/* * Support PCI/PCIe on PowerNV platforms * * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "powernv.h" #include "pci.h" #define define_pe_printk_level(func, kern_level) \ static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...) \ { \ struct va_format vaf; \ va_list args; \ char pfix[32]; \ int r; \ \ va_start(args, fmt); \ \ vaf.fmt = fmt; \ vaf.va = &args; \ \ if (pe->pdev) \ strlcpy(pfix, dev_name(&pe->pdev->dev), \ sizeof(pfix)); \ else \ sprintf(pfix, "%04x:%02x ", \ pci_domain_nr(pe->pbus), \ pe->pbus->number); \ r = printk(kern_level "pci %s: [PE# %.3d] %pV", \ pfix, pe->pe_number, &vaf); \ \ va_end(args); \ \ return r; \ } \ define_pe_printk_level(pe_err, KERN_ERR); define_pe_printk_level(pe_warn, KERN_WARNING); define_pe_printk_level(pe_info, KERN_INFO); /* * stdcix is only supposed to be used in hypervisor real mode as per * the architecture spec */ static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr) { __asm__ __volatile__("stdcix %0,0,%1" : : "r" (val), "r" (paddr) : "memory"); } static int pnv_ioda_alloc_pe(struct pnv_phb *phb) { unsigned long pe; do { pe = find_next_zero_bit(phb->ioda.pe_alloc, phb->ioda.total_pe, 0); if (pe >= phb->ioda.total_pe) return IODA_INVALID_PE; } while(test_and_set_bit(pe, phb->ioda.pe_alloc)); phb->ioda.pe_array[pe].phb = phb; phb->ioda.pe_array[pe].pe_number = pe; return pe; } static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe) { WARN_ON(phb->ioda.pe_array[pe].pdev); memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe)); clear_bit(pe, phb->ioda.pe_alloc); } /* Currently those 2 are only used when MSIs are enabled, this will change * but in the meantime, we need to protect them to avoid warnings */ #ifdef CONFIG_PCI_MSI static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; struct pci_dn *pdn = pci_get_pdn(dev); if (!pdn) return NULL; if (pdn->pe_number == IODA_INVALID_PE) return NULL; return &phb->ioda.pe_array[pdn->pe_number]; } #endif /* CONFIG_PCI_MSI */ static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) { struct pci_dev *parent; uint8_t bcomp, dcomp, fcomp; long rc, rid_end, rid; /* Bus validation ? */ if (pe->pbus) { int count; dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; parent = pe->pbus->self; if (pe->flags & PNV_IODA_PE_BUS_ALL) count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; else count = 1; switch(count) { case 1: bcomp = OpalPciBusAll; break; case 2: bcomp = OpalPciBus7Bits; break; case 4: bcomp = OpalPciBus6Bits; break; case 8: bcomp = OpalPciBus5Bits; break; case 16: bcomp = OpalPciBus4Bits; break; case 32: bcomp = OpalPciBus3Bits; break; default: pr_err("%s: Number of subordinate busses %d" " unsupported\n", pci_name(pe->pbus->self), count); /* Do an exact match only */ bcomp = OpalPciBusAll; } rid_end = pe->rid + (count << 8); } else { parent = pe->pdev->bus->self; bcomp = OpalPciBusAll; dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; rid_end = pe->rid + 1; } /* * Associate PE in PELT. We need add the PE into the * corresponding PELT-V as well. Otherwise, the error * originated from the PE might contribute to other * PEs. */ rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, bcomp, dcomp, fcomp, OPAL_MAP_PE); if (rc) { pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); return -ENXIO; } rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, pe->pe_number, OPAL_ADD_PE_TO_DOMAIN); if (rc) pe_warn(pe, "OPAL error %d adding self to PELTV\n", rc); opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); /* Add to all parents PELT-V */ while (parent) { struct pci_dn *pdn = pci_get_pdn(parent); if (pdn && pdn->pe_number != IODA_INVALID_PE) { rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, pe->pe_number, OPAL_ADD_PE_TO_DOMAIN); /* XXX What to do in case of error ? */ } parent = parent->bus->self; } /* Setup reverse map */ for (rid = pe->rid; rid < rid_end; rid++) phb->ioda.pe_rmap[rid] = pe->pe_number; /* Setup one MVTs on IODA1 */ if (phb->type == PNV_PHB_IODA1) { pe->mve_number = pe->pe_number; rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); if (rc) { pe_err(pe, "OPAL error %ld setting up MVE %d\n", rc, pe->mve_number); pe->mve_number = -1; } else { rc = opal_pci_set_mve_enable(phb->opal_id, pe->mve_number, OPAL_ENABLE_MVE); if (rc) { pe_err(pe, "OPAL error %ld enabling MVE %d\n", rc, pe->mve_number); pe->mve_number = -1; } } } else if (phb->type == PNV_PHB_IODA2) pe->mve_number = 0; return 0; } static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb, struct pnv_ioda_pe *pe) { struct pnv_ioda_pe *lpe; list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) { if (lpe->dma_weight < pe->dma_weight) { list_add_tail(&pe->dma_link, &lpe->dma_link); return; } } list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list); } static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev) { /* This is quite simplistic. The "base" weight of a device * is 10. 