/* * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iw_cxgb4.h" #include "clip_tbl.h" static char *states[] = { "idle", "listen", "connecting", "mpa_wait_req", "mpa_req_sent", "mpa_req_rcvd", "mpa_rep_sent", "fpdu_mode", "aborting", "closing", "moribund", "dead", NULL, }; static int nocong; module_param(nocong, int, 0644); MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)"); static int enable_ecn; module_param(enable_ecn, int, 0644); MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)"); static int dack_mode = 1; module_param(dack_mode, int, 0644); MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)"); uint c4iw_max_read_depth = 32; module_param(c4iw_max_read_depth, int, 0644); MODULE_PARM_DESC(c4iw_max_read_depth, "Per-connection max ORD/IRD (default=32)"); static int enable_tcp_timestamps; module_param(enable_tcp_timestamps, int, 0644); MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)"); static int enable_tcp_sack; module_param(enable_tcp_sack, int, 0644); MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)"); static int enable_tcp_window_scaling = 1; module_param(enable_tcp_window_scaling, int, 0644); MODULE_PARM_DESC(enable_tcp_window_scaling, "Enable tcp window scaling (default=1)"); static int peer2peer = 1; module_param(peer2peer, int, 0644); MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)"); static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; module_param(p2p_type, int, 0644); MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: " "1=RDMA_READ 0=RDMA_WRITE (default 1)"); static int ep_timeout_secs = 60; module_param(ep_timeout_secs, int, 0644); MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout " "in seconds (default=60)"); static int mpa_rev = 2; module_param(mpa_rev, int, 0644); MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, " "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft" " compliant (default=2)"); static int markers_enabled; module_param(markers_enabled, int, 0644); MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)"); static int crc_enabled = 1; module_param(crc_enabled, int, 0644); MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)"); static int rcv_win = 256 * 1024; module_param(rcv_win, int, 0644); MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)"); static int snd_win = 128 * 1024; module_param(snd_win, int, 0644); MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)"); static struct workqueue_struct *workq; static struct sk_buff_head rxq; static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp); static void ep_timeout(struct timer_list *t); static void connect_reply_upcall(struct c4iw_ep *ep, int status); static int sched(struct c4iw_dev *dev, struct sk_buff *skb); static LIST_HEAD(timeout_list); static spinlock_t timeout_lock; static void deref_cm_id(struct c4iw_ep_common *epc) { epc->cm_id->rem_ref(epc->cm_id); epc->cm_id = NULL; set_bit(CM_ID_DEREFED, &epc->history); } static void ref_cm_id(struct c4iw_ep_common *epc) { set_bit(CM_ID_REFED, &epc->history); epc->cm_id->add_ref(epc->cm_id); } static void deref_qp(struct c4iw_ep *ep) { c4iw_qp_rem_ref(&ep->com.qp->ibqp); clear_bit(QP_REFERENCED, &ep->com.flags); set_bit(QP_DEREFED, &ep->com.history); } static void ref_qp(struct c4iw_ep *ep) { set_bit(QP_REFERENCED, &ep->com.flags); set_bit(QP_REFED, &ep->com.history); c4iw_qp_add_ref(&ep->com.qp->ibqp); } static void start_ep_timer(struct c4iw_ep *ep) { pr_debug("ep %p\n", ep); if (timer_pending(&ep->timer)) { pr_err("%s timer already started! ep %p\n", __func__, ep); return; } clear_bit(TIMEOUT, &ep->com.flags); c4iw_get_ep(&ep->com); ep->timer.expires = jiffies + ep_timeout_secs * HZ; add_timer(&ep->timer); } static int stop_ep_timer(struct c4iw_ep *ep) { pr_debug("ep %p stopping\n", ep); del_timer_sync(&ep->timer); if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { c4iw_put_ep(&ep->com); return 0; } return 1; } static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb, struct l2t_entry *l2e) { int error = 0; if (c4iw_fatal_error(rdev)) { kfree_skb(skb); pr_err("%s - device in error state - dropping\n", __func__); return -EIO; } error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e); if (error < 0) kfree_skb(skb); else if (error == NET_XMIT_DROP) return -ENOMEM; return error < 0 ? error : 0; } int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb) { int error = 0; if (c4iw_fatal_error(rdev)) { kfree_skb(skb); pr_err("%s - device in error state - dropping\n", __func__); return -EIO; } error = cxgb4_ofld_send(rdev->lldi.ports[0], skb); if (error < 0) kfree_skb(skb); return error < 0 ? error : 0; } static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb) { u32 len = roundup(sizeof(struct cpl_tid_release), 16); skb = get_skb(skb, len, GFP_KERNEL); if (!skb) return; cxgb_mk_tid_release(skb, len, hwtid, 0); c4iw_ofld_send(rdev, skb); return; } static void set_emss(struct c4iw_ep *ep, u16 opt) { ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] - ((AF_INET == ep->com.remote_addr.ss_family) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) - sizeof(struct tcphdr); ep->mss = ep->emss; if (TCPOPT_TSTAMP_G(opt)) ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4); if (ep->emss < 128) ep->emss = 128; if (ep->emss & 7) pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt), ep->mss, ep->emss); pr_debug("mss_idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt), ep->mss, ep->emss); } static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc) { enum c4iw_ep_state state; mutex_lock(&epc->mutex); state = epc->state; mutex_unlock(&epc->mutex); return state; } static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) { epc->state = new; } static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) { mutex_lock(&epc->mutex); pr_debug("%s -> %s\n", states[epc->state], states[new]); __state_set(epc, new); mutex_unlock(&epc->mutex); return; } static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size) { struct sk_buff *skb; unsigned int i; size_t len; len = roundup(sizeof(union cpl_wr_size), 16); for (i = 0; i < size; i++) { skb = alloc_skb(len, GFP_KERNEL); if (!skb) goto fail; skb_queue_tail(ep_skb_list, skb); } return 0; fail: skb_queue_purge(ep_skb_list); return -ENOMEM; } static void *alloc_ep(int size, gfp_t gfp) { struct c4iw_ep_common *epc; epc = kzalloc(size, gfp); if (epc) { epc->wr_waitp = c4iw_alloc_wr_wait(gfp); if (!epc->wr_waitp) { kfree(epc); epc = NULL; goto out; } kref_init(&epc->kref); mutex_init(&epc->mutex); c4iw_init_wr_wait(epc->wr_waitp); } pr_debug("alloc ep %p\n", epc); out: return epc; } static void remove_ep_tid(struct c4iw_ep *ep) { unsigned long flags; xa_lock_irqsave(&ep->com.dev->hwtids, flags); __xa_erase(&ep->com.dev->hwtids, ep->hwtid); if (xa_empty(&ep->com.dev->hwtids)) wake_up(&ep->com.dev->wait); xa_unlock_irqrestore(&ep->com.dev->hwtids, flags); } static int insert_ep_tid(struct c4iw_ep *ep) { unsigned long flags; int err; xa_lock_irqsave(&ep->com.dev->hwtids, flags); err = __xa_insert(&ep->com.dev->hwtids, ep->hwtid, ep, GFP_KERNEL); xa_unlock_irqrestore(&ep->com.dev->hwtids, flags); return err; } /* * Atomically lookup the ep ptr given the tid and grab a reference on the ep. */ static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid) { struct c4iw_ep *ep; unsigned long flags; xa_lock_irqsave(&dev->hwtids, flags); ep = xa_load(&dev->hwtids, tid); if (ep) c4iw_get_ep(&ep->com); xa_unlock_irqrestore(&dev->hwtids, flags); return ep; } /* * Atomically lookup the ep ptr given the stid and grab a reference on the ep. */ static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev, unsigned int stid) { struct c4iw_listen_ep *ep; unsigned long flags; spin_lock_irqsave(&dev->lock, flags); ep = idr_find(&dev->stid_idr, stid); if (ep) c4iw_get_ep(&ep->com); spin_unlock_irqrestore(&dev->lock, flags); return ep; } void _c4iw_free_ep(struct kref *kref) { struct c4iw_ep *ep; ep = container_of(kref, struct c4iw_ep, com.kref); pr_debug("ep %p state %s\n", ep, states[ep->com.state]); if (test_bit(QP_REFERENCED, &ep->com.flags)) deref_qp(ep); if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) { if (ep->com.remote_addr.ss_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) &ep->com.local_addr; cxgb4_clip_release( ep->com.dev->rdev.lldi.ports[0], (const u32 *)&sin6->sin6_addr.s6_addr, 1); } cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid, ep->com.local_addr.ss_family); dst_release(ep->dst); cxgb4_l2t_release(ep->l2t); kfree_skb(ep->mpa_skb); } if (!skb_queue_empty(&ep->com.ep_skb_list)) skb_queue_purge(&ep->com.ep_skb_list); c4iw_put_wr_wait(ep->com.wr_waitp); kfree(ep); } static void release_ep_resources(struct c4iw_ep *ep) { set_bit(RELEASE_RESOURCES, &ep->com.flags); /* * If we have a hwtid, then remove it from the idr table * so lookups will no longer find this endpoint. Otherwise * we have a race where one thread finds the ep ptr just * before the other thread is freeing the ep memory. */ if (ep->hwtid != -1) remove_ep_tid(ep); c4iw_put_ep(&ep->com); } static int status2errno(int status) { switch (status) { case CPL_ERR_NONE: return 0; case CPL_ERR_CONN_RESET: return -ECONNRESET; case CPL_ERR_ARP_MISS: return -EHOSTUNREACH; case CPL_ERR_CONN_TIMEDOUT: return -ETIMEDOUT; case CPL_ERR_TCAM_FULL: return -ENOMEM; case CPL_ERR_CONN_EXIST: return -EADDRINUSE; default: return -EIO; } } /* * Try and reuse skbs already allocated... */ static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp) { if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) { skb_trim(skb, 0); skb_get(skb); skb_reset_transport_header(skb); } else { skb = alloc_skb(len, gfp); } t4_set_arp_err_handler(skb, NULL, NULL); return skb; } static struct net_device *get_real_dev(struct net_device *egress_dev) { return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev; } static void arp_failure_discard(void *handle, struct sk_buff *skb) { pr_err("ARP failure\n"); kfree_skb(skb); } static void mpa_start_arp_failure(void *handle, struct sk_buff *skb) { pr_err("ARP failure during MPA Negotiation - Closing Connection\n"); } enum { NUM_FAKE_CPLS = 2, FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0, FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1, }; static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); release_ep_resources(ep); kfree_skb(skb); return 