *fmt, ...); #define i915_report_error(dev_priv, fmt, ...) \ __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) #ifdef CONFIG_COMPAT extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); #else #define i915_compat_ioctl NULL #endif extern const struct dev_pm_ops i915_pm_ops; extern int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent); extern void i915_driver_unload(struct drm_device *dev); extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); #define I915_RESET_QUIET BIT(0) extern void i915_reset(struct drm_i915_private *i915, unsigned int flags); extern int i915_reset_engine(struct intel_engine_cs *engine, unsigned int flags); extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv); extern int intel_guc_reset(struct drm_i915_private *dev_priv); extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); int intel_engines_init_mmio(struct drm_i915_private *dev_priv); int intel_engines_init(struct drm_i915_private *dev_priv); /* intel_hotplug.c */ void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 pin_mask, u32 long_mask); void intel_hpd_init(struct drm_i915_private *dev_priv); void intel_hpd_init_work(struct drm_i915_private *dev_priv); void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); enum port intel_hpd_pin_to_port(enum hpd_pin pin); enum hpd_pin intel_hpd_pin(enum port port); bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); /* i915_irq.c */ static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) { unsigned long delay; if (unlikely(!i915_modparams.enable_hangcheck)) return; /* Don't continually defer the hangcheck so that it is always run at * least once after work has been scheduled on any ring. Otherwise, * we will ignore a hung ring if a second ring is kept busy. */ delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); queue_delayed_work(system_long_wq, &dev_priv->gpu_error.hangcheck_work, delay); } __printf(3, 4) void i915_handle_error(struct drm_i915_private *dev_priv, u32 engine_mask, const char *fmt, ...); extern void intel_irq_init(struct drm_i915_private *dev_priv); extern void intel_irq_fini(struct drm_i915_private *dev_priv); int intel_irq_install(struct drm_i915_private *dev_priv); void intel_irq_uninstall(struct drm_i915_private *dev_priv); static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) { return dev_priv->gvt; } static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) { return dev_priv->vgpu.active; } u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, enum pipe pipe); void i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 status_mask); void i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 status_mask); void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, uint32_t mask, uint32_t bits); void ilk_update_display_irq(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask); static inline void ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) { ilk_update_display_irq(dev_priv, bits, bits); } static inline void ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) { ilk_update_display_irq(dev_priv, bits, 0); } void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, enum pipe pipe, uint32_t interrupt_mask, uint32_t enabled_irq_mask); static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, enum pipe pipe, uint32_t bits) { bdw_update_pipe_irq(dev_priv, pipe, bits, bits); } static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, enum pipe pipe, uint32_t bits) { bdw_update_pipe_irq(dev_priv, pipe, bits, 0); } void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask); static inline void ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) { ibx_display_interrupt_update(dev_priv, bits, bits); } static inline void ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) { ibx_display_interrupt_update(dev_priv, bits, 0); } /* i915_gem.c */ int i915_gem_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_pread_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_execbuffer(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_execbuffer2(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_busy_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, struct drm_file *file); int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, struct drm_file *file); int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_init_userptr(struct drm_i915_private *dev_priv); void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file); int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); void i915_gem_sanitize(struct drm_i915_private *i915); int i915_gem_load_init(struct drm_i915_private *dev_priv); void i915_gem_load_cleanup(struct drm_i915_private *dev_priv); void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); int i915_gem_freeze(struct drm_i915_private *dev_priv); int i915_gem_freeze_late(struct drm_i915_private *dev_priv); void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); void i915_gem_object_free(struct