/* * Copyright (c) 2014, The Linux Foundation. All rights reserved. * Copyright (C) 2013 Red Hat * Author: Rob Clark * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "msm_drv.h" #include "msm_mmu.h" #include "mdp5_kms.h" static const char *iommu_ports[] = { "mdp_0", }; static int mdp5_hw_init(struct msm_kms *kms) { struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms)); struct drm_device *dev = mdp5_kms->dev; unsigned long flags; pm_runtime_get_sync(dev->dev); /* Magic unknown register writes: * * W VBIF:0x004 00000001 (mdss_mdp.c:839) * W MDP5:0x2e0 0xe9 (mdss_mdp.c:839) * W MDP5:0x2e4 0x55 (mdss_mdp.c:839) * W MDP5:0x3ac 0xc0000ccc (mdss_mdp.c:839) * W MDP5:0x3b4 0xc0000ccc (mdss_mdp.c:839) * W MDP5:0x3bc 0xcccccc (mdss_mdp.c:839) * W MDP5:0x4a8 0xcccc0c0 (mdss_mdp.c:839) * W MDP5:0x4b0 0xccccc0c0 (mdss_mdp.c:839) * W MDP5:0x4b8 0xccccc000 (mdss_mdp.c:839) * * Downstream fbdev driver gets these register offsets/values * from DT.. not really sure what these registers are or if * different values for different boards/SoC's, etc. I guess * they are the golden registers. * * Not setting these does not seem to cause any problem. But * we may be getting lucky with the bootloader initializing * them for us. OTOH, if we can always count on the bootloader * setting the golden registers, then perhaps we don't need to * care. */ spin_lock_irqsave(&mdp5_kms->resource_lock, flags); mdp5_write(mdp5_kms, REG_MDP5_MDP_DISP_INTF_SEL(0), 0); spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags); mdp5_ctlm_hw_reset(mdp5_kms->ctlm); pm_runtime_put_sync(dev->dev); return 0; } static void mdp5_prepare_commit(struct msm_kms *kms, struct drm_atomic_state *state) { struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms)); mdp5_enable(mdp5_kms); } static void mdp5_complete_commit(struct msm_kms *kms, struct drm_atomic_state *state) { int i; struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms)); struct drm_plane *plane; struct drm_plane_state *plane_state; for_each_plane_in_state(state, plane, plane_state, i) mdp5_plane_complete_commit(plane, plane_state); mdp5_disable(mdp5_kms); } static void mdp5_wait_for_crtc_commit_done(struct msm_kms *kms, struct drm_crtc *crtc) { mdp5_crtc_wait_for_commit_done(crtc); } static long mdp5_round_pixclk(struct msm_kms *kms, unsigned long rate, struct drm_encoder *encoder) { return rate; } static int mdp5_set_split_display(struct msm_kms *kms, struct drm_encoder *encoder, struct drm_encoder *slave_encoder, bool is_cmd_mode) { if (is_cmd_mode) return mdp5_cmd_encoder_set_split_display(encoder, slave_encoder); else return mdp5_encoder_set_split_display(encoder, slave_encoder); } static void mdp5_destroy(struct msm_kms *kms) { struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms)); struct msm_mmu *mmu = mdp5_kms->mmu; mdp5_irq_domain_fini(mdp5_kms); if (mmu) { mmu->funcs->detach(mmu, iommu_ports, ARRAY_SIZE(iommu_ports)); mmu->funcs->destroy(mmu); } if (mdp5_kms->ctlm) mdp5_ctlm_destroy(mdp5_kms->ctlm); if (mdp5_kms->smp) mdp5_smp_destroy(mdp5_kms->smp); if (mdp5_kms->cfg) mdp5_cfg_destroy(mdp5_kms->cfg); kfree(mdp5_kms); } static const struct mdp_kms_funcs kms_funcs = { .base = { .hw_init = mdp5_hw_init, .irq_preinstall = mdp5_irq_preinstall, .irq_postinstall = mdp5_irq_postinstall, .irq_uninstall = mdp5_irq_uninstall, .irq = mdp5_irq, .enable_vblank = mdp5_enable_vblank, .disable_vblank = mdp5_disable_vblank, .prepare_commit = mdp5_prepare_commit, .complete_commit = mdp5_complete_commit, .wait_for_crtc_commit_done = mdp5_wait_for_crtc_commit_done, .get_format = mdp_get_format, .round_pixclk = mdp5_round_pixclk, .set_split_display = mdp5_set_split_display, .destroy = mdp5_destroy, }, .set_irqmask = mdp5_set_irqmask, }; int mdp5_disable(struct mdp5_kms *mdp5_kms) { DBG(""); clk_disable_unprepare(mdp5_kms->ahb_clk); clk_disable_unprepare(mdp5_kms->axi_clk); clk_disable_unprepare(mdp5_kms->core_clk); if (mdp5_kms->lut_clk) clk_disable_unprepare(mdp5_kms->lut_clk); return 0; } int mdp5_enable(struct mdp5_kms *mdp5_kms) { DBG(""); clk_prepare_enable(mdp5_kms->ahb_clk); clk_prepare_enable(mdp5_kms->axi_clk); clk_prepare_enable(mdp5_kms->core_clk); if (mdp5_kms->lut_clk) clk_prepare_enable(mdp5_kms->lut_clk); return 0; } static struct drm_encoder *construct_encoder(struct mdp5_kms *mdp5_kms, enum mdp5_intf_type intf_type, int intf_num, enum mdp5_intf_mode intf_mode, struct mdp5_ctl *ctl) { struct drm_device *dev = mdp5_kms->dev; struct msm_drm_private *priv = dev->dev_private; struct drm_encoder *encoder; struct mdp5_interface intf = { .num = intf_num, .type = intf_type, .mode = intf_mode, }; if ((intf_type == INTF_DSI) && (intf_mode == MDP5_INTF_DSI_MODE_COMMAND)) encoder = mdp5_cmd_encoder_init(dev, &intf, ctl); else encoder = mdp5_encoder_init(dev, &intf, ctl); if (IS_ERR(encoder)) { dev_err(dev->dev, "failed to construct encoder\n"); return encoder; } encoder->possible_crtcs = (1 << priv->num_crtcs) - 1; priv->encoders[priv->num_encoders++] = encoder; return encoder; } static int get_dsi_id_from_intf(const struct mdp5_cfg_hw *hw_cfg, int intf_num) { const enum mdp5_intf_type *intfs = hw_cfg->intf.connect; const int intf_cnt = ARRAY_SIZE(hw_cfg->intf.connect); int id = 0, i; for (i = 0; i < intf_cnt; i++) { if (intfs[i] == INTF_DSI) { if (intf_num == i) return id; id++; } } return -EINVAL; } static int modeset_init_intf(struct mdp5_kms *mdp5_kms, int intf_num) { struct drm_device *dev = mdp5_kms->dev; struct msm_drm_private *priv = dev->dev_private; const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(mdp5_kms->cfg); enum mdp5_intf_type intf_type = hw_cfg->intf.connect[intf_num]; struct mdp5_ctl_manager *ctlm = mdp5_kms->ctlm; struct mdp5_ctl *ctl; struct drm_encoder *encoder; int ret = 0; switch (intf_type) { case INTF_DISABLED: break; case INTF_eDP: if (!priv->edp) break; ctl = mdp5_ctlm_request(ctlm, intf_num); if (!ctl) { ret = -EINVAL; break; } encoder = construct_encoder(mdp5_kms, INTF_eDP, intf_num, MDP5_INTF_MODE_NONE, ctl); if (IS_ERR(encoder)) { ret = PTR_ERR(encoder); break; } ret = msm_edp_modeset_init(priv->edp, dev, encoder); break; case INTF_HDMI: if (!priv->hdmi) break; ctl = mdp5_ctlm_request(ctlm, intf_num); if (!ctl) { ret = -EINVAL; break; } encoder = construct_encoder(mdp5_kms, INTF_HDMI, intf_num, MDP5_INTF_MODE_NONE, ctl); if (IS_ERR(encoder)) { ret = PTR_ERR(encoder); break; } ret = msm_hdmi_modeset_init(priv->hdmi, dev, encoder); break; case INTF_DSI: { int dsi_id = get_dsi_id_from_intf(hw_cfg, intf_num); struct drm_encoder *dsi_encs[MSM_DSI_ENCODER_NUM]; enum mdp5_intf_mode mode; int i; if ((dsi_id >= ARRAY_SIZE(priv->dsi)) || (dsi_id < 0)) { dev_err(dev->dev, "failed to find dsi from intf %d\n", intf_num); ret = -EINVAL; break; } if (!priv->dsi[dsi_id]) break; ctl = mdp5_ctlm_request(ctlm, intf_num); if (!ctl) { ret = -EINVAL; break; } for (i = 0; i < MSM_DSI_ENCODER_NUM; i++) { mode = (i == MSM_DSI_CMD_ENCODER_ID) ? MDP5_INTF_DSI_MODE_COMMAND : MDP5_INTF_DSI_MODE_VIDEO; dsi_encs[i] = construct_encoder(mdp5_kms, INTF_DSI, intf_num, mode, ctl); if (IS_ERR(dsi_encs[i])) { ret = PTR_ERR(dsi_encs[i]); break; } } ret = msm_dsi_modeset_init(priv->dsi[dsi_id], dev, dsi_encs); break; } default: dev_err(dev->dev, "unknown intf: %d\n", intf_type); ret = -EINVAL; break; } return ret; } static int modeset_init(struct mdp5_kms *mdp5_kms) { static const enum mdp5_pipe crtcs[] = { SSPP_RGB0, SSPP_RGB1, SSPP_RGB2, SSPP_RGB3, }; static const enum mdp5_pipe vig_planes[] = { SSPP_VIG0, SSPP_VIG1, SSPP_VIG2, SSPP_VIG3, }; static const enum mdp5_pipe dma_planes[] = { SSPP_DMA0, SSPP_DMA1, }; struct drm_device *dev = mdp5_kms->dev; struct msm_drm_private *priv = dev->dev_private; const struct mdp5_cfg_hw *hw_cfg; int i, ret; hw_cfg = mdp5_cfg_get_hw_config(mdp5_kms->cfg); /* register our interrupt-controller for hdmi/eDP/dsi/etc * to use for irqs routed through mdp: */ ret = mdp5_irq_domain_init(mdp5_kms); if (ret) goto fail; /* construct CRTCs and their private planes: */ for (i = 0; i < hw_cfg->pipe_rgb.count; i++) { struct drm_plane *plane; struct drm_crtc *crtc; plane = mdp5_plane_init(dev, crtcs[i], true, hw_cfg->pipe_rgb.base[i], hw_cfg->pipe_rgb.caps); if (IS_ERR(plane)) { ret = PTR_ERR(plane); dev_err(dev->dev, "failed to construct plane for %s (%d)\n", pipe2name(crtcs[i]), ret); goto fail; } crtc = mdp5_crtc_init(dev, plane, i); if (IS_ERR(crtc)) { ret = PTR_ERR(crtc); dev_err(dev->dev, "failed to construct crtc for %s (%d)\n", pipe2name(crtcs[i]), ret); goto fail; } priv->crtcs[priv->num_crtcs++] = crtc; } /* Construct video planes: */ for (i = 0; i < hw_cfg->pipe_vig.count; i++) { struct drm_plane *plane; plane = mdp5_plane_init(dev, vig_planes[i], false, hw_cfg->pipe_vig.base[i], hw_cfg->pipe_vig.caps); if (IS_ERR(plane)) { ret = PTR_ERR(plane); dev_err(dev->dev, "failed to construct %s plane: %d\n", pipe2name(vig_planes[i]), ret); goto fail; } } /* DMA planes */ for (i = 0; i < hw_cfg->pipe_dma.count; i++) { struct drm_plane *plane; plane = mdp5_plane_init(dev, dma_planes[i], false, hw_cfg->pipe_dma.base[i], hw_cfg->pipe_dma.caps); if (IS_ERR(plane)) { ret = PTR_ERR(plane); dev_err(dev->dev, "failed to construct %s plane: %d\n", pipe2name(dma_planes[i]), ret); goto fail; } } /* Construct encoders and modeset initialize connector devices * for each external display interface. */ for (i = 0; i < ARRAY_SIZE(hw_cfg->intf.connect); i++) { ret = modeset_init_intf(mdp5_kms, i); if (ret) goto fail; } return 0; fail: return ret; } static void read_hw_revision(struct mdp5_kms *mdp5_kms, uint32_t *major, uint32_t *minor) { uint32_t version; mdp5_enable(mdp5_kms); version = mdp5_read(mdp5_kms, REG_MDSS_HW_VERSION); mdp5_disable(mdp5_kms); *major = FIELD(version, MDSS_HW_VERSION_MAJOR); *minor = FIELD(version, MDSS_HW_VERSION_MINOR); DBG("MDP5 version v%d.%d", *major, *minor); } static int get_clk(struct platform_device *pdev, struct clk **clkp, const char *name, bool mandatory) { struct device *dev = &pdev->dev; struct clk *clk = devm_clk_get(dev, name); if (IS_ERR(clk) && mandatory) { dev_err(dev, "failed to get %s (%ld)\n", name, PTR_ERR(clk)); return PTR_ERR(clk); } if (IS_ERR(clk)) DBG("skipping %s", name); else *clkp = clk; return 0; } static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_encoder *encoder; drm_for_each_encoder(encoder, dev) if (encoder->crtc == crtc) return encoder; return NULL; } static int mdp5_get_scanoutpos(struct drm_device *dev, unsigned int pipe, unsigned int flags, int *vpos, int *hpos, ktime_t *stime, ktime_t *etime, const struct drm_display_mode *mode) { struct msm_drm_private *priv = dev->dev_private; struct drm_crtc *crtc; struct drm_encoder *encoder; int line, vsw, vbp, vactive_start, vactive_end, vfp_end; int ret = 0; crtc = priv->crtcs[pipe]; if (!crtc) { DRM_ERROR("Invalid crtc %d\n", pipe); return 0; } encoder = get_encoder_from_crtc(crtc); if (!encoder) { DRM_ERROR("no encoder found for crtc %d\n", pipe); return 0; } ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE; vsw = mode->crtc_vsync_end - mode->crtc_vsync_start; vbp = mode->crtc_vtotal - mode->crtc_vsync_end; /* * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at * the end of VFP. Translate the porch values relative to the line * counter positions. */ vactive_start = vsw + vbp + 1; vactive_end = vactive_start + mode->crtc_vdisplay; /* last scan line before VSYNC */ vfp_end = mode->crtc_vtotal; if (stime) *stime = ktime_get(); line = mdp5_encoder_get_linecount(encoder); if (line < vactive_start) { line -= vactive_start; ret |= DRM_SCANOUTPOS_IN_VBLANK; } else if (line > vactive_end) { line = line - vfp_end - vactive_start; ret |= DRM_SCANOUTPOS_IN_VBLANK; } else { line -= vactive_start; } *vpos = line; *hpos = 0; if (etime) *etime = ktime_get(); return ret; } static int mdp5_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe, int *max_error, struct timeval *vblank_time, unsigned flags) { struct msm_drm_private *priv = dev->dev_private; struct drm_crtc *crtc; if (pipe < 0 || pipe >= priv->num_crtcs) { DRM_ERROR("Invalid crtc %d\n", pipe); return -EINVAL; } crtc = priv->crtcs[pipe]; if (!crtc) { DRM_ERROR("Invalid crtc %d\n", pipe); return -EINVAL; } return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error, vblank_time, flags, &crtc->mode); } static u32 mdp5_get_vblank_counter(struct drm_device *dev, unsigned int pipe) { struct msm_drm_private *priv = dev->dev_private; struct drm_crtc *crtc; struct drm_encoder *encoder; if (pipe < 0 || pipe >= priv->num_crtcs) return 0; crtc = priv->crtcs[pipe]; if (!crtc) return 0; encoder = get_encoder_from_crtc(crtc); if (!encoder) return 0; return mdp5_encoder_get_framecount(encoder); } struct msm_kms *mdp5_kms_init(struct drm_device *dev) { struct platform_device *pdev = dev->platformdev; struct mdp5_cfg *config; struct mdp5_kms *mdp5_kms; struct msm_kms *kms = NULL; struct msm_mmu *mmu; uint32_t major, minor; int irq, i, ret; mdp5_kms = kzalloc(sizeof(*mdp5_kms), GFP_KERNEL); if (!mdp5_kms) { dev_err(dev->dev, "failed to allocate kms\n"); ret = -ENOMEM; goto fail; } spin_lock_init(&mdp5_kms->resource_lock); mdp_kms_init(&mdp5_kms->base, &kms_funcs); kms = &mdp5_kms->base.base; mdp5_kms->dev = dev; /* mdp5_kms->mmio actually represents the MDSS base address */ mdp5_kms->mmio = msm_ioremap(pdev, "mdp_phys", "MDP5"); if (IS_ERR(mdp5_kms->mmio)) { ret = PTR_ERR(mdp5_kms->mmio); goto fail; } mdp5_kms->vbif = msm_ioremap(pdev, "vbif_phys", "VBIF"); if (IS_ERR(mdp5_kms->vbif)) { ret = PTR_ERR(mdp5_kms->vbif); goto fail; } irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = irq; dev_err(dev->dev, "failed to get irq: %d\n", ret); goto fail; } kms->irq = irq; mdp5_kms->vdd = devm_regulator_get(&pdev->dev, "vdd"); if (IS_ERR(mdp5_kms->vdd)) { ret = PTR_ERR(mdp5_kms->vdd); goto