/* * Amlogic SD/eMMC driver for the GX/S905 family SoCs * * Copyright (c) 2016 BayLibre, SAS. * Author: Kevin Hilman * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * The full GNU General Public License is included in this distribution * in the file called COPYING. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "meson-gx-mmc" #define SD_EMMC_CLOCK 0x0 #define CLK_DIV_SHIFT 0 #define CLK_DIV_WIDTH 6 #define CLK_DIV_MASK 0x3f #define CLK_DIV_MAX 63 #define CLK_SRC_SHIFT 6 #define CLK_SRC_WIDTH 2 #define CLK_SRC_MASK 0x3 #define CLK_SRC_XTAL 0 /* external crystal */ #define CLK_SRC_XTAL_RATE 24000000 #define CLK_SRC_PLL 1 /* FCLK_DIV2 */ #define CLK_SRC_PLL_RATE 1000000000 #define CLK_PHASE_SHIFT 8 #define CLK_PHASE_MASK 0x3 #define CLK_PHASE_0 0 #define CLK_PHASE_90 1 #define CLK_PHASE_180 2 #define CLK_PHASE_270 3 #define CLK_ALWAYS_ON BIT(24) #define SD_EMMC_DElAY 0x4 #define SD_EMMC_ADJUST 0x8 #define SD_EMMC_CALOUT 0x10 #define SD_EMMC_START 0x40 #define START_DESC_INIT BIT(0) #define START_DESC_BUSY BIT(1) #define START_DESC_ADDR_SHIFT 2 #define START_DESC_ADDR_MASK (~0x3) #define SD_EMMC_CFG 0x44 #define CFG_BUS_WIDTH_SHIFT 0 #define CFG_BUS_WIDTH_MASK 0x3 #define CFG_BUS_WIDTH_1 0x0 #define CFG_BUS_WIDTH_4 0x1 #define CFG_BUS_WIDTH_8 0x2 #define CFG_DDR BIT(2) #define CFG_BLK_LEN_SHIFT 4 #define CFG_BLK_LEN_MASK 0xf #define CFG_RESP_TIMEOUT_SHIFT 8 #define CFG_RESP_TIMEOUT_MASK 0xf #define CFG_RC_CC_SHIFT 12 #define CFG_RC_CC_MASK 0xf #define CFG_STOP_CLOCK BIT(22) #define CFG_CLK_ALWAYS_ON BIT(18) #define CFG_CHK_DS BIT(20) #define CFG_AUTO_CLK BIT(23) #define SD_EMMC_STATUS 0x48 #define STATUS_BUSY BIT(31) #define SD_EMMC_IRQ_EN 0x4c #define IRQ_EN_MASK 0x3fff #define IRQ_RXD_ERR_SHIFT 0 #define IRQ_RXD_ERR_MASK 0xff #define IRQ_TXD_ERR BIT(8) #define IRQ_DESC_ERR BIT(9) #define IRQ_RESP_ERR BIT(10) #define IRQ_RESP_TIMEOUT BIT(11) #define IRQ_DESC_TIMEOUT BIT(12) #define IRQ_END_OF_CHAIN BIT(13) #define IRQ_RESP_STATUS BIT(14) #define IRQ_SDIO BIT(15) #define SD_EMMC_CMD_CFG 0x50 #define SD_EMMC_CMD_ARG 0x54 #define SD_EMMC_CMD_DAT 0x58 #define SD_EMMC_CMD_RSP 0x5c #define SD_EMMC_CMD_RSP1 0x60 #define SD_EMMC_CMD_RSP2 0x64 #define SD_EMMC_CMD_RSP3 0x68 #define SD_EMMC_RXD 0x94 #define SD_EMMC_TXD 0x94 #define SD_EMMC_LAST_REG SD_EMMC_TXD #define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */ #define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */ #define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */ #define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */ #define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */ #define MUX_CLK_NUM_PARENTS 2 struct meson_host { struct device *dev; struct mmc_host *mmc; struct mmc_command *cmd; spinlock_t lock; void __iomem *regs; struct clk *core_clk; struct clk_mux mux; struct clk *mux_clk; unsigned long current_clock; struct clk_divider cfg_div; struct clk *cfg_div_clk; unsigned int bounce_buf_size; void *bounce_buf; dma_addr_t bounce_dma_addr; bool vqmmc_enabled; }; struct sd_emmc_desc { u32 cmd_cfg; u32 cmd_arg; u32 cmd_data; u32 cmd_resp; }; #define CMD_CFG_LENGTH_SHIFT 0 #define CMD_CFG_LENGTH_MASK 0x1ff #define CMD_CFG_BLOCK_MODE BIT(9) #define CMD_CFG_R1B BIT(10) #define CMD_CFG_END_OF_CHAIN BIT(11) #define CMD_CFG_TIMEOUT_SHIFT 12 #define CMD_CFG_TIMEOUT_MASK 0xf #define CMD_CFG_NO_RESP BIT(16) #define CMD_CFG_NO_CMD BIT(17) #define CMD_CFG_DATA_IO BIT(18) #define CMD_CFG_DATA_WR BIT(19) #define CMD_CFG_RESP_NOCRC BIT(20) #define CMD_CFG_RESP_128 BIT(21) #define CMD_CFG_RESP_NUM BIT(22) #define CMD_CFG_DATA_NUM BIT(23) #define CMD_CFG_CMD_INDEX_SHIFT 24 #define CMD_CFG_CMD_INDEX_MASK 0x3f #define CMD_CFG_ERROR BIT(30) #define CMD_CFG_OWNER BIT(31) #define CMD_DATA_MASK (~0x3) #define CMD_DATA_BIG_ENDIAN BIT(1) #define CMD_DATA_SRAM BIT(0) #define CMD_RESP_MASK (~0x1) #define CMD_RESP_SRAM BIT(0) static int meson_mmc_clk_set(struct meson_host *host, unsigned long clk_rate) { struct mmc_host *mmc = host->mmc; int ret; u32 cfg; if (clk_rate) { if (WARN_ON(clk_rate > mmc->f_max)) clk_rate = mmc->f_max; else if (WARN_ON(clk_rate < mmc->f_min)) clk_rate = mmc->f_min; } if (clk_rate == host->current_clock) return 0; /* stop clock */ cfg = readl(host->regs + SD_EMMC_CFG); if (!(cfg & CFG_STOP_CLOCK)) { cfg |= CFG_STOP_CLOCK; writel(cfg, host->regs + SD_EMMC_CFG); } dev_dbg(host->dev, "change clock rate %u -> %lu\n", mmc->actual_clock, clk_rate); if (!clk_rate) { mmc->actual_clock = 0; host->current_clock = 0; /* return with clock being stopped */ return 0; } ret = clk_set_rate(host->cfg_div_clk, clk_rate); if (ret) { dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n", clk_rate, ret); return ret; } mmc->actual_clock = clk_get_rate(host->cfg_div_clk); host->current_clock = clk_rate; if (clk_rate != mmc->actual_clock) dev_dbg(host->dev, "divider requested rate %lu != actual rate %u\n", clk_rate, mmc->actual_clock); /* (re)start clock */ cfg = readl(host->regs + SD_EMMC_CFG); cfg &= ~CFG_STOP_CLOCK; writel(cfg, host->regs + SD_EMMC_CFG); return 0; } /* * The SD/eMMC IP block has an internal mux and divider used for * generating the MMC clock. Use the clock framework to create and * manage these clocks. */ static int meson_mmc_clk_init(struct meson_host *host) { struct clk_init_data init; char clk_name[32]; int i, ret = 0; const char *mux_parent_names[MUX_CLK_NUM_PARENTS]; const char *clk_div_parents[1]; u32 clk_reg, cfg; /* get the mux parents */ for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) { struct clk *clk; char name[16]; snprintf(name, sizeof(name), "clkin%d", i); clk = devm_clk_get(host->dev, name); if (IS_ERR(clk)) { if (clk != ERR_PTR(-EPROBE_DEFER)) dev_err(host->dev, "Missing clock %s\n", name); return PTR_ERR(clk); } mux_parent_names[i] = __clk_get_name(clk); } /* create the mux */ snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev)); init.name = clk_name; init.ops = &clk_mux_ops; init.flags = 0; init.parent_names = mux_parent_names; init.num_parents = MUX_CLK_NUM_PARENTS; host->mux.reg = host->regs + SD_EMMC_CLOCK; host->mux.shift = CLK_SRC_SHIFT; host->mux.mask = CLK_SRC_MASK; host->mux.flags = 0; host->mux.table = NULL; host->mux.hw.init = &init; host->mux_clk = devm_clk_register(host->dev, &host->mux.hw); if (WARN_ON(IS_ERR(host->mux_clk))) return PTR_ERR(host->mux_clk); /* create the divider */ snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev)); init.name = clk_name; init.ops = &clk_divider_ops; init.flags = CLK_SET_RATE_PARENT; clk_div_parents[0] = __clk_get_name(host->mux_clk); init.parent_names = clk_div_parents; init.num_parents = ARRAY_SIZE(clk_div_parents); host->cfg_div.reg = host->regs + SD_EMMC_CLOCK; host->cfg_div.shift = CLK_DIV_SHIFT; host->cfg_div.width = CLK_DIV_WIDTH; host->cfg_div.hw.init = &init; host->cfg_div.flags = CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ROUND_CLOSEST | CLK_DIVIDER_ALLOW_ZERO; host->cfg_div_clk = devm_clk_register(host->dev, &host->cfg_div.hw); if (WARN_ON(PTR_ERR_OR_ZERO(host->cfg_div_clk))) return PTR_ERR(host->cfg_div_clk); /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ clk_reg = 0; clk_reg |= CLK_PHASE_180 << CLK_PHASE_SHIFT; clk_reg |= CLK_SRC_XTAL << CLK_SRC_SHIFT; clk_reg |= CLK_DIV_MAX << CLK_DIV_SHIFT; clk_reg &= ~CLK_ALWAYS_ON; writel(clk_reg, host->regs + SD_EMMC_CLOCK); /* Ensure clock starts in "auto" mode, not "always on" */ cfg = readl(host->regs + SD_EMMC_CFG); cfg &= ~CFG_CLK_ALWAYS_ON; cfg |= CFG_AUTO_CLK; writel(cfg, host->regs + SD_EMMC_CFG); ret = clk_prepare_enable(host->cfg_div_clk); if (ret) return ret; /* Get the nearest minimum clock to 400KHz */ host->mmc->f_min = clk_round_rate(host->cfg_div_clk, 400000); ret = meson_mmc_clk_set(host, host->mmc->f_min); if (ret) clk_disable_unprepare(host->cfg_div_clk); return ret; } static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct meson_host *host = mmc_priv(mmc); u32 bus_width; u32 val, orig; /* * GPIO regulator, only controls switching between 1v8 and * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON. */ switch (ios->power_mode) { case MMC_POWER_OFF: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { regulator_disable(mmc->supply.vqmmc); host->vqmmc_enabled = false; } break; case MMC_POWER_UP: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); break; case MMC_POWER_ON: if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { int ret = regulator_enable(mmc->supply.vqmmc); if (ret < 0) dev_err(mmc_dev(mmc), "failed to enable vqmmc regulator\n"); else host->vqmmc_enabled = true; } break; } meson_mmc_clk_set(host, ios->clock); /* Bus width */ switch (ios->bus_width) { case MMC_BUS_WIDTH_1: bus_width = CFG_BUS_WIDTH_1; break; case MMC_BUS_WIDTH_4: bus_width = CFG_BUS_WIDTH_4; break; case MMC_BUS_WIDTH_8: bus_width = CFG_BUS_WIDTH_8; break; default: dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n", ios->bus_width); bus_width = CFG_BUS_WIDTH_4; } val = readl(host->regs + SD_EMMC_CFG); orig = val; val &= ~(CFG_BUS_WIDTH_MASK << CFG_BUS_WIDTH_SHIFT); val |= bus_width << CFG_BUS_WIDTH_SHIFT; val &= ~CFG_DDR; if (ios->timing == MMC_TIMING_UHS_DDR50 || ios->timing == MMC_TIMING_MMC_DDR52 || ios->timing == MMC_TIMING_MMC_HS400) val |= CFG_DDR; val &= ~CFG_CHK_DS; if (ios->timing == MMC_TIMING_MMC_HS400) val |= CFG_CHK_DS; if (val != orig) { writel(val, host->regs + SD_EMMC_CFG); dev_dbg(host->dev, "%s: SD_EMMC_CFG: 0x%08x -> 0x%08x\n", __func__, orig, val); } } static void meson_mmc_request_done(struct mmc_host *mmc, struct mmc_request *mrq) { struct meson_host *host = mmc_priv(mmc); host->cmd = NULL; mmc_request_done(host->mmc, mrq); } static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd) { struct meson_host *host = mmc_priv(mmc); struct sd_emmc_desc *desc, desc_tmp; u32 cfg; u8 blk_len, cmd_cfg_timeout; unsigned int xfer_bytes = 0; /* Setup descriptors */ dma_rmb(); desc = &desc_tmp; memset(desc, 0, sizeof(struct sd_emmc_desc)); desc->cmd_cfg |= (cmd->opcode & CMD_CFG_CMD_INDEX_MASK) << CMD_CFG_CMD_INDEX_SHIFT; desc->cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */ desc->cmd_arg = cmd->arg; /* Response */ if (cmd->flags & MMC_RSP_PRESENT) { desc->cmd_cfg &= ~CMD_CFG_NO_RESP; if (cmd->flags & MMC_RSP_136) desc->cmd_cfg |= CMD_CFG_RESP_128; desc->cmd_cfg |= CMD_CFG_RESP_NUM; desc->cmd_resp = 0; if (!