/* drbd_nl.c This file is part of DRBD by Philipp Reisner and Lars Ellenberg. Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. Copyright (C) 1999-2008, Philipp Reisner . Copyright (C) 2002-2008, Lars Ellenberg . drbd is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. drbd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with drbd; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include "drbd_int.h" #include "drbd_req.h" #include "drbd_wrappers.h" #include #include #include #include /* .doit */ // int drbd_adm_create_resource(struct sk_buff *skb, struct genl_info *info); // int drbd_adm_delete_resource(struct sk_buff *skb, struct genl_info *info); int drbd_adm_add_minor(struct sk_buff *skb, struct genl_info *info); int drbd_adm_delete_minor(struct sk_buff *skb, struct genl_info *info); int drbd_adm_create_connection(struct sk_buff *skb, struct genl_info *info); int drbd_adm_delete_connection(struct sk_buff *skb, struct genl_info *info); int drbd_adm_down(struct sk_buff *skb, struct genl_info *info); int drbd_adm_set_role(struct sk_buff *skb, struct genl_info *info); int drbd_adm_attach(struct sk_buff *skb, struct genl_info *info); int drbd_adm_disk_opts(struct sk_buff *skb, struct genl_info *info); int drbd_adm_detach(struct sk_buff *skb, struct genl_info *info); int drbd_adm_connect(struct sk_buff *skb, struct genl_info *info); int drbd_adm_net_opts(struct sk_buff *skb, struct genl_info *info); int drbd_adm_resize(struct sk_buff *skb, struct genl_info *info); int drbd_adm_start_ov(struct sk_buff *skb, struct genl_info *info); int drbd_adm_new_c_uuid(struct sk_buff *skb, struct genl_info *info); int drbd_adm_disconnect(struct sk_buff *skb, struct genl_info *info); int drbd_adm_invalidate(struct sk_buff *skb, struct genl_info *info); int drbd_adm_invalidate_peer(struct sk_buff *skb, struct genl_info *info); int drbd_adm_pause_sync(struct sk_buff *skb, struct genl_info *info); int drbd_adm_resume_sync(struct sk_buff *skb, struct genl_info *info); int drbd_adm_suspend_io(struct sk_buff *skb, struct genl_info *info); int drbd_adm_resume_io(struct sk_buff *skb, struct genl_info *info); int drbd_adm_outdate(struct sk_buff *skb, struct genl_info *info); int drbd_adm_resource_opts(struct sk_buff *skb, struct genl_info *info); int drbd_adm_get_status(struct sk_buff *skb, struct genl_info *info); int drbd_adm_get_timeout_type(struct sk_buff *skb, struct genl_info *info); /* .dumpit */ int drbd_adm_get_status_all(struct sk_buff *skb, struct netlink_callback *cb); #include #include /* used blkdev_get_by_path, to claim our meta data device(s) */ static char *drbd_m_holder = "Hands off! this is DRBD's meta data device."; /* Configuration is strictly serialized, because generic netlink message * processing is strictly serialized by the genl_lock(). * Which means we can use one static global drbd_config_context struct. */ static struct drbd_config_context { /* assigned from drbd_genlmsghdr */ unsigned int minor; /* assigned from request attributes, if present */ unsigned int volume; #define VOLUME_UNSPECIFIED (-1U) /* pointer into the request skb, * limited lifetime! */ char *conn_name; /* reply buffer */ struct sk_buff *reply_skb; /* pointer into reply buffer */ struct drbd_genlmsghdr *reply_dh; /* resolved from attributes, if possible */ struct drbd_conf *mdev; struct drbd_tconn *tconn; } adm_ctx; static void drbd_adm_send_reply(struct sk_buff *skb, struct genl_info *info) { genlmsg_end(skb, genlmsg_data(nlmsg_data(nlmsg_hdr(skb)))); if (genlmsg_reply(skb, info)) printk(KERN_ERR "drbd: error sending genl reply\n"); } /* Used on a fresh "drbd_adm_prepare"d reply_skb, this cannot fail: The only * reason it could fail was no space in skb, and there are 4k available. */ int drbd_msg_put_info(const char *info) { struct sk_buff *skb = adm_ctx.reply_skb; struct nlattr *nla; int err = -EMSGSIZE; if (!info || !info[0]) return 0; nla = nla_nest_start(skb, DRBD_NLA_CFG_REPLY); if (!nla) return err; err = nla_put_string(skb, T_info_text, info); if (err) { nla_nest_cancel(skb, nla); return err; } else nla_nest_end(skb, nla); return 0; } /* This would be a good candidate for a "pre_doit" hook, * and per-family private info->pointers. * But we need to stay compatible with older kernels. * If it returns successfully, adm_ctx members are valid. */ #define DRBD_ADM_NEED_MINOR 1 #define DRBD_ADM_NEED_CONN 2 static int drbd_adm_prepare(struct sk_buff *skb, struct genl_info *info, unsigned flags) { struct drbd_genlmsghdr *d_in = info->userhdr; const u8 cmd = info->genlhdr->cmd; int err; memset(&adm_ctx, 0, sizeof(adm_ctx)); /* genl_rcv_msg only checks for CAP_NET_ADMIN on "GENL_ADMIN_PERM" :( */ if (cmd != DRBD_ADM_GET_STATUS && security_netlink_recv(skb, CAP_SYS_ADMIN)) return -EPERM; adm_ctx.reply_skb = genlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (!adm_ctx.reply_skb) goto fail; adm_ctx.reply_dh = genlmsg_put_reply(adm_ctx.reply_skb, info, &drbd_genl_family, 0, cmd); /* put of a few bytes into a fresh skb of >= 4k will always succeed. * but anyways */ if (!adm_ctx.reply_dh) goto fail; adm_ctx.reply_dh->minor = d_in->minor; adm_ctx.reply_dh->ret_code = NO_ERROR; if (info->attrs[DRBD_NLA_CFG_CONTEXT]) { struct nlattr *nla; /* parse and validate only */ err = drbd_cfg_context_from_attrs(NULL, info); if (err) goto fail; /* It was present, and valid, * copy it over to the reply skb. */ err = nla_put_nohdr(adm_ctx.reply_skb, info->attrs[DRBD_NLA_CFG_CONTEXT]->nla_len, info->attrs[DRBD_NLA_CFG_CONTEXT]); if (err) goto fail; /* and assign stuff to the global adm_ctx */ nla = nested_attr_tb[__nla_type(T_ctx_volume)]; adm_ctx.volume = nla ? nla_get_u32(nla) : VOLUME_UNSPECIFIED; nla = nested_attr_tb[__nla_type(T_ctx_conn_name)]; if (nla) adm_ctx.conn_name = nla_data(nla); } else adm_ctx.volume = VOLUME_UNSPECIFIED; adm_ctx.minor = d_in->minor; adm_ctx.mdev = minor_to_mdev(d_in->minor); adm_ctx.tconn = conn_get_by_name(adm_ctx.conn_name); if (!adm_ctx.mdev && (flags & DRBD_ADM_NEED_MINOR)) { drbd_msg_put_info("unknown minor"); return ERR_MINOR_INVALID; } if (!adm_ctx.tconn && (flags & DRBD_ADM_NEED_CONN)) { drbd_msg_put_info("unknown connection"); return ERR_INVALID_REQUEST; } /* some more paranoia, if the request was over-determined */ if (adm_ctx.mdev && adm_ctx.tconn && adm_ctx.mdev->tconn != adm_ctx.tconn) { pr_warning("request: minor=%u, conn=%s; but that minor belongs to connection %s\n", adm_ctx.minor, adm_ctx.conn_name, adm_ctx.mdev->tconn->name); drbd_msg_put_info("minor exists in different connection"); return ERR_INVALID_REQUEST; } if (adm_ctx.mdev && adm_ctx.volume != VOLUME_UNSPECIFIED && adm_ctx.volume != adm_ctx.mdev->vnr) { pr_warning("request: minor=%u, volume=%u; but that minor is volume %u in %s\n", adm_ctx.minor, adm_ctx.volume, adm_ctx.mdev->vnr, adm_ctx.mdev->tconn->name); drbd_msg_put_info("minor exists as different volume"); return ERR_INVALID_REQUEST; } return NO_ERROR; fail: nlmsg_free(adm_ctx.reply_skb); adm_ctx.reply_skb = NULL; return -ENOMEM; } static int drbd_adm_finish(struct genl_info *info, int retcode) { struct nlattr *nla; const char *conn_name = NULL; if (adm_ctx.tconn) { kref_put(&adm_ctx.tconn->kref, &conn_destroy); adm_ctx.tconn = NULL; } if (!adm_ctx.reply_skb) return -ENOMEM; adm_ctx.reply_dh->ret_code = retcode; nla = info->attrs[DRBD_NLA_CFG_CONTEXT]; if (nla) { nla = nla_find_nested(nla, __nla_type(T_ctx_conn_name)); if (nla) conn_name = nla_data(nla); } drbd_adm_send_reply(adm_ctx.reply_skb, info); return 0; } static void setup_khelper_env(struct drbd_tconn *tconn, char **envp) { char *afs; struct net_conf *nc; rcu_read_lock(); nc = rcu_dereference(tconn->net_conf); if (nc) { switch (((struct sockaddr *)nc->peer_addr)->sa_family) { case AF_INET6: afs = "ipv6"; snprintf(envp[4], 60, "DRBD_PEER_ADDRESS=%pI6", &((struct sockaddr_in6 *)nc->peer_addr)->sin6_addr); break; case AF_INET: afs = "ipv4"; snprintf(envp[4], 60, "DRBD_PEER_ADDRESS=%pI4", &((struct sockaddr_in *)nc->peer_addr)->sin_addr); break; default: afs = "ssocks"; snprintf(envp[4], 60, "DRBD_PEER_ADDRESS=%pI4", &((struct sockaddr_in *)nc->peer_addr)->sin_addr); } snprintf(envp[3], 20, "DRBD_PEER_AF=%s", afs); } rcu_read_unlock(); } int drbd_khelper(struct drbd_conf *mdev, char *cmd) { char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", (char[20]) { }, /* address family */ (char[60]) { }, /* address */ NULL }; char mb[12]; char *argv[] = {usermode_helper, cmd, mb, NULL }; struct sib_info sib; int ret; snprintf(mb, 12, "minor-%d", mdev_to_minor(mdev)); setup_khelper_env(mdev->tconn, envp); /* The helper may take some time. * write out any unsynced meta data changes now */ drbd_md_sync(mdev); dev_info(DEV, "helper command: %s %s %s\n", usermode_helper, cmd, mb); sib.sib_reason = SIB_HELPER_PRE; sib.helper_name = cmd; drbd_bcast_event(mdev, &sib); ret = call_usermodehelper(usermode_helper, argv, envp, 1); if (ret) dev_warn(DEV, "helper command: %s %s %s exit code %u (0x%x)\n", usermode_helper, cmd, mb, (ret >> 8) & 0xff, ret); else dev_info(DEV, "helper command: %s %s %s exit code %u (0x%x)\n", usermode_helper, cmd, mb, (ret >> 8) & 0xff, ret); sib.sib_reason = SIB_HELPER_POST; sib.helper_exit_code = ret; drbd_bcast_event(mdev, &sib); if (ret < 0) /* Ignore any ERRNOs we got. */ ret = 0; return ret; } static void conn_md_sync(struct drbd_tconn *tconn) { struct drbd_conf *mdev; int vnr; down_read(&drbd_cfg_rwsem); idr_for_each_entry(&tconn->volumes, mdev, vnr) drbd_md_sync(mdev); up_read(&drbd_cfg_rwsem); } int conn_khelper(struct drbd_tconn *tconn, char *cmd) { char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", (char[20]) { }, /* address family */ (char[60]) { }, /* address */ NULL }; char *argv[] = {usermode_helper, cmd, tconn->name, NULL }; int ret; setup_khelper_env(tconn, envp); conn_md_sync(tconn); conn_info(tconn, "helper command: %s %s %s\n", usermode_helper, cmd, tconn->name); /* TODO: conn_bcast_event() ?? */ ret = call_usermodehelper(usermode_helper, argv, envp, 1); if (ret) conn_warn(tconn, "helper command: %s %s %s exit code %u (0x%x)\n", usermode_helper, cmd, tconn->name, (ret >> 8) & 0xff, ret); else conn_info(tconn, "helper command: %s %s %s exit code %u (0x%x)\n", usermode_helper, cmd, tconn->name, (ret >> 8) & 0xff, ret); /* TODO: conn_bcast_event() ?? */ if (ret < 0) /* Ignore any ERRNOs we got. */ ret = 0; return ret; } static enum drbd_fencing_p highest_fencing_policy(struct drbd_tconn *tconn) { enum drbd_fencing_p fp = FP_NOT_AVAIL; struct drbd_conf *mdev; int vnr; rcu_read_lock(); idr_for_each_entry(&tconn->volumes, mdev, vnr) { if (get_ldev_if_state(mdev, D_CONSISTENT)) { fp = max_t(enum drbd_fencing_p, fp, mdev->ldev->dc.fencing); put_ldev(mdev); } } rcu_read_unlock(); return fp; } bool conn_try_outdate_peer(struct drbd_tconn *tconn) { union drbd_state mask = { }; union drbd_state val = { }; enum drbd_fencing_p fp; char *ex_to_string; int r; if (tconn->cstate >= C_WF_REPORT_PARAMS) { conn_err(tconn, "Expected cstate < C_WF_REPORT_PARAMS\n"); return false; } fp = highest_fencing_policy(tconn); switch (fp) { case FP_NOT_AVAIL: conn_warn(tconn, "Not fencing peer, I'm not even Consistent myself.