fail; } ret = regulator_enable(mdp5_kms->vdd); if (ret) { dev_err(dev->dev, "failed to enable regulator vdd: %d\n", ret); goto fail; } /* mandatory clocks: */ ret = get_clk(pdev, &mdp5_kms->axi_clk, "bus_clk", true); if (ret) goto fail; ret = get_clk(pdev, &mdp5_kms->ahb_clk, "iface_clk", true); if (ret) goto fail; ret = get_clk(pdev, &mdp5_kms->core_clk, "core_clk", true); if (ret) goto fail; ret = get_clk(pdev, &mdp5_kms->vsync_clk, "vsync_clk", true); if (ret) goto fail; /* optional clocks: */ get_clk(pdev, &mdp5_kms->lut_clk, "lut_clk", false); /* we need to set a default rate before enabling. Set a safe * rate first, then figure out hw revision, and then set a * more optimal rate: */ clk_set_rate(mdp5_kms->core_clk, 200000000); read_hw_revision(mdp5_kms, &major, &minor); mdp5_kms->cfg = mdp5_cfg_init(mdp5_kms, major, minor); if (IS_ERR(mdp5_kms->cfg)) { ret = PTR_ERR(mdp5_kms->cfg); mdp5_kms->cfg = NULL; goto fail; } config = mdp5_cfg_get_config(mdp5_kms->cfg); mdp5_kms->caps = config->hw->mdp.caps; /* TODO: compute core clock rate at runtime */ clk_set_rate(mdp5_kms->core_clk, config->hw->max_clk); /* * Some chipsets have a Shared Memory Pool (SMP), while others * have dedicated latency buffering per source pipe instead; * this section initializes the SMP: */ if (mdp5_kms->caps & MDP_CAP_SMP) { mdp5_kms->smp = mdp5_smp_init(mdp5_kms->dev, &config->hw->smp); if (IS_ERR(mdp5_kms->smp)) { ret = PTR_ERR(mdp5_kms->smp); mdp5_kms->smp = NULL; goto fail; } } mdp5_kms->ctlm = mdp5_ctlm_init(dev, mdp5_kms->mmio, mdp5_kms->cfg); if (IS_ERR(mdp5_kms->ctlm)) { ret = PTR_ERR(mdp5_kms->ctlm); mdp5_kms->ctlm = NULL; goto fail; } /* make sure things are off before attaching iommu (bootloader could * have left things on, in which case we'll start getting faults if * we don't disable): */ mdp5_enable(mdp5_kms); for (i = 0; i < MDP5_INTF_NUM_MAX; i++) { if (mdp5_cfg_intf_is_virtual(config->hw->intf.connect[i]) || !config->hw->intf.base[i]) continue; mdp5_write(mdp5_kms, REG_MDP5_INTF_TIMING_ENGINE_EN(i), 0); mdp5_write(mdp5_kms, REG_MDP5_INTF_FRAME_LINE_COUNT_EN(i), 0x3); } mdp5_disable(mdp5_kms); mdelay(16); if (config->platform.iommu) { mmu = msm_iommu_new(&pdev->dev, config->platform.iommu); if (IS_ERR(mmu)) { ret = PTR_ERR(mmu); dev_err(dev->dev, "failed to init iommu: %d\n", ret); iommu_domain_free(config->platform.iommu); goto fail; } ret = mmu->funcs->attach(mmu, iommu_ports, ARRAY_SIZE(iommu_ports)); if (ret) { dev_err(dev->dev, "failed to attach iommu: %d\n", ret); mmu->funcs->destroy(mmu); goto fail; } } else { dev_info(dev->dev, "no iommu, fallback to phys " "contig buffers for scanout\n"); mmu = NULL; } mdp5_kms->mmu = mmu; mdp5_kms->id = msm_register_mmu(dev, mmu); if (mdp5_kms->id < 0) { ret = mdp5_kms->id; dev_err(dev->dev, "failed to register mdp5 iommu: %d\n", ret); goto fail; } ret = modeset_init(mdp5_kms); if (ret) { dev_err(dev->dev, "modeset_init failed: %d\n", ret); goto fail; } dev->mode_config.min_width = 0; dev->mode_config.min_height = 0; dev->mode_config.max_width = config->hw->lm.max_width; dev->mode_config.max_height = config->hw->lm.max_height; dev->driver->get_vblank_timestamp = mdp5_get_vblank_timestamp; dev->driver->get_scanout_position = mdp5_get_scanoutpos; dev->driver->get_vblank_counter = mdp5_get_vblank_counter; dev->max_vblank_count = 0xffffffff; dev->vblank_disable_immediate = true; return kms; fail: if (kms) mdp5_destroy(kms); return ERR_PTR(ret); }