0 means no DMA is to be accounted for it. */ /* If it's a bridge, no DMA */ if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) return 0; /* Reduce the weight of slow USB controllers */ if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || dev->class == PCI_CLASS_SERIAL_USB_OHCI || dev->class == PCI_CLASS_SERIAL_USB_EHCI) return 3; /* Increase the weight of RAID (includes Obsidian) */ if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) return 15; /* Default */ return 10; } #if 0 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; struct pci_dn *pdn = pci_get_pdn(dev); struct pnv_ioda_pe *pe; int pe_num; if (!pdn) { pr_err("%s: Device tree node not associated properly\n", pci_name(dev)); return NULL; } if (pdn->pe_number != IODA_INVALID_PE) return NULL; /* PE#0 has been pre-set */ if (dev->bus->number == 0) pe_num = 0; else pe_num = pnv_ioda_alloc_pe(phb); if (pe_num == IODA_INVALID_PE) { pr_warning("%s: Not enough PE# available, disabling device\n", pci_name(dev)); return NULL; } /* NOTE: We get only one ref to the pci_dev for the pdn, not for the * pointer in the PE data structure, both should be destroyed at the * same time. However, this needs to be looked at more closely again * once we actually start removing things (Hotplug, SR-IOV, ...) * * At some point we want to remove the PDN completely anyways */ pe = &phb->ioda.pe_array[pe_num]; pci_dev_get(dev); pdn->pcidev = dev; pdn->pe_number = pe_num; pe->pdev = dev; pe->pbus = NULL; pe->tce32_seg = -1; pe->mve_number = -1; pe->rid = dev->bus->number << 8 | pdn->devfn; pe_info(pe, "Associated device to PE\n"); if (pnv_ioda_configure_pe(phb, pe)) { /* XXX What do we do here ? */ if (pe_num) pnv_ioda_free_pe(phb, pe_num); pdn->pe_number = IODA_INVALID_PE; pe->pdev = NULL; pci_dev_put(dev); return NULL; } /* Assign a DMA weight to the device */ pe->dma_weight = pnv_ioda_dma_weight(dev); if (pe->dma_weight != 0) { phb->ioda.dma_weight += pe->dma_weight; phb->ioda.dma_pe_count++; } /* Link the PE */ pnv_ioda_link_pe_by_weight(phb, pe); return pe; } #endif /* Useful for SRIOV case */ static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe) { struct pci_dev *dev; list_for_each_entry(dev, &bus->devices, bus_list) { struct pci_dn *pdn = pci_get_pdn(dev); if (pdn == NULL) { pr_warn("%s: No device node associated with device !\n", pci_name(dev)); continue; } pdn->pcidev = dev; pdn->pe_number = pe->pe_number; pe->dma_weight += pnv_ioda_dma_weight(dev); if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) pnv_ioda_setup_same_PE(dev->subordinate, pe); } } /* * There're 2 types of PCI bus sensitive PEs: One that is compromised of * single PCI bus. Another one that contains the primary PCI bus and its * subordinate PCI devices and buses. The second type of PE is normally * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. */ static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all) { struct pci_controller *hose = pci_bus_to_host(bus); struct pnv_phb *phb = hose->private_data; struct pnv_ioda_pe *pe; int pe_num; pe_num = pnv_ioda_alloc_pe(phb); if (pe_num == IODA_INVALID_PE) { pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n", __func__, pci_domain_nr(bus), bus->number); return; } pe = &phb->ioda.pe_array[pe_num]; pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); pe->pbus = bus; pe->pdev = NULL; pe->tce32_seg = -1; pe->mve_number = -1; pe->rid = bus->busn_res.start << 8; pe->dma_weight = 0; if (all) pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n", bus->busn_res.start, bus->busn_res.end, pe_num); else pe_info(pe, "Secondary bus %d associated with PE#%d\n", bus->busn_res.start, pe_num); if (pnv_ioda_configure_pe(phb, pe)) { /* XXX What do we do here ? */ if (pe_num) pnv_ioda_free_pe(phb, pe_num); pe->pbus = NULL; return; } /* Associate it with all child devices */ pnv_ioda_setup_same_PE(bus, pe); /* Put PE to the list */ list_add_tail(&pe->list, &phb->ioda.pe_list); /* Account for one DMA PE if at least one DMA