/* * (c) Copyright 2002-2010, Ralink Technology, Inc. * Copyright (C) 2014 Felix Fietkau * Copyright (C) 2015 Jakub Kicinski * Copyright (C) 2018 Stanislaw Gruszka * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "mt76x0.h" #include "mcu.h" #include "eeprom.h" #include "trace.h" #include "phy.h" #include "initvals.h" #include "initvals_phy.h" #include "../mt76x02_phy.h" #include static int mt76x0_rf_csr_wr(struct mt76x02_dev *dev, u32 offset, u8 value) { int ret = 0; u8 bank, reg; if (test_bit(MT76_REMOVED, &dev->mt76.state)) return -ENODEV; bank = MT_RF_BANK(offset); reg = MT_RF_REG(offset); if (WARN_ON_ONCE(reg > 127) || WARN_ON_ONCE(bank > 8)) return -EINVAL; mutex_lock(&dev->phy_mutex); if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100)) { ret = -ETIMEDOUT; goto out; } mt76_wr(dev, MT_RF_CSR_CFG, FIELD_PREP(MT_RF_CSR_CFG_DATA, value) | FIELD_PREP(MT_RF_CSR_CFG_REG_BANK, bank) | FIELD_PREP(MT_RF_CSR_CFG_REG_ID, reg) | MT_RF_CSR_CFG_WR | MT_RF_CSR_CFG_KICK); trace_mt76x0_rf_write(&dev->mt76, bank, offset, value); out: mutex_unlock(&dev->phy_mutex); if (ret < 0) dev_err(dev->mt76.dev, "Error: RF write %d:%d failed:%d!!\n", bank, reg, ret); return ret; } static int mt76x0_rf_csr_rr(struct mt76x02_dev *dev, u32 offset) { int ret = -ETIMEDOUT; u32 val; u8 bank, reg; if (test_bit(MT76_REMOVED, &dev->mt76.state)) return -ENODEV; bank = MT_RF_BANK(offset); reg = MT_RF_REG(offset); if (WARN_ON_ONCE(reg > 127) || WARN_ON_ONCE(bank > 8)) return -EINVAL; mutex_lock(&dev->phy_mutex); if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100)) goto out; mt76_wr(dev, MT_RF_CSR_CFG, FIELD_PREP(MT_RF_CSR_CFG_REG_BANK, bank) | FIELD_PREP(MT_RF_CSR_CFG_REG_ID, reg) | MT_RF_CSR_CFG_KICK); if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100)) goto out; val = mt76_rr(dev, MT_RF_CSR_CFG); if (FIELD_GET(MT_RF_CSR_CFG_REG_ID, val) == reg && FIELD_GET(MT_RF_CSR_CFG_REG_BANK, val) == bank) { ret = FIELD_GET(MT_RF_CSR_CFG_DATA, val); trace_mt76x0_rf_read(&dev->mt76, bank, offset, ret); } out: mutex_unlock(&dev->phy_mutex); if (ret < 0) dev_err(dev->mt76.dev, "Error: RF read %d:%d failed:%d!!\n", bank, reg, ret); return ret; } static int rf_wr(struct mt76x02_dev *dev, u32 offset, u8 val) { if (mt76_is_usb(dev)) { struct mt76_reg_pair pair = { .reg = offset, .value = val, }; WARN_ON_ONCE(!test_bit(MT76_STATE_MCU_RUNNING, &dev->mt76.state)); return mt76_wr_rp(dev, MT_MCU_MEMMAP_RF, &pair, 1); } else { return mt76x0_rf_csr_wr(dev, offset, val); } } static int rf_rr(struct mt76x02_dev *dev, u32 offset) { int ret; u32 val; if (mt76_is_usb(dev)) { struct mt76_reg_pair