(cmd->flags & MMC_RSP_CRC)) desc->cmd_cfg |= CMD_CFG_RESP_NOCRC; if (cmd->flags & MMC_RSP_BUSY) desc->cmd_cfg |= CMD_CFG_R1B; } else { desc->cmd_cfg |= CMD_CFG_NO_RESP; } /* data? */ if (cmd->data) { desc->cmd_cfg |= CMD_CFG_DATA_IO; if (cmd->data->blocks > 1) { desc->cmd_cfg |= CMD_CFG_BLOCK_MODE; desc->cmd_cfg |= (cmd->data->blocks & CMD_CFG_LENGTH_MASK) << CMD_CFG_LENGTH_SHIFT; /* check if block-size matches, if not update */ cfg = readl(host->regs + SD_EMMC_CFG); blk_len = cfg & (CFG_BLK_LEN_MASK << CFG_BLK_LEN_SHIFT); blk_len >>= CFG_BLK_LEN_SHIFT; if (blk_len != ilog2(cmd->data->blksz)) { dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__, blk_len, ilog2(cmd->data->blksz)); blk_len = ilog2(cmd->data->blksz); cfg &= ~(CFG_BLK_LEN_MASK << CFG_BLK_LEN_SHIFT); cfg |= blk_len << CFG_BLK_LEN_SHIFT; writel(cfg, host->regs + SD_EMMC_CFG); } } else { desc->cmd_cfg &= ~CMD_CFG_BLOCK_MODE; desc->cmd_cfg |= (cmd->data->blksz & CMD_CFG_LENGTH_MASK) << CMD_CFG_LENGTH_SHIFT; } cmd->data->bytes_xfered = 0; xfer_bytes = cmd->data->blksz * cmd->data->blocks; if (cmd->data->flags & MMC_DATA_WRITE) { desc->cmd_cfg |= CMD_CFG_DATA_WR; WARN_ON(xfer_bytes > host->bounce_buf_size); sg_copy_to_buffer(cmd->data->sg, cmd->data->sg_len, host->bounce_buf, xfer_bytes); cmd->data->bytes_xfered = xfer_bytes; dma_wmb(); } else { desc->cmd_cfg &= ~CMD_CFG_DATA_WR; } desc->cmd_data = host->bounce_dma_addr & CMD_DATA_MASK; cmd_cfg_timeout = ilog2(SD_EMMC_CMD_TIMEOUT_DATA); } else { desc->cmd_cfg &= ~CMD_CFG_DATA_IO; cmd_cfg_timeout = ilog2(SD_EMMC_CMD_TIMEOUT); } desc->cmd_cfg |= (cmd_cfg_timeout & CMD_CFG_TIMEOUT_MASK) << CMD_CFG_TIMEOUT_SHIFT; host->cmd = cmd; /* Last descriptor */ desc->cmd_cfg |= CMD_CFG_END_OF_CHAIN; writel(desc->cmd_cfg, host->regs + SD_EMMC_CMD_CFG); writel(desc->cmd_data, host->regs + SD_EMMC_CMD_DAT); writel(desc->cmd_resp, host->regs + SD_EMMC_CMD_RSP); wmb(); /* ensure descriptor is written before kicked */ writel(desc->cmd_arg, host->regs + SD_EMMC_CMD_ARG); } static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct meson_host *host = mmc_priv(mmc); /* Stop execution */ writel(0, host->regs + SD_EMMC_START); if (mrq->sbc) meson_mmc_start_cmd(mmc, mrq->sbc); else meson_mmc_start_cmd(mmc, mrq->cmd); } static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd) { struct meson_host *host = mmc_priv(mmc); if (cmd->flags & MMC_RSP_136) { cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3); cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2); cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1); cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP); } else if (cmd->flags & MMC_RSP_PRESENT) { cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP); } } static irqreturn_t meson_mmc_irq(int irq, void *dev_id) { struct meson_host *host = dev_id; struct mmc_command *cmd; u32 