drm_i915_gem_object *obj); void i915_gem_object_init(struct drm_i915_gem_object *obj, const struct drm_i915_gem_object_ops *ops); struct drm_i915_gem_object * i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); struct drm_i915_gem_object * i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, const void *data, size_t size); void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); void i915_gem_free_object(struct drm_gem_object *obj); static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) { /* A single pass should suffice to release all the freed objects (along * most call paths) , but be a little more paranoid in that freeing * the objects does take a little amount of time, during which the rcu * callbacks could have added new objects into the freed list, and * armed the work again. */ do { rcu_barrier(); } while (flush_work(&i915->mm.free_work)); } static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) { /* * Similar to objects above (see i915_gem_drain_freed-objects), in * general we have workers that are armed by RCU and then rearm * themselves in their callbacks. To be paranoid, we need to * drain the workqueue a second time after waiting for the RCU * grace period so that we catch work queued via RCU from the first * pass. As neither drain_workqueue() nor flush_workqueue() report * a result, we make an assumption that we only don't require more * than 2 passes to catch all recursive RCU delayed work. * */ int pass = 2; do { rcu_barrier(); drain_workqueue(i915->wq); } while (--pass); } struct i915_vma * __must_check i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, const struct i915_ggtt_view *view, u64 size, u64 alignment, u64 flags); int i915_gem_object_unbind(struct drm_i915_gem_object *obj); void i915_gem_release_mmap(struct drm_i915_gem_object *obj); void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); static inline int __sg_page_count(const struct scatterlist *sg) { return sg->length >> PAGE_SHIFT; } struct scatterlist * i915_gem_object_get_sg(struct drm_i915_gem_object *obj, unsigned int n, unsigned int *offset); struct page * i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n); struct page * i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, unsigned int n); dma_addr_t i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, unsigned long n); void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, struct sg_table *pages, unsigned int sg_page_sizes); int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); static inline int __must_check i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) { might_lock(&obj->mm.lock); if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) return 0; return __i915_gem_object_get_pages(obj); } static inline bool i915_gem_object_has_pages(struct drm_i915_gem_object *obj) { return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages)); } static inline void __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) { GEM_BUG_ON(!i915_gem_object_has_pages(obj)); atomic_inc(&obj->mm.pages_pin_count); } static inline bool i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) { return atomic_read(&obj->mm.pages_pin_count); } static inline void __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) { GEM_BUG_ON(!i915_gem_object_has_pages(obj)); GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); atomic_dec(&obj->mm.pages_pin_count); } static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) { __i915_gem_object_unpin_pages(obj); } enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */ I915_MM_NORMAL = 0, I915_MM_SHRINKER }; void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, enum i915_mm_subclass subclass); void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); enum i915_map_type { I915_MAP_WB = 0, I915_MAP_WC, #define I915_MAP_OVERRIDE BIT(31) I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, }; /** * i915_gem_object_pin_map - return a contiguous mapping of the entire object * @obj: the object to map into kernel address space * @type: the type of mapping, used to select pgprot_t * * Calls i915_gem_object_pin_pages() to prevent reaping of the object's * pages and then returns a contiguous mapping of the backing storage into * the kernel address space. Based on the @type of mapping, the PTE will be * set to either WriteBack or WriteCombine (via pgprot_t). * * The caller is responsible for calling i915_gem_object_unpin_map() when the * mapping is no longer required. * * Returns the pointer through which to access the mapped object, or an * ERR_PTR() on error. */ void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, enum i915_map_type type); /** * i915_gem_object_unpin_map - releases an earlier mapping * @obj: the object to unmap * * After pinning the object and mapping its pages, once you are finished * with your access, call i915_gem_object_unpin_map() to release the pin * upon the mapping. Once the