capable device exist * below the bridge */ if (pe->dma_weight != 0) { phb->ioda.dma_weight += pe->dma_weight; phb->ioda.dma_pe_count++; } /* Link the PE */ pnv_ioda_link_pe_by_weight(phb, pe); } static void pnv_ioda_setup_PEs(struct pci_bus *bus) { struct pci_dev *dev; pnv_ioda_setup_bus_PE(bus, 0); list_for_each_entry(dev, &bus->devices, bus_list) { if (dev->subordinate) { if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE) pnv_ioda_setup_bus_PE(dev->subordinate, 1); else pnv_ioda_setup_PEs(dev->subordinate); } } } /* * Configure PEs so that the downstream PCI buses and devices * could have their associated PE#. Unfortunately, we didn't * figure out the way to identify the PLX bridge yet. So we * simply put the PCI bus and the subordinate behind the root * port to PE# here. The game rule here is expected to be changed * as soon as we can detected PLX bridge correctly. */ static void pnv_pci_ioda_setup_PEs(void) { struct pci_controller *hose, *tmp; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { pnv_ioda_setup_PEs(hose->bus); } } static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev) { struct pci_dn *pdn = pci_get_pdn(pdev); struct pnv_ioda_pe *pe; /* * The function can be called while the PE# * hasn't been assigned. Do nothing for the * case. */ if (!pdn || pdn->pe_number == IODA_INVALID_PE) return; pe = &phb->ioda.pe_array[pdn->pe_number]; WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); set_iommu_table_base(&pdev->dev, &pe->tce32_table); } static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb, struct pci_dev *pdev, u64 dma_mask) { struct pci_dn *pdn = pci_get_pdn(pdev); struct pnv_ioda_pe *pe; uint64_t top; bool bypass = false; if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) return -ENODEV;; pe = &phb->ioda.pe_array[pdn->pe_number]; if (pe->tce_bypass_enabled) { top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; bypass = (dma_mask >= top); } if (bypass) { dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n"); set_dma_ops(&pdev->dev, &dma_direct_ops); set_dma_offset(&pdev->dev, pe->tce_bypass_base); } else { dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n"); set_dma_ops(&pdev->dev, &dma_iommu_ops); set_iommu_table_base(&pdev->dev, &pe->tce32_table); } *pdev->dev.dma_mask = dma_mask; return 0; } static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus) { struct pci_dev *dev; list_for_each_entry(dev, &bus->devices, bus_list) { set_iommu_table_base_and_group(&dev->dev, &pe->tce32_table); if (dev->subordinate) pnv_ioda_setup_bus_dma(pe, dev->subordinate); } } static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe, struct iommu_table *tbl, __be64 *startp, __be64 *endp, bool rm) { __be64 __iomem *invalidate = rm ? (__be64 __iomem *)pe->tce_inval_reg_phys : (__be64 __iomem *)tbl->it_index; unsigned long start, end, inc; const unsigned shift = tbl->it_page_shift; start = __pa(startp); end = __pa(endp); /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */ if (tbl->it_busno) { start <<= shift; end <<= shift; inc = 128ull << shift; start |= tbl->it_busno; end |= tbl->it_busno; } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) { /* p7ioc-style invalidation, 2 TCEs per write */ start |= (1ull << 63); end |= (1ull << 63); inc = 16; } else { /* Default (older HW) */ inc = 128; } end |= inc - 1; /* round up end to be different than start */ mb(); /* Ensure above stores are visible */ while (start <= end) { if (rm) __raw_rm_writeq(cpu_to_be64(start), invalidate); else __raw_writeq(cpu_to_be64(start), invalidate); start += inc; } /* * The iommu layer will do another mb() for us on build() * and we don't care on free() */ } static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe, struct iommu_table *tbl, __be64 *startp, __be64 *endp, bool rm) { unsigned long start, end, inc; __be64 __iomem *invalidate = rm ? (__be64 __iomem *)pe->tce_inval_reg_phys : (__be64 __iomem *)tbl->it_index; const unsigned shift = tbl->it_page_shift; /* We'll invalidate DMA address in PE scope */ start = 0x2ull << 60; start |= (pe->pe_number & 0xFF); end = start; /* Figure out the start, end and step */ inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64)); start |= (inc << shift); inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64)); end |= (inc << shift); inc = (0x1ull << shift); mb(); while (start <= end) { if (rm) __raw_rm_writeq(cpu_to_be64(start), invalidate); else __raw_writeq(cpu_to_be64(start), invalidate); start += inc; } } void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl, __be64 *startp, __be64 *endp, bool rm) { struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe, tce32_table); struct pnv_phb *phb = pe->phb; if (phb->type == PNV_PHB_IODA1) pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm); else pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm); } static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe, unsigned int base, unsigned int segs) { struct page *tce_mem = NULL; const __be64 *swinvp; struct iommu_table *tbl; unsigned int i; int64_t rc; void *addr; /* 256M DMA window, 4K TCE pages, 8 bytes TCE */ #define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8) /* XXX FIXME: Handle 64-bit only DMA devices */ /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ /* XXX FIXME: Allocate multi-level tables on PHB3 */ /* We shouldn't already have a 32-bit DMA associated */ if (WARN_ON(pe->tce32_seg >= 0)) return; /* Grab a 32-bit TCE table */ pe->tce32_seg = base; pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", (base << 28), ((base + segs) << 28) - 1); /* XXX Currently, we allocate one big contiguous table for the * TCEs. We only really need one chunk per 256M of TCE space * (ie per segment) but that's an optimization for later, it * requires some added smarts with our get/put_tce implementation */ tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, get_order(TCE32_TABLE_SIZE * segs)); if (!tce_mem) { pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); goto fail; } addr = page_address(tce_mem); memset(addr, 0, TCE32_TABLE_SIZE * segs); /* Configure HW */ for (i = 0; i < segs; i++) { rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, base + i, 1, __pa(addr) + TCE32_TABLE_SIZE * i, TCE32_TABLE_SIZE, 0x1000); if (rc) { pe_err(pe, " Failed to configure 32-bit TCE table," " err %ld\n", rc); goto fail; } } /* Setup linux iommu table */ tbl = &pe->tce32_table; pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs, base << 28, IOMMU_PAGE_SHIFT_4K); /* OPAL variant of P7IOC SW invalidated TCEs */ swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL); if (swinvp) { /* We need a couple more fields -- an address and a data * to or. Since the bus is only printed out on table free * errors, and on the first pass the data will be a relative * bus number, print that out instead. */ pe->tce_inval_reg_phys = be64_to_cpup(swinvp); tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys, 8); tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE | TCE_PCI_SWINV_PAIR); } iommu_init_table(tbl, phb->hose->node); iommu_register_group(tbl, phb->hose->global_number, pe->pe_number); if (pe->pdev) set_iommu_table_base_and_group(&pe->pdev->dev, tbl); else pnv_ioda_setup_bus_dma(pe, pe->pbus); return; fail: /* XXX Failure: Try to fallback to 64-bit only ? */ if (pe->tce32_seg >= 0) pe->tce32_seg = -1; if (tce_mem) __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs)); } static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable) { struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe, tce32_table); uint16_t window_id = (pe->pe_number << 1 ) + 1; int64_t rc; pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); if (enable) { phys_addr_t top = memblock_end_of_DRAM(); top = roundup_pow_of_two(top); rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, pe->pe_number, window_id, pe->tce_bypass_base, top); } else { rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, pe->pe_number, window_id, pe->tce_bypass_base, 0); /* * We might want to reset the DMA ops of all devices on * this PE. However in theory, that shouldn't be necessary * as this is used for VFIO/KVM pass-through and the device * hasn't yet been returned to its kernel driver */ } if (rc) pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); else pe->tce_bypass_enabled = enable; } static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) { /* TVE #1 is selected by PCI address bit 59 */ pe->tce_bypass_base = 1ull << 59; /* Install set_bypass callback for VFIO */ pe->tce32_table.set_bypass = pnv_pci_ioda2_set_bypass; /* Enable bypass by default */ pnv_pci_ioda2_set_bypass(&pe->tce32_table, true); } static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) { struct page *tce_mem = NULL; void *addr; const __be64 *swinvp; struct iommu_table *tbl; unsigned int tce_table_size, end; int64_t rc; /* We shouldn't already have a 32-bit DMA