\n"); goto out; case FP_DONT_CARE: return true; default: ; } r = conn_khelper(tconn, "fence-peer"); switch ((r>>8) & 0xff) { case 3: /* peer is inconsistent */ ex_to_string = "peer is inconsistent or worse"; mask.pdsk = D_MASK; val.pdsk = D_INCONSISTENT; break; case 4: /* peer got outdated, or was already outdated */ ex_to_string = "peer was fenced"; mask.pdsk = D_MASK; val.pdsk = D_OUTDATED; break; case 5: /* peer was down */ if (conn_highest_disk(tconn) == D_UP_TO_DATE) { /* we will(have) create(d) a new UUID anyways... */ ex_to_string = "peer is unreachable, assumed to be dead"; mask.pdsk = D_MASK; val.pdsk = D_OUTDATED; } else { ex_to_string = "peer unreachable, doing nothing since disk != UpToDate"; } break; case 6: /* Peer is primary, voluntarily outdate myself. * This is useful when an unconnected R_SECONDARY is asked to * become R_PRIMARY, but finds the other peer being active. */ ex_to_string = "peer is active"; conn_warn(tconn, "Peer is primary, outdating myself.\n"); mask.disk = D_MASK; val.disk = D_OUTDATED; break; case 7: if (fp != FP_STONITH) conn_err(tconn, "fence-peer() = 7 && fencing != Stonith !!!\n"); ex_to_string = "peer was stonithed"; mask.pdsk = D_MASK; val.pdsk = D_OUTDATED; break; default: /* The script is broken ... */ conn_err(tconn, "fence-peer helper broken, returned %d\n", (r>>8)&0xff); return false; /* Eventually leave IO frozen */ } conn_info(tconn, "fence-peer helper returned %d (%s)\n", (r>>8) & 0xff, ex_to_string); out: /* Not using conn_request_state(tconn, mask, val, CS_VERBOSE); here, because we might were able to re-establish the connection in the meantime. */ spin_lock_irq(&tconn->req_lock); if (tconn->cstate < C_WF_REPORT_PARAMS) _conn_request_state(tconn, mask, val, CS_VERBOSE); spin_unlock_irq(&tconn->req_lock); return conn_highest_pdsk(tconn) <= D_OUTDATED; } static int _try_outdate_peer_async(void *data) { struct drbd_tconn *tconn = (struct drbd_tconn *)data; conn_try_outdate_peer(tconn); kref_put(&tconn->kref, &conn_destroy); return 0; } void conn_try_outdate_peer_async(struct drbd_tconn *tconn) { struct task_struct *opa; kref_get(&tconn->kref); opa = kthread_run(_try_outdate_peer_async, tconn, "drbd_async_h"); if (IS_ERR(opa)) { conn_err(tconn, "out of mem, failed to invoke fence-peer helper\n"); kref_put(&tconn->kref, &conn_destroy); } } enum drbd_state_rv drbd_set_role(struct drbd_conf *mdev, enum drbd_role new_role, int force) { const int max_tries = 4; enum drbd_state_rv rv = SS_UNKNOWN_ERROR; struct net_conf *nc; int try = 0; int forced = 0; union drbd_state mask, val; if (new_role == R_PRIMARY) request_ping(mdev->tconn); /* Detect a dead peer ASAP */ mutex_lock(mdev->state_mutex); mask.i = 0; mask.role = R_MASK; val.i = 0; val.role = new_role; while (try++ < max_tries) { rv = _drbd_request_state(mdev, mask, val, CS_WAIT_COMPLETE); /* in case we first succeeded to outdate, * but now suddenly could establish a connection */ if (rv == SS_CW_FAILED_BY_PEER && mask.pdsk != 0) { val.pdsk = 0; mask.pdsk = 0; continue; } if (rv == SS_NO_UP_TO_DATE_DISK && force && (mdev->state.disk < D_UP_TO_DATE && mdev->state.disk >= D_INCONSISTENT)) { mask.disk = D_MASK; val.disk = D_UP_TO_DATE; forced = 1; continue; } if (rv == SS_NO_UP_TO_DATE_DISK && mdev->state.disk == D_CONSISTENT && mask.pdsk == 0) { D_ASSERT(mdev->state.pdsk == D_UNKNOWN); if (conn_try_outdate_peer(mdev->tconn)) { val.disk = D_UP_TO_DATE; mask.disk = D_MASK; } continue; } if (rv == SS_NOTHING_TO_DO) goto out; if (rv == SS_PRIMARY_NOP && mask.pdsk == 0) { if (!conn_try_outdate_peer(mdev->tconn) && force) { dev_warn(DEV, "Forced into split brain situation!\n"); mask.pdsk = D_MASK; val.pdsk = D_OUTDATED; } continue; } if (rv == SS_TWO_PRIMARIES) { /* Maybe the peer is detected as dead very soon... retry at most once more in this case. */ int timeo; rcu_read_lock(); nc = rcu_dereference(mdev->tconn->net_conf); timeo = nc ? (nc->ping_timeo + 1) * HZ / 10 : 1; rcu_read_unlock(); schedule_timeout_interruptible(timeo); if (try < max_tries) try = max_tries - 1; continue; } if (rv < SS_SUCCESS) { rv = _drbd_request_state(mdev, mask, val, CS_VERBOSE + CS_WAIT_COMPLETE); if (rv < SS_SUCCESS) goto out; } break; } if (rv < SS_SUCCESS) goto out; if (forced) dev_warn(DEV, "Forced to consider local data as UpToDate!\n"); /* Wait until nothing is on the fly :) */ wait_event(mdev->misc_wait, atomic_read(&mdev->ap_pending_cnt) == 0); if (new_role == R_SECONDARY) { set_disk_ro(mdev->vdisk, true); if (get_ldev(mdev)) { mdev->ldev->md.uuid[UI_CURRENT] &= ~(u64)1; put_ldev(mdev); } } else { mutex_lock(&mdev->tconn->conf_update); nc = mdev->tconn->net_conf; if (nc) nc->want_lose = 0; /* without copy; single bit op is atomic */ mutex_unlock(&mdev->tconn->conf_update); set_disk_ro(mdev->vdisk, false); if (get_ldev(mdev)) { if (((mdev->state.conn < C_CONNECTED || mdev->state.pdsk <= D_FAILED) && mdev->ldev->md.uuid[UI_BITMAP] == 0) || forced) drbd_uuid_new_current(mdev); mdev->ldev->md.uuid[UI_CURRENT] |= (u64)1; put_ldev(mdev); } } /* writeout of activity log covered areas of the bitmap * to stable storage done in after state change already */ if (mdev->state.conn >= C_WF_REPORT_PARAMS) { /* if this was forced, we should consider sync */ if (forced) drbd_send_uuids(mdev); drbd_send_state(mdev); } drbd_md_sync(mdev); kobject_uevent(&disk_to_dev(mdev->vdisk)->kobj, KOBJ_CHANGE); out: mutex_unlock(mdev->state_mutex); return rv; } static const char *from_attrs_err_to_txt(int err) { return err == -ENOMSG ? "required attribute missing" : err == -EOPNOTSUPP ? "unknown mandatory attribute" : err == -EEXIST ? "can not change invariant setting" : "invalid attribute value"; } int drbd_adm_set_role(struct sk_buff *skb, struct genl_info *info) { struct set_role_parms parms; int err; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; memset(&parms, 0, sizeof(parms)); if (info->attrs[DRBD_NLA_SET_ROLE_PARMS]) { err = set_role_parms_from_attrs(&parms, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto out; } } if (info->genlhdr->cmd == DRBD_ADM_PRIMARY) retcode = drbd_set_role(adm_ctx.mdev, R_PRIMARY, parms.assume_uptodate); else retcode = drbd_set_role(adm_ctx.mdev, R_SECONDARY, 0); out: drbd_adm_finish(info, retcode); return 0; } /* initializes the md.*_offset members, so we are able to find * the on disk meta data */ static void drbd_md_set_sector_offsets(struct drbd_conf *mdev, struct drbd_backing_dev *bdev) { sector_t md_size_sect = 0; switch (bdev->dc.meta_dev_idx) { default: /* v07 style fixed size indexed meta data */ bdev->md.md_size_sect = MD_RESERVED_SECT; bdev->md.md_offset = drbd_md_ss__(mdev, bdev); bdev->md.al_offset = MD_AL_OFFSET; bdev->md.bm_offset = MD_BM_OFFSET; break; case DRBD_MD_INDEX_FLEX_EXT: /* just occupy the full device; unit: sectors */ bdev->md.md_size_sect = drbd_get_capacity(bdev->md_bdev); bdev->md.md_offset = 0; bdev->md.al_offset = MD_AL_OFFSET; bdev->md.bm_offset = MD_BM_OFFSET; break; case DRBD_MD_INDEX_INTERNAL: case DRBD_MD_INDEX_FLEX_INT: bdev->md.md_offset = drbd_md_ss__(mdev, bdev); /* al size is still fixed */ bdev->md.al_offset = -MD_AL_SECTORS; /* we need (slightly less than) ~ this much bitmap sectors: */ md_size_sect = drbd_get_capacity(bdev->backing_bdev); md_size_sect = ALIGN(md_size_sect, BM_SECT_PER_EXT); md_size_sect = BM_SECT_TO_EXT(md_size_sect); md_size_sect = ALIGN(md_size_sect, 8); /* plus the "drbd meta data super block", * and the activity log; */ md_size_sect += MD_BM_OFFSET; bdev->md.md_size_sect = md_size_sect; /* bitmap offset is adjusted by 'super' block size */ bdev->md.bm_offset = -md_size_sect + MD_AL_OFFSET; break; } } /* input size is expected to be in KB */ char *ppsize(char *buf, unsigned long long size) { /* Needs 9 bytes at max including trailing NUL: * -1ULL ==> "16384 EB" */ static char units[] = { 'K', 'M', 'G', 'T', 'P', 'E' }; int base = 0; while (size >= 10000 && base < sizeof(units)-1) { /* shift + round */ size = (size >> 10) + !!