0; } static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); c4iw_put_ep(&ep->parent_ep->com); release_ep_resources(ep); kfree_skb(skb); return 0; } /* * Fake up a special CPL opcode and call sched() so process_work() will call * _put_ep_safe() in a safe context to free the ep resources. This is needed * because ARP error handlers are called in an ATOMIC context, and * _c4iw_free_ep() needs to block. */ static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb, int cpl) { struct cpl_act_establish *rpl = cplhdr(skb); /* Set our special ARP_FAILURE opcode */ rpl->ot.opcode = cpl; /* * Save ep in the skb->cb area, after where sched() will save the dev * ptr. */ *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep; sched(ep->com.dev, skb); } /* Handle an ARP failure for an accept */ static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb) { struct c4iw_ep *ep = handle; pr_err("ARP failure during accept - tid %u - dropping connection\n", ep->hwtid); __state_set(&ep->com, DEAD); queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE); } /* * Handle an ARP failure for an active open. */ static void act_open_req_arp_failure(void *handle, struct sk_buff *skb) { struct c4iw_ep *ep = handle; pr_err("ARP failure during connect\n"); connect_reply_upcall(ep, -EHOSTUNREACH); __state_set(&ep->com, DEAD); if (ep->com.remote_addr.ss_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ep->com.local_addr; cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], (const u32 *)&sin6->sin6_addr.s6_addr, 1); } xa_erase_irq(&ep->com.dev->atids, ep->atid); cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); } /* * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant * and send it along. */ static void abort_arp_failure(void *handle, struct sk_buff *skb) { int ret; struct c4iw_ep *ep = handle; struct c4iw_rdev *rdev = &ep->com.dev->rdev; struct cpl_abort_req *req = cplhdr(skb); pr_debug("rdev %p\n", rdev); req->cmd = CPL_ABORT_NO_RST; skb_get(skb); ret = c4iw_ofld_send(rdev, skb); if (ret) { __state_set(&ep->com, DEAD); queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); } else kfree_skb(skb); } static int send_flowc(struct c4iw_ep *ep) { struct fw_flowc_wr *flowc; struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); u16 vlan = ep->l2t->vlan; int nparams; int flowclen, flowclen16; if (WARN_ON(!skb)) return -ENOMEM; if (vlan == CPL_L2T_VLAN_NONE) nparams = 9; else nparams = 10; flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]); flowclen16 = DIV_ROUND_UP(flowclen, 16); flowclen = flowclen16 * 16; flowc = __skb_put(skb, flowclen); memset(flowc, 0, flowclen); flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | FW_FLOWC_WR_NPARAMS_V(nparams)); flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) | FW_WR_FLOWID_V(ep->hwtid)); flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V (ep->com.dev->rdev.lldi.pf)); flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan); flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan); flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid); flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT; flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq); flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT; flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq); flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF; flowc->mnemval[6].val = cpu_to_be32(ep->snd_win); flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS; flowc->mnemval[7].val = cpu_to_be32(ep->emss); flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_RCV_SCALE; flowc->mnemval[8].val = cpu_to_be32(ep->snd_wscale); if (nparams == 10) { u16 pri; pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; flowc->mnemval[9].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; flowc->mnemval[9].val = cpu_to_be32(pri); } set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); return c4iw_ofld_send(&ep->com.dev->rdev, skb); } static int send_halfclose(struct c4iw_ep *ep) { struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16); pr_debug("ep %p tid %u\n", ep, ep->hwtid); if (WARN_ON(!skb)) return -ENOMEM; cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx, NULL, arp_failure_discard); return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); } static void read_tcb(struct c4iw_ep *ep) { struct sk_buff *skb; struct cpl_get_tcb *req; int wrlen = roundup(sizeof(*req), 16); skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); if (WARN_ON(!skb)) return; set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx); req = (struct cpl_get_tcb *) skb_put(skb, wrlen); memset(req, 0, wrlen); INIT_TP_WR(req, ep->hwtid); OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_GET_TCB, ep->hwtid)); req->reply_ctrl = htons(REPLY_CHAN_V(0) | QUEUENO_V(ep->rss_qid)); /* * keep a ref on the ep so the tcb is not unlocked before this * cpl completes. The ref is released in read_tcb_rpl(). */ c4iw_get_ep(&ep->com); if (WARN_ON(c4iw_ofld_send(&ep->com.dev->rdev, skb))) c4iw_put_ep(&ep->com); } static int send_abort_req(struct c4iw_ep *ep) { u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16); struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list); pr_debug("ep %p tid %u\n", ep, ep->hwtid); if (WARN_ON(!req_skb)) return -ENOMEM; cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx, ep, abort_arp_failure); return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t); } static int send_abort(struct c4iw_ep *ep) { if (!ep->com.qp || !ep->com.qp->srq) { send_abort_req(ep); return 0; } set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags); read_tcb(ep); return 0; } static int send_connect(struct c4iw_ep *ep) { struct cpl_act_open_req *req = NULL; struct cpl_t5_act_open_req *t5req = NULL; struct cpl_t6_act_open_req *t6req = NULL; struct cpl_act_open_req6 *req6 = NULL; struct cpl_t5_act_open_req6 *t5req6 = NULL; struct cpl_t6_act_open_req6 *t6req6 = NULL; struct sk_buff *skb; u64 opt0; u32 opt2; unsigned int mtu_idx; u32 wscale; int win, sizev4, sizev6, wrlen; struct sockaddr_in *la = (struct sockaddr_in *) &ep->com.local_addr; struct sockaddr_in *ra = (struct sockaddr_in *) &ep->com.remote_addr; struct sockaddr_in6 *la6 = (struct sockaddr_in6 *) &ep->com.local_addr; struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *) &ep->com.remote_addr; int ret; enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; u32 isn = (prandom_u32() & ~7UL) - 1; struct net_device *netdev; u64 params; netdev = ep->com.dev->rdev.lldi.ports[0]; switch (CHELSIO_CHIP_VERSION(adapter_type)) { case CHELSIO_T4: sizev4 = sizeof(struct cpl_act_open_req); sizev6 = sizeof(struct cpl_act_open_req6); break; case CHELSIO_T5: sizev4 = sizeof(struct cpl_t5_act_open_req); sizev6 = sizeof(struct cpl_t5_act_open_req6); break; case CHELSIO_T6: sizev4 = sizeof(struct cpl_t6_act_open_req); sizev6 = sizeof(struct cpl_t6_act_open_req6); break; default: pr_err("T%d Chip is not supported\n", CHELSIO_CHIP_VERSION(adapter_type)); return -EINVAL; } wrlen = (ep->com.remote_addr.ss_family == AF_INET) ? roundup(sizev4, 16) : roundup(sizev6, 16); pr_debug("ep %p atid %u\n", ep, ep->atid); skb = get_skb(NULL, wrlen, GFP_KERNEL); if (!skb) { pr_err("%s - failed to alloc skb\n", __func__); return -ENOMEM; } set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, enable_tcp_timestamps, (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); wscale = cxgb_compute_wscale(rcv_win); /* * Specify the largest window that will fit in opt0. The * remainder will be specified in the rx_data_ack. */ win = ep->rcv_win >> 10; if (win > RCV_BUFSIZ_M) win = RCV_BUFSIZ_M; opt0 = (nocong ? NO_CONG_F : 0) | KEEP_ALIVE_F | DELACK_F | WND_SCALE_V(wscale) | MSS_IDX_V(mtu_idx) | L2T_IDX_V(ep->l2t->idx) | TX_CHAN_V(ep->tx_chan) | SMAC_SEL_V(ep->smac_idx) | DSCP_V(ep->tos >> 2) | ULP_MODE_V(ULP_MODE_TCPDDP) | RCV_BUFSIZ_V(win); opt2 = RX_CHANNEL_V(0) | CCTRL_ECN_V(enable_ecn) | RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); if (enable_tcp_timestamps) opt2 |= TSTAMPS_EN_F; if (enable_tcp_sack) opt2 |= SACK_EN_F; if (wscale && enable_tcp_window_scaling) opt2 |= WND_SCALE_EN_F; if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { if (peer2peer) isn += 4; opt2 |= T5_OPT_2_VALID_F; opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); opt2 |= T5_ISS_F; } params = cxgb4_select_ntuple(netdev, ep->l2t); if (ep->com.remote_addr.ss_family == AF_INET6) cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], (const u32 *)&la6->sin6_addr.s6_addr, 1); t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure); if (ep->com.remote_addr.ss_family == AF_INET) { switch (CHELSIO_CHIP_VERSION(adapter_type)) { case CHELSIO_T4: req = skb_put(skb, wrlen); INIT_TP_WR(req, 0); break; case CHELSIO_T5: t5req = skb_put(skb, wrlen); INIT_TP_WR(t5req, 0); req = (struct cpl_act_open_req *)t5req; break; case CHELSIO_T6: t6req = skb_put(skb, wrlen); INIT_TP_WR(t6req, 0); req = (struct cpl_act_open_req *)t6req; t5req = (struct cpl_t5_act_open_req *)t6req; break; default: pr_err("T%d Chip is not supported\n", CHELSIO_CHIP_VERSION(adapter_type)); ret = -EINVAL; goto clip_release; } OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ((ep->rss_qid<<14) | ep->atid))); req->local_port = la->sin_port; req->peer_port = ra->sin_port; req->local_ip = la->sin_addr.s_addr; req->peer_ip = ra->sin_addr.s_addr; req->opt0 = cpu_to_be64(opt0); if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { req->params = cpu_to_be32(params); req->opt2 = cpu_to_be32(opt2); } else { if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { t5req->params = cpu_to_be64(FILTER_TUPLE_V(params)); t5req->rsvd = cpu_to_be32(isn); pr_debug("snd_isn %u\n", t5req->rsvd); t5req->opt2 = cpu_to_be32(opt2); } else { t6req->params = cpu_to_be64(FILTER_TUPLE_V(params)); t6req->rsvd = cpu_to_be32(isn); pr_debug("snd_isn %u\n", t6req->rsvd); t6req->opt2 = cpu_to_be32(opt2); } } } else { switch (CHELSIO_CHIP_VERSION(adapter_type)) { case CHELSIO_T4: req6 = skb_put(skb, wrlen); INIT_TP_WR(req6, 0); break; case CHELSIO_T5: t5req6 = skb_put(skb, wrlen); INIT_TP_WR(t5req6, 0); req6 = (struct cpl_act_open_req6 *)t5req6; break; case CHELSIO_T6: t6req6 = skb_put(skb, wrlen); INIT_TP_WR(t6req6, 0); req6 = (struct