pair = { .reg = offset, }; WARN_ON_ONCE(!test_bit(MT76_STATE_MCU_RUNNING, &dev->mt76.state)); ret = mt76_rd_rp(dev, MT_MCU_MEMMAP_RF, &pair, 1); val = pair.value; } else { ret = val = mt76x0_rf_csr_rr(dev, offset); } return (ret < 0) ? ret : val; } static int rf_rmw(struct mt76x02_dev *dev, u32 offset, u8 mask, u8 val) { int ret; ret = rf_rr(dev, offset); if (ret < 0) return ret; val |= ret & ~mask; ret = rf_wr(dev, offset, val); if (ret) return ret; return val; } static int rf_set(struct mt76x02_dev *dev, u32 offset, u8 val) { return rf_rmw(dev, offset, 0, val); } #if 0 static int rf_clear(struct mt76x02_dev *dev, u32 offset, u8 mask) { return rf_rmw(dev, offset, mask, 0); } #endif static void mt76x0_rf_csr_wr_rp(struct mt76x02_dev *dev, const struct mt76_reg_pair *data, int n) { while (n-- > 0) { mt76x0_rf_csr_wr(dev, data->reg, data->value); data++; } } #define RF_RANDOM_WRITE(dev, tab) do { \ if (mt76_is_mmio(dev)) \ mt76x0_rf_csr_wr_rp(dev, tab, ARRAY_SIZE(tab)); \ else \ mt76_wr_rp(dev, MT_MCU_MEMMAP_RF, tab, ARRAY_SIZE(tab));\ } while (0) int mt76x0_wait_bbp_ready(struct mt76x02_dev *dev) { int i = 20; u32 val; do { val = mt76_rr(dev, MT_BBP(CORE, 0)); if (val && ~val) break; } while (--i); if (!i) { dev_err(dev->mt76.dev, "Error: BBP is not ready\n"); return -EIO; } dev_dbg(dev->mt76.dev, "BBP version %08x\n", val); return 0; } static void mt76x0_bbp_set_ctrlch(struct mt76x02_dev *dev, enum nl80211_chan_width width, u8 ctrl) { int core_val, agc_val; switch (width) { case NL80211_CHAN_WIDTH_80: core_val = 3; agc_val = 7; break; case NL80211_CHAN_WIDTH_40: core_val = 2; agc_val = 3; break; default: core_val = 0; agc_val = 1; break; } mt76_rmw_field(dev, MT_BBP(CORE, 1), MT_BBP_CORE_R1_BW, core_val); mt76_rmw_field(dev, MT_BBP(AGC, 0), MT_BBP_AGC_R0_BW, agc_val); mt76_rmw_field(dev, MT_BBP(AGC, 0), MT_BBP_AGC_R0_CTRL_CHAN, ctrl); mt76_rmw_field(dev, MT_BBP(TXBE, 0), MT_BBP_TXBE_R0_CTRL_CHAN, ctrl); } static void mt76x0_vco_cal(struct mt76x02_dev *dev, u8 channel) { u8 val; val = rf_rr(dev, MT_RF(0, 4)); if ((val & 0x70) != 0x30) return; /* * Calibration Mode - Open loop, closed loop, and amplitude: * B0.R06.[0]: 1 * B0.R06.[3:1] bp_close_code: 100 * B0.R05.[7:0] bp_open_code: 0x0 * B0.R04.[2:0] cal_bits: 000 * B0.R03.[2:0] startup_time: 011 * B0.R03.