pin count reaches zero, that mapping may be * removed. */ static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) { i915_gem_object_unpin_pages(obj); } int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, unsigned int *needs_clflush); int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, unsigned int *needs_clflush); #define CLFLUSH_BEFORE BIT(0) #define CLFLUSH_AFTER BIT(1) #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) static inline void i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) { i915_gem_object_unpin_pages(obj); } int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); void i915_vma_move_to_active(struct i915_vma *vma, struct drm_i915_gem_request *req, unsigned int flags); int i915_gem_dumb_create(struct drm_file *file_priv, struct drm_device *dev, struct drm_mode_create_dumb *args); int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, uint32_t handle, uint64_t *offset); int i915_gem_mmap_gtt_version(void); void i915_gem_track_fb(struct drm_i915_gem_object *old, struct drm_i915_gem_object *new, unsigned frontbuffer_bits); int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); struct drm_i915_gem_request * i915_gem_find_active_request(struct intel_engine_cs *engine); void i915_gem_retire_requests(struct drm_i915_private *dev_priv); static inline bool i915_reset_backoff(struct i915_gpu_error *error) { return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags)); } static inline bool i915_reset_handoff(struct i915_gpu_error *error) { return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags)); } static inline bool i915_terminally_wedged(struct i915_gpu_error *error) { return unlikely(test_bit(I915_WEDGED, &error->flags)); } static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error) { return i915_reset_backoff(error) | i915_terminally_wedged(error); } static inline u32 i915_reset_count(struct i915_gpu_error *error) { return READ_ONCE(error->reset_count); } static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, struct intel_engine_cs *engine) { return READ_ONCE(error->reset_engine_count[engine->id]); } struct drm_i915_gem_request * i915_gem_reset_prepare_engine(struct intel_engine_cs *engine); int i915_gem_reset_prepare(struct drm_i915_private *dev_priv); void i915_gem_reset(struct drm_i915_private *dev_priv); void i915_gem_reset_finish_engine(struct intel_engine_cs *engine); void i915_gem_reset_finish(struct drm_i915_private *dev_priv); void i915_gem_set_wedged(struct drm_i915_private *dev_priv); bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); void i915_gem_reset_engine(struct intel_engine_cs *engine, struct drm_i915_gem_request *request); void i915_gem_init_mmio(struct drm_i915_private *i915); int __must_check i915_gem_init(struct drm_i915_private *dev_priv); int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, unsigned int flags); int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); void i915_gem_resume(struct drm_i915_private *dev_priv); int i915_gem_fault(struct vm_fault *vmf); int i915_gem_object_wait(struct drm_i915_gem_object *obj, unsigned int flags, long timeout, struct intel_rps_client *rps); int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, unsigned int flags, int priority); #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX int __must_check i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); int __must_check i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); int __must_check i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); struct i915_vma * __must_check i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, u32 alignment, const struct i915_ggtt_view *view); void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align); int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); void i915_gem_release(struct drm_device *dev, struct drm_file *file); int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, enum i915_cache_level cache_level); struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf); struct dma_buf *i915_gem_prime_export(struct drm_device *dev, struct drm_gem_object *gem_obj, int flags); static inline struct i915_hw_ppgtt * i915_vm_to_ppgtt(struct i915_address_space *vm) { return container_of(vm, struct i915_hw_ppgtt, base); } /* i915_gem_fence_reg.c */ struct drm_i915_fence_reg * i915_reserve_fence(struct drm_i915_private *dev_priv); void i915_unreserve_fence(struct drm_i915_fence_reg *fence); void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); void i915_gem_restore_fences(struct drm_i915_private *dev_priv); void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, struct sg_table *pages); void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, struct sg_table *pages); static inline struct i915_gem_context * __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) { return idr_find(&file_priv->context_idr, id); } static inline struct i915_gem_context * i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) { struct i915_gem_context *ctx; rcu_read_lock(); ctx = __i915_gem_context_lookup_rcu(file_priv, id); if (ctx && !kref_get_unless_zero(&ctx->ref)) ctx = NULL; rcu_read_unlock(); return ctx; } static inline struct intel_timeline * i915_gem_context_lookup_timeline(struct i915_gem_context *ctx, struct intel_engine_cs *engine) { struct i915_address_space *vm; vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base; return &vm->timeline.engine[engine->id]; } int i915_perf_open_ioctl(struct drm_device *dev, void *data, struct drm_file *file); int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, struct drm_file *file); int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, struct drm_file *file); void i915_oa_init_reg_state(struct intel_engine_cs *engine, struct i915_gem_context *ctx, uint32_t *reg_state); /* i915_gem_evict.c */ int __must_check i915_gem_evict_something(struct i915_address_space *vm, u64 min_size, u64 alignment, unsigned cache_level, u64 start, u64 end, unsigned flags); int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, struct drm_mm_node *node, unsigned int flags); int i915_gem_evict_vm(struct i915_address_space *vm); /* belongs in i915_gem_gtt.h */ static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) { wmb(); if (INTEL_GEN(dev_priv) < 6) intel_gtt_chipset_flush(); } /* i915_gem_stolen.c */ int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, struct drm_mm_node *node, u64 size, unsigned alignment); int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, struct drm_mm_node *node, u64 size, unsigned alignment, u64 start, u64 end); void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, struct drm_mm_node *node); int i915_gem_init_stolen(struct drm_i915_private *dev_priv); void i915_gem_cleanup_stolen(struct drm_device *dev); struct drm_i915_gem_object * i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size); struct drm_i915_gem_object * i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, u32 stolen_offset, u32 gtt_offset, u32 size); /* i915_gem_internal.c */ struct drm_i915_gem_object * i915_gem_object_create_internal(struct drm_i915_private *dev_priv, phys_addr_t size); /* i915_gem_shrinker.c */ unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv, unsigned long target, unsigned long *nr_scanned, unsigned flags); #define I915_SHRINK_PURGEABLE 0x1 #define I915_SHRINK_UNBOUND 0x2 #define I915_SHRINK_BOUND 0x4 #define I915_SHRINK_ACTIVE 0x8 #define I915_SHRINK_VMAPS 0x10 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); void i915_gem_shrinker_init(struct drm_i915_private *dev_priv); void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv); /* i915_gem_tiling.c */ static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && i915_gem_object_is_tiled(obj); } u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, unsigned int tiling, unsigned int stride); u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, unsigned int tiling, unsigned int stride); /* i915_debugfs.c */ #ifdef CONFIG_DEBUG_FS int i915_debugfs_register(struct drm_i915_private *dev_priv); int i915_debugfs_connector_add(struct drm_connector *connector); void intel_display_crc_init(struct drm_i915_private *dev_priv); #else static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} static inline int i915_debugfs_connector_add(struct drm_connector *connector) { return 0; } static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} #endif /* i915_gpu_error.c */ #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) __printf(2, 3) void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...); int i915_error_state_to_str(struct drm_i915_error_state_buf *estr, const struct i915_gpu_state *gpu); int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb, struct drm_i915_private *i915, size_t count, loff_t pos); static inline void i915_error_state_buf_release( struct drm_i915_error_state_buf *eb) { kfree(eb->buf); } struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915); void i915_capture_error_state(struct drm_i915_private *dev_priv, u32 engine_mask, const char *error_msg); static inline struct i915_gpu_state * i915_gpu_state_get(struct i915_gpu_state *gpu) { kref_get(&gpu->ref); return gpu; } void __i915_gpu_state_free(struct kref *kref); static inline void i915_gpu_state_put(struct i915_gpu_state *gpu) { if (gpu) kref_put(&gpu->ref, __i915_gpu_state_free); } struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915); void i915_reset_error_state(struct drm_i915_private *i915); #else static inline void i915_capture_error_state(struct drm_i915_private *dev_priv, u32 engine_mask, const char *error_msg) { } static inline struct i915_gpu_state * i915_first_error_state(struct drm_i915_private *i915) { return NULL; } static inline void i915_reset_error_state(struct drm_i915_private *i915) { } #endif const char *i915_cache_level_str(struct drm_i915_private *i915, int