irq_en, status, raw_status; irqreturn_t ret = IRQ_HANDLED; if (WARN_ON(!host)) return IRQ_NONE; cmd = host->cmd; if (WARN_ON(!cmd)) return IRQ_NONE; spin_lock(&host->lock); irq_en = readl(host->regs + SD_EMMC_IRQ_EN); raw_status = readl(host->regs + SD_EMMC_STATUS); status = raw_status & irq_en; if (!status) { dev_warn(host->dev, "Spurious IRQ! status=0x%08x, irq_en=0x%08x\n", raw_status, irq_en); ret = IRQ_NONE; goto out; } cmd->error = 0; if (status & IRQ_RXD_ERR_MASK) { dev_dbg(host->dev, "Unhandled IRQ: RXD error\n"); cmd->error = -EILSEQ; } if (status & IRQ_TXD_ERR) { dev_dbg(host->dev, "Unhandled IRQ: TXD error\n"); cmd->error = -EILSEQ; } if (status & IRQ_DESC_ERR) dev_dbg(host->dev, "Unhandled IRQ: Descriptor error\n"); if (status & IRQ_RESP_ERR) { dev_dbg(host->dev, "Unhandled IRQ: Response error\n"); cmd->error = -EILSEQ; } if (status & IRQ_RESP_TIMEOUT) { dev_dbg(host->dev, "Unhandled IRQ: Response timeout\n"); cmd->error = -ETIMEDOUT; } if (status & IRQ_DESC_TIMEOUT) { dev_dbg(host->dev, "Unhandled IRQ: Descriptor timeout\n"); cmd->error = -ETIMEDOUT; } if (status & IRQ_SDIO) dev_dbg(host->dev, "Unhandled IRQ: SDIO.\n"); if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) ret = IRQ_WAKE_THREAD; else { dev_warn(host->dev, "Unknown IRQ! status=0x%04x: MMC CMD%u arg=0x%08x flags=0x%08x stop=%d\n", status, cmd->opcode, cmd->arg, cmd->flags, cmd->mrq->stop ? 1 : 0); if (cmd->data) { struct mmc_data *data = cmd->data; dev_warn(host->dev, "\tblksz %u blocks %u flags 0x%08x (%s%s)", data->blksz, data->blocks, data->flags, data->flags & MMC_DATA_WRITE ? "write" : "", data->flags & MMC_DATA_READ ? "read" : ""); } } out: /* ack all (enabled) interrupts */ writel(status, host->regs + SD_EMMC_STATUS); if (ret == IRQ_HANDLED) { meson_mmc_read_resp(host->mmc, cmd); meson_mmc_request_done(host->mmc, cmd->mrq); } spin_unlock(&host->lock); return ret; } static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id) { struct meson_host *host = dev_id; struct mmc_command *cmd = host->cmd; struct mmc_data *data; unsigned int xfer_bytes; if (WARN_ON(!cmd)) return IRQ_NONE; data = cmd->data; if (data && data->flags & MMC_DATA_READ) { xfer_bytes = data->blksz * data->blocks; WARN_ON(xfer_bytes > host->bounce_buf_size); sg_copy_from_buffer(data->sg, data->sg_len, host->bounce_buf, xfer_bytes); data->bytes_xfered = xfer_bytes; } meson_mmc_read_resp(host->mmc, cmd); if (!data || !data->stop || cmd->mrq->sbc) meson_mmc_request_done(host->mmc, cmd->mrq); else meson_mmc_start_cmd(host->mmc, data->stop); return IRQ_HANDLED; } /* * NOTE: we only need this until the GPIO/pinctrl driver can handle * interrupts. For now, the MMC core will use this for polling. */ static int meson_mmc_get_cd(struct mmc_host *mmc) { int status = mmc_gpio_get_cd(mmc); if (status == -ENOSYS) return 1; /* assume present */ return status; } static void meson_mmc_cfg_init(struct meson_host *host) { u32 cfg = 0; cfg |= ilog2(SD_EMMC_CFG_RESP_TIMEOUT) << CFG_RESP_TIMEOUT_SHIFT; cfg |= ilog2(SD_EMMC_CFG_CMD_GAP) << CFG_RC_CC_SHIFT; cfg |= ilog2(SD_EMMC_CFG_BLK_SIZE) << CFG_BLK_LEN_SHIFT; writel(cfg, host->regs + SD_EMMC_CFG); } static const struct mmc_host_ops meson_mmc_ops = { .request = meson_mmc_request, .set_ios = meson_mmc_set_ios, .get_cd = meson_mmc_get_cd, }; static int