cpl_act_open_req6 *)t6req6; t5req6 = (struct cpl_t5_act_open_req6 *)t6req6; break; default: pr_err("T%d Chip is not supported\n", CHELSIO_CHIP_VERSION(adapter_type)); ret = -EINVAL; goto clip_release; } OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, ((ep->rss_qid<<14)|ep->atid))); req6->local_port = la6->sin6_port; req6->peer_port = ra6->sin6_port; req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr)); req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8)); req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr)); req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8)); req6->opt0 = cpu_to_be64(opt0); if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev, ep->l2t)); req6->opt2 = cpu_to_be32(opt2); } else { if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { t5req6->params = cpu_to_be64(FILTER_TUPLE_V(params)); t5req6->rsvd = cpu_to_be32(isn); pr_debug("snd_isn %u\n", t5req6->rsvd); t5req6->opt2 = cpu_to_be32(opt2); } else { t6req6->params = cpu_to_be64(FILTER_TUPLE_V(params)); t6req6->rsvd = cpu_to_be32(isn); pr_debug("snd_isn %u\n", t6req6->rsvd); t6req6->opt2 = cpu_to_be32(opt2); } } } set_bit(ACT_OPEN_REQ, &ep->com.history); ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); clip_release: if (ret && ep->com.remote_addr.ss_family == AF_INET6) cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], (const u32 *)&la6->sin6_addr.s6_addr, 1); return ret; } static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb, u8 mpa_rev_to_use) { int mpalen, wrlen, ret; struct fw_ofld_tx_data_wr *req; struct mpa_message *mpa; struct mpa_v2_conn_params mpa_v2_params; pr_debug("ep %p tid %u pd_len %d\n", ep, ep->hwtid, ep->plen); mpalen = sizeof(*mpa) + ep->plen; if (mpa_rev_to_use == 2) mpalen += sizeof(struct mpa_v2_conn_params); wrlen = roundup(mpalen + sizeof *req, 16); skb = get_skb(skb, wrlen, GFP_KERNEL); if (!skb) { connect_reply_upcall(ep, -ENOMEM); return -ENOMEM; } set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); req = skb_put_zero(skb, wrlen); req->op_to_immdlen = cpu_to_be32( FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | FW_WR_COMPL_F | FW_WR_IMMDLEN_V(mpalen)); req->flowid_len16 = cpu_to_be32( FW_WR_FLOWID_V(ep->hwtid) | FW_WR_LEN16_V(wrlen >> 4)); req->plen = cpu_to_be32(mpalen); req->tunnel_to_proxy = cpu_to_be32( FW_OFLD_TX_DATA_WR_FLUSH_F | FW_OFLD_TX_DATA_WR_SHOVE_F); mpa = (struct mpa_message *)(req + 1); memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)); mpa->flags = 0; if (crc_enabled) mpa->flags |= MPA_CRC; if (markers_enabled) { mpa->flags |= MPA_MARKERS; ep->mpa_attr.recv_marker_enabled = 1; } else { ep->mpa_attr.recv_marker_enabled = 0; } if (mpa_rev_to_use == 2) mpa->flags |= MPA_ENHANCED_RDMA_CONN; mpa->private_data_size = htons(ep->plen); mpa->revision = mpa_rev_to_use; if (mpa_rev_to_use == 1) { ep->tried_with_mpa_v1 = 1; ep->retry_with_mpa_v1 = 0; } if (mpa_rev_to_use == 2) { mpa->private_data_size = htons(ntohs(mpa->private_data_size) + sizeof (struct mpa_v2_conn_params)); pr_debug("initiator ird %u ord %u\n", ep->ird, ep->ord); mpa_v2_params.ird = htons((u16)ep->ird); mpa_v2_params.ord = htons((u16)ep->ord); if (peer2peer) { mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) mpa_v2_params.ord |= htons(MPA_V2_RDMA_WRITE_RTR); else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) mpa_v2_params.ord |= htons(MPA_V2_RDMA_READ_RTR); } memcpy(mpa->private_data, &mpa_v2_params, sizeof(struct mpa_v2_conn_params)); if (ep->plen) memcpy(mpa->private_data + sizeof(struct mpa_v2_conn_params), ep->mpa_pkt + sizeof(*mpa), ep->plen); } else if (ep->plen) memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen); /* * Reference the mpa skb. This ensures the data area * will remain in memory until the hw acks the tx. * Function fw4_ack() will deref it. */ skb_get(skb); t4_set_arp_err_handler(skb, NULL, arp_failure_discard); ep->mpa_skb = skb; ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); if (ret) return ret; start_ep_timer(ep); __state_set(&ep->com, MPA_REQ_SENT); ep->mpa_attr.initiator = 1; ep->snd_seq += mpalen; return ret; } static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen) { int mpalen, wrlen; struct fw_ofld_tx_data_wr *req; struct mpa_message *mpa; struct sk_buff *skb; struct mpa_v2_conn_params mpa_v2_params; pr_debug("ep %p tid %u pd_len %d\n", ep, ep->hwtid, ep->plen); mpalen = sizeof(*mpa) + plen; if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) mpalen += sizeof(struct mpa_v2_conn_params); wrlen = roundup(mpalen + sizeof *req, 16); skb = get_skb(NULL, wrlen, GFP_KERNEL); if (!skb) { pr_err("%s - cannot alloc skb!\n", __func__); return -ENOMEM; } set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); req = skb_put_zero(skb, wrlen); req->op_to_immdlen = cpu_to_be32( FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | FW_WR_COMPL_F | FW_WR_IMMDLEN_V(mpalen)); req->flowid_len16 = cpu_to_be32( FW_WR_FLOWID_V(ep->hwtid) | FW_WR_LEN16_V(wrlen >> 4)); req->plen = cpu_to_be32(mpalen); req->tunnel_to_proxy = cpu_to_be32( FW_OFLD_TX_DATA_WR_FLUSH_F | FW_OFLD_TX_DATA_WR_SHOVE_F); mpa = (struct mpa_message *)(req + 1); memset(mpa, 0, sizeof(*mpa)); memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); mpa->flags = MPA_REJECT; mpa->revision = ep->mpa_attr.version; mpa->private_data_size = htons(plen); if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { mpa->flags |= MPA_ENHANCED_RDMA_CONN; mpa->private_data_size = htons(ntohs(mpa->private_data_size) + sizeof (struct mpa_v2_conn_params)); mpa_v2_params.ird = htons(((u16)ep->ird) | (peer2peer ? MPA_V2_PEER2PEER_MODEL : 0)); mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ? (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE ? MPA_V2_RDMA_WRITE_RTR : p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ ? MPA_V2_RDMA_READ_RTR : 0) : 0)); memcpy(mpa->private_data, &mpa_v2_params, sizeof(struct mpa_v2_conn_params)); if (ep->plen) memcpy(mpa->private_data + sizeof(struct mpa_v2_conn_params), pdata, plen); } else if (plen) memcpy(mpa->private_data, pdata, plen); /* * Reference the mpa skb again. This ensures the data area * will remain in memory until the hw acks the tx. * Function fw4_ack() will deref it. */ skb_get(skb); set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); ep->mpa_skb = skb; ep->snd_seq += mpalen; return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); } static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen) { int mpalen, wrlen; struct fw_ofld_tx_data_wr *req; struct mpa_message *mpa; struct sk_buff *skb; struct mpa_v2_conn_params mpa_v2_params; pr_debug("ep %p tid %u pd_len %d\n", ep, ep->hwtid, ep->plen); mpalen = sizeof(*mpa) + plen; if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) mpalen += sizeof(struct mpa_v2_conn_params); wrlen = roundup(mpalen + sizeof *req, 16); skb = get_skb(NULL, wrlen, GFP_KERNEL); if (!skb) { pr_err("%s - cannot alloc skb!\n", __func__); return -ENOMEM; } set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); req = skb_put_zero(skb, wrlen); req->op_to_immdlen = cpu_to_be32( FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | FW_WR_COMPL_F | FW_WR_IMMDLEN_V(mpalen)); req->flowid_len16 = cpu_to_be32( FW_WR_FLOWID_V(ep->hwtid) | FW_WR_LEN16_V(wrlen >> 4)); req->plen = cpu_to_be32(mpalen); req->tunnel_to_proxy = cpu_to_be32( FW_OFLD_TX_DATA_WR_FLUSH_F | FW_OFLD_TX_DATA_WR_SHOVE_F); mpa = (struct mpa_message *)(req + 1); memset(mpa, 0, sizeof(*mpa)); memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); mpa->flags = 0; if (ep->mpa_attr.crc_enabled) mpa->flags |= MPA_CRC; if (ep->mpa_attr.recv_marker_enabled) mpa->flags |= MPA_MARKERS; mpa->revision = ep->mpa_attr.version; mpa->private_data_size = htons(plen); if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { mpa->flags |= MPA_ENHANCED_RDMA_CONN; mpa->private_data_size = htons(ntohs(mpa->private_data_size) + sizeof (struct mpa_v2_conn_params)); mpa_v2_params.ird = htons((u16)ep->ird); mpa_v2_params.ord = htons((u16)ep->ord); if (peer2peer && (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED)) { mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) mpa_v2_params.ord |= htons(MPA_V2_RDMA_WRITE_RTR); else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) mpa_v2_params.ord |= htons(MPA_V2_RDMA_READ_RTR); } memcpy(mpa->private_data, &mpa_v2_params, sizeof(struct mpa_v2_conn_params)); if (ep->plen) memcpy(mpa->private_data + sizeof(struct mpa_v2_conn_params), pdata, plen); } else if (plen) memcpy(mpa->private_data, pdata, plen); /* * Reference the mpa skb. This ensures the data area * will remain in memory until the hw acks the tx. * Function fw4_ack() will deref it. */ skb_get(skb); t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); ep->mpa_skb = skb; __state_set(&ep->com, MPA_REP_SENT); ep->snd_seq += mpalen; return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); } static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; struct cpl_act_establish *req = cplhdr(skb); unsigned short tcp_opt = ntohs(req->tcp_opt); unsigned int tid = GET_TID(req); unsigned int atid = TID_TID_G(ntohl(req->tos_atid)); struct tid_info *t = dev->rdev.lldi.tids; int ret; ep = lookup_atid(t, atid); pr_debug("ep %p tid %u snd_isn %u rcv_isn %u\n", ep, tid, be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn)); mutex_lock(&ep->com.mutex); dst_confirm(ep->dst); /* setup the hwtid for this connection */ ep->hwtid = tid; cxgb4_insert_tid(t, ep, tid, ep->com.local_addr.ss_family); insert_ep_tid(ep); ep->snd_seq = be32_to_cpu(req->snd_isn); ep->rcv_seq = be32_to_cpu(req->rcv_isn); ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt); set_emss(ep, tcp_opt); /* dealloc the atid */ xa_erase_irq(&ep->com.dev->atids, atid); cxgb4_free_atid(t, atid); set_bit(ACT_ESTAB, &ep->com.history); /* start MPA negotiation */ ret = send_flowc(ep); if (ret) goto err; if (ep->retry_with_mpa_v1) ret = send_mpa_req(ep, skb, 1); else ret = send_mpa_req(ep, skb, mpa_rev); if (ret) goto err; mutex_unlock(&ep->com.mutex); return 0; err: mutex_unlock(&ep->com.mutex); connect_reply_upcall(ep, -ENOMEM); c4iw_ep_disconnect(ep, 0, GFP_KERNEL); return 0; } static void close_complete_upcall(struct c4iw_ep *ep, int status) { struct iw_cm_event event; pr_debug("ep %p tid %u\n", ep, ep->hwtid); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_CLOSE; event.status = status; if (ep->com.cm_id) { pr_debug("close complete delivered ep %p cm_id %p tid %u\n", ep, ep->com.cm_id, ep->hwtid); ep->com.cm_id->event_handler(ep->com.cm_id, &event); deref_cm_id(&ep->com); set_bit(CLOSE_UPCALL, &ep->com.history); } } static void peer_close_upcall(struct c4iw_ep *ep) { struct iw_cm_event event; pr_debug("ep %p tid %u\n", ep, ep->hwtid); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_DISCONNECT; if (ep->com.cm_id) { pr_debug("peer close delivered ep %p cm_id %p tid %u\n", ep, ep->com.cm_id, ep->hwtid); ep->com.cm_id->event_handler(ep->com.cm_id, &event); set_bit(DISCONN_UPCALL, &ep->com.history); } } static void peer_abort_upcall(struct c4iw_ep *ep) { struct iw_cm_event event; pr_debug("ep %p tid %u\n", ep, ep->hwtid); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_CLOSE; event.status = -ECONNRESET; if (ep->com.cm_id) { pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep, ep->com.cm_id, ep->hwtid); ep->com.cm_id->event_handler(ep->com.cm_id, &event); deref_cm_id(&ep->com); set_bit(ABORT_UPCALL, &ep->com.history); } } static void connect_reply_upcall(struct c4iw_ep *ep, int status) { struct iw_cm_event event; pr_debug("ep %p tid %u status %d\n", ep, ep->hwtid, status); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_CONNECT_REPLY; event.status = status; memcpy(&event.local_addr, &ep->com.local_addr, sizeof(ep->com.local_addr)); memcpy(&event.remote_addr, &ep->com.remote_addr, sizeof(ep->com.remote_addr)); if ((status == 0) || (status == -ECONNREFUSED)) { if (!ep->tried_with_mpa_v1) { /* this means MPA_v2 is used */ event.ord = ep->ird; event.ird = ep->ord; event.private_data_len = ep->plen - sizeof(struct mpa_v2_conn_params); event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) + sizeof(struct mpa_v2_conn_params); } else { /* this means MPA_v1 is used */ event.ord = cur_max_read_depth(ep->com.dev); event.ird = cur_max_read_depth(ep->com.dev); event.private_data_len = ep->plen; event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); } } pr_debug("ep %p tid %u status %d\n", ep, ep->hwtid, status); set_bit(CONN_RPL_UPCALL, &ep->com.history); ep->com.cm_id->event_handler(ep->com.cm_id, &event); if (status < 0) deref_cm_id(&ep->com); } static int connect_request_upcall(struct c4iw_ep *ep) { struct iw_cm_event event; int ret; pr_debug("ep %p tid %u\n", ep, ep->hwtid); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_CONNECT_REQUEST; memcpy(&event.local_addr, &ep->com.local_addr, sizeof(ep->com.local_addr)); memcpy(&event.remote_addr, &ep->com.remote_addr, sizeof(ep->com.remote_addr)); event.provider_data = ep; if (!ep->tried_with_mpa_v1) { /* this means MPA_v2 is used */ event.ord = ep->ord; event.ird = ep->ird; event.private_data_len = ep->plen - sizeof(struct mpa_v2_conn_params); event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) + sizeof(struct mpa_v2_conn_params); } else { /* this means MPA_v1 is used. Send max supported */ event.ord = cur_max_read_depth(ep->com.dev); event.ird = cur_max_read_depth(ep->com.dev); event.private_data_len = ep->plen; event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); } c4iw_get_ep(&ep->com); ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id, &event); if (ret) c4iw_put_ep(&ep->com); set_bit(CONNREQ_UPCALL, &ep->com.history); c4iw_put_ep(&ep->parent_ep->com); return ret; } static void established_upcall(struct c4iw_ep *ep) { struct iw_cm_event event; pr_debug("ep %p tid %u\n", ep, ep->hwtid); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_ESTABLISHED; event.ird = ep->ord; event.ord = ep->ird; if (ep->com.cm_id) { pr_debug("ep %p tid %u\n", ep, ep->hwtid); ep->com.cm_id->event_handler(ep->com.cm_id, &event); set_bit(ESTAB_UPCALL, &ep->com.history); } } static int update_rx_credits(struct c4iw_ep *ep, u32 credits) { struct sk_buff *skb; u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16); u32 credit_dack; pr_debug("ep %p tid %u credits %u\n", ep, ep->hwtid, credits); skb = get_skb(NULL, wrlen, GFP_KERNEL); if (!skb) { pr_err("update_rx_credits - cannot alloc skb!\n"); return 0; } /* * If we couldn't specify the entire rcv window at connection setup * due to the limit in the number of bits in the RCV_BUFSIZ field, * then add the overage in to the credits returned. */ if (ep->rcv_win > RCV_BUFSIZ_M * 1024) credits += ep->rcv_win - RCV_BUFSIZ_M * 1024; credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F | RX_DACK_MODE_V(dack_mode); cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx, credit_dack); c4iw_ofld_send(&ep->com.dev->rdev, skb); return credits; } #define RELAXED_IRD_NEGOTIATION 1 /* * process_mpa_reply - process streaming mode MPA reply * * Returns: * * 0 upon success indicating a connect request was delivered to the ULP * or the mpa request is incomplete but valid so far. * * 1 if a failure requires the caller to close the connection. * * 2 if a failure requires the caller to abort the connection. */ static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb) { struct mpa_message *mpa; struct mpa_v2_conn_params *mpa_v2_params; u16 plen; u16 resp_ird, resp_ord; u8 rtr_mismatch = 0, insuff_ird = 0; struct c4iw_qp_attributes attrs; enum c4iw_qp_attr_mask mask; int err; int disconnect = 0; pr_debug("ep %p tid %u\n", ep, ep->hwtid); /* * If we get more than the supported amount of private data * then we must fail this connection. */ if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { err = -EINVAL; goto err_stop_timer; } /* * copy the new data into our accumulation buffer. */ skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), skb->len); ep->mpa_pkt_len += skb->len; /* * if we don't even have the mpa message, then bail. */ if (ep->mpa_pkt_len < sizeof(*mpa)) return 0; mpa = (struct mpa_message *) ep->mpa_pkt; /* Validate MPA header. */ if (mpa->revision > mpa_rev) { pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", __func__, mpa_rev, mpa->revision); err = -EPROTO; goto err_stop_timer; } if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) { err = -EPROTO; goto err_stop_timer; } plen = ntohs(mpa->private_data_size); /* * Fail if there's too much private data. */ if (plen > MPA_MAX_PRIVATE_DATA) { err = -EPROTO; goto err_stop_timer; } /* * If plen does not account for pkt size */ if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { err = -EPROTO; goto err_stop_timer; } ep->plen = (u8) plen; /* * If we don't have all the pdata yet, then bail. * We'll continue process when more data arrives. */ if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) return 0; if (mpa->flags & MPA_REJECT) { err = -ECONNREFUSED; goto err_stop_timer; } /* * Stop mpa timer. If it expired, then * we ignore the MPA reply. process_timeout() * will abort the connection. */ if (stop_ep_timer(ep)) return 0; /* * If we get here we have accumulated the entire mpa * start reply message including private data. And * the MPA header is valid. */ __state_set(&ep->com, FPDU_MODE); ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; ep->mpa_attr.version = mpa->revision; ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; if (mpa->revision == 2) { ep->mpa_attr.enhanced_rdma_conn = mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; if (ep->mpa_attr.enhanced_rdma_conn) { mpa_v2_params = (struct mpa_v2_conn_params *) (ep->mpa_pkt + sizeof(*mpa)); resp_ird = ntohs(mpa_v2_params->ird) & MPA_V2_IRD_ORD_MASK; resp_ord = ntohs(mpa_v2_params->ord) & MPA_V2_IRD_ORD_MASK; pr_debug("responder ird %u ord %u ep ird %u ord %u\n", resp_ird, resp_ord, ep->ird, ep->ord); /* * This is a double-check. Ideally, below checks are * not required since ird/ord stuff has been taken * care of in c4iw_accept_cr */ if (ep->ird < resp_ord) { if (RELAXED_IRD_NEGOTIATION && resp_ord <= ep->com.dev->rdev.lldi.max_ordird_qp) ep->ird = resp_ord; else insuff_ird = 1; } else if (ep->ird > resp_ord) { ep->ird = resp_ord; } if (ep->ord > resp_ird) { if (RELAXED_IRD_NEGOTIATION) ep->ord = resp_ird; else insuff_ird = 1; } if (insuff_ird) { err = -ENOMEM; ep->ird = resp_ord; ep->ord = resp_ird; } if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL) { if (ntohs(mpa_v2_params->ord) & MPA_V2_RDMA_WRITE_RTR) ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_RDMA_WRITE; else if (ntohs(mpa_v2_params->ord) & MPA_V2_RDMA_READ_RTR) ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; } } } else if (mpa->revision == 1) if (peer2peer) ep->mpa_attr.p2p_type = p2p_type; pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n", ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, ep->mpa_attr.p2p_type, p2p_type); /* * If responder's RTR does not match with that of initiator, assign * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not * generated when moving QP to RTS state. * A TERM message will be sent after QP has moved to RTS state */ if ((ep->mpa_attr.version == 2) && peer2peer && (ep->mpa_attr.p2p_type != p2p_type)) { ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; rtr_mismatch = 1; } attrs.mpa_attr = ep->mpa_attr; attrs.max_ird = ep->ird; attrs.max_ord = ep->ord; attrs.llp_stream_handle = ep; attrs.next_state = C4IW_QP_STATE_RTS; mask = C4IW_QP_ATTR_NEXT_STATE | C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR | C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD; /* bind QP and TID with INIT_WR */ err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, mask, &attrs, 1); if (err) goto err; /* * If responder's RTR requirement did not match with what initiator * supports, generate TERM message */ if (rtr_mismatch) { pr_err("%s: RTR mismatch, sending TERM\n", __func__); attrs.layer_etype = LAYER_MPA | DDP_LLP; attrs.ecode = MPA_NOMATCH_RTR; attrs.next_state = C4IW_QP_STATE_TERMINATE; attrs.send_term = 1; err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); err = -ENOMEM; disconnect = 1; goto out; } /* * Generate TERM if initiator IRD is not sufficient for responder * provided ORD. Currently, we do the same behaviour even when * responder provided IRD is also not sufficient as regards to * initiator ORD. */ if (insuff_ird) { pr_err("%s: Insufficient IRD, sending TERM\n", __func__); attrs.layer_etype = LAYER_MPA | DDP_LLP; attrs.ecode = MPA_INSUFF_IRD; attrs.next_state = C4IW_QP_STATE_TERMINATE; attrs.send_term = 1; err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); err = -ENOMEM; disconnect = 1; goto out; } goto out; err_stop_timer: stop_ep_timer(ep); err: disconnect = 2; out: connect_reply_upcall(ep, err); return disconnect; } /* * process_mpa_request - process streaming mode MPA request * * Returns: * * 0 upon success indicating a connect request was delivered to the ULP * or the mpa request is incomplete but valid so far. * * 1 if a failure requires the caller to close the connection. * * 2 if a failure requires the caller to abort the connection. */ static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb) { struct mpa_message *mpa; struct mpa_v2_conn_params *mpa_v2_params; u16 plen; pr_debug("ep %p tid %u\n", ep, ep->hwtid); /* * If we get more than the supported amount of private data * then we must fail this connection. */ if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) goto err_stop_timer; pr_debug("enter (%s line %u)\n", __FILE__, __LINE__); /* * Copy the new data into our accumulation buffer. */ skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), skb->len); ep->mpa_pkt_len += skb->len; /* * If we don't even have the mpa message, then bail. * We'll continue process when more data arrives. */ if (ep->mpa_pkt_len < sizeof(*mpa)) return 0; pr_debug("enter (%s line %u)\n", __FILE__, __LINE__); mpa = (struct mpa_message *) ep->mpa_pkt; /* * Validate MPA Header. */ if (mpa->revision > mpa_rev) { pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", __func__, mpa_rev, mpa->revision); goto err_stop_timer; } if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) goto err_stop_timer; plen = ntohs(mpa->private_data_size); /* * Fail if there's too much private data. */ if (plen > MPA_MAX_PRIVATE_DATA) goto err_stop_timer; /* * If plen does not account for pkt size */ if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) goto err_stop_timer; ep->plen = (u8) plen; /* * If we don't have all the pdata yet, then bail. */ if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) return 0; /* * If we get here we have accumulated the entire mpa * start reply message including private data. */ ep->mpa_attr.initiator = 0; ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; ep->mpa_attr.recv_marker_enabled = markers_enabled; ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; ep->mpa_attr.version = mpa->revision; if (mpa->revision == 1) ep->tried_with_mpa_v1 = 1; ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; if (mpa->revision == 2) { ep->mpa_attr.enhanced_rdma_conn = mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; if (ep->mpa_attr.enhanced_rdma_conn) { mpa_v2_params = (struct mpa_v2_conn_params *) (ep->mpa_pkt + sizeof(*mpa)); ep->ird = ntohs(mpa_v2_params->ird) & MPA_V2_IRD_ORD_MASK; ep->ird = min_t(u32, ep->ird, cur_max_read_depth(ep->com.dev)); ep->ord = ntohs(mpa_v2_params->ord) & MPA_V2_IRD_ORD_MASK; ep->ord = min_t(u32, ep->ord, cur_max_read_depth(ep->com.dev)); pr_debug("initiator ird %u ord %u\n", ep->ird, ep->ord); if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL) if (peer2peer) { if (ntohs(mpa_v2_params->ord) & MPA_V2_RDMA_WRITE_RTR) ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_RDMA_WRITE; else if (ntohs(mpa_v2_params->ord) & MPA_V2_RDMA_READ_RTR) ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; } } } else if (mpa->revision == 1) if (peer2peer) ep->mpa_attr.p2p_type = p2p_type; pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n", ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, ep->mpa_attr.p2p_type); __state_set(&ep->com, MPA_REQ_RCVD); /* drive upcall */ mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING); if (ep->parent_ep->com.state != DEAD) { if (connect_request_upcall(ep)) goto err_unlock_parent; } else { goto err_unlock_parent; } mutex_unlock(&ep->parent_ep->com.mutex); return 0; err_unlock_parent: mutex_unlock(&ep->parent_ep->com.mutex); goto err_out; err_stop_timer: (void)stop_ep_timer(ep); err_out: return 2; } static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; struct cpl_rx_data *hdr = cplhdr(skb); unsigned int dlen = ntohs(hdr->len); unsigned int tid = GET_TID(hdr); __u8 status = hdr->status; int disconnect = 0; ep = get_ep_from_tid(dev, tid); if (!ep) return 0; pr_debug("ep %p tid %u dlen %u\n", ep, ep->hwtid, dlen); skb_pull(skb, sizeof(*hdr)); skb_trim(skb, dlen); mutex_lock(&ep->com.mutex); switch (ep->com.state) { case MPA_REQ_SENT: update_rx_credits(ep, dlen); ep->rcv_seq += dlen; disconnect = process_mpa_reply(ep, skb); break; case MPA_REQ_WAIT: update_rx_credits(ep, dlen); ep->rcv_seq += dlen; disconnect = process_mpa_request(ep, skb); break; case FPDU_MODE: { struct c4iw_qp_attributes attrs; update_rx_credits(ep, dlen); if (status) pr_err("%s Unexpected streaming data." \ " qpid %u ep %p state %d tid %u status %d\n", __func__, ep->com.qp->wq.sq.qid, ep, ep->com.state, ep->hwtid, status); attrs.next_state = C4IW_QP_STATE_TERMINATE; c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); disconnect = 1; break; } default: break; } mutex_unlock(&ep->com.mutex); if (disconnect) c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL); c4iw_put_ep(&ep->com); return 0; } static void complete_cached_srq_buffers(struct c4iw_ep *ep, u32 srqidx) { enum chip_type adapter_type; adapter_type = ep->com.dev->rdev.lldi.adapter_type; /* * If this TCB had a srq buffer cached, then we must complete * it. For user mode, that means saving the srqidx in the * user/kernel status page for this qp. For kernel mode, just * synthesize the CQE now. */ if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T5 && srqidx) { if (ep->com.qp->ibqp.uobject) t4_set_wq_in_error(&ep->com.qp->wq, srqidx); else c4iw_flush_srqidx(ep->com.qp, srqidx); } } static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb) { u32 srqidx; struct c4iw_ep *ep; struct cpl_abort_rpl_rss6 *rpl = cplhdr(skb); int release = 0; unsigned int tid = GET_TID(rpl); ep = get_ep_from_tid(dev, tid); if (!ep) { pr_warn("Abort rpl to freed endpoint\n"); return 0; } if (ep->com.qp && ep->com.qp->srq) { srqidx = ABORT_RSS_SRQIDX_G(be32_to_cpu(rpl->srqidx_status)); complete_cached_srq_buffers(ep, srqidx ? srqidx : ep->srqe_idx); } pr_debug("ep %p tid %u\n", ep, ep->hwtid); mutex_lock(&ep->com.mutex); switch (ep->com.state) { case ABORTING: c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); __state_set(&ep->com, DEAD); release = 1; break; default: pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state); break; } mutex_unlock(&ep->com.mutex); if (release) { close_complete_upcall(ep, -ECONNRESET); release_ep_resources(ep); } c4iw_put_ep(&ep->com); return 0; } static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid) { struct sk_buff *skb; struct fw_ofld_connection_wr *req; unsigned int mtu_idx; u32 wscale; struct sockaddr_in *sin; int win; skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); req = __skb_put_zero(skb, sizeof(*req)); req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR)); req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); req->le.filter = cpu_to_be32(cxgb4_select_ntuple( ep->com.dev->rdev.lldi.ports[0], ep->l2t)); sin = (struct sockaddr_in *)&ep->com.local_addr; req->le.lport = sin->sin_port; req->le.u.ipv4.lip = sin->sin_addr.s_addr; sin = (struct sockaddr_in *)&ep->com.remote_addr; req->le.pport = sin->sin_port; req->le.u.ipv4.pip = sin->sin_addr.s_addr; req->tcb.t_state_to_astid = htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) | FW_OFLD_CONNECTION_WR_ASTID_V(atid)); req->tcb.cplrxdataack_cplpassacceptrpl = htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F); req->tcb.tx_max = (__force __be32) jiffies; req->tcb.rcv_adv = htons(1); cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, enable_tcp_timestamps, (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); wscale = cxgb_compute_wscale(rcv_win); /* * Specify the largest window that will fit in opt0. The * remainder will be specified in the rx_data_ack. */ win = ep->rcv_win >> 10; if (win > RCV_BUFSIZ_M) win = RCV_BUFSIZ_M; req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F | (nocong ? NO_CONG_F : 0) | KEEP_ALIVE_F | DELACK_F | WND_SCALE_V(wscale) | MSS_IDX_V(mtu_idx) | L2T_IDX_V(ep->l2t->idx) | TX_CHAN_V(ep->tx_chan) | SMAC_SEL_V(ep->smac_idx) | DSCP_V(ep->tos >> 2) | ULP_MODE_V(ULP_MODE_TCPDDP) | RCV_BUFSIZ_V(win)); req->tcb.opt2 = (__force __be32) (PACE_V(1) | TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) | RX_CHANNEL_V(0) | CCTRL_ECN_V(enable_ecn) | RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid)); if (enable_tcp_timestamps) req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F; if (enable_tcp_sack) req->tcb.opt2 |= (__force __be32)SACK_EN_F; if (wscale && enable_tcp_window_scaling) req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F; req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0); req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2); set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx); set_bit(ACT_OFLD_CONN, &ep->com.history); return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); } /* * Some of the error codes above implicitly indicate that there is no TID * allocated with the result of an ACT_OPEN. We use this predicate to make * that explicit. */ static inline int act_open_has_tid(int status) { return (status != CPL_ERR_TCAM_PARITY && status != CPL_ERR_TCAM_MISS && status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST_SYNRECV && status != CPL_ERR_CONN_EXIST); } static char *neg_adv_str(unsigned int status) { switch (status) { case CPL_ERR_RTX_NEG_ADVICE: return "Retransmit timeout"; case CPL_ERR_PERSIST_NEG_ADVICE: return "Persist timeout"; case CPL_ERR_KEEPALV_NEG_ADVICE: return "Keepalive timeout"; default: return "Unknown"; } } static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi) { ep->snd_win = snd_win; ep->rcv_win = rcv_win; pr_debug("snd_win %d rcv_win %d\n", ep->snd_win, ep->rcv_win); } #define ACT_OPEN_RETRY_COUNT 2 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip, struct dst_entry *dst, struct c4iw_dev *cdev, bool clear_mpa_v1, enum chip_type adapter_type, u8 tos) { struct neighbour *n; int err, step; struct net_device *pdev; n = dst_neigh_lookup(dst, peer_ip); if (!n) return -ENODEV; rcu_read_lock(); err = -ENOMEM; if (n->dev->flags & IFF_LOOPBACK) { if (iptype == 4) pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip); else if (IS_ENABLED(CONFIG_IPV6)) for_each_netdev(&init_net, pdev) { if (ipv6_chk_addr(&init_net, (struct in6_addr *)peer_ip, pdev, 1)) break; } else pdev = NULL; if (!pdev) { err = -ENODEV; goto out; } ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, n, pdev, rt_tos2priority(tos)); if (!ep->l2t) { dev_put(pdev); goto out; } ep->mtu = pdev->mtu; ep->tx_chan = cxgb4_port_chan(pdev); ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx; step = cdev->rdev.lldi.ntxq / cdev->rdev.lldi.nchan; ep->txq_idx = cxgb4_port_idx(pdev) * step; step = cdev->rdev.lldi.nrxq / cdev->rdev.lldi.nchan; ep->ctrlq_idx = cxgb4_port_idx(pdev); ep->rss_qid = cdev->rdev.lldi.rxq_ids[ cxgb4_port_idx(pdev) * step]; set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); dev_put(pdev); } else { pdev = get_real_dev(n->dev); ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, n, pdev, rt_tos2priority(tos)); if (!ep->l2t) goto out; ep->mtu = dst_mtu(dst); ep->tx_chan = cxgb4_port_chan(pdev); ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx; step = cdev->rdev.lldi.ntxq / cdev->rdev.lldi.nchan; ep->txq_idx = cxgb4_port_idx(pdev) * step; ep->ctrlq_idx = cxgb4_port_idx(pdev); step = cdev->rdev.lldi.nrxq / cdev->rdev.lldi.nchan; ep->rss_qid = cdev->rdev.lldi.rxq_ids[ cxgb4_port_idx(pdev) * step]; set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); if (clear_mpa_v1) { ep->retry_with_mpa_v1 = 0; ep->tried_with_mpa_v1 = 0; } } err = 0; out: rcu_read_unlock(); neigh_release(n); return err; } static int c4iw_reconnect(struct c4iw_ep *ep) { int err = 0; int size = 0; struct sockaddr_in *laddr = (struct sockaddr_in *) &ep->com.cm_id->m_local_addr; struct sockaddr_in *raddr = (struct sockaddr_in *) &ep->com.cm_id->m_remote_addr; struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *) &ep->com.cm_id->m_local_addr; struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *) &ep->com.cm_id->m_remote_addr; int iptype; __u8 *ra; pr_debug("qp %p cm_id %p\n", ep->com.qp, ep->com.cm_id); c4iw_init_wr_wait(ep->com.wr_waitp); /* When MPA revision is different on nodes, the node with MPA_rev=2 * tries to reconnect with MPA_rev 1 for the same EP through * c4iw_reconnect(), where the same EP is assigned with new tid for * further connection establishment. As we are using the same EP pointer * for reconnect, few skbs are used during the previous c4iw_connect(), * which leaves the EP with inadequate skbs for further * c4iw_reconnect(), Further causing a crash due to an empty * skb_list() during peer_abort(). Allocate skbs which is already used. */ size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list)); if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) { err = -ENOMEM; goto fail1; } /* * Allocate an active TID to initiate a TCP connection. */ ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep); if (ep->atid == -1) { pr_err("%s - cannot alloc atid\n", __func__); err = -ENOMEM; goto fail2; } err = xa_insert_irq(&ep->com.dev->atids, ep->atid, ep, GFP_KERNEL); if (err) goto fail2a; /* find a route */ if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) { ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev, laddr->sin_addr.s_addr, raddr->sin_addr.s_addr, laddr->sin_port, raddr->sin_port, ep->com.cm_id->tos); iptype = 4; ra = (__u8 *)&raddr->sin_addr; } else { ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi, get_real_dev, laddr6->sin6_addr.s6_addr, raddr6->sin6_addr.s6_addr, laddr6->sin6_port, raddr6->sin6_port, ep->com.cm_id->tos, raddr6->sin6_scope_id); iptype = 6; ra = (__u8 *)&raddr6->sin6_addr; } if (!ep->dst) { pr_err("%s - cannot find route\n", __func__); err = -EHOSTUNREACH; goto fail3; } err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false, ep->com.dev->rdev.lldi.adapter_type, ep->com.cm_id->tos); if (err) { pr_err("%s - cannot alloc l2e\n", __func__); goto fail4; } pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, ep->l2t->idx); state_set(&ep->com, CONNECTING); ep->tos = ep->com.cm_id->tos; /* send connect request to rnic */ err = send_connect(ep); if (!err) goto out; cxgb4_l2t_release(ep->l2t); fail4: dst_release(ep->dst); fail3: xa_erase_irq(&ep->com.dev->atids, ep->atid); fail2a: cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); fail2: /* * remember to send notification to upper layer. * We are in here so the upper layer is not aware that this is * re-connect attempt and so, upper layer is still waiting for * response of 1st connect request. */ connect_reply_upcall(ep, -ECONNRESET); fail1: c4iw_put_ep(&ep->com); out: return err; } static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; struct cpl_act_open_rpl *rpl = cplhdr(skb); unsigned int atid = TID_TID_G(AOPEN_ATID_G( ntohl(rpl->atid_status))); struct tid_info *t = dev->rdev.lldi.tids; int status = AOPEN_STATUS_G(ntohl(rpl->atid_status)); struct sockaddr_in *la; struct sockaddr_in *ra; struct sockaddr_in6 *la6; struct sockaddr_in6 *ra6; int ret = 0; ep = lookup_atid(t, atid); la = (struct sockaddr_in *)&ep->com.local_addr; ra = (struct sockaddr_in *)&ep->com.remote_addr; la6 = (struct sockaddr_in6 *)&ep->com.local_addr; ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr; pr_debug("ep %p atid %u status %u errno %d\n", ep, atid, status, status2errno(status)); if (cxgb_is_neg_adv(status)) { pr_debug("Connection problems for atid %u status %u (%s)\n", atid, status, neg_adv_str(status)); ep->stats.connect_neg_adv++; mutex_lock(&dev->rdev.stats.lock); dev->rdev.stats.neg_adv++; mutex_unlock(&dev->rdev.stats.lock); return 0; } set_bit(ACT_OPEN_RPL, &ep->com.history); /* * Log interesting failures. */ switch (status) { case CPL_ERR_CONN_RESET: case CPL_ERR_CONN_TIMEDOUT: break; case CPL_ERR_TCAM_FULL: mutex_lock(&dev->rdev.stats.lock); dev->rdev.stats.tcam_full++; mutex_unlock(&dev->rdev.stats.lock); if (ep->com.local_addr.ss_family == AF_INET && dev->rdev.lldi.enable_fw_ofld_conn) { ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G( ntohl(rpl->atid_status)))); if (ret) goto fail; return 0; } break; case CPL_ERR_CONN_EXIST: if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { set_bit(ACT_RETRY_INUSE, &ep->com.history); if (ep->com.remote_addr.ss_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) &ep->com.local_addr; cxgb4_clip_release( ep->com.dev->rdev.lldi.ports[0], (const u32 *) &sin6->sin6_addr.s6_addr, 1); } xa_erase_irq(&ep->com.dev->atids, atid); cxgb4_free_atid(t, atid); dst_release(ep->dst); cxgb4_l2t_release(ep->l2t); c4iw_reconnect(ep); return 0; } break; default: if (ep->com.local_addr.ss_family == AF_INET) { pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n", atid, status, status2errno(status), &la->sin_addr.s_addr, ntohs(la->sin_port), &ra->sin_addr.s_addr, ntohs(ra->sin_port)); } else { pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n", atid, status, status2errno(status), la6->sin6_addr.s6_addr, ntohs(la6->sin6_port), ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port)); } break; } fail: connect_reply_upcall(ep, status2errno(status)); state_set(&ep->com, DEAD); if (ep->com.remote_addr.ss_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ep->com.local_addr; cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], (const u32 *)&sin6->sin6_addr.s6_addr, 1); } if (status && act_open_has_tid(status)) cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl), ep->com.local_addr.ss_family); xa_erase_irq(&ep->com.dev->atids, atid); cxgb4_free_atid(t, atid); dst_release(ep->dst); cxgb4_l2t_release(ep->l2t); c4iw_put_ep(&ep->com); return 0; } static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_pass_open_rpl *rpl = cplhdr(skb); unsigned int stid = GET_TID(rpl); struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); if (!ep) { pr_warn("%s stid %d lookup failure!\n", __func__, stid); goto out; } pr_debug("ep %p status %d error %d\n", ep, rpl->status, status2errno(rpl->status)); c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status)); c4iw_put_ep(&ep->com); out: return 0; } static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_close_listsvr_rpl *rpl = cplhdr(skb); unsigned int stid = GET_TID(rpl); struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); if (!ep) { pr_warn("%s stid %d lookup failure!\n", __func__, stid); goto out; } pr_debug("ep %p\n", ep); c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status)); c4iw_put_ep(&ep->com); out: return 0; } static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb, struct cpl_pass_accept_req *req) { struct cpl_pass_accept_rpl *rpl; unsigned int mtu_idx; u64 opt0; u32 opt2; u32 wscale; struct cpl_t5_pass_accept_rpl *rpl5 = NULL; int win; enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; pr_debug("ep %p tid %u\n", ep, ep->hwtid); skb_get(skb); rpl = cplhdr(skb); if (!is_t4(adapter_type)) { skb_trim(skb, roundup(sizeof(*rpl5), 16)); rpl5 = (void *)rpl; INIT_TP_WR(rpl5, ep->hwtid); } else { skb_trim(skb, sizeof(*rpl)); INIT_TP_WR(rpl, ep->hwtid); } OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid)); cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, enable_tcp_timestamps && req->tcpopt.tstamp, (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); wscale = cxgb_compute_wscale(rcv_win); /* * Specify the largest window that will fit in opt0. The * remainder will be specified in the rx_data_ack. */ win = ep->rcv_win >> 10; if (win > RCV_BUFSIZ_M) win = RCV_BUFSIZ_M; opt0 = (nocong ? NO_CONG_F : 0) | KEEP_ALIVE_F | DELACK_F | WND_SCALE_V(wscale) | MSS_IDX_V(mtu_idx) | L2T_IDX_V(ep->l2t->idx) | TX_CHAN_V(ep->tx_chan) | SMAC_SEL_V(ep->smac_idx) | DSCP_V(ep->tos >> 2) | ULP_MODE_V(ULP_MODE_TCPDDP) | RCV_BUFSIZ_V(win); opt2 = RX_CHANNEL_V(0) | RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); if (enable_tcp_timestamps && req->tcpopt.tstamp) opt2 |= TSTAMPS_EN_F; if (enable_tcp_sack && req->tcpopt.sack) opt2 |= SACK_EN_F; if (wscale && enable_tcp_window_scaling) opt2 |= WND_SCALE_EN_F; if (enable_ecn) { const struct tcphdr *tcph; u32 hlen = ntohl(req->hdr_len); if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5) tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) + IP_HDR_LEN_G(hlen); else tcph = (const void *)(req + 