(size & (1<<9)); base++; } sprintf(buf, "%u %cB", (unsigned)size, units[base]); return buf; } /* there is still a theoretical deadlock when called from receiver * on an D_INCONSISTENT R_PRIMARY: * remote READ does inc_ap_bio, receiver would need to receive answer * packet from remote to dec_ap_bio again. * receiver receive_sizes(), comes here, * waits for ap_bio_cnt == 0. -> deadlock. * but this cannot happen, actually, because: * R_PRIMARY D_INCONSISTENT, and peer's disk is unreachable * (not connected, or bad/no disk on peer): * see drbd_fail_request_early, ap_bio_cnt is zero. * R_PRIMARY D_INCONSISTENT, and C_SYNC_TARGET: * peer may not initiate a resize. */ /* Note these are not to be confused with * drbd_adm_suspend_io/drbd_adm_resume_io, * which are (sub) state changes triggered by admin (drbdsetup), * and can be long lived. * This changes an mdev->flag, is triggered by drbd internals, * and should be short-lived. */ void drbd_suspend_io(struct drbd_conf *mdev) { set_bit(SUSPEND_IO, &mdev->flags); if (drbd_suspended(mdev)) return; wait_event(mdev->misc_wait, !atomic_read(&mdev->ap_bio_cnt)); } void drbd_resume_io(struct drbd_conf *mdev) { clear_bit(SUSPEND_IO, &mdev->flags); wake_up(&mdev->misc_wait); } /** * drbd_determine_dev_size() - Sets the right device size obeying all constraints * @mdev: DRBD device. * * Returns 0 on success, negative return values indicate errors. * You should call drbd_md_sync() after calling this function. */ enum determine_dev_size drbd_determine_dev_size(struct drbd_conf *mdev, enum dds_flags flags) __must_hold(local) { sector_t prev_first_sect, prev_size; /* previous meta location */ sector_t la_size; sector_t size; char ppb[10]; int md_moved, la_size_changed; enum determine_dev_size rv = unchanged; /* race: * application request passes inc_ap_bio, * but then cannot get an AL-reference. * this function later may wait on ap_bio_cnt == 0. -> deadlock. * * to avoid that: * Suspend IO right here. * still lock the act_log to not trigger ASSERTs there. */ drbd_suspend_io(mdev); /* no wait necessary anymore, actually we could assert that */ wait_event(mdev->al_wait, lc_try_lock(mdev->act_log)); prev_first_sect = drbd_md_first_sector(mdev->ldev); prev_size = mdev->ldev->md.md_size_sect; la_size = mdev->ldev->md.la_size_sect; /* TODO: should only be some assert here, not (re)init... */ drbd_md_set_sector_offsets(mdev, mdev->ldev); size = drbd_new_dev_size(mdev, mdev->ldev, flags & DDSF_FORCED); if (drbd_get_capacity(mdev->this_bdev) != size || drbd_bm_capacity(mdev) != size) { int err; err = drbd_bm_resize(mdev, size, !(flags & DDSF_NO_RESYNC)); if (unlikely(err)) { /* currently there is only one error: ENOMEM! */ size = drbd_bm_capacity(mdev)>>1; if (size == 0) { dev_err(DEV, "OUT OF MEMORY! " "Could not allocate bitmap!\n"); } else { dev_err(DEV, "BM resizing failed. " "Leaving size unchanged at size = %lu KB\n", (unsigned long)size); } rv = dev_size_error; } /* racy, see comments above. */ drbd_set_my_capacity(mdev, size); mdev->ldev->md.la_size_sect = size; dev_info(DEV, "size = %s (%llu KB)\n", ppsize(ppb, size>>1), (unsigned long long)size>>1); } if (rv == dev_size_error) goto out; la_size_changed = (la_size != mdev->ldev->md.la_size_sect); md_moved = prev_first_sect != drbd_md_first_sector(mdev->ldev) || prev_size != mdev->ldev->md.md_size_sect; if (la_size_changed || md_moved) { int err; drbd_al_shrink(mdev); /* All extents inactive. */ dev_info(DEV, "Writing the whole bitmap, %s\n", la_size_changed && md_moved ? "size changed and md moved" : la_size_changed ? "size changed" : "md moved"); /* next line implicitly does drbd_suspend_io()+drbd_resume_io() */ err = drbd_bitmap_io(mdev, &drbd_bm_write, "size changed", BM_LOCKED_MASK); if (err) { rv = dev_size_error; goto out; } drbd_md_mark_dirty(mdev); } if (size > la_size) rv = grew; if (size < la_size) rv = shrunk; out: lc_unlock(mdev->act_log); wake_up(&mdev->al_wait); drbd_resume_io(mdev); return rv; } sector_t drbd_new_dev_size(struct drbd_conf *mdev, struct drbd_backing_dev *bdev, int assume_peer_has_space) { sector_t p_size = mdev->p_size; /* partner's disk size. */ sector_t la_size = bdev->md.la_size_sect; /* last agreed size. */ sector_t m_size; /* my size */ sector_t u_size = bdev->dc.disk_size; /* size requested by user. */ sector_t size = 0; m_size = drbd_get_max_capacity(bdev); if (mdev->state.conn < C_CONNECTED && assume_peer_has_space) { dev_warn(DEV, "Resize while not connected was forced by the user!\n"); p_size = m_size; } if (p_size && m_size) { size = min_t(sector_t, p_size, m_size); } else { if (la_size) { size = la_size; if (m_size && m_size < size) size = m_size; if (p_size && p_size < size) size = p_size; } else { if (m_size) size = m_size; if (p_size) size = p_size; } } if (size == 0) dev_err(DEV, "Both nodes diskless!\n"); if (u_size) { if (u_size > size) dev_err(DEV, "Requested disk size is too big (%lu > %lu)\n", (unsigned long)u_size>>1, (unsigned long)size>>1); else size = u_size; } return size; } /** * drbd_check_al_size() - Ensures that the AL is of the right size * @mdev: DRBD device. * * Returns -EBUSY if current al lru is still used, -ENOMEM when allocation * failed, and 0 on success. You should call drbd_md_sync() after you called * this function. */ static int drbd_check_al_size(struct drbd_conf *mdev, struct disk_conf *dc) { struct lru_cache *n, *t; struct lc_element *e; unsigned int in_use; int i; if (!expect(dc->al_extents >= DRBD_AL_EXTENTS_MIN)) dc->al_extents = DRBD_AL_EXTENTS_MIN; if (mdev->act_log && mdev->act_log->nr_elements == dc->al_extents) return 0; in_use = 0; t = mdev->act_log; n = lc_create("act_log", drbd_al_ext_cache, AL_UPDATES_PER_TRANSACTION, dc->al_extents, sizeof(struct lc_element), 0); if (n == NULL) { dev_err(DEV, "Cannot allocate act_log lru!\n"); return -ENOMEM; } spin_lock_irq(&mdev->al_lock); if (t) { for (i = 0; i < t->nr_elements; i++) { e = lc_element_by_index(t, i); if (e->refcnt) dev_err(DEV, "refcnt(%d)==%d\n", e->lc_number, e->refcnt); in_use += e->refcnt; } } if (!in_use) mdev->act_log = n; spin_unlock_irq(&mdev->al_lock); if (in_use) { dev_err(DEV, "Activity log still in use!\n"); lc_destroy(n); return -EBUSY; } else { if (t) lc_destroy(t); } drbd_md_mark_dirty(mdev); /* we changed mdev->act_log->nr_elemens */ return 0; } static void drbd_setup_queue_param(struct drbd_conf *mdev, unsigned int max_bio_size) { struct request_queue * const q = mdev->rq_queue; int max_hw_sectors = max_bio_size >> 9; int max_segments = 0; if (get_ldev_if_state(mdev, D_ATTACHING)) { struct request_queue * const b = mdev->ldev->backing_bdev->bd_disk->queue; max_hw_sectors = min(queue_max_hw_sectors(b), max_bio_size >> 9); max_segments = mdev->ldev->dc.max_bio_bvecs; put_ldev(mdev); } blk_queue_logical_block_size(q, 512); blk_queue_max_hw_sectors(q, max_hw_sectors); /* This is the workaround for "bio would need to, but cannot, be split" */ blk_queue_max_segments(q, max_segments ? max_segments : BLK_MAX_SEGMENTS); blk_queue_segment_boundary(q, PAGE_CACHE_SIZE-1); if (get_ldev_if_state(mdev, D_ATTACHING)) { struct request_queue * const b = mdev->ldev->backing_bdev->bd_disk->queue; blk_queue_stack_limits(q, b); if (q->backing_dev_info.ra_pages != b->backing_dev_info.ra_pages) { dev_info(DEV, "Adjusting my ra_pages to backing device's (%lu -> %lu)\n", q->backing_dev_info.ra_pages, b->backing_dev_info.ra_pages); q->backing_dev_info.ra_pages = b->backing_dev_info.ra_pages; } put_ldev(mdev); } } void drbd_reconsider_max_bio_size(struct drbd_conf *mdev) { int now, new, local, peer; now = queue_max_hw_sectors(mdev->rq_queue) << 9; local = mdev->local_max_bio_size; /* Eventually last known value, from volatile memory */ peer = mdev->peer_max_bio_size; /* Eventually last known value, from meta data */ if (get_ldev_if_state(mdev, D_ATTACHING)) { local = queue_max_hw_sectors(mdev->ldev->backing_bdev->bd_disk->queue) << 9; mdev->local_max_bio_size = local; put_ldev(mdev); } /* We may ignore peer limits if the peer is modern enough. Because new from 8.3.8 onwards the peer can use multiple BIOs for a single peer_request */ if (mdev->state.conn >= C_CONNECTED) { if (mdev->tconn->agreed_pro_version < 94) peer = mdev->peer_max_bio_size; else if (mdev->tconn->agreed_pro_version == 94) peer = DRBD_MAX_SIZE_H80_PACKET; else /* drbd 8.3.8 onwards */ peer = DRBD_MAX_BIO_SIZE; } new = min_t(int, local, peer); if (mdev->state.role == R_PRIMARY && new < now) dev_err(DEV, "ASSERT FAILED new < now; (%d < %d)\n", new, now); if (new != now) dev_info(DEV, "max BIO size = %u\n", new); drbd_setup_queue_param(mdev, new); } /* Starts the worker thread */ static void conn_reconfig_start(struct drbd_tconn *tconn) { drbd_thread_start(&tconn->worker); conn_flush_workqueue(tconn); } /* if still unconfigured, stops worker again. */ static void conn_reconfig_done(struct drbd_tconn *tconn) { bool stop_threads; spin_lock_irq(&tconn->req_lock); stop_threads = conn_all_vols_unconf(tconn); spin_unlock_irq(&tconn->req_lock); if (stop_threads) { /* asender is implicitly stopped by receiver * in drbd_disconnect() */ drbd_thread_stop(&tconn->receiver); drbd_thread_stop(&tconn->worker); } } /* Make sure IO is suspended before calling this function(). */ static void drbd_suspend_al(struct drbd_conf *mdev) { int s = 0; if (!lc_try_lock(mdev->act_log)) { dev_warn(DEV, "Failed to lock al in drbd_suspend_al()\n"); return; } drbd_al_shrink(mdev); spin_lock_irq(&mdev->tconn->req_lock); if (mdev->state.conn < C_CONNECTED) s = !test_and_set_bit(AL_SUSPENDED, &mdev->flags); spin_unlock_irq(&mdev->tconn->req_lock); lc_unlock(mdev->act_log); if (s) dev_info(DEV, "Suspended AL updates\n"); } static bool should_set_defaults(struct genl_info *info) { unsigned flags = ((struct drbd_genlmsghdr*)info->userhdr)->flags; return 0 != (flags & DRBD_GENL_F_SET_DEFAULTS); } int drbd_adm_disk_opts(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; struct drbd_conf *mdev; struct disk_conf *new_disk_conf; int err, fifo_size; int *rs_plan_s = NULL; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; mdev = adm_ctx.mdev; /* we also need a disk * to change the options on */ if (!get_ldev(mdev)) { retcode = ERR_NO_DISK; goto out; } /* FIXME freeze IO, cluster wide. * * We should