[6:4] settle_time: * 80MHz channel: 110 * 40MHz channel: 101 * 20MHz channel: 100 */ val = rf_rr(dev, MT_RF(0, 6)); val &= ~0xf; val |= 0x09; rf_wr(dev, MT_RF(0, 6), val); val = rf_rr(dev, MT_RF(0, 5)); if (val != 0) rf_wr(dev, MT_RF(0, 5), 0x0); val = rf_rr(dev, MT_RF(0, 4)); val &= ~0x07; rf_wr(dev, MT_RF(0, 4), val); val = rf_rr(dev, MT_RF(0, 3)); val &= ~0x77; if (channel == 1 || channel == 7 || channel == 9 || channel >= 13) { val |= 0x63; } else if (channel == 3 || channel == 4 || channel == 10) { val |= 0x53; } else if (channel == 2 || channel == 5 || channel == 6 || channel == 8 || channel == 11 || channel == 12) { val |= 0x43; } else { WARN(1, "Unknown channel %u\n", channel); return; } rf_wr(dev, MT_RF(0, 3), val); /* TODO replace by mt76x0_rf_set(dev, MT_RF(0, 4), BIT(7)); */ val = rf_rr(dev, MT_RF(0, 4)); val = ((val & ~(0x80)) | 0x80); rf_wr(dev, MT_RF(0, 4), val); msleep(2); } static void mt76x0_mac_set_ctrlch(struct mt76x02_dev *dev, bool primary_upper) { mt76_rmw_field(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_UPPER_40M, primary_upper); } static void mt76x0_phy_set_band(struct mt76x02_dev *dev, enum nl80211_band band) { switch (band) { case NL80211_BAND_2GHZ: RF_RANDOM_WRITE(dev, mt76x0_rf_2g_channel_0_tab); rf_wr(dev, MT_RF(5, 0), 0x45); rf_wr(dev, MT_RF(6, 0), 0x44); mt76_set(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_2G); mt76_clear(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_5G); mt76_wr(dev, MT_TX_ALC_VGA3, 0x00050007); mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x003E0002); break; case NL80211_BAND_5GHZ: RF_RANDOM_WRITE(dev, mt76x0_rf_5g_channel_0_tab); rf_wr(dev, MT_RF(5, 0), 0x44); rf_wr(dev, MT_RF(6, 0), 0x45); mt76_clear(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_2G); mt76_set(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_5G); mt76_wr(dev, MT_TX_ALC_VGA3, 0x00000005); mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x01010102); break; default: break; } } static void mt76x0_phy_set_chan_rf_params(struct mt76x02_dev *dev, u8 channel, u16 rf_bw_band) { u16 rf_band = rf_bw_band & 0xff00; u16 rf_bw = rf_bw_band & 0x00ff; enum nl80211_band band; u32 mac_reg; u8 rf_val; int i; bool bSDM = false; const struct mt76x0_freq_item *freq_item; for (i = 0; i < ARRAY_SIZE(mt76x0_sdm_channel); i++) { if (channel == mt76x0_sdm_channel[i]) { bSDM = true; break; } } for (i = 0; i < ARRAY_SIZE(mt76x0_frequency_plan); i++) { if (channel == mt76x0_frequency_plan[i].channel) { rf_band = mt76x0_frequency_plan[i].band; if (bSDM) freq_item = &(mt76x0_sdm_frequency_plan[i]); else freq_item = &(mt76x0_frequency_plan[i]); rf_wr(dev, MT_RF(0, 37), freq_item->pllR37); rf_wr(dev, MT_RF(0, 36), freq_item->pllR36); rf_wr(dev, MT_RF(0, 35), freq_item->pllR35); rf_wr(dev, MT_RF(0, 34), freq_item->pllR34); rf_wr(dev, MT_RF(0, 33), freq_item->pllR33); rf_val = rf_rr(dev, MT_RF(0, 32)); rf_val &= ~0xE0; rf_val |= freq_item->pllR32_b7b5; rf_wr(dev, MT_RF(0, 32), rf_val); /* R32<4:0> pll_den: (Denomina - 8) */ rf_val = rf_rr(dev, MT_RF(0, 32)); rf_val &= ~0x1F; rf_val |= freq_item->pllR32_b4b0; rf_wr(dev, MT_RF(0, 32), rf_val); /* R31<7:5> */ rf_val = rf_rr(dev, MT_RF(0, 31)); rf_val &= ~0xE0; rf_val |= freq_item->pllR31_b7b5; rf_wr(dev, MT_RF(0, 31), rf_val); /* R31<4:0> pll_k(Nominator) */ rf_val = rf_rr(dev, MT_RF(0, 31)); rf_val &= ~0x1F; rf_val |= freq_item->pllR31_b4b0; rf_wr(dev, MT_RF(0, 31), rf_val); /* R30<7> sdm_reset_n */ rf_val = rf_rr(dev, MT_RF(0, 30)); rf_val &= ~0x80; if (bSDM) { rf_wr(dev, MT_RF(0, 30), rf_val); rf_val |= 0x80; rf_wr(dev, MT_RF(0, 30), rf_val); } else { rf_val |= freq_item->pllR30_b7; rf_wr(dev, MT_RF(0, 30), rf_val); } /* R30<6:2> sdmmash_prbs,sin */ rf_val = rf_rr(dev, MT_RF(0, 30)); rf_val &= ~0x7C; rf_val |= freq_item->pllR30_b6b2; rf_wr(dev, MT_RF(0, 30), rf_val); /* R30<1> sdm_bp */ rf_val = rf_rr(dev, MT_RF(0, 30)); rf_val &= ~0x02; rf_val |= (freq_item->pllR30_b1 << 1); rf_wr(dev, MT_RF(0, 30), rf_val); /* R30<0> R29<7:0> (hex) pll_n */ rf_val = freq_item->pll_n & 0x00FF; rf_wr(dev, MT_RF(0, 29), rf_val); rf_val = rf_rr(dev, MT_RF(0, 30)); rf_val &= ~0x1; rf_val |= ((freq_item->pll_n >> 8) & 0x0001); rf_wr(dev, MT_RF(0, 30), rf_val); /* R28<7:6> isi_iso */ rf_val = rf_rr(dev, MT_RF(0, 28)); rf_val &= ~0xC0; rf_val |= freq_item->pllR28_b7b6; rf_wr(dev, MT_RF(0, 28), rf_val); /* R28<5:4> pfd_dly */ rf_val = rf_rr(dev, MT_RF(0, 28)); rf_val &= ~0x30; rf_val |= freq_item->pllR28_b5b4; rf_wr(dev, MT_RF(0, 28), rf_val); /* R28<3:2> clksel option */ rf_val = rf_rr(dev, MT_RF(0, 28)); rf_val &= ~0x0C; rf_val |= freq_item->pllR28_b3b2; rf_wr(dev, MT_RF(0, 28), rf_val); /* R28<1:0> R27<7:0> R26<7:0> (hex) sdm_k */ rf_val = freq_item->pll_sdm_k & 0x000000FF; rf_wr(dev, MT_RF(0, 26), rf_val); rf_val = ((freq_item->pll_sdm_k >> 8) & 0x000000FF); rf_wr(dev, MT_RF(0, 27), rf_val); rf_val = rf_rr(dev, MT_RF(0, 28)); rf_val &= ~0x3; rf_val |= ((freq_item->pll_sdm_k >> 16) & 0x0003); rf_wr(dev, MT_RF(0, 28), rf_val); /* R24<1:0> xo_div */ rf_val = rf_rr(dev, MT_RF(0, 24)); rf_val &= ~0x3; rf_val |= freq_item->pllR24_b1b0; rf_wr(dev, MT_RF(0, 24), rf_val); break; } } for (i = 0; i < ARRAY_SIZE(mt76x0_rf_bw_switch_tab); i++) { if (rf_bw == mt76x0_rf_bw_switch_tab[i].bw_band) { rf_wr(dev, mt76x0_rf_bw_switch_tab[i].rf_bank_reg, mt76x0_rf_bw_switch_tab[i].value); } else if ((rf_bw == (mt76x0_rf_bw_switch_tab[i].bw_band & 0xFF)) && (rf_band & mt76x0_rf_bw_switch_tab[i].bw_band)) { rf_wr(dev, mt76x0_rf_bw_switch_tab[i].rf_bank_reg, mt76x0_rf_bw_switch_tab[i].value); } } for (i = 0; i < ARRAY_SIZE(mt76x0_rf_band_switch_tab); i++) { if (mt76x0_rf_band_switch_tab[i].bw_band & rf_band) { rf_wr(dev, mt76x0_rf_band_switch_tab[i].rf_bank_reg, mt76x0_rf_band_switch_tab[i].value); } } mac_reg = mt76_rr(dev, MT_RF_MISC); mac_reg &= ~0xC; /* Clear 0x518[3:2] */ mt76_wr(dev, MT_RF_MISC, mac_reg); band = (rf_band & RF_G_BAND) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; if (mt76x02_ext_pa_enabled(&dev->mt76, band)) { /* MT_RF_MISC (offset: 0x0518) [2]1'b1: enable external A band PA, 1'b0: disable external A band PA [3]1'b1: enable external G band PA, 1'b0: disable external G band PA */ if (rf_band & RF_A_BAND) { mac_reg = mt76_rr(dev, MT_RF_MISC); mac_reg |= 0x4; mt76_wr(dev, MT_RF_MISC, mac_reg); } else { mac_reg = mt76_rr(dev, MT_RF_MISC); mac_reg |= 0x8; mt76_wr(dev, MT_RF_MISC, mac_reg); } /* External PA */ for (i = 0; i < ARRAY_SIZE(mt76x0_rf_ext_pa_tab); i++) if (mt76x0_rf_ext_pa_tab[i].bw_band & rf_band) rf_wr(dev, mt76x0_rf_ext_pa_tab[i].rf_bank_reg, mt76x0_rf_ext_pa_tab[i].value); } if (rf_band & RF_G_BAND) { mt76_wr(dev, MT_TX0_RF_GAIN_ATTEN, 0x63707400); /* Set Atten mode = 2 For G band, Disable Tx Inc dcoc. */ mac_reg = mt76_rr(dev, MT_TX_ALC_CFG_1); mac_reg &= 0x896400FF; mt76_wr(dev, MT_TX_ALC_CFG_1, mac_reg); } else { mt76_wr(dev, MT_TX0_RF_GAIN_ATTEN, 0x686A7800); /* Set Atten mode = 0 For Ext A band, Disable Tx Inc dcoc Cal. */ mac_reg = mt76_rr(dev, MT_TX_ALC_CFG_1); mac_reg &= 0x890400FF; mt76_wr(dev, MT_TX_ALC_CFG_1, mac_reg); } } static void mt76x0_phy_set_chan_bbp_params(struct mt76x02_dev *dev, u8 channel, u16 rf_bw_band) { int i; for (i = 0; i < ARRAY_SIZE(mt76x0_bbp_switch_tab); i++) { const struct mt76x0_bbp_switch_item *item = &mt76x0_bbp_switch_tab[i]; const struct mt76_reg_pair *pair = &item->reg_pair; if ((rf_bw_band & item->bw_band) != rf_bw_band) continue; if (pair->reg == MT_BBP(AGC, 8)) { u32 val = pair->value; u8 gain; gain = FIELD_GET(MT_BBP_AGC_GAIN, val); gain -= dev->cal.rx.lna_gain * 2; val &= ~MT_BBP_AGC_GAIN; val |= FIELD_PREP(MT_BBP_AGC_GAIN, gain); mt76_wr(dev, pair->reg, val); } else { mt76_wr(dev, pair->reg, pair->value); } } } static void mt76x0_ant_select(struct mt76x02_dev *dev) { struct ieee80211_channel *chan = dev->mt76.chandef.chan; /* single antenna mode */ if (chan->band == NL80211_BAND_2GHZ) { mt76_rmw(dev, MT_COEXCFG3, BIT(5) | BIT(4) | BIT(3) | BIT(2), BIT(1)); mt76_rmw(dev, MT_WLAN_FUN_CTRL, BIT(5), BIT(6)); } else { mt76_rmw(dev, MT_COEXCFG3, BIT(5) | BIT(2), BIT(4) | BIT(3)); mt76_clear(dev, MT_WLAN_FUN_CTRL, BIT(6) | BIT(5)); } mt76_clear(dev, MT_CMB_CTRL, BIT(14) | BIT(12)); mt76_clear(dev, MT_COEXCFG0, BIT(2)); } static