associated */ if (WARN_ON(pe->tce32_seg >= 0)) return; /* The PE will reserve all possible 32-bits space */ pe->tce32_seg = 0; end = (1 << ilog2(phb->ioda.m32_pci_base)); tce_table_size = (end / 0x1000) * 8; pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", end); /* Allocate TCE table */ tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, get_order(tce_table_size)); if (!tce_mem) { pe_err(pe, "Failed to allocate a 32-bit TCE memory\n"); goto fail; } addr = page_address(tce_mem); memset(addr, 0, tce_table_size); /* * Map TCE table through TVT. The TVE index is the PE number * shifted by 1 bit for 32-bits DMA space. */ rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, pe->pe_number << 1, 1, __pa(addr), tce_table_size, 0x1000); if (rc) { pe_err(pe, "Failed to configure 32-bit TCE table," " err %ld\n", rc); goto fail; } /* Setup linux iommu table */ tbl = &pe->tce32_table; pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0, IOMMU_PAGE_SHIFT_4K); /* OPAL variant of PHB3 invalidated TCEs */ swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL); if (swinvp) { /* We need a couple more fields -- an address and a data * to or. Since the bus is only printed out on table free * errors, and on the first pass the data will be a relative * bus number, print that out instead. */ pe->tce_inval_reg_phys = be64_to_cpup(swinvp); tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys, 8); tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE); } iommu_init_table(tbl, phb->hose->node); iommu_register_group(tbl, phb->hose->global_number, pe->pe_number); if (pe->pdev) set_iommu_table_base_and_group(&pe->pdev->dev, tbl); else pnv_ioda_setup_bus_dma(pe, pe->pbus); /* Also create a bypass window */ pnv_pci_ioda2_setup_bypass_pe(phb, pe); return; fail: if (pe->tce32_seg >= 0) pe->tce32_seg = -1; if (tce_mem) __free_pages(tce_mem, get_order(tce_table_size)); } static void pnv_ioda_setup_dma(struct pnv_phb *phb) { struct pci_controller *hose = phb->hose; unsigned int residual, remaining, segs, tw, base; struct pnv_ioda_pe *pe; /* If we have more PE# than segments available, hand out one * per PE until we run out and let the rest fail. If not, * then we assign at least one segment per PE, plus more based * on the amount of devices under that PE */ if (phb->ioda.dma_pe_count > phb->ioda.tce32_count) residual = 0; else residual = phb->ioda.tce32_count - phb->ioda.dma_pe_count; pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n", hose->global_number, phb->ioda.tce32_count); pr_info("PCI: %d PE# for a total weight of %d\n", phb->ioda.dma_pe_count, phb->ioda.dma_weight); /* Walk our PE list and configure their DMA segments, hand them * out one base segment plus any residual segments based on * weight */ remaining = phb->ioda.tce32_count; tw = phb->ioda.dma_weight; base = 0; list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) { if (!pe->dma_weight) continue; if (!remaining) { pe_warn(pe, "No DMA32 resources available\n"); continue; } segs = 1; if (residual) { segs += ((pe->dma_weight * residual) + (tw / 2)) / tw; if (segs > remaining) segs = remaining; } /* * For IODA2 compliant PHB3, we needn't care about the weight. * The all available 32-bits DMA space will be assigned to * the specific PE. */ if (phb->type == PNV_PHB_IODA1) { pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n", pe->dma_weight, segs); pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs); } else { pe_info(pe, "Assign DMA32 space\n"); segs = 0; pnv_pci_ioda2_setup_dma_pe(phb, pe); } remaining -= segs; base += segs; } } #ifdef CONFIG_PCI_MSI static void pnv_ioda2_msi_eoi(struct irq_data *d) { unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); struct irq_chip *chip = irq_data_get_irq_chip(d); struct pnv_phb *phb = container_of(chip, struct pnv_phb, ioda.irq_chip); int64_t rc; rc = opal_pci_msi_eoi(phb->opal_id, hw_irq); WARN_ON_ONCE(rc); icp_native_eoi(d); } static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, unsigned int hwirq, unsigned int virq, unsigned int is_64, struct msi_msg *msg) { struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); struct pci_dn *pdn = pci_get_pdn(dev); struct irq_data *idata; struct irq_chip *ichip; unsigned int xive_num = hwirq - phb->msi_base; __be32 data; int rc; /* No PE assigned ? bail out ... no MSI for you ! */ if (pe == NULL) return -ENXIO; /* Check if we have an MVE */ if (pe->mve_number < 0) return -ENXIO; /* Force 32-bit MSI on