make sure no-one uses * some half-updated struct when we * assign it later. */ new_disk_conf = kmalloc(sizeof(*new_disk_conf), GFP_KERNEL); if (!new_disk_conf) { retcode = ERR_NOMEM; goto fail; } memcpy(new_disk_conf, &mdev->ldev->dc, sizeof(*new_disk_conf)); if (should_set_defaults(info)) set_disk_conf_defaults(new_disk_conf); err = disk_conf_from_attrs_for_change(new_disk_conf, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); } if (!expect(new_disk_conf->resync_rate >= 1)) new_disk_conf->resync_rate = 1; /* clip to allowed range */ if (!expect(new_disk_conf->al_extents >= DRBD_AL_EXTENTS_MIN)) new_disk_conf->al_extents = DRBD_AL_EXTENTS_MIN; if (!expect(new_disk_conf->al_extents <= DRBD_AL_EXTENTS_MAX)) new_disk_conf->al_extents = DRBD_AL_EXTENTS_MAX; /* most sanity checks done, try to assign the new sync-after * dependency. need to hold the global lock in there, * to avoid a race in the dependency loop check. */ retcode = drbd_alter_sa(mdev, new_disk_conf->resync_after); if (retcode != NO_ERROR) goto fail; fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; if (fifo_size != mdev->rs_plan_s.size && fifo_size > 0) { rs_plan_s = kzalloc(sizeof(int) * fifo_size, GFP_KERNEL); if (!rs_plan_s) { dev_err(DEV, "kmalloc of fifo_buffer failed"); retcode = ERR_NOMEM; goto fail; } } if (fifo_size != mdev->rs_plan_s.size) { kfree(mdev->rs_plan_s.values); mdev->rs_plan_s.values = rs_plan_s; mdev->rs_plan_s.size = fifo_size; mdev->rs_planed = 0; rs_plan_s = NULL; } wait_event(mdev->al_wait, lc_try_lock(mdev->act_log)); drbd_al_shrink(mdev); err = drbd_check_al_size(mdev, new_disk_conf); lc_unlock(mdev->act_log); wake_up(&mdev->al_wait); if (err) { retcode = ERR_NOMEM; goto fail; } /* FIXME * To avoid someone looking at a half-updated struct, we probably * should have a rw-semaphor on net_conf and disk_conf. */ mdev->ldev->dc = *new_disk_conf; drbd_md_sync(mdev); if (mdev->state.conn >= C_CONNECTED) drbd_send_sync_param(mdev); fail: put_ldev(mdev); kfree(new_disk_conf); kfree(rs_plan_s); out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_attach(struct sk_buff *skb, struct genl_info *info) { struct drbd_conf *mdev; int err; enum drbd_ret_code retcode; enum determine_dev_size dd; sector_t max_possible_sectors; sector_t min_md_device_sectors; struct drbd_backing_dev *nbc = NULL; /* new_backing_conf */ struct block_device *bdev; struct lru_cache *resync_lru = NULL; union drbd_state ns, os; enum drbd_state_rv rv; struct net_conf *nc; int cp_discovered = 0; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto finish; mdev = adm_ctx.mdev; conn_reconfig_start(mdev->tconn); /* if you want to reconfigure, please tear down first */ if (mdev->state.disk > D_DISKLESS) { retcode = ERR_DISK_CONFIGURED; goto fail; } /* It may just now have detached because of IO error. Make sure * drbd_ldev_destroy is done already, we may end up here very fast, * e.g. if someone calls attach from the on-io-error handler, * to realize a "hot spare" feature (not that I'd recommend that) */ wait_event(mdev->misc_wait, !atomic_read(&mdev->local_cnt)); /* allocation not in the IO path, drbdsetup context */ nbc = kzalloc(sizeof(struct drbd_backing_dev), GFP_KERNEL); if (!nbc) { retcode = ERR_NOMEM; goto fail; } set_disk_conf_defaults(&nbc->dc); err = disk_conf_from_attrs(&nbc->dc, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto fail; } if ((int)nbc->dc.meta_dev_idx < DRBD_MD_INDEX_FLEX_INT) { retcode = ERR_MD_IDX_INVALID; goto fail; } rcu_read_lock(); nc = rcu_dereference(mdev->tconn->net_conf); if (nc) { if (nbc->dc.fencing == FP_STONITH && nc->wire_protocol == DRBD_PROT_A) { rcu_read_unlock(); retcode = ERR_STONITH_AND_PROT_A; goto fail; } } rcu_read_unlock(); bdev = blkdev_get_by_path(nbc->dc.backing_dev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, mdev); if (IS_ERR(bdev)) { dev_err(DEV, "open(\"%s\") failed with %ld\n", nbc->dc.backing_dev, PTR_ERR(bdev)); retcode = ERR_OPEN_DISK; goto fail; } nbc->backing_bdev = bdev; /* * meta_dev_idx >= 0: external fixed size, possibly multiple * drbd sharing one meta device. TODO in that case, paranoia * check that [md_bdev, meta_dev_idx] is not yet used by some * other drbd minor! (if you use drbd.conf + drbdadm, that * should check it for you already; but if you don't, or * someone fooled it, we need to double check here) */ bdev = blkdev_get_by_path(nbc->dc.meta_dev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, ((int)nbc->dc.meta_dev_idx < 0) ? (void *)mdev : (void *)drbd_m_holder); if (IS_ERR(bdev)) { dev_err(DEV, "open(\"%s\") failed with %ld\n", nbc->dc.meta_dev, PTR_ERR(bdev)); retcode = ERR_OPEN_MD_DISK; goto fail; } nbc->md_bdev = bdev; if ((nbc->backing_bdev == nbc->md_bdev) != (nbc->dc.meta_dev_idx == DRBD_MD_INDEX_INTERNAL || nbc->dc.meta_dev_idx == DRBD_MD_INDEX_FLEX_INT)) { retcode = ERR_MD_IDX_INVALID; goto fail; } resync_lru = lc_create("resync", drbd_bm_ext_cache, 1, 61, sizeof(struct bm_extent), offsetof(struct bm_extent, lce)); if (!resync_lru) { retcode = ERR_NOMEM; goto fail; } /* RT - for drbd_get_max_capacity() DRBD_MD_INDEX_FLEX_INT */ drbd_md_set_sector_offsets(mdev, nbc); if (drbd_get_max_capacity(nbc) < nbc->dc.disk_size) { dev_err(DEV, "max capacity %llu smaller than disk size %llu\n", (unsigned long long) drbd_get_max_capacity(nbc), (unsigned long long) nbc->dc.disk_size); retcode = ERR_DISK_TO_SMALL; goto fail; } if ((int)nbc->dc.meta_dev_idx < 0) { max_possible_sectors = DRBD_MAX_SECTORS_FLEX; /* at least one MB, otherwise it does not make sense */ min_md_device_sectors = (2<<10); } else { max_possible_sectors = DRBD_MAX_SECTORS; min_md_device_sectors = MD_RESERVED_SECT * (nbc->dc.meta_dev_idx + 1); } if (drbd_get_capacity(nbc->md_bdev) < min_md_device_sectors) { retcode = ERR_MD_DISK_TO_SMALL; dev_warn(DEV, "refusing attach: md-device too small, " "at least %llu sectors needed for this meta-disk type\n", (unsigned long long) min_md_device_sectors); goto fail; } /* Make sure the new disk is big enough * (we may currently be R_PRIMARY with no local disk...) */ if (drbd_get_max_capacity(nbc) < drbd_get_capacity(mdev->this_bdev)) { retcode = ERR_DISK_TO_SMALL; goto fail; } nbc->known_size = drbd_get_capacity(nbc->backing_bdev); if (nbc->known_size > max_possible_sectors) { dev_warn(DEV, "==> truncating very big lower level device " "to currently maximum possible %llu sectors <==\n", (unsigned long long) max_possible_sectors); if ((int)nbc->dc.meta_dev_idx >= 0) dev_warn(DEV, "==>> using internal or flexible " "meta data may help <<==\n"); } drbd_suspend_io(mdev); /* also wait for the last barrier ack. */ wait_event(mdev->misc_wait, !atomic_read(&mdev->ap_pending_cnt) || drbd_suspended(mdev)); /* and for any other previously queued work */ drbd_flush_workqueue(mdev); rv = _drbd_request_state(mdev, NS(disk, D_ATTACHING), CS_VERBOSE); retcode = rv; /* FIXME: Type mismatch. */ drbd_resume_io(mdev); if (rv < SS_SUCCESS) goto fail; if (!get_ldev_if_state(mdev, D_ATTACHING)) goto force_diskless; drbd_md_set_sector_offsets(mdev, nbc); if (!mdev->bitmap) { if (drbd_bm_init(mdev)) { retcode = ERR_NOMEM; goto force_diskless_dec; } } retcode = drbd_md_read(mdev, nbc); if (retcode != NO_ERROR) goto force_diskless_dec; if (mdev->state.conn < C_CONNECTED && mdev->state.role == R_PRIMARY && (mdev->ed_uuid & ~((u64)1)) != (nbc->md.uuid[UI_CURRENT] & ~((u64)1))) { dev_err(DEV, "Can only attach to data with current UUID=%016llX\n", (unsigned long long)mdev->ed_uuid); retcode = ERR_DATA_NOT_CURRENT; goto force_diskless_dec; } /* Since we are diskless, fix the activity log first... */ if (drbd_check_al_size(mdev, &nbc->dc)) { retcode = ERR_NOMEM; goto force_diskless_dec; } /* Prevent shrinking of consistent devices ! */ if (drbd_md_test_flag(nbc, MDF_CONSISTENT) && drbd_new_dev_size(mdev, nbc, 0) < nbc->md.la_size_sect) { dev_warn(DEV, "refusing to truncate a consistent device\n"); retcode = ERR_DISK_TO_SMALL; goto force_diskless_dec; } if (!drbd_al_read_log(mdev, nbc)) { retcode = ERR_IO_MD_DISK; goto force_diskless_dec; } /* Reset the "barriers don't work" bits here, then force meta data to * be written, to ensure we determine if barriers are supported. */ if (nbc->dc.no_md_flush) set_bit(MD_NO_FUA, &mdev->flags); else clear_bit(MD_NO_FUA, &mdev->flags); /* Point of no return reached. * Devices and memory are no longer released by error cleanup below. * now mdev takes over responsibility, and the state engine should * clean it up somewhere. */ D_ASSERT(mdev->ldev == NULL); mdev->ldev = nbc; mdev->resync = resync_lru; nbc = NULL; resync_lru = NULL; mdev->write_ordering = WO_bdev_flush; drbd_bump_write_ordering(mdev, WO_bdev_flush); if (drbd_md_test_flag(mdev->ldev, MDF_CRASHED_PRIMARY)) set_bit(CRASHED_PRIMARY, &mdev->flags); else clear_bit(CRASHED_PRIMARY, &mdev->flags); if (drbd_md_test_flag(mdev->ldev, MDF_PRIMARY_IND) && !