1) + T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen); if (tcph->ece && tcph->cwr) opt2 |= CCTRL_ECN_V(1); } if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { u32 isn = (prandom_u32() & ~7UL) - 1; opt2 |= T5_OPT_2_VALID_F; opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); opt2 |= T5_ISS_F; rpl5 = (void *)rpl; memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16)); if (peer2peer) isn += 4; rpl5->iss = cpu_to_be32(isn); pr_debug("iss %u\n", be32_to_cpu(rpl5->iss)); } rpl->opt0 = cpu_to_be64(opt0); rpl->opt2 = cpu_to_be32(opt2); set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure); return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); } static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb) { pr_debug("c4iw_dev %p tid %u\n", dev, hwtid); skb_trim(skb, sizeof(struct cpl_tid_release)); release_tid(&dev->rdev, hwtid, skb); return; } static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *child_ep = NULL, *parent_ep; struct cpl_pass_accept_req *req = cplhdr(skb); unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid)); struct tid_info *t = dev->rdev.lldi.tids; unsigned int hwtid = GET_TID(req); struct dst_entry *dst; __u8 local_ip[16], peer_ip[16]; __be16 local_port, peer_port; struct sockaddr_in6 *sin6; int err; u16 peer_mss = ntohs(req->tcpopt.mss); int iptype; unsigned short hdrs; u8 tos; parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); if (!parent_ep) { pr_err("%s connect request on invalid stid %d\n", __func__, stid); goto reject; } if (state_read(&parent_ep->com) != LISTEN) { pr_err("%s - listening ep not in LISTEN\n", __func__); goto reject; } if (parent_ep->com.cm_id->tos_set) tos = parent_ep->com.cm_id->tos; else tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid)); cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, &iptype, local_ip, peer_ip, &local_port, &peer_port); /* Find output route */ if (iptype == 4) { pr_debug("parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n" , parent_ep, hwtid, local_ip, peer_ip, ntohs(local_port), ntohs(peer_port), peer_mss); dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, *(__be32 *)local_ip, *(__be32 *)peer_ip, local_port, peer_port, tos); } else { pr_debug("parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n" , parent_ep, hwtid, local_ip, peer_ip, ntohs(local_port), ntohs(peer_port), peer_mss); dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, local_ip, peer_ip, local_port, peer_port, tos, ((struct sockaddr_in6 *) &parent_ep->com.local_addr)->sin6_scope_id); } if (!dst) { pr_err("%s - failed to find dst entry!\n", __func__); goto reject; } child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL); if (!child_ep) { pr_err("%s - failed to allocate ep entry!\n", __func__); dst_release(dst); goto reject; } err = import_ep(child_ep, iptype, peer_ip, dst, dev, false, parent_ep->com.dev->rdev.lldi.adapter_type, tos); if (err) { pr_err("%s - failed to allocate l2t entry!\n", __func__); dst_release(dst); kfree(child_ep); goto reject; } hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) + sizeof(struct tcphdr) + ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0); if (peer_mss && child_ep->mtu > (peer_mss + hdrs)) child_ep->mtu = peer_mss + hdrs; skb_queue_head_init(&child_ep->com.ep_skb_list); if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF)) goto fail; state_set(&child_ep->com, CONNECTING); child_ep->com.dev = dev; child_ep->com.cm_id = NULL; if (iptype == 4) { struct sockaddr_in *sin = (struct sockaddr_in *) &child_ep->com.local_addr; sin->sin_family = AF_INET; sin->sin_port = local_port; sin->sin_addr.s_addr = *(__be32 *)local_ip; sin = (struct sockaddr_in *)&child_ep->com.local_addr; sin->sin_family = AF_INET; sin->sin_port = ((struct sockaddr_in *) &parent_ep->com.local_addr)->sin_port; sin->sin_addr.s_addr = *(__be32 *)local_ip; sin = (struct sockaddr_in *)&child_ep->com.remote_addr; sin->sin_family = AF_INET; sin->sin_port = peer_port; sin->sin_addr.s_addr = *(__be32 *)peer_ip; } else { sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; sin6->sin6_family = PF_INET6; sin6->sin6_port = local_port; memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; sin6->sin6_family = PF_INET6; sin6->sin6_port = ((struct sockaddr_in6 *) &parent_ep->com.local_addr)->sin6_port; memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr; sin6->sin6_family = PF_INET6; sin6->sin6_port = peer_port; memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16); } c4iw_get_ep(&parent_ep->com); child_ep->parent_ep = parent_ep; child_ep->tos = tos; child_ep->dst = dst; child_ep->hwtid = hwtid; pr_debug("tx_chan %u smac_idx %u rss_qid %u\n", child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid); timer_setup(&child_ep->timer, ep_timeout, 0); cxgb4_insert_tid(t, child_ep, hwtid, child_ep->com.local_addr.ss_family); insert_ep_tid(child_ep); if (accept_cr(child_ep, skb, req)) { c4iw_put_ep(&parent_ep->com); release_ep_resources(child_ep); } else { set_bit(PASS_ACCEPT_REQ, &child_ep->com.history); } if (iptype == 6) { sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0], (const u32 *)&sin6->sin6_addr.s6_addr, 1); } goto out; fail: c4iw_put_ep(&child_ep->com); reject: reject_cr(dev, hwtid, skb); out: if (parent_ep) c4iw_put_ep(&parent_ep->com); return 0; } static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; struct cpl_pass_establish *req = cplhdr(skb); unsigned int tid = GET_TID(req); int ret; u16 tcp_opt = ntohs(req->tcp_opt); ep = get_ep_from_tid(dev, tid); pr_debug("ep %p tid %u\n", ep, ep->hwtid); ep->snd_seq = be32_to_cpu(req->snd_isn); ep->rcv_seq = be32_to_cpu(req->rcv_isn); ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt); pr_debug("ep %p hwtid %u tcp_opt 0x%02x\n", ep, tid, tcp_opt); set_emss(ep, tcp_opt); dst_confirm(ep->dst); mutex_lock(&ep->com.mutex); ep->com.state = MPA_REQ_WAIT; start_ep_timer(ep); set_bit(PASS_ESTAB, &ep->com.history); ret = send_flowc(ep); mutex_unlock(&ep->com.mutex); if (ret) c4iw_ep_disconnect(ep, 1, GFP_KERNEL); c4iw_put_ep(&ep->com); return 0; } static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_peer_close *hdr = cplhdr(skb); struct c4iw_ep *ep; struct c4iw_qp_attributes attrs; int disconnect = 1; int release = 0; unsigned int tid = GET_TID(hdr); int ret; ep = get_ep_from_tid(dev, tid); if (!ep) return 0; pr_debug("ep %p tid %u\n", ep, ep->hwtid); dst_confirm(ep->dst); set_bit(PEER_CLOSE, &ep->com.history); mutex_lock(&ep->com.mutex); switch (ep->com.state) { case MPA_REQ_WAIT: __state_set(&ep->com, CLOSING); break; case MPA_REQ_SENT: __state_set(&ep->com, CLOSING); connect_reply_upcall(ep, -ECONNRESET); break; case MPA_REQ_RCVD: /* * We're gonna mark this puppy DEAD, but keep * the reference on it until the ULP accepts or * rejects the CR. Also wake up anyone waiting * in rdma connection migration (see c4iw_accept_cr()). */ __state_set(&ep->com, CLOSING); pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); break; case MPA_REP_SENT: __state_set(&ep->com, CLOSING); pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); break; case FPDU_MODE: start_ep_timer(ep); __state_set(&ep->com, CLOSING); attrs.next_state = C4IW_QP_STATE_CLOSING; ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); if (ret != -ECONNRESET) { peer_close_upcall(ep); disconnect = 1; } break; case ABORTING: disconnect = 0; break; case CLOSING: __state_set(&ep->com, MORIBUND); disconnect = 0; break; case MORIBUND: (void)stop_ep_timer(ep); if (ep->com.cm_id && ep->com.qp) { attrs.next_state = C4IW_QP_STATE_IDLE; c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); } close_complete_upcall(ep, 0); __state_set(&ep->com, DEAD); release = 1; disconnect = 0; break; case DEAD: disconnect = 0; break; default: WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); } mutex_unlock(&ep->com.mutex); if (disconnect) c4iw_ep_disconnect(ep, 0, GFP_KERNEL); if (release) release_ep_resources(ep); c4iw_put_ep(&ep->com); return 0; } static void finish_peer_abort(struct c4iw_dev *dev, struct c4iw_ep *ep) { complete_cached_srq_buffers(ep, ep->srqe_idx); if (ep->com.cm_id && ep->com.qp) { struct c4iw_qp_attributes attrs; attrs.next_state = C4IW_QP_STATE_ERROR; c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); } peer_abort_upcall(ep); release_ep_resources(ep); c4iw_put_ep(&ep->com); } static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_abort_req_rss6 *req = cplhdr(skb); struct c4iw_ep *ep; struct sk_buff *rpl_skb; struct c4iw_qp_attributes attrs; int ret; int release = 0; unsigned int tid = GET_TID(req); u8 status; u32 srqidx; u32 len = roundup(sizeof(struct cpl_abort_rpl), 16); ep = get_ep_from_tid(dev, tid); if (!ep) return 0; status = ABORT_RSS_STATUS_G(be32_to_cpu(req->srqidx_status)); if (cxgb_is_neg_adv(status)) { pr_debug("Negative advice on abort- tid %u status %d (%s)\n", ep->hwtid, status, neg_adv_str(status)); ep->stats.abort_neg_adv++; mutex_lock(&dev->rdev.stats.lock); dev->rdev.stats.neg_adv++; mutex_unlock(&dev->rdev.stats.lock); goto deref_ep; } pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, ep->com.state); set_bit(PEER_ABORT, &ep->com.history); /* * Wake up any threads in rdma_init() or rdma_fini(). * However, this is not needed if com state is just * MPA_REQ_SENT */ if (ep->com.state != MPA_REQ_SENT) c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); mutex_lock(&ep->com.mutex); switch (ep->com.state) { case CONNECTING: c4iw_put_ep(&ep->parent_ep->com); break; case MPA_REQ_WAIT: (void)stop_ep_timer(ep); break; case MPA_REQ_SENT: (void)stop_ep_timer(ep); if (status != CPL_ERR_CONN_RESET || mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1)) connect_reply_upcall(ep, -ECONNRESET); else { /* * we just don't send notification upwards because we * want to retry with mpa_v1 without upper layers even * knowing it. * * do some housekeeping so as to re-initiate the * connection */ pr_info("%s: mpa_rev=%d. Retrying with mpav1\n", __func__, mpa_rev); ep->retry_with_mpa_v1 = 1; } break; case MPA_REP_SENT: break; case MPA_REQ_RCVD: break; case MORIBUND: case CLOSING: stop_ep_timer(ep); /*FALLTHROUGH*/ case FPDU_MODE: if (ep->com.qp && ep->com.qp->srq) { srqidx = ABORT_RSS_SRQIDX_G( be32_to_cpu(req->srqidx_status)); if (srqidx) { complete_cached_srq_buffers(ep, req->srqidx_status); } else { /* Hold ep ref until finish_peer_abort() */ c4iw_get_ep(&ep->com); __state_set(&ep->com, ABORTING); set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags); read_tcb(ep); break; } } if (ep->com.cm_id && ep->com.qp) { attrs.next_state = C4IW_QP_STATE_ERROR; ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); if (ret) pr_err("%s - qp <- error failed!