void mt76x0_bbp_set_bw(struct mt76x02_dev *dev, enum nl80211_chan_width width) { enum { BW_20 = 0, BW_40 = 1, BW_80 = 2, BW_10 = 4}; int bw; switch (width) { default: case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: bw = BW_20; break; case NL80211_CHAN_WIDTH_40: bw = BW_40; break; case NL80211_CHAN_WIDTH_80: bw = BW_80; break; case NL80211_CHAN_WIDTH_10: bw = BW_10; break; case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: case NL80211_CHAN_WIDTH_5: /* TODO error */ return ; } mt76x02_mcu_function_select(&dev->mt76, BW_SETTING, bw, false); } void mt76x0_phy_set_txpower(struct mt76x02_dev *dev) { struct mt76_rate_power *t = &dev->mt76.rate_power; u8 info[2]; mt76x0_get_power_info(dev, info); mt76x0_get_tx_power_per_rate(dev); mt76x02_add_rate_power_offset(t, info[0]); mt76x02_limit_rate_power(t, dev->mt76.txpower_conf); dev->mt76.txpower_cur = mt76x02_get_max_rate_power(t); mt76x02_add_rate_power_offset(t, -info[0]); mt76x02_phy_set_txpower(&dev->mt76, info[0], info[1]); } int mt76x0_phy_set_channel(struct mt76x02_dev *dev, struct cfg80211_chan_def *chandef) { u32 ext_cca_chan[4] = { [0] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(0)), [1] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(1)), [2] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(2)), [3] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(3)), }; bool scan = test_bit(MT76_SCANNING, &dev->mt76.state); int ch_group_index, freq, freq1; u8 channel; u32 val; u16 rf_bw_band; freq = chandef->chan->center_freq; freq1 = chandef->center_freq1; channel = chandef->chan->hw_value; rf_bw_band = (channel <= 14) ? RF_G_BAND : RF_A_BAND; dev->mt76.chandef = *chandef; switch (chandef->width) { case NL80211_CHAN_WIDTH_40: if (freq1 > freq) ch_group_index = 0; else ch_group_index = 1; channel += 2 - ch_group_index * 4; rf_bw_band |= RF_BW_40; break; case NL80211_CHAN_WIDTH_80: ch_group_index = (freq - freq1 + 30) / 20; if (WARN_ON(ch_group_index < 0 || ch_group_index > 3)) ch_group_index = 0; channel += 6 - ch_group_index * 4; rf_bw_band |= RF_BW_80; break; default: ch_group_index = 0; rf_bw_band |= RF_BW_20; break; } mt76x0_bbp_set_bw(dev, chandef->width); mt76x0_bbp_set_ctrlch(dev, chandef->width, ch_group_index); mt76x0_mac_set_ctrlch(dev, ch_group_index & 1); mt76x0_ant_select(dev); mt76_rmw(dev, MT_EXT_CCA_CFG, (MT_EXT_CCA_CFG_CCA0 | MT_EXT_CCA_CFG_CCA1 | MT_EXT_CCA_CFG_CCA2 | MT_EXT_CCA_CFG_CCA3 | MT_EXT_CCA_CFG_CCA_MASK), ext_cca_chan[ch_group_index]); mt76x0_phy_set_band(dev, chandef->chan->band); mt76x0_phy_set_chan_rf_params(dev, channel, rf_bw_band); mt76x0_read_rx_gain(dev); /* set Japan Tx filter at channel 14 */ val = mt76_rr(dev, MT_BBP(CORE, 1)); if (channel == 14) val |= 0x20; else val &= ~0x20; mt76_wr(dev, MT_BBP(CORE, 1), val); mt76x0_phy_set_chan_bbp_params(dev, channel, rf_bw_band); /* Vendor driver don't do it */ /* mt76x0_phy_set_tx_power(dev, channel, rf_bw_band); */ mt76x0_vco_cal(dev, channel); if (scan) mt76x02_mcu_calibrate(&dev->mt76, MCU_CAL_RXDCOC, 1, false); mt76x0_phy_set_txpower(dev); return 0; } void mt76x0_phy_recalibrate_after_assoc(struct mt76x02_dev *dev) { u32 tx_alc, reg_val; u8 channel = dev->mt76.chandef.chan->hw_value; int is_5ghz = (dev->mt76.chandef.chan->band == NL80211_BAND_5GHZ) ? 1 : 0; mt76x02_mcu_calibrate(&dev->mt76, MCU_CAL_R, 0, false); mt76x0_vco_cal(dev, channel); tx_alc = mt76_rr(dev, MT_TX_ALC_CFG_0); mt76_wr(dev, MT_TX_ALC_CFG_0, 0); usleep_range(500, 700); reg_val = mt76_rr(dev, 0x2124); reg_val &= 0xffffff7e; mt76_wr(dev, 0x2124, reg_val); mt76x02_mcu_calibrate(&dev->mt76, MCU_CAL_RXDCOC, 0, false); mt76x02_mcu_calibrate(&dev->mt76, MCU_CAL_LC, is_5ghz, false); mt76x02_mcu_calibrate(&dev->mt76, MCU_CAL_LOFT, is_5ghz, false); mt76x02_mcu_calibrate(&dev->mt76, MCU_CAL_TXIQ, is_5ghz, false); mt76x02_mcu_calibrate(&dev->mt76, MCU_CAL_TX_GROUP_DELAY, is_5ghz, false); mt76x02_mcu_calibrate(&dev->mt76, MCU_CAL_RXIQ, is_5ghz, false); mt76x02_mcu_calibrate(&dev->mt76, MCU_CAL_RX_GROUP_DELAY, is_5ghz, false); mt76_wr(dev, 0x2124, reg_val); mt76_wr(dev, MT_TX_ALC_CFG_0, tx_alc); msleep(100); mt76x02_mcu_calibrate(&dev->mt76, MCU_CAL_RXDCOC, 1, false); } void mt76x0_agc_save(struct mt76x02_dev *dev) { /* Only one RX path */ dev->agc_save = FIELD_GET(MT_BBP_AGC_GAIN, mt76_rr(dev, MT_BBP(AGC, 8))); } void mt76x0_agc_restore(struct mt76x02_dev *dev) { mt76_rmw_field(dev, MT_BBP(AGC, 8), MT_BBP_AGC_GAIN, dev->agc_save); } static void mt76x0_temp_sensor(struct mt76x02_dev *dev) { u8 rf_b7_73, rf_b0_66, rf_b0_67; int cycle, temp; u32 val; s32 sval; rf_b7_73 = rf_rr(dev, MT_RF(7, 73)); rf_b0_66 = rf_rr(dev, MT_RF(0, 66)); rf_b0_67 = rf_rr(dev, MT_RF(0, 73)); rf_wr(dev, MT_RF(7, 73), 0x02); rf_wr(dev, MT_RF(0, 66), 0x23); rf_wr(dev, MT_RF(0, 73), 0x01); mt76_wr(dev, MT_BBP(CORE, 34), 0x00080055); for (cycle = 0; cycle < 2000; cycle++) { val = mt76_rr(dev, MT_BBP(CORE, 34)); if (!(val & 0x10)) break; udelay(3); } if (cycle >= 2000) { val &= 0x10; mt76_wr(dev, MT_BBP(CORE, 34), val); goto done; } sval = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff; if (!