(mdev->state.role == R_PRIMARY && mdev->tconn->susp_nod)) { set_bit(CRASHED_PRIMARY, &mdev->flags); cp_discovered = 1; } mdev->send_cnt = 0; mdev->recv_cnt = 0; mdev->read_cnt = 0; mdev->writ_cnt = 0; drbd_reconsider_max_bio_size(mdev); /* If I am currently not R_PRIMARY, * but meta data primary indicator is set, * I just now recover from a hard crash, * and have been R_PRIMARY before that crash. * * Now, if I had no connection before that crash * (have been degraded R_PRIMARY), chances are that * I won't find my peer now either. * * In that case, and _only_ in that case, * we use the degr-wfc-timeout instead of the default, * so we can automatically recover from a crash of a * degraded but active "cluster" after a certain timeout. */ clear_bit(USE_DEGR_WFC_T, &mdev->flags); if (mdev->state.role != R_PRIMARY && drbd_md_test_flag(mdev->ldev, MDF_PRIMARY_IND) && !drbd_md_test_flag(mdev->ldev, MDF_CONNECTED_IND)) set_bit(USE_DEGR_WFC_T, &mdev->flags); dd = drbd_determine_dev_size(mdev, 0); if (dd == dev_size_error) { retcode = ERR_NOMEM_BITMAP; goto force_diskless_dec; } else if (dd == grew) set_bit(RESYNC_AFTER_NEG, &mdev->flags); if (drbd_md_test_flag(mdev->ldev, MDF_FULL_SYNC)) { dev_info(DEV, "Assuming that all blocks are out of sync " "(aka FullSync)\n"); if (drbd_bitmap_io(mdev, &drbd_bmio_set_n_write, "set_n_write from attaching", BM_LOCKED_MASK)) { retcode = ERR_IO_MD_DISK; goto force_diskless_dec; } } else { if (drbd_bitmap_io(mdev, &drbd_bm_read, "read from attaching", BM_LOCKED_MASK)) { retcode = ERR_IO_MD_DISK; goto force_diskless_dec; } } if (cp_discovered) { drbd_al_apply_to_bm(mdev); if (drbd_bitmap_io(mdev, &drbd_bm_write, "crashed primary apply AL", BM_LOCKED_MASK)) { retcode = ERR_IO_MD_DISK; goto force_diskless_dec; } } if (_drbd_bm_total_weight(mdev) == drbd_bm_bits(mdev)) drbd_suspend_al(mdev); /* IO is still suspended here... */ spin_lock_irq(&mdev->tconn->req_lock); os = drbd_read_state(mdev); ns = os; /* If MDF_CONSISTENT is not set go into inconsistent state, otherwise investigate MDF_WasUpToDate... If MDF_WAS_UP_TO_DATE is not set go into D_OUTDATED disk state, otherwise into D_CONSISTENT state. */ if (drbd_md_test_flag(mdev->ldev, MDF_CONSISTENT)) { if (drbd_md_test_flag(mdev->ldev, MDF_WAS_UP_TO_DATE)) ns.disk = D_CONSISTENT; else ns.disk = D_OUTDATED; } else { ns.disk = D_INCONSISTENT; } if (drbd_md_test_flag(mdev->ldev, MDF_PEER_OUT_DATED)) ns.pdsk = D_OUTDATED; if ( ns.disk == D_CONSISTENT && (ns.pdsk == D_OUTDATED || mdev->ldev->dc.fencing == FP_DONT_CARE)) ns.disk = D_UP_TO_DATE; /* All tests on MDF_PRIMARY_IND, MDF_CONNECTED_IND, MDF_CONSISTENT and MDF_WAS_UP_TO_DATE must happen before this point, because drbd_request_state() modifies these flags. */ /* In case we are C_CONNECTED postpone any decision on the new disk state after the negotiation phase. */ if (mdev->state.conn == C_CONNECTED) { mdev->new_state_tmp.i = ns.i; ns.i = os.i; ns.disk = D_NEGOTIATING; /* We expect to receive up-to-date UUIDs soon. To avoid a race in receive_state, free p_uuid while holding req_lock. I.e. atomic with the state change */ kfree(mdev->p_uuid); mdev->p_uuid = NULL; } rv = _drbd_set_state(mdev, ns, CS_VERBOSE, NULL); spin_unlock_irq(&mdev->tconn->req_lock); if (rv < SS_SUCCESS) goto force_diskless_dec; if (mdev->state.role == R_PRIMARY) mdev->ldev->md.uuid[UI_CURRENT] |= (u64)1; else mdev->ldev->md.uuid[UI_CURRENT] &= ~(u64)1; drbd_md_mark_dirty(mdev); drbd_md_sync(mdev); kobject_uevent(&disk_to_dev(mdev->vdisk)->kobj, KOBJ_CHANGE); put_ldev(mdev); conn_reconfig_done(mdev->tconn); drbd_adm_finish(info, retcode); return 0; force_diskless_dec: put_ldev(mdev); force_diskless: drbd_force_state(mdev, NS(disk, D_FAILED)); drbd_md_sync(mdev); fail: conn_reconfig_done(mdev->tconn); if (nbc) { if (nbc->backing_bdev) blkdev_put(nbc->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); if (nbc->md_bdev) blkdev_put(nbc->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); kfree(nbc); } lc_destroy(resync_lru); finish: drbd_adm_finish(info, retcode); return 0; } static int adm_detach(struct drbd_conf *mdev) { enum drbd_state_rv retcode; int ret; drbd_suspend_io(mdev); /* so no-one is stuck in drbd_al_begin_io */ retcode = drbd_request_state(mdev, NS(disk, D_FAILED)); /* D_FAILED will transition to DISKLESS. */ ret = wait_event_interruptible(mdev->misc_wait, mdev->state.disk != D_FAILED); drbd_resume_io(mdev); if ((int)retcode == (int)SS_IS_DISKLESS) retcode = SS_NOTHING_TO_DO; if (ret) retcode = ERR_INTR; return retcode; } /* Detaching the disk is a process in multiple stages. First we need to lock * out application IO, in-flight IO, IO stuck in drbd_al_begin_io. * Then we transition to D_DISKLESS, and wait for put_ldev() to return all * internal references as well. * Only then we have finally detached. */ int drbd_adm_detach(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; retcode = adm_detach(adm_ctx.mdev); out: drbd_adm_finish(info, retcode); return 0; } static bool conn_resync_running(struct drbd_tconn *tconn) { struct drbd_conf *mdev; bool rv = false; int vnr; rcu_read_lock(); idr_for_each_entry(&tconn->volumes, mdev, vnr) { if (mdev->state.conn == C_SYNC_SOURCE || mdev->state.conn == C_SYNC_TARGET || mdev->state.conn == C_PAUSED_SYNC_S || mdev->state.conn == C_PAUSED_SYNC_T) { rv = true; break; } } rcu_read_unlock(); return rv; } static bool conn_ov_running(struct drbd_tconn *tconn) { struct drbd_conf *mdev; bool rv = false; int vnr; rcu_read_lock(); idr_for_each_entry(&tconn->volumes, mdev, vnr) { if (mdev->state.conn == C_VERIFY_S || mdev->state.conn == C_VERIFY_T) { rv = true; break; } } rcu_read_unlock(); return rv; } static enum drbd_ret_code _check_net_options(struct drbd_tconn *tconn, struct net_conf *old_conf, struct net_conf *new_conf) { struct drbd_conf *mdev; int i; if (old_conf && tconn->agreed_pro_version < 100 && tconn->cstate == C_WF_REPORT_PARAMS && new_conf->wire_protocol != old_conf->wire_protocol) return ERR_NEED_APV_100; if (new_conf->two_primaries && (new_conf->wire_protocol != DRBD_PROT_C)) return ERR_NOT_PROTO_C; idr_for_each_entry(&tconn->volumes, mdev, i) { if (get_ldev(mdev)) { enum drbd_fencing_p fp = mdev->ldev->dc.fencing; put_ldev(mdev); if (new_conf->wire_protocol == DRBD_PROT_A && fp == FP_STONITH) return ERR_STONITH_AND_PROT_A; } if (mdev->state.role == R_PRIMARY && new_conf->want_lose) return ERR_DISCARD; } if (new_conf->on_congestion != OC_BLOCK && new_conf->wire_protocol != DRBD_PROT_A) return ERR_CONG_NOT_PROTO_A; return NO_ERROR; } static enum drbd_ret_code check_net_options(struct drbd_tconn *tconn, struct net_conf *new_conf) { static enum drbd_ret_code rv; struct drbd_conf *mdev; int i; rcu_read_lock(); rv = _check_net_options(tconn, rcu_dereference(tconn->net_conf), new_conf); rcu_read_unlock(); /* tconn->volumes protected by genl_lock() here */ idr_for_each_entry(&tconn->volumes, mdev, i) { if (!mdev->bitmap) { if(drbd_bm_init(mdev)) return ERR_NOMEM; } } return rv; } struct crypto { struct crypto_hash *verify_tfm; struct crypto_hash *csums_tfm; struct crypto_hash *cram_hmac_tfm; struct crypto_hash *integrity_tfm; void *int_dig_in; void *int_dig_vv; }; static int alloc_hash(struct crypto_hash **tfm, char *tfm_name, int err_alg) { if (!tfm_name[0]) return NO_ERROR; *tfm = crypto_alloc_hash(tfm_name, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(*tfm)) { *tfm = NULL; return err_alg; } return NO_ERROR; } static enum drbd_ret_code alloc_crypto(struct crypto *crypto, struct net_conf *new_conf) { char hmac_name[CRYPTO_MAX_ALG_NAME]; enum drbd_ret_code rv; int hash_size; rv = alloc_hash(&crypto->csums_tfm, new_conf->csums_alg, ERR_CSUMS_ALG); if (rv != NO_ERROR) return rv; rv = alloc_hash(&crypto->verify_tfm, new_conf->verify_alg, ERR_VERIFY_ALG); if (rv != NO_ERROR) return rv; rv = alloc_hash(&crypto->integrity_tfm, new_conf->integrity_alg, ERR_INTEGRITY_ALG); if (rv != NO_ERROR) return rv; if (new_conf->cram_hmac_alg[0] != 0) { snprintf(hmac_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", new_conf->cram_hmac_alg); rv = alloc_hash(&crypto->cram_hmac_tfm, hmac_name, ERR_AUTH_ALG); } if (crypto->integrity_tfm) { hash_size = crypto_hash_digestsize(crypto->integrity_tfm); crypto->int_dig_in = kmalloc(hash_size, GFP_KERNEL); if (!crypto->int_dig_in) return ERR_NOMEM; crypto->int_dig_vv = kmalloc(hash_size, GFP_KERNEL); if (!crypto->int_dig_vv) return ERR_NOMEM; } return rv; } static void free_crypto(struct crypto *crypto) { kfree(crypto->int_dig_in); kfree(crypto->int_dig_vv); crypto_free_hash(crypto->cram_hmac_tfm); crypto_free_hash(crypto->integrity_tfm); crypto_free_hash(crypto->csums_tfm); crypto_free_hash(crypto->verify_tfm); } int drbd_adm_net_opts(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; struct drbd_tconn *tconn; struct net_conf *old_conf, *new_conf = NULL; int err; int ovr; /* online verify running */ int rsr; /* re-sync running */ struct crypto crypto = { }; bool change_integrity_alg; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_CONN); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; tconn = adm_ctx.tconn; new_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); if (!new_conf) { retcode = ERR_NOMEM; goto out; } conn_reconfig_start(tconn); mutex_lock(&tconn->data.mutex); mutex_lock(&tconn->conf_update); old_conf = tconn->net_conf; if (!old_conf) { drbd_msg_put_info("net conf missing, try connect"); retcode = ERR_INVALID_REQUEST; goto fail; } *new_conf = *old_conf; if (should_set_defaults(info)) set_net_conf_defaults(new_conf); err = net_conf_from_attrs_for_change(new_conf, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto fail; } retcode = check_net_options(tconn, new_conf); if (retcode != NO_ERROR) goto fail; /* re-sync running */ rsr = conn_resync_running(tconn); if (rsr && strcmp(new_conf->csums_alg, old_conf->csums_alg)) { retcode = ERR_CSUMS_RESYNC_RUNNING; goto fail; } /* online verify running */ ovr = conn_ov_running(tconn); if (ovr && strcmp(new_conf->verify_alg, old_conf->verify_alg)) { retcode = ERR_VERIFY_RUNNING; goto fail; } change_integrity_alg = strcmp(old_conf->integrity_alg, new_conf->integrity_alg); retcode = alloc_crypto(&crypto, new_conf); if (retcode != NO_ERROR) goto fail; rcu_assign_pointer(tconn->net_conf, new_conf); if (!rsr) { crypto_free_hash(tconn->csums_tfm); tconn->csums_tfm = crypto.csums_tfm; crypto.csums_tfm = NULL; } if (!ovr) { crypto_free_hash(tconn->verify_tfm); tconn->verify_tfm = crypto.verify_tfm; crypto.verify_tfm = NULL; } kfree(tconn->int_dig_in); tconn->int_dig_in = crypto.int_dig_in; kfree(tconn->int_dig_vv); tconn->int_dig_vv = crypto.int_dig_vv; crypto_free_hash(tconn->integrity_tfm); tconn->integrity_tfm = crypto.integrity_tfm; if (change_integrity_alg) { /* Do this without trying to take tconn->data.mutex again. */ if (__drbd_send_protocol(tconn)) goto fail; } /* FIXME Changing cram_hmac while the connection is established is useless */ crypto_free_hash(tconn->cram_hmac_tfm); tconn->cram_hmac_tfm = crypto.cram_hmac_tfm; mutex_unlock(&tconn->conf_update); mutex_unlock(&tconn->data.mutex); synchronize_rcu(); kfree(old_conf); if (tconn->cstate >= C_WF_REPORT_PARAMS) drbd_send_sync_param(minor_to_mdev(conn_lowest_minor(tconn))); goto done; fail: mutex_unlock(&tconn->conf_update); mutex_unlock(&tconn->data.mutex); free_crypto(&crypto); kfree(new_conf); done: conn_reconfig_done(tconn); out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_connect(struct sk_buff *skb, struct genl_info *info) { struct drbd_conf *mdev; struct net_conf *old_conf, *new_conf = NULL; struct crypto crypto = { }; struct drbd_tconn *oconn; struct drbd_tconn *tconn; struct sockaddr *new_my_addr, *new_peer_addr, *taken_addr; enum drbd_ret_code retcode; int i; int err; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_CONN); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; tconn = adm_ctx.tconn; conn_reconfig_start(tconn); if (tconn->cstate > C_STANDALONE) { retcode = ERR_NET_CONFIGURED; goto fail; } /* allocation not in the IO path, cqueue thread context */ new_conf = kzalloc(sizeof(*new_conf), GFP_KERNEL); if (!new_conf) { retcode = ERR_NOMEM; goto fail; } set_net_conf_defaults(new_conf); err = net_conf_from_attrs(new_conf, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto fail; } retcode = check_net_options(tconn, new_conf); if (retcode != NO_ERROR) goto fail; retcode = NO_ERROR; new_my_addr = (struct sockaddr *)&new_conf->my_addr; new_peer_addr = (struct sockaddr *)&new_conf->peer_addr; /* No need to take drbd_cfg_rwsem here. All reconfiguration is * strictly serialized on genl_lock(). We are protected against * concurrent reconfiguration/addition/deletion */ list_for_each_entry(oconn, &drbd_tconns, all_tconn) { struct net_conf *nc; if (oconn == tconn) continue; rcu_read_lock(); nc = rcu_dereference(oconn->net_conf); if (nc) { taken_addr = (struct sockaddr *)&nc->my_addr; if (new_conf->my_addr_len == nc->my_addr_len && !memcmp(new_my_addr, taken_addr, new_conf->my_addr_len)) retcode = ERR_LOCAL_ADDR; taken_addr = (struct sockaddr *)&nc->peer_addr; if (new_conf->peer_addr_len == nc->peer_addr_len && !memcmp(new_peer_addr, taken_addr, new_conf->peer_addr_len)) retcode = ERR_PEER_ADDR; } rcu_read_unlock(); if (retcode != NO_ERROR) goto fail; } retcode = alloc_crypto(&crypto, new_conf); if (retcode != NO_ERROR) goto fail; ((char *)new_conf->shared_secret)[SHARED_SECRET_MAX-1] = 0; conn_flush_workqueue(tconn); mutex_lock(&tconn->conf_update); old_conf = tconn->net_conf; if (old_conf) { retcode = ERR_NET_CONFIGURED; mutex_unlock(&tconn->conf_update); goto fail; } rcu_assign_pointer(tconn->net_conf, new_conf); conn_free_crypto(tconn); tconn->int_dig_in = crypto.int_dig_in; tconn->int_dig_vv = crypto.int_dig_vv; tconn->cram_hmac_tfm = crypto.cram_hmac_tfm; tconn->integrity_tfm = crypto.integrity_tfm; tconn->csums_tfm = crypto.csums_tfm; tconn->verify_tfm = crypto.verify_tfm; mutex_unlock(&tconn->conf_update); rcu_read_lock(); idr_for_each_entry(&tconn->volumes, mdev, i) { mdev->send_cnt = 0; mdev->recv_cnt = 0; } rcu_read_unlock(); retcode = conn_request_state(tconn, NS(conn, C_UNCONNECTED), CS_VERBOSE); conn_reconfig_done(tconn); drbd_adm_finish(info, retcode); return 0; fail: free_crypto(&crypto); kfree(new_conf); conn_reconfig_done(tconn); out: drbd_adm_finish(info, retcode); return 0; } static enum drbd_state_rv conn_try_disconnect(struct drbd_tconn *tconn, bool force) { enum drbd_state_rv rv; rv = conn_request_state(tconn, NS(conn, C_DISCONNECTING), force ? CS_HARD : 0); switch (rv) { case SS_NOTHING_TO_DO: break; case SS_ALREADY_STANDALONE: return SS_SUCCESS; case SS_PRIMARY_NOP: /* Our state checking code wants to see the peer outdated. */ rv = conn_request_state(tconn, NS2(conn, C_DISCONNECTING, pdsk, D_OUTDATED), CS_VERBOSE); break; case SS_CW_FAILED_BY_PEER: /* The peer probably wants to see us outdated. */ rv = conn_request_state(tconn, NS2(conn, C_DISCONNECTING, disk, D_OUTDATED), 0); if (rv == SS_IS_DISKLESS || rv == SS_LOWER_THAN_OUTDATED) { rv = conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD); } break; default:; /* no special handling necessary */ } if (rv >= SS_SUCCESS) { enum drbd_state_rv rv2; /* No one else can reconfigure the network while I am here. * The state handling only uses drbd_thread_stop_nowait(), * we want to really wait here until the receiver is no more. */ drbd_thread_stop(&adm_ctx.tconn->receiver); /* Race breaker. This additional state change request may be * necessary, if this was a forced disconnect during a receiver * restart. We may have "killed" the receiver thread just * after drbdd_init() returned. Typically, we should be * C_STANDALONE already, now, and this becomes a no-op. */ rv2 = conn_request_state(tconn, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); if (rv2 < SS_SUCCESS) conn_err(tconn, "unexpected rv2=%d in conn_try_disconnect()\n", rv2); } return rv; } int drbd_adm_disconnect(struct sk_buff *skb, struct genl_info *info) { struct disconnect_parms parms; struct drbd_tconn *tconn; enum drbd_state_rv rv; enum drbd_ret_code retcode; int err; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_CONN); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto fail; tconn = adm_ctx.tconn; memset(&parms, 0, sizeof(parms)); if (info->attrs[DRBD_NLA_DISCONNECT_PARMS]) { err = disconnect_parms_from_attrs(&parms, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto fail; } } rv = conn_try_disconnect(tconn, parms.force_disconnect); if (rv < SS_SUCCESS) retcode = rv; /* FIXME: Type mismatch. */ else retcode = NO_ERROR; fail: drbd_adm_finish(info, retcode); return 0; } void resync_after_online_grow(struct drbd_conf *mdev) { int iass; /* I am sync source */ dev_info(DEV, "Resync of new storage after online grow\n"); if (mdev->state.role != mdev->state.peer) iass = (mdev->state.role == R_PRIMARY); else iass = test_bit(DISCARD_CONCURRENT, &mdev->tconn->flags); if (iass) drbd_start_resync(mdev, C_SYNC_SOURCE); else _drbd_request_state(mdev, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE + CS_SERIALIZE); } int drbd_adm_resize(struct sk_buff *skb, struct genl_info *info) { struct resize_parms rs; struct drbd_conf *mdev; enum drbd_ret_code retcode; enum determine_dev_size dd; enum dds_flags ddsf; int err; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto fail; memset(&rs, 0, sizeof(struct resize_parms)); if (info->attrs[DRBD_NLA_RESIZE_PARMS]) { err = resize_parms_from_attrs(&rs, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto fail; } } mdev = adm_ctx.mdev; if (mdev->state.conn > C_CONNECTED) { retcode = ERR_RESIZE_RESYNC; goto fail; } if (mdev->state.role == R_SECONDARY && mdev->state.peer == R_SECONDARY) { retcode = ERR_NO_PRIMARY; goto fail; } if (!get_ldev(mdev)) { retcode = ERR_NO_DISK; goto fail; } if (rs.no_resync && mdev->tconn->agreed_pro_version < 93) { retcode = ERR_NEED_APV_93; goto fail; } if (mdev->ldev->known_size != drbd_get_capacity(mdev->ldev->backing_bdev)) mdev->ldev->known_size = drbd_get_capacity(mdev->ldev->backing_bdev); mdev->ldev->dc.disk_size = (sector_t)rs.resize_size; ddsf = (rs.resize_force ? DDSF_FORCED : 0) | (rs.no_resync ? DDSF_NO_RESYNC : 0); dd = drbd_determine_dev_size(mdev, ddsf); drbd_md_sync(mdev); put_ldev(mdev); if (dd == dev_size_error) { retcode = ERR_NOMEM_BITMAP; goto fail; } if (mdev->state.conn == C_CONNECTED) { if (dd == grew) set_bit(RESIZE_PENDING, &mdev->flags); drbd_send_uuids(mdev); drbd_send_sizes(mdev, 1, ddsf); } fail: drbd_adm_finish(info, retcode); return 0; } void drbd_set_res_opts_defaults(struct res_opts *r) { return set_res_opts_defaults(r); } int drbd_adm_resource_opts(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; cpumask_var_t new_cpu_mask; struct drbd_tconn *tconn; struct res_opts res_opts; int err; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_CONN); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto fail; tconn = adm_ctx.tconn; if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) { retcode = ERR_NOMEM; drbd_msg_put_info("unable to allocate cpumask"); goto fail; } res_opts = tconn->res_opts; if (should_set_defaults(info)) set_res_opts_defaults(&res_opts); err = res_opts_from_attrs(&res_opts, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto fail; } /* silently ignore cpu mask on UP kernel */ if (nr_cpu_ids > 1 && res_opts.cpu_mask[0] != 0) { err = __bitmap_parse(res_opts.cpu_mask, 32, 0, cpumask_bits(new_cpu_mask), nr_cpu_ids); if (err) { conn_warn(tconn, "__bitmap_parse() failed with %d\n", err); retcode = ERR_CPU_MASK_PARSE; goto fail; } } tconn->res_opts = res_opts; if (!cpumask_equal(tconn->cpu_mask, new_cpu_mask)) { cpumask_copy(tconn->cpu_mask, new_cpu_mask); drbd_calc_cpu_mask(tconn); tconn->receiver.reset_cpu_mask = 1; tconn->asender.reset_cpu_mask = 1; tconn->worker.reset_cpu_mask = 1; } fail: free_cpumask_var(new_cpu_mask); drbd_adm_finish(info, retcode); return 0; } int drbd_adm_invalidate(struct sk_buff *skb, struct genl_info *info) { struct drbd_conf *mdev; int retcode; /* enum drbd_ret_code rsp. enum drbd_state_rv */ retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; mdev = adm_ctx.mdev; /* If there is still bitmap IO pending, probably because of a previous * resync just being finished, wait for it before requesting a new resync. */ wait_event(mdev->misc_wait, !test_bit(BITMAP_IO, &mdev->flags)); retcode = _drbd_request_state(mdev, NS(conn, C_STARTING_SYNC_T), CS_ORDERED); if (retcode < SS_SUCCESS && retcode != SS_NEED_CONNECTION) retcode = drbd_request_state(mdev, NS(conn, C_STARTING_SYNC_T)); while (retcode == SS_NEED_CONNECTION) { spin_lock_irq(&mdev->tconn->req_lock); if (mdev->state.conn < C_CONNECTED) retcode = _drbd_set_state(_NS(mdev, disk, D_INCONSISTENT), CS_VERBOSE, NULL); spin_unlock_irq(&mdev->tconn->req_lock); if (retcode != SS_NEED_CONNECTION) break; retcode = drbd_request_state(mdev, NS(conn, C_STARTING_SYNC_T)); } out: drbd_adm_finish(info, retcode); return 0; } static int drbd_bmio_set_susp_al(struct drbd_conf *mdev) { int rv; rv = drbd_bmio_set_n_write(mdev); drbd_suspend_al(mdev); return rv; } static int drbd_adm_simple_request_state(struct sk_buff *skb, struct genl_info *info, union drbd_state mask, union drbd_state val) { enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; retcode = drbd_request_state(adm_ctx.mdev, mask, val); out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_invalidate_peer(struct sk_buff *skb, struct genl_info *info) { return drbd_adm_simple_request_state(skb, info, NS(conn, C_STARTING_SYNC_S)); } int drbd_adm_pause_sync(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; if (drbd_request_state(adm_ctx.mdev, NS(user_isp, 1)) == SS_NOTHING_TO_DO) retcode = ERR_PAUSE_IS_SET; out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_resume_sync(struct sk_buff *skb, struct genl_info *info) { union drbd_dev_state s; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; if (drbd_request_state(adm_ctx.mdev, NS(user_isp, 0)) == SS_NOTHING_TO_DO) { s = adm_ctx.mdev->state; if (s.conn == C_PAUSED_SYNC_S || s.conn == C_PAUSED_SYNC_T) { retcode = s.aftr_isp ? ERR_PIC_AFTER_DEP : s.peer_isp ? ERR_PIC_PEER_DEP : ERR_PAUSE_IS_CLEAR; } else { retcode = ERR_PAUSE_IS_CLEAR; } } out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_suspend_io(struct sk_buff *skb, struct genl_info *info) { return drbd_adm_simple_request_state(skb, info, NS(susp, 1)); } int drbd_adm_resume_io(struct sk_buff *skb, struct genl_info *info) { struct drbd_conf *mdev; int retcode; /* enum drbd_ret_code rsp. enum drbd_state_rv */ retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; mdev = adm_ctx.mdev; if (test_bit(NEW_CUR_UUID, &mdev->flags)) { drbd_uuid_new_current(mdev); clear_bit(NEW_CUR_UUID, &mdev->flags); } drbd_suspend_io(mdev); retcode = drbd_request_state(mdev, NS3(susp, 0, susp_nod, 0, susp_fen, 0)); if (retcode == SS_SUCCESS) { if (mdev->state.conn < C_CONNECTED) tl_clear(mdev->tconn); if (mdev->state.disk == D_DISKLESS || mdev->state.disk == D_FAILED) tl_restart(mdev->tconn, FAIL_FROZEN_DISK_IO); } drbd_resume_io(mdev); out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_outdate(struct sk_buff *skb, struct genl_info *info) { return drbd_adm_simple_request_state(skb, info, NS(disk, D_OUTDATED)); } int nla_put_drbd_cfg_context(struct sk_buff *skb, const char *conn_name, unsigned vnr) { struct nlattr *nla; nla = nla_nest_start(skb, DRBD_NLA_CFG_CONTEXT); if (!nla) goto nla_put_failure; if (vnr != VOLUME_UNSPECIFIED) NLA_PUT_U32(skb, T_ctx_volume, vnr); NLA_PUT_STRING(skb, T_ctx_conn_name, conn_name); nla_nest_end(skb, nla); return 0; nla_put_failure: if (nla) nla_nest_cancel(skb, nla); return -EMSGSIZE; } int nla_put_status_info(struct sk_buff *skb, struct drbd_conf *mdev, const struct sib_info *sib) { struct state_info *si = NULL; /* for sizeof(si->member); */ struct net_conf *nc; struct nlattr *nla; int got_ldev; int err = 0; int exclude_sensitive; /* If sib != NULL, this is drbd_bcast_event, which anyone can listen * to. So we better exclude_sensitive information. * * If sib == NULL, this is drbd_adm_get_status, executed synchronously * in the context of the requesting user process. Exclude sensitive * information, unless current has superuser. * * NOTE: for drbd_adm_get_status_all(), this is a netlink dump, and * relies on the current implementation of netlink_dump(), which * executes the dump callback successively from netlink_recvmsg(), * always in the context of the receiving process */ exclude_sensitive = sib || !capable(CAP_SYS_ADMIN); got_ldev = get_ldev(mdev); /* We need to add connection name and volume number information still. * Minor number is in drbd_genlmsghdr. */ if (nla_put_drbd_cfg_context(skb, mdev->tconn->name, mdev->vnr)) goto nla_put_failure; if (res_opts_to_skb(skb, &mdev->tconn->res_opts, exclude_sensitive)) goto nla_put_failure; if (got_ldev) if (disk_conf_to_skb(skb, &mdev->ldev->dc, exclude_sensitive)) goto nla_put_failure; rcu_read_lock(); nc = rcu_dereference(mdev->tconn->net_conf); if (nc) err = net_conf_to_skb(skb, nc, exclude_sensitive); rcu_read_unlock(); if (err) goto nla_put_failure; nla = nla_nest_start(skb, DRBD_NLA_STATE_INFO); if (!nla) goto nla_put_failure; NLA_PUT_U32(skb, T_sib_reason, sib ? sib->sib_reason : SIB_GET_STATUS_REPLY); NLA_PUT_U32(skb, T_current_state, mdev->state.i); NLA_PUT_U64(skb, T_ed_uuid, mdev->ed_uuid); NLA_PUT_U64(skb, T_capacity, drbd_get_capacity(mdev->this_bdev)); if (got_ldev) { NLA_PUT_U32(skb, T_disk_flags, mdev->ldev->md.flags); NLA_PUT(skb, T_uuids, sizeof(si->uuids), mdev->ldev->md.uuid); NLA_PUT_U64(skb, T_bits_total, drbd_bm_bits(mdev)); NLA_PUT_U64(skb, T_bits_oos, drbd_bm_total_weight(mdev)); if (C_SYNC_SOURCE <= mdev->state.conn && C_PAUSED_SYNC_T >= mdev->state.conn) { NLA_PUT_U64(skb, T_bits_rs_total, mdev->rs_total); NLA_PUT_U64(skb, T_bits_rs_failed, mdev->rs_failed); } } if (sib) { switch(sib->sib_reason) { case SIB_SYNC_PROGRESS: case SIB_GET_STATUS_REPLY: break; case SIB_STATE_CHANGE: NLA_PUT_U32(skb, T_prev_state, sib->os.i); NLA_PUT_U32(skb, T_new_state, sib->ns.i); break; case SIB_HELPER_POST: NLA_PUT_U32(skb, T_helper_exit_code, sib->helper_exit_code); /* fall through */ case SIB_HELPER_PRE: NLA_PUT_STRING(skb, T_helper, sib->helper_name); break; } } nla_nest_end(skb, nla); if (0) nla_put_failure: err = -EMSGSIZE; if (got_ldev) put_ldev(mdev); return err; } int drbd_adm_get_status(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; int err; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; err = nla_put_status_info(adm_ctx.reply_skb, adm_ctx.mdev, NULL); if (err) { nlmsg_free(adm_ctx.reply_skb); return err; } out: drbd_adm_finish(info, retcode); return 0; } int get_one_status(struct sk_buff *skb, struct netlink_callback *cb) { struct drbd_conf *mdev; struct drbd_genlmsghdr *dh; struct drbd_tconn *pos = (struct drbd_tconn*)cb->args[0]; struct drbd_tconn *tconn = NULL; struct drbd_tconn *tmp; unsigned volume = cb->args[1]; /* Open coded, deferred, iteration: * list_for_each_entry_safe(tconn, tmp, &drbd_tconns, all_tconn) { * idr_for_each_entry(&tconn->volumes, mdev, i) { * ... * } * } * where tconn is cb->args[0]; * and i is cb->args[1]; * * cb->args[2] indicates if we shall loop over all resources, * or just dump all volumes of a single resource. * * This may miss entries inserted after this dump started, * or entries deleted before they are reached. * * We need to make sure the mdev won't disappear while * we are looking at it, and revalidate our iterators * on each iteration. */ /* synchronize with conn_create()/conn_destroy() */ down_read(&drbd_cfg_rwsem); /* revalidate iterator position */ list_for_each_entry(tmp, &drbd_tconns, all_tconn) { if (pos == NULL) { /* first iteration */ pos = tmp; tconn = pos; break; } if (tmp == pos) { tconn = pos; break; } } if (tconn) { next_tconn: mdev = idr_get_next(&tconn->volumes, &volume); if (!mdev) { /* No more volumes to dump on this tconn. * Advance tconn iterator. */ pos = list_entry(tconn->all_tconn.next, struct drbd_tconn, all_tconn); /* Did we dump any volume on this tconn yet? */ if (volume != 0) { /* If we reached the end of the list, * or only a single resource dump was requested, * we are done. */ if (&pos->all_tconn == &drbd_tconns || cb->args[2]) goto out; volume = 0; tconn = pos; goto next_tconn; } } dh = genlmsg_put(skb, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq, &drbd_genl_family, NLM_F_MULTI, DRBD_ADM_GET_STATUS); if (!dh) goto out; if (!mdev) { /* this is a tconn without a single volume */ dh->minor = -1U; dh->ret_code = NO_ERROR; if (nla_put_drbd_cfg_context(skb, tconn->name, VOLUME_UNSPECIFIED)) genlmsg_cancel(skb, dh); else genlmsg_end(skb, dh); goto out; } D_ASSERT(mdev->vnr == volume); D_ASSERT(mdev->tconn == tconn); dh->minor = mdev_to_minor(mdev); dh->ret_code = NO_ERROR; if (nla_put_status_info(skb, mdev, NULL)) { genlmsg_cancel(skb, dh); goto out; } genlmsg_end(skb, dh); } out: up_read(&drbd_cfg_rwsem); /* where to start the next iteration */ cb->args[0] = (long)pos; cb->args[1] = (pos == tconn) ? volume + 1 : 0; /* No more tconns/volumes/minors found results in an empty skb. * Which will terminate the dump. */ return skb->len; } /* * Request status of all resources, or of all volumes within a single resource. * * This is a dump, as the answer may not fit in a single reply skb otherwise. * Which means we cannot use the family->attrbuf or other such members, because * dump is NOT protected by the genl_lock(). During dump, we only have access * to the incoming skb, and need to opencode "parsing" of the nlattr payload. * * Once things are setup properly, we call into get_one_status(). */ int drbd_adm_get_status_all(struct sk_buff *skb, struct netlink_callback *cb) { const unsigned hdrlen = GENL_HDRLEN + GENL_MAGIC_FAMILY_HDRSZ; struct nlattr *nla; const char *conn_name; struct drbd_tconn *tconn; /* Is this a followup call? */ if (cb->args[0]) { /* ... of a single resource dump, * and the resource iterator has been advanced already? */ if (cb->args[2] && cb->args[2] != cb->args[0]) return 0; /* DONE. */ goto dump; } /* First call (from netlink_dump_start). We need to figure out * which resource(s) the user wants us to dump. */ nla = nla_find(nlmsg_attrdata(cb->nlh, hdrlen), nlmsg_attrlen(cb->nlh, hdrlen), DRBD_NLA_CFG_CONTEXT); /* No