some broken devices */ if (pdn && pdn->force_32bit_msi) is_64 = 0; /* Assign XIVE to PE */ rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); if (rc) { pr_warn("%s: OPAL error %d setting XIVE %d PE\n", pci_name(dev), rc, xive_num); return -EIO; } if (is_64) { __be64 addr64; rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, &addr64, &data); if (rc) { pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", pci_name(dev), rc); return -EIO; } msg->address_hi = be64_to_cpu(addr64) >> 32; msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; } else { __be32 addr32; rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, &addr32, &data); if (rc) { pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", pci_name(dev), rc); return -EIO; } msg->address_hi = 0; msg->address_lo = be32_to_cpu(addr32); } msg->data = be32_to_cpu(data); /* * Change the IRQ chip for the MSI interrupts on PHB3. * The corresponding IRQ chip should be populated for * the first time. */ if (phb->type == PNV_PHB_IODA2) { if (!phb->ioda.irq_chip_init) { idata = irq_get_irq_data(virq); ichip = irq_data_get_irq_chip(idata); phb->ioda.irq_chip_init = 1; phb->ioda.irq_chip = *ichip; phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; } irq_set_chip(virq, &phb->ioda.irq_chip); } pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d)," " address=%x_%08x data=%x PE# %d\n", pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num, msg->address_hi, msg->address_lo, data, pe->pe_number); return 0; } static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { unsigned int count; const __be32 *prop = of_get_property(phb->hose->dn, "ibm,opal-msi-ranges", NULL); if (!prop) { /* BML Fallback */ prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); } if (!prop) return; phb->msi_base = be32_to_cpup(prop); count = be32_to_cpup(prop + 1); if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { pr_err("PCI %d: Failed to allocate MSI bitmap !\n", phb->hose->global_number); return; } phb->msi_setup = pnv_pci_ioda_msi_setup; phb->msi32_support = 1; pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", count, phb->msi_base); } #else static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { } #endif /* CONFIG_PCI_MSI */ /* * This function is supposed to be called on basis of PE from top * to bottom style. So the the I/O or MMIO segment assigned to * parent PE could be overrided by its child PEs if necessary. */ static void pnv_ioda_setup_pe_seg(struct pci_controller *hose, struct pnv_ioda_pe *pe) { struct pnv_phb *phb = hose->private_data; struct pci_bus_region region; struct resource *res; int i, index; int rc; /* * NOTE: We only care PCI bus based PE for now. For PCI * device based PE, for example SRIOV sensitive VF should * be figured out later. */ BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); pci_bus_for_each_resource(pe->pbus, res, i) { if (!res || !res->flags || res->start > res->end) continue; if (res->flags & IORESOURCE_IO) { region.start = res->start - phb->ioda.io_pci_base; region.end = res->end - phb->ioda.io_pci_base; index = region.start / phb->ioda.io_segsize; while (index < phb->ioda.total_pe && region.start <= region.end) { phb->ioda.io_segmap[index] = pe->pe_number; rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); if (rc != OPAL_SUCCESS) { pr_err("%s: OPAL error %d when mapping IO " "segment #%d to PE#%d\n", __func__, rc, index, pe->pe_number); break; } region.start += phb->ioda.io_segsize; index++; } } else if (res->flags & IORESOURCE_MEM) { /* WARNING: Assumes M32 is mem region 0 in PHB. We need to * harden that algorithm when we start supporting M64 */ region.start = res->start - hose->mem_offset[0] - phb->ioda.m32_pci_base; region.end = res->end - hose->mem_offset[0] - phb->ioda.m32_pci_base; index = region.start / phb->ioda.m32_segsize; while (index < phb->ioda.total_pe && region.start <= region.end) { phb->ioda.m32_segmap[index] = pe->pe_number; rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); if (rc != OPAL_SUCCESS) { pr_err("%s: OPAL error %d when mapping M32 " "segment#%d to PE#%d", __func__, rc, index, pe->pe_number); break; } region.start += phb->ioda.m32_segsize; index++; } } } } static void pnv_pci_ioda_setup_seg(void) { struct pci_controller *tmp, *hose; struct pnv_phb *phb; struct pnv_ioda_pe *pe; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { phb = hose->private_data; list_for_each_entry(pe, &phb->ioda.pe_list, list) { pnv_ioda_setup_pe_seg(hose, pe); } } } static