type); /* i915_cmd_parser.c */ int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); int intel_engine_cmd_parser(struct intel_engine_cs *engine, struct drm_i915_gem_object *batch_obj, struct drm_i915_gem_object *shadow_batch_obj, u32 batch_start_offset, u32 batch_len, bool is_master); /* i915_perf.c */ extern void i915_perf_init(struct drm_i915_private *dev_priv); extern void i915_perf_fini(struct drm_i915_private *dev_priv); extern void i915_perf_register(struct drm_i915_private *dev_priv); extern void i915_perf_unregister(struct drm_i915_private *dev_priv); /* i915_suspend.c */ extern int i915_save_state(struct drm_i915_private *dev_priv); extern int i915_restore_state(struct drm_i915_private *dev_priv); /* i915_sysfs.c */ void i915_setup_sysfs(struct drm_i915_private *dev_priv); void i915_teardown_sysfs(struct drm_i915_private *dev_priv); /* intel_lpe_audio.c */ int intel_lpe_audio_init(struct drm_i915_private *dev_priv); void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, enum pipe pipe, enum port port, const void *eld, int ls_clock, bool dp_output); /* intel_i2c.c */ extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, unsigned int pin); extern struct i2c_adapter * intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) { return container_of(adapter, struct intel_gmbus, adapter)->force_bit; } extern void intel_i2c_reset(struct drm_i915_private *dev_priv); /* intel_bios.c */ void intel_bios_init(struct drm_i915_private *dev_priv); bool intel_bios_is_valid_vbt(const void *buf, size_t size); bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, enum port port); bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, enum port port); /* intel_opregion.c */ #ifdef CONFIG_ACPI extern int intel_opregion_setup(struct drm_i915_private *dev_priv); extern void intel_opregion_register(struct drm_i915_private *dev_priv); extern void intel_opregion_unregister(struct drm_i915_private *dev_priv); extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv); extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable); extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv, pci_power_t state); extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv); #else static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; } static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { } static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { } static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv) { } static inline int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable) { return 0; } static inline int intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state) { return 0; } static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev) { return -ENODEV; } #endif /* intel_acpi.c */ #ifdef CONFIG_ACPI extern void intel_register_dsm_handler(void); extern void intel_unregister_dsm_handler(void); #else static inline void intel_register_dsm_handler(void) { return; } static inline void intel_unregister_dsm_handler(void) { return; } #endif /* CONFIG_ACPI */ /* intel_device_info.c */ static inline struct intel_device_info * mkwrite_device_info(struct drm_i915_private *dev_priv) { return (struct intel_device_info *)&dev_priv->info; } const char *intel_platform_name(enum intel_platform platform); void intel_device_info_runtime_init(struct drm_i915_private *dev_priv); void intel_device_info_dump(struct drm_i915_private *dev_priv); /* modesetting */ extern void intel_modeset_init_hw(struct drm_device *dev); extern int intel_modeset_init(struct drm_device *dev); extern void intel_modeset_gem_init(struct drm_device *dev); extern void intel_modeset_cleanup(struct drm_device *dev); extern int intel_connector_register(struct drm_connector *); extern void intel_connector_unregister(struct drm_connector *); extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state); extern void intel_display_resume(struct drm_device *dev); extern void i915_redisable_vga(struct drm_i915_private *dev_priv); extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable); int i915_reg_read_ioctl(struct drm_device *dev, void *data, struct drm_file *file); /* overlay */ extern struct intel_overlay_error_state * intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, struct intel_overlay_error_state *error); extern struct intel_display_error_state * intel_display_capture_error_state(struct drm_i915_private *dev_priv); extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, struct intel_display_error_state *error); int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val); int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, u32 reply_mask, u32 reply, int timeout_base_ms); /* intel_sideband.c */ u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, enum intel_sbi_destination destination); void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, enum intel_sbi_destination destination); u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); /* intel_dpio_phy.c */ void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, enum dpio_phy *phy, enum dpio_channel *ch); void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, enum port port, u32 margin, u32 scale, u32 enable, u32 deemphasis); void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, enum dpio_phy phy); bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy); uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder, uint8_t lane_count); void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, uint8_t lane_lat_optim_mask); uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); void chv_set_phy_signal_level(struct intel_encoder *encoder, u32 deemph_reg_value, u32 margin_reg_value, bool uniq_trans_scale); void chv_data_lane_soft_reset(struct intel_encoder *encoder, bool reset); void chv_phy_pre_pll_enable(struct intel_encoder *encoder); void chv_phy_pre_encoder_enable(struct intel_encoder *encoder); void chv_phy_release_cl2_override(struct intel_encoder *encoder); void chv_phy_post_pll_disable(struct intel_encoder *encoder); void vlv_set_phy_signal_level(struct intel_encoder *encoder, u32 demph_reg_value, u32 preemph_reg_value, u32 uniqtranscale_reg_value, u32 tx3_demph); void vlv_phy_pre_pll_enable(struct intel_encoder *encoder); void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder); void vlv_phy_reset_lanes(struct intel_encoder *encoder); int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, const i915_reg_t reg); #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) /* Be very careful with read/write 64-bit values. On 32-bit machines, they * will be implemented using 2 32-bit writes in an arbitrary order with * an arbitrary delay between them. This can cause the hardware to * act upon the intermediate value, possibly leading to corruption and * machine death. For this reason we do not support I915_WRITE64, or * dev_priv->uncore.funcs.mmio_writeq. * * When reading a 64-bit value as two 32-bit values, the delay may cause * the two reads to mismatch, e.g. a timestamp overflowing. Also note that * occasionally a 64-bit register does not actualy support a full readq * and must be read using two 32-bit reads. * * You have been warned. */ #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ u32 upper, lower, old_upper, loop = 0; \ upper = I915_READ(upper_reg); \ do { \ old_upper = upper; \ lower = I915_READ(lower_reg); \ upper = I915_READ(upper_reg); \ } while (upper != old_upper && loop++ < 2); \ (u64)upper << 32 | lower; }) #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) #define __raw_read(x, s) \ static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \ i915_reg_t reg) \ { \ return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ } #define __raw_write(x, s) \ static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \ i915_reg_t reg, uint##x##_t val) \ { \ write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ } __raw_read(8, b) __raw_read(16, w) __raw_read(32, l) __raw_read(64, q) __raw_write(8, b) __raw_write(16, w) __raw_write(32, l) __raw_write(64, q) #undef __raw_read #undef __raw_write /* These are untraced mmio-accessors that are only valid to be used inside * critical sections, such as inside IRQ handlers, where forcewake is explicitly * controlled. * * Think twice, and think again, before using these. * * As an example, these accessors can possibly be used between: * * spin_lock_irq(&dev_priv->uncore.lock); * intel_uncore_forcewake_get__locked(); * * and * * intel_uncore_forcewake_put__locked(); * spin_unlock_irq(&dev_priv->uncore.lock); * * * Note: some registers may not need forcewake held, so * intel_uncore_forcewake_{get,put} can be omitted, see * intel_uncore_forcewake_for_reg(). * * Certain architectures will die if the same cacheline is concurrently accessed * by different clients (e.g. on Ivybridge). Access to registers should * therefore generally be serialised, by either the dev_priv->uncore.lock or * a more localised lock guarding all access to that bank of registers. */ #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) /* "Broadcast RGB" property */ #define INTEL_BROADCAST_RGB_AUTO 0 #define INTEL_BROADCAST_RGB_FULL 1 #define INTEL_BROADCAST_RGB_LIMITED 2 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) return VLV_VGACNTRL; else if (INTEL_GEN(dev_priv) >= 5) return CPU_VGACNTRL; else return VGACNTRL; } static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) { unsigned long j = msecs_to_jiffies(m); return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); } static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) { /* nsecs_to_jiffies64() does not guard against overflow */ if (NSEC_PER_SEC % HZ && div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ) return MAX_JIFFY_OFFSET; return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); } static inline unsigned long timespec_to_jiffies_timeout(const