explicit context given. Dump all. */ if (!nla) goto dump; nla = nla_find_nested(nla, __nla_type(T_ctx_conn_name)); /* context given, but no name present? */ if (!nla) return -EINVAL; conn_name = nla_data(nla); tconn = conn_get_by_name(conn_name); if (!tconn) return -ENODEV; kref_put(&tconn->kref, &conn_destroy); /* get_one_status() (re)validates tconn by itself */ /* prime iterators, and set "filter" mode mark: * only dump this tconn. */ cb->args[0] = (long)tconn; /* cb->args[1] = 0; passed in this way. */ cb->args[2] = (long)tconn; dump: return get_one_status(skb, cb); } int drbd_adm_get_timeout_type(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; struct timeout_parms tp; int err; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; tp.timeout_type = adm_ctx.mdev->state.pdsk == D_OUTDATED ? UT_PEER_OUTDATED : test_bit(USE_DEGR_WFC_T, &adm_ctx.mdev->flags) ? UT_DEGRADED : UT_DEFAULT; err = timeout_parms_to_priv_skb(adm_ctx.reply_skb, &tp); if (err) { nlmsg_free(adm_ctx.reply_skb); return err; } out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_start_ov(struct sk_buff *skb, struct genl_info *info) { struct drbd_conf *mdev; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; mdev = adm_ctx.mdev; if (info->attrs[DRBD_NLA_START_OV_PARMS]) { /* resume from last known position, if possible */ struct start_ov_parms parms = { .ov_start_sector = mdev->ov_start_sector }; int err = start_ov_parms_from_attrs(&parms, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto out; } /* w_make_ov_request expects position to be aligned */ mdev->ov_start_sector = parms.ov_start_sector & ~BM_SECT_PER_BIT; } /* If there is still bitmap IO pending, e.g. previous resync or verify * just being finished, wait for it before requesting a new resync. */ wait_event(mdev->misc_wait, !test_bit(BITMAP_IO, &mdev->flags)); retcode = drbd_request_state(mdev,NS(conn,C_VERIFY_S)); out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_new_c_uuid(struct sk_buff *skb, struct genl_info *info) { struct drbd_conf *mdev; enum drbd_ret_code retcode; int skip_initial_sync = 0; int err; struct new_c_uuid_parms args; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out_nolock; mdev = adm_ctx.mdev; memset(&args, 0, sizeof(args)); if (info->attrs[DRBD_NLA_NEW_C_UUID_PARMS]) { err = new_c_uuid_parms_from_attrs(&args, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(from_attrs_err_to_txt(err)); goto out_nolock; } } mutex_lock(mdev->state_mutex); /* Protects us against serialized state changes. */ if (!get_ldev(mdev)) { retcode = ERR_NO_DISK; goto out; } /* this is "skip initial sync", assume to be clean */ if (mdev->state.conn == C_CONNECTED && mdev->tconn->agreed_pro_version >= 90 && mdev->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && args.clear_bm) { dev_info(DEV, "Preparing to skip initial sync\n"); skip_initial_sync = 1; } else if (mdev->state.conn != C_STANDALONE) { retcode = ERR_CONNECTED; goto out_dec; } drbd_uuid_set(mdev, UI_BITMAP, 0); /* Rotate UI_BITMAP to History 1, etc... */ drbd_uuid_new_current(mdev); /* New current, previous to UI_BITMAP */ if (args.clear_bm) { err = drbd_bitmap_io(mdev, &drbd_bmio_clear_n_write, "clear_n_write from new_c_uuid", BM_LOCKED_MASK); if (err) { dev_err(DEV, "Writing bitmap failed with %d\n",err); retcode = ERR_IO_MD_DISK; } if (skip_initial_sync) { drbd_send_uuids_skip_initial_sync(mdev); _drbd_uuid_set(mdev, UI_BITMAP, 0); drbd_print_uuids(mdev, "cleared bitmap UUID"); spin_lock_irq(&mdev->tconn->req_lock); _drbd_set_state(_NS2(mdev, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), CS_VERBOSE, NULL); spin_unlock_irq(&mdev->tconn->req_lock); } } drbd_md_sync(mdev); out_dec: put_ldev(mdev); out: mutex_unlock(mdev->state_mutex); out_nolock: drbd_adm_finish(info, retcode); return 0; } static enum drbd_ret_code drbd_check_conn_name(const char *name) { if (!name || !name[0]) { drbd_msg_put_info("connection name missing"); return ERR_MANDATORY_TAG; } /* if we want to use these in sysfs/configfs/debugfs some day, * we must not allow slashes */ if (strchr(name, '/')) { drbd_msg_put_info("invalid connection name"); return ERR_INVALID_REQUEST; } return NO_ERROR; } int drbd_adm_create_connection(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, 0); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; retcode = drbd_check_conn_name(adm_ctx.conn_name); if (retcode != NO_ERROR) goto out; if (adm_ctx.tconn) { if (info->nlhdr->nlmsg_flags & NLM_F_EXCL) { retcode = ERR_INVALID_REQUEST; drbd_msg_put_info("connection exists"); } /* else: still NO_ERROR */ goto out; } if (!conn_create(adm_ctx.conn_name)) retcode = ERR_NOMEM; out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_add_minor(struct sk_buff *skb, struct genl_info *info) { struct drbd_genlmsghdr *dh = info->userhdr; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_CONN); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; /* FIXME drop minor_count parameter, limit to MINORMASK */ if (dh->minor >= minor_count) { drbd_msg_put_info("requested minor out of range"); retcode = ERR_INVALID_REQUEST; goto out; } if (adm_ctx.volume > DRBD_VOLUME_MAX) { drbd_msg_put_info("requested volume id out of range"); retcode = ERR_INVALID_REQUEST; goto out; } /* drbd_adm_prepare made sure already * that mdev->tconn and mdev->vnr match the request. */ if (adm_ctx.mdev) { if (info->nlhdr->nlmsg_flags & NLM_F_EXCL) retcode = ERR_MINOR_EXISTS; /* else: still NO_ERROR */ goto out; } down_write(&drbd_cfg_rwsem); retcode = conn_new_minor(adm_ctx.tconn, dh->minor, adm_ctx.volume); up_write(&drbd_cfg_rwsem); out: drbd_adm_finish(info, retcode); return 0; } static enum drbd_ret_code adm_delete_minor(struct drbd_conf *mdev) { if (mdev->state.disk == D_DISKLESS && /* no need to be mdev->state.conn == C_STANDALONE && * we may want to delete a minor from a live replication group. */ mdev->state.role == R_SECONDARY) { drbd_delete_device(mdev); return NO_ERROR; } else return ERR_MINOR_CONFIGURED; } int drbd_adm_delete_minor(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; down_write(&drbd_cfg_rwsem); retcode = adm_delete_minor(adm_ctx.mdev); up_write(&drbd_cfg_rwsem); out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_down(struct sk_buff *skb, struct genl_info *info) { int retcode; /* enum drbd_ret_code rsp. enum drbd_state_rv */ struct drbd_conf *mdev; unsigned i; retcode = drbd_adm_prepare(skb, info, 0); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; if (!adm_ctx.tconn) { retcode = ERR_CONN_NOT_KNOWN; goto out; } down_read(&drbd_cfg_rwsem); /* demote */ idr_for_each_entry(&adm_ctx.tconn->volumes, mdev, i) { retcode = drbd_set_role(mdev, R_SECONDARY, 0); if (retcode < SS_SUCCESS) { drbd_msg_put_info("failed to demote"); goto out_unlock; } } up_read(&drbd_cfg_rwsem); /* disconnect; may stop the receiver; * must not hold the drbd_cfg_rwsem */ retcode = conn_try_disconnect(adm_ctx.tconn, 0); if (retcode < SS_SUCCESS) { drbd_msg_put_info("failed to disconnect"); goto out; } down_read(&drbd_cfg_rwsem); /* detach */ idr_for_each_entry(&adm_ctx.tconn->volumes, mdev, i) { retcode = adm_detach(mdev); if (retcode < SS_SUCCESS) { drbd_msg_put_info("failed to detach"); goto out_unlock; } } up_read(&drbd_cfg_rwsem); /* If we reach this, all volumes (of this tconn) are Secondary, * Disconnected, Diskless, aka Unconfigured. Make sure all threads have * actually stopped, state handling only does drbd_thread_stop_nowait(). * This needs to be done without holding drbd_cfg_rwsem. */ drbd_thread_stop(&adm_ctx.tconn->worker); /* Now, nothing can fail anymore */ /* delete volumes */ down_write(&drbd_cfg_rwsem); idr_for_each_entry(&adm_ctx.tconn->volumes, mdev, i) { retcode = adm_delete_minor(mdev); if (retcode != NO_ERROR) { /* "can not happen" */ drbd_msg_put_info("failed to delete volume"); up_write(&drbd_cfg_rwsem); goto out; } } /* delete connection */ if (conn_lowest_minor(adm_ctx.tconn) < 0) { list_del(&adm_ctx.tconn->all_tconn); kref_put(&adm_ctx.tconn->kref, &conn_destroy); retcode = NO_ERROR; } else { /* "can not happen" */ retcode = ERR_CONN_IN_USE; drbd_msg_put_info("failed to delete connection"); } up_write(&drbd_cfg_rwsem); goto out; out_unlock: up_read(&drbd_cfg_rwsem); out: drbd_adm_finish(info, retcode); return 0; } int drbd_adm_delete_connection(struct sk_buff *skb, struct genl_info *info) { enum drbd_ret_code retcode; retcode = drbd_adm_prepare(skb, info, DRBD_ADM_NEED_CONN); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; down_write(&drbd_cfg_rwsem); if (conn_lowest_minor(adm_ctx.tconn) < 0) { list_del(&adm_ctx.tconn->all_tconn); kref_put(&adm_ctx.tconn->kref, &conn_destroy); retcode = NO_ERROR; } else { retcode = ERR_CONN_IN_USE; } up_write(&drbd_cfg_rwsem); if (retcode == NO_ERROR) drbd_thread_stop(&adm_ctx.tconn->worker); out: drbd_adm_finish(info, retcode); return 0; } void drbd_bcast_event(struct drbd_conf *mdev, const struct sib_info *sib) { static atomic_t drbd_genl_seq = ATOMIC_INIT(2); /* two. */ struct sk_buff *msg; struct drbd_genlmsghdr *d_out; unsigned seq; int err = -ENOMEM; seq = atomic_inc_return(&drbd_genl_seq); msg = genlmsg_new(NLMSG_GOODSIZE, GFP_NOIO); if (!msg) goto failed; err = -EMSGSIZE; d_out = genlmsg_put(msg, 0, seq, &drbd_genl_family, 0, DRBD_EVENT); if (!d_out) /* cannot happen, but anyways. */ goto nla_put_failure; d_out->minor = mdev_to_minor(mdev); d_out->ret_code = 0; if (nla_put_status_info(msg, mdev, sib)) goto nla_put_failure; genlmsg_end(msg, d_out); err = drbd_genl_multicast_events(msg, 0); /* msg has been consumed or freed in netlink_broadcast() */ if (err && err != -ESRCH) goto failed; return; nla_put_failure: nlmsg_free(msg); failed: dev_err(DEV, "Error %d while broadcasting event. " "Event seq:%u sib_reason:%u\n", err, seq, sib->sib_reason); }