void pnv_pci_ioda_setup_DMA(void) { struct pci_controller *hose, *tmp; struct pnv_phb *phb; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { pnv_ioda_setup_dma(hose->private_data); /* Mark the PHB initialization done */ phb = hose->private_data; phb->initialized = 1; } } static void pnv_pci_ioda_create_dbgfs(void) { #ifdef CONFIG_DEBUG_FS struct pci_controller *hose, *tmp; struct pnv_phb *phb; char name[16]; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { phb = hose->private_data; sprintf(name, "PCI%04x", hose->global_number); phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root); if (!phb->dbgfs) pr_warning("%s: Error on creating debugfs on PHB#%x\n", __func__, hose->global_number); } #endif /* CONFIG_DEBUG_FS */ } static void pnv_pci_ioda_fixup(void) { pnv_pci_ioda_setup_PEs(); pnv_pci_ioda_setup_seg(); pnv_pci_ioda_setup_DMA(); pnv_pci_ioda_create_dbgfs(); #ifdef CONFIG_EEH eeh_probe_mode_set(EEH_PROBE_MODE_DEV); eeh_init(); eeh_addr_cache_build(); #endif } /* * Returns the alignment for I/O or memory windows for P2P * bridges. That actually depends on how PEs are segmented. * For now, we return I/O or M32 segment size for PE sensitive * P2P bridges. Otherwise, the default values (4KiB for I/O, * 1MiB for memory) will be returned. * * The current PCI bus might be put into one PE, which was * create against the parent PCI bridge. For that case, we * needn't enlarge the alignment so that we can save some * resources. */ static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, unsigned long type) { struct pci_dev *bridge; struct pci_controller *hose = pci_bus_to_host(bus); struct pnv_phb *phb = hose->private_data; int num_pci_bridges = 0; bridge = bus->self; while (bridge) { if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { num_pci_bridges++; if (num_pci_bridges >= 2) return 1; } bridge = bridge->bus->self; } /* We need support prefetchable memory window later */ if (type & IORESOURCE_MEM) return phb->ioda.m32_segsize; return phb->ioda.io_segsize; } /* Prevent enabling devices for which we couldn't properly * assign a PE */ static int pnv_pci_enable_device_hook(struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; struct pci_dn *pdn; /* The function is probably called while the PEs have * not be created yet. For example, resource reassignment * during PCI probe period. We just skip the check if * PEs isn't ready. */ if (!phb->initialized) return 0; pdn = pci_get_pdn(dev); if (!pdn || pdn->pe_number == IODA_INVALID_PE) return -EINVAL; return 0; } static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus, u32 devfn) { return phb->ioda.pe_rmap[(bus->number << 8) | devfn]; } static void pnv_pci_ioda_shutdown(struct pnv_phb *phb) { opal_pci_reset(phb->opal_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET); } void __init pnv_pci_init_ioda_phb(struct device_node *np, u64 hub_id, int ioda_type) { struct pci_controller *hose; struct pnv_phb *phb; unsigned long size, m32map_off, pemap_off, iomap_off = 0; const __be64 *prop64; const __be32 *prop32; int len; u64 phb_id; void *aux; long rc; pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name); prop64 = of_get_property(np, "ibm,opal-phbid", NULL); if (!prop64) { pr_err(" Missing \"ibm,opal-phbid\" property !\n"); return; } phb_id = be64_to_cpup(prop64); pr_debug(" PHB-ID : 0x%016llx\n", phb_id); phb = alloc_bootmem(sizeof(struct pnv_phb)); if (!phb) { pr_err(" Out of memory !\n"); return; } /* Allocate PCI controller */ memset(phb, 0, sizeof(struct pnv_phb)); phb->hose = hose = pcibios_alloc_controller(np); if (!phb->hose) { pr_err(" Can't allocate PCI controller for %s\n", np->full_name); free_bootmem((unsigned long)phb, sizeof(struct pnv_phb)); return; } spin_lock_init(&phb->lock); prop32 = of_get_property(np, "bus-range", &len); if (prop32 && len == 8) { hose->first_busno = be32_to_cpu(prop32[0]); hose->last_busno = be32_to_cpu(prop32[1]); } else { pr_warn(" Broken on %s\n", np->full_name); hose->first_busno = 0; hose->last_busno = 0xff; } hose->private_data = phb; phb->hub_id = hub_id; phb->opal_id = phb_id; phb->type = ioda_type; /* Detect specific models for error handling */ if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) phb->model = PNV_PHB_MODEL_P7IOC; else if (of_device_is_compatible(np, "ibm,power8-pciex")) phb->model = PNV_PHB_MODEL_PHB3; else phb->model = PNV_PHB_MODEL_UNKNOWN; /* Parse 32-bit and IO ranges (if any) */ pci_process_bridge_OF_ranges(hose, np, !hose->global_number); /* Get registers */ phb->regs = of_iomap(np, 0); if (phb->regs == NULL) pr_err(" Failed to map registers !