struct timespec *value) { unsigned long j = timespec_to_jiffies(value); return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); } /* * If you need to wait X milliseconds between events A and B, but event B * doesn't happen exactly after event A, you record the timestamp (jiffies) of * when event A happened, then just before event B you call this function and * pass the timestamp as the first argument, and X as the second argument. */ static inline void wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) { unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; /* * Don't re-read the value of "jiffies" every time since it may change * behind our back and break the math. */ tmp_jiffies = jiffies; target_jiffies = timestamp_jiffies + msecs_to_jiffies_timeout(to_wait_ms); if (time_after(target_jiffies, tmp_jiffies)) { remaining_jiffies = target_jiffies - tmp_jiffies; while (remaining_jiffies) remaining_jiffies = schedule_timeout_uninterruptible(remaining_jiffies); } } static inline bool __i915_request_irq_complete(const struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; u32 seqno; /* Note that the engine may have wrapped around the seqno, and * so our request->global_seqno will be ahead of the hardware, * even though it completed the request before wrapping. We catch * this by kicking all the waiters before resetting the seqno * in hardware, and also signal the fence. */ if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags)) return true; /* The request was dequeued before we were awoken. We check after * inspecting the hw to confirm that this was the same request * that generated the HWS update. The memory barriers within * the request execution are sufficient to ensure that a check * after reading the value from hw matches this request. */ seqno = i915_gem_request_global_seqno(req); if (!seqno) return false; /* Before we do the heavier coherent read of the seqno, * check the value (hopefully) in the CPU cacheline. */ if (__i915_gem_request_completed(req, seqno)) return true; /* Ensure our read of the seqno is coherent so that we * do not "miss an interrupt" (i.e. if this is the last * request and the seqno write from the GPU is not visible * by the time the interrupt fires, we will see that the * request is incomplete and go back to sleep awaiting * another interrupt that will never come.) * * Strictly, we only need to do this once after an interrupt, * but it is easier and safer to do it every time the waiter * is woken. */ if (engine->irq_seqno_barrier && test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) { struct intel_breadcrumbs *b = &engine->breadcrumbs; /* The ordering of irq_posted versus applying the barrier * is crucial. The clearing of the current irq_posted must * be visible before we perform the barrier operation, * such that if a subsequent interrupt arrives, irq_posted * is reasserted and our task rewoken (which causes us to * do another __i915_request_irq_complete() immediately * and reapply the barrier). Conversely, if the clear * occurs after the barrier, then an interrupt that arrived * whilst we waited on the barrier would not trigger a * barrier on the next pass, and the read may not see the * seqno update. */ engine->irq_seqno_barrier(engine); /* If we consume the irq, but we are no longer the bottom-half, * the real bottom-half may not have serialised their own * seqno check with the irq-barrier (i.e. may have inspected * the seqno before we believe it coherent since they see * irq_posted == false but we are still running). */ spin_lock_irq(&b->irq_lock); if (b->irq_wait && b->irq_wait->tsk != current) /* Note that if the bottom-half is changed as we * are sending the wake-up, the new bottom-half will * be woken by whomever made the change. We only have * to worry about when we steal the irq-posted for * ourself. */ wake_up_process(b->irq_wait->tsk); spin_unlock_irq(&b->irq_lock); if (__i915_gem_request_completed(req, seqno)) return true; } return false; } void i915_memcpy_init_early(struct drm_i915_private *dev_priv); bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot * perform the operation. To check beforehand, pass in the parameters to * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, * you only need to pass in the minor offsets, page-aligned pointers are * always valid. * * For just checking for SSE4.1, in the foreknowledge that the future use * will be correctly aligned, just use i915_has_memcpy_from_wc(). */ #define i915_can_memcpy_from_wc(dst, src, len) \ i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) #define i915_has_memcpy_from_wc() \ i915_memcpy_from_wc(NULL, NULL, 0) /* i915_mm.c */ int remap_io_mapping(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, struct io_mapping *iomap); static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) { if (INTEL_GEN(i915) >= 10) return CNL_HWS_CSB_WRITE_INDEX; else return I915_HWS_CSB_WRITE_INDEX; } #endif