(sval & 0x80)) sval &= 0x7f; /* Positive */ else sval |= 0xffffff00; /* Negative */ temp = (35 * (sval - dev->cal.rx.temp_offset)) / 10 + 25; done: rf_wr(dev, MT_RF(7, 73), rf_b7_73); rf_wr(dev, MT_RF(0, 66), rf_b0_66); rf_wr(dev, MT_RF(0, 73), rf_b0_67); } static void mt76x0_dynamic_vga_tuning(struct mt76x02_dev *dev) { struct cfg80211_chan_def *chandef = &dev->mt76.chandef; u32 val, init_vga; int avg_rssi; init_vga = chandef->chan->band == NL80211_BAND_5GHZ ? 0x54 : 0x4E; avg_rssi = mt76x02_phy_get_min_avg_rssi(&dev->mt76); if (avg_rssi > -60) init_vga -= 0x20; else if (avg_rssi > -70) init_vga -= 0x10; val = mt76_rr(dev, MT_BBP(AGC, 8)); val &= 0xFFFF80FF; val |= init_vga << 8; mt76_wr(dev, MT_BBP(AGC,8), val); } static void mt76x0_phy_calibrate(struct work_struct *work) { struct mt76x02_dev *dev = container_of(work, struct mt76x02_dev, cal_work.work); mt76x0_dynamic_vga_tuning(dev); mt76x0_temp_sensor(dev); ieee80211_queue_delayed_work(dev->mt76.hw, &dev->cal_work, MT_CALIBRATE_INTERVAL); } static void mt76x0_rf_init(struct mt76x02_dev *dev) { int i; u8 val; RF_RANDOM_WRITE(dev, mt76x0_rf_central_tab); RF_RANDOM_WRITE(dev, mt76x0_rf_2g_channel_0_tab); RF_RANDOM_WRITE(dev, mt76x0_rf_5g_channel_0_tab); RF_RANDOM_WRITE(dev, mt76x0_rf_vga_channel_0_tab); for (i = 0; i < ARRAY_SIZE(mt76x0_rf_bw_switch_tab); i++) { const struct mt76x0_rf_switch_item *item = &mt76x0_rf_bw_switch_tab[i]; if (item->bw_band == RF_BW_20) rf_wr(dev, item->rf_bank_reg, item->value); else if (((RF_G_BAND | RF_BW_20) & item->bw_band) == (RF_G_BAND | RF_BW_20)) rf_wr(dev, item->rf_bank_reg, item->value); } for (i = 0; i < ARRAY_SIZE(mt76x0_rf_band_switch_tab); i++) { if (mt76x0_rf_band_switch_tab[i].bw_band & RF_G_BAND) { rf_wr(dev, mt76x0_rf_band_switch_tab[i].rf_bank_reg, mt76x0_rf_band_switch_tab[i].value); } } /* Frequency calibration E1: B0.R22<6:0>: xo_cxo<6:0> E2: B0.R21<0>: xo_cxo<0>, B0.R22<7:0>: xo_cxo<8:1> */ rf_wr(dev, MT_RF(0, 22), min_t(u8, dev->cal.rx.freq_offset, 0xbf)); val = rf_rr(dev, MT_RF(0, 22)); /* Reset the DAC (Set B0.R73<7>=1, then set B0.R73<7>=0, and then set B0.R73<7>) during power up. */ val = rf_rr(dev, MT_RF(0, 73)); val |= 0x80; rf_wr(dev, MT_RF(0, 73), val); val &= ~0x80; rf_wr(dev, MT_RF(0, 73), val); val |= 0x80; rf_wr(dev, MT_RF(0, 73), val); /* vcocal_en (initiate VCO calibration (reset after completion)) - It should be at the end of RF configuration. */ rf_set(dev, MT_RF(0, 4), 0x80); } void mt76x0_phy_init(struct mt76x02_dev *dev) { INIT_DELAYED_WORK(&dev->cal_work, mt76x0_phy_calibrate); mt76x0_rf_init(dev); mt76x02_phy_set_rxpath(&dev->mt76); mt76x02_phy_set_txdac(&dev->mt76); }