\n"); /* Initialize more IODA stuff */ phb->ioda.total_pe = 1; prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); if (prop32) phb->ioda.total_pe = be32_to_cpup(prop32); prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); if (prop32) phb->ioda.reserved_pe = be32_to_cpup(prop32); phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); /* FW Has already off top 64k of M32 space (MSI space) */ phb->ioda.m32_size += 0x10000; phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe; phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; phb->ioda.io_size = hose->pci_io_size; phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe; phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long)); m32map_off = size; size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]); if (phb->type == PNV_PHB_IODA1) { iomap_off = size; size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]); } pemap_off = size; size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe); aux = alloc_bootmem(size); memset(aux, 0, size); phb->ioda.pe_alloc = aux; phb->ioda.m32_segmap = aux + m32map_off; if (phb->type == PNV_PHB_IODA1) phb->ioda.io_segmap = aux + iomap_off; phb->ioda.pe_array = aux + pemap_off; set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc); INIT_LIST_HEAD(&phb->ioda.pe_dma_list); INIT_LIST_HEAD(&phb->ioda.pe_list); /* Calculate how many 32-bit TCE segments we have */ phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28; /* Clear unusable m64 */ hose->mem_resources[1].flags = 0; hose->mem_resources[1].start = 0; hose->mem_resources[1].end = 0; hose->mem_resources[2].flags = 0; hose->mem_resources[2].start = 0; hose->mem_resources[2].end = 0; #if 0 /* We should really do that ... */ rc = opal_pci_set_phb_mem_window(opal->phb_id, window_type, window_num, starting_real_address, starting_pci_address, segment_size); #endif pr_info(" %d (%d) PE's M32: 0x%x [segment=0x%x]" " IO: 0x%x [segment=0x%x]\n", phb->ioda.total_pe, phb->ioda.reserved_pe, phb->ioda.m32_size, phb->ioda.m32_segsize, phb->ioda.io_size, phb->ioda.io_segsize); phb->hose->ops = &pnv_pci_ops; #ifdef CONFIG_EEH phb->eeh_ops = &ioda_eeh_ops; #endif /* Setup RID -> PE mapping function */ phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe; /* Setup TCEs */ phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup; phb->dma_set_mask = pnv_pci_ioda_dma_set_mask; /* Setup shutdown function for kexec */ phb->shutdown = pnv_pci_ioda_shutdown; /* Setup MSI support */ pnv_pci_init_ioda_msis(phb); /* * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here * to let the PCI core do resource assignment. It's supposed * that the PCI core will do correct I/O and MMIO alignment * for the P2P bridge bars so that each PCI bus (excluding * the child P2P bridges) can form individual PE. */ ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook; ppc_md.pcibios_window_alignment = pnv_pci_window_alignment; ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus; pci_add_flags(PCI_REASSIGN_ALL_RSRC); /* Reset IODA tables to a clean state */ rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET); if (rc) pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc); /* If we're running in kdump kerenl, the previous kerenl never * shutdown PCI devices correctly. We already got IODA table * cleaned out. So we have to issue PHB reset to stop all PCI * transactions from previous kerenl. */ if (is_kdump_kernel()) { pr_info(" Issue PHB reset ...\n"); ioda_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); ioda_eeh_phb_reset(hose, OPAL_DEASSERT_RESET); } } void __init pnv_pci_init_ioda2_phb(struct device_node *np) { pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); } void __init pnv_pci_init_ioda_hub(struct device_node *np) { struct device_node *phbn; const __be64 *prop64; u64 hub_id; pr_info("Probing IODA IO-Hub %s\n", np->full_name); prop64 = of_get_property(np, "ibm,opal-hubid", NULL); if (!prop64) { pr_err(" Missing \"ibm,opal-hubid\" property !\n"); return; } hub_id = be64_to_cpup(prop64); pr_devel(" HUB-ID : 0x%016llx\n", hub_id); /* Count child PHBs */ for_each_child_of_node(np, phbn) { /* Look for IODA1 PHBs */ if (of_device_is_compatible(phbn, "ibm,ioda-phb")) pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); } }