meson_mmc_probe(struct platform_device *pdev) { struct resource *res; struct meson_host *host; struct mmc_host *mmc; int ret, irq; mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev); if (!mmc) return -ENOMEM; host = mmc_priv(mmc); host->mmc = mmc; host->dev = &pdev->dev; dev_set_drvdata(&pdev->dev, host); spin_lock_init(&host->lock); /* Get regulators and the supported OCR mask */ host->vqmmc_enabled = false; ret = mmc_regulator_get_supply(mmc); if (ret == -EPROBE_DEFER) goto free_host; ret = mmc_of_parse(mmc); if (ret) { if (ret != -EPROBE_DEFER) dev_warn(&pdev->dev, "error parsing DT: %d\n", ret); goto free_host; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); host->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(host->regs)) { ret = PTR_ERR(host->regs); goto free_host; } irq = platform_get_irq(pdev, 0); if (!irq) { dev_err(&pdev->dev, "failed to get interrupt resource.\n"); ret = -EINVAL; goto free_host; } host->core_clk = devm_clk_get(&pdev->dev, "core"); if (IS_ERR(host->core_clk)) { ret = PTR_ERR(host->core_clk); goto free_host; } ret = clk_prepare_enable(host->core_clk); if (ret) goto free_host; ret = meson_mmc_clk_init(host); if (ret) goto free_host; /* Stop execution */ writel(0, host->regs + SD_EMMC_START); /* clear, ack, enable all interrupts */ writel(0, host->regs + SD_EMMC_IRQ_EN); writel(IRQ_EN_MASK, host->regs + SD_EMMC_STATUS); writel(IRQ_EN_MASK, host->regs + SD_EMMC_IRQ_EN); /* set config to sane default */ meson_mmc_cfg_init(host); ret = devm_request_threaded_irq(&pdev->dev, irq, meson_mmc_irq, meson_mmc_irq_thread, IRQF_SHARED, DRIVER_NAME, host); if (ret) goto err_div_clk; mmc->max_blk_count = CMD_CFG_LENGTH_MASK; mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size; /* data bounce buffer */ host->bounce_buf_size = mmc->max_req_size; host->bounce_buf = dma_alloc_coherent(host->dev, host->bounce_buf_size, &host->bounce_dma_addr, GFP_KERNEL); if (host->bounce_buf == NULL) { dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n"); ret = -ENOMEM; goto err_div_clk; } mmc->ops = &meson_mmc_ops; mmc_add_host(mmc); return 0; err_div_clk: clk_disable_unprepare(host->cfg_div_clk); free_host: clk_disable_unprepare(host->core_clk); mmc_free_host(mmc); return ret; } static int meson_mmc_remove(struct platform_device *pdev) { struct meson_host *host = dev_get_drvdata(&pdev->dev); mmc_remove_host(host->mmc); /* disable interrupts */ writel(0, host->regs + SD_EMMC_IRQ_EN); dma_free_coherent(host->dev, host->bounce_buf_size, host->bounce_buf, host->bounce_dma_addr); clk_disable_unprepare(host->cfg_div_clk); clk_disable_unprepare(host->core_clk); mmc_free_host(host->mmc); return 0; } static const struct of_device_id meson_mmc_of_match[] = { { .compatible = "amlogic,meson-gx-mmc", }, { .compatible = "amlogic,meson-gxbb-mmc", }, { .compatible = "amlogic,meson-gxl-mmc", }, { .compatible = "amlogic,meson-gxm-mmc", }, {} }; MODULE_DEVICE_TABLE(of, meson_mmc_of_match); static struct platform_driver meson_mmc_driver = { .probe = meson_mmc_probe, .remove = meson_mmc_remove, .driver = { .name = DRIVER_NAME, .of_match_table = of_match_ptr(meson_mmc_of_match), }, }; module_platform_driver(meson_mmc_driver); MODULE_DESCRIPTION("Amlogic S905*/GX* SD/eMMC driver"); MODULE_AUTHOR("Kevin Hilman "); MODULE_LICENSE("GPL v2");