\n", __func__); } peer_abort_upcall(ep); break; case ABORTING: break; case DEAD: pr_warn("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__); mutex_unlock(&ep->com.mutex); goto deref_ep; default: WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); break; } dst_confirm(ep->dst); if (ep->com.state != ABORTING) { __state_set(&ep->com, DEAD); /* we don't release if we want to retry with mpa_v1 */ if (!ep->retry_with_mpa_v1) release = 1; } mutex_unlock(&ep->com.mutex); rpl_skb = skb_dequeue(&ep->com.ep_skb_list); if (WARN_ON(!rpl_skb)) { release = 1; goto out; } cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx); c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb); out: if (release) release_ep_resources(ep); else if (ep->retry_with_mpa_v1) { if (ep->com.remote_addr.ss_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) &ep->com.local_addr; cxgb4_clip_release( ep->com.dev->rdev.lldi.ports[0], (const u32 *)&sin6->sin6_addr.s6_addr, 1); } xa_erase_irq(&ep->com.dev->hwtids, ep->hwtid); cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid, ep->com.local_addr.ss_family); dst_release(ep->dst); cxgb4_l2t_release(ep->l2t); c4iw_reconnect(ep); } deref_ep: c4iw_put_ep(&ep->com); /* Dereferencing ep, referenced in peer_abort_intr() */ c4iw_put_ep(&ep->com); return 0; } static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; struct c4iw_qp_attributes attrs; struct cpl_close_con_rpl *rpl = cplhdr(skb); int release = 0; unsigned int tid = GET_TID(rpl); ep = get_ep_from_tid(dev, tid); if (!ep) return 0; pr_debug("ep %p tid %u\n", ep, ep->hwtid); /* The cm_id may be null if we failed to connect */ mutex_lock(&ep->com.mutex); set_bit(CLOSE_CON_RPL, &ep->com.history); switch (ep->com.state) { case CLOSING: __state_set(&ep->com, MORIBUND); break; case MORIBUND: (void)stop_ep_timer(ep); if ((ep->com.cm_id) && (ep->com.qp)) { attrs.next_state = C4IW_QP_STATE_IDLE; c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); } close_complete_upcall(ep, 0); __state_set(&ep->com, DEAD); release = 1; break; case ABORTING: case DEAD: break; default: WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); break; } mutex_unlock(&ep->com.mutex); if (release) release_ep_resources(ep); c4iw_put_ep(&ep->com); return 0; } static int terminate(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_rdma_terminate *rpl = cplhdr(skb); unsigned int tid = GET_TID(rpl); struct c4iw_ep *ep; struct c4iw_qp_attributes attrs; ep = get_ep_from_tid(dev, tid); if (ep) { if (ep->com.qp) { pr_warn("TERM received tid %u qpid %u\n", tid, ep->com.qp->wq.sq.qid); attrs.next_state = C4IW_QP_STATE_TERMINATE; c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); } c4iw_put_ep(&ep->com); } else pr_warn("TERM received tid %u no ep/qp\n", tid); return 0; } /* * Upcall from the adapter indicating data has been transmitted. * For us its just the single MPA request or reply. We can now free * the skb holding the mpa message. */ static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; struct cpl_fw4_ack *hdr = cplhdr(skb); u8 credits = hdr->credits; unsigned int tid = GET_TID(hdr); ep = get_ep_from_tid(dev, tid); if (!ep) return 0; pr_debug("ep %p tid %u credits %u\n", ep, ep->hwtid, credits); if (credits == 0) { pr_debug("0 credit ack ep %p tid %u state %u\n", ep, ep->hwtid, state_read(&ep->com)); goto out; } dst_confirm(ep->dst); if (ep->mpa_skb) { pr_debug("last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n", ep, ep->hwtid, state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0); mutex_lock(&ep->com.mutex); kfree_skb(ep->mpa_skb); ep->mpa_skb = NULL; if (test_bit(STOP_MPA_TIMER, &ep->com.flags)) stop_ep_timer(ep); mutex_unlock(&ep->com.mutex); } out: c4iw_put_ep(&ep->com); return 0; } int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len) { int abort; struct c4iw_ep *ep = to_ep(cm_id); pr_debug("ep %p tid %u\n", ep, ep->hwtid); mutex_lock(&ep->com.mutex); if (ep->com.state != MPA_REQ_RCVD) { mutex_unlock(&ep->com.mutex); c4iw_put_ep(&ep->com); return -ECONNRESET; } set_bit(ULP_REJECT, &ep->com.history); if (mpa_rev == 0) abort = 1; else abort = send_mpa_reject(ep, pdata, pdata_len); mutex_unlock(&ep->com.mutex); stop_ep_timer(ep); c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL); c4iw_put_ep(&ep->com); return 0; } int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) { int err; struct c4iw_qp_attributes attrs; enum c4iw_qp_attr_mask mask; struct c4iw_ep *ep = to_ep(cm_id); struct c4iw_dev *h = to_c4iw_dev(cm_id->device); struct c4iw_qp *qp = get_qhp(h, conn_param->qpn); int abort = 0; pr_debug("ep %p tid %u\n", ep, ep->hwtid); mutex_lock(&ep->com.mutex); if (ep->com.state != MPA_REQ_RCVD) { err = -ECONNRESET; goto err_out; } if (!qp) { err = -EINVAL; goto err_out; } set_bit(ULP_ACCEPT, &ep->com.history); if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) || (conn_param->ird > cur_max_read_depth(ep->com.dev))) { err = -EINVAL; goto err_abort; } if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { if (conn_param->ord > ep->ird) { if (RELAXED_IRD_NEGOTIATION) { conn_param->ord = ep->ird; } else { ep->ird = conn_param->ird; ep->ord = conn_param->ord; send_mpa_reject(ep, conn_param->private_data, conn_param->private_data_len); err = -ENOMEM; goto err_abort; } } if (conn_param->ird < ep->ord) { if (RELAXED_IRD_NEGOTIATION && ep->ord <= h->rdev.lldi.max_ordird_qp) { conn_param->ird = ep->ord; } else { err = -ENOMEM; goto err_abort; } } } ep->ird = conn_param->ird; ep->ord = conn_param->ord; if (ep->mpa_attr.version == 1) { if (peer2peer && ep->ird == 0) ep->ird = 1; } else { if (peer2peer && (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) && (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0) ep->ird = 1; } pr_debug("ird %d ord %d\n", ep->ird, ep->ord); ep->com.cm_id = cm_id; ref_cm_id(&ep->com); ep->com.qp = qp; ref_qp(ep); /* bind QP to EP and move to RTS */ attrs.mpa_attr = ep->mpa_attr; attrs.max_ird = ep->ird; attrs.max_ord = ep->ord; attrs.llp_stream_handle = ep; attrs.next_state = C4IW_QP_STATE_RTS; /* bind QP and TID with INIT_WR */ mask = C4IW_QP_ATTR_NEXT_STATE | C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR | C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD; err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, mask, &attrs, 1); if (err) goto err_deref_cm_id; set_bit(STOP_MPA_TIMER, &ep->com.flags); err = send_mpa_reply(ep, conn_param->private_data, conn_param->private_data_len); if (err) goto err_deref_cm_id; __state_set(&ep->com, FPDU_MODE); established_upcall(ep); mutex_unlock(&ep->com.mutex); c4iw_put_ep(&ep->com); return 0; err_deref_cm_id: deref_cm_id(&ep->com); err_abort: abort = 1; err_out: mutex_unlock(&ep->com.mutex); if (abort) c4iw_ep_disconnect(ep, 1, GFP_KERNEL); c4iw_put_ep(&ep->com); return err; } static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) { struct in_device *ind; int found = 0; struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr; struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr; ind = in_dev_get(dev->rdev.lldi.ports[0]); if (!ind) return -EADDRNOTAVAIL; for_primary_ifa(ind) { laddr->sin_addr.s_addr = ifa->ifa_address; raddr->sin_addr.s_addr = ifa->ifa_address; found = 1; break; } endfor_ifa(ind); in_dev_put(ind); return found ? 0 : -EADDRNOTAVAIL; } static int get_lladdr(struct net_device *dev, struct in6_addr *addr, unsigned char banned_flags) { struct inet6_dev *idev; int err = -EADDRNOTAVAIL; rcu_read_lock(); idev = __in6_dev_get(dev); if (idev != NULL) { struct inet6_ifaddr *ifp; read_lock_bh(&idev->lock); list_for_each_entry(ifp, &idev->addr_list, if_list) { if (ifp->scope == IFA_LINK && !(ifp->flags & banned_flags)) { memcpy(addr, &ifp->addr, 16); err = 0; break; } } read_unlock_bh(&idev->lock); } rcu_read_unlock(); return err; } static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) { struct in6_addr uninitialized_var(addr); struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr; struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr; if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) { memcpy(la6->sin6_addr.s6_addr, &addr, 16); memcpy(ra6->sin6_addr.s6_addr, &addr, 16); return 0; } return -EADDRNOTAVAIL; } int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) { struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); struct c4iw_ep *ep; int err = 0; struct sockaddr_in *laddr; struct sockaddr_in *raddr; struct sockaddr_in6 *laddr6; struct sockaddr_in6 *raddr6; __u8 *ra; int iptype; if ((conn_param->ord > cur_max_read_depth(dev)) || (conn_param->ird > cur_max_read_depth(dev))) { err = -EINVAL; goto out; } ep = alloc_ep(sizeof(*ep), GFP_KERNEL); if (!ep) { pr_err("%s - cannot alloc ep\n", __func__); err = -ENOMEM; goto out; } skb_queue_head_init(&ep->com.ep_skb_list); if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) { err = -ENOMEM; goto fail1; } timer_setup(&ep->timer, ep_timeout, 0); ep->plen = conn_param->private_data_len; if (ep->plen) memcpy(ep->mpa_pkt + sizeof(struct mpa_message), conn_param->private_data, ep->plen); ep->ird = conn_param->ird; ep->ord = conn_param->ord; if (peer2peer && ep->ord == 0) ep->ord = 1; ep->com.cm_id = cm_id; ref_cm_id(&ep->com); cm_id->provider_data = ep; ep->com.dev = dev; ep->com.qp = get_qhp(dev, conn_param->qpn); if (!ep->com.qp) { pr_warn("%s qpn 0x%x not found!\n", __func__, conn_param->qpn); err = -EINVAL; goto fail2; } ref_qp(ep); pr_debug("qpn 0x%x qp %p cm_id %p\n", conn_param->qpn, ep->com.qp, cm_id); /* * Allocate an active TID to initiate a TCP connection. */ ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep); if (ep->atid == -1) { pr_err("%s - cannot alloc atid\n", __func__); err = -ENOMEM; goto fail2; } err = xa_insert_irq(&dev->atids, ep->atid, ep, GFP_KERNEL); if (err) goto fail5; memcpy(&ep->com.local_addr, &cm_id->m_local_addr, sizeof(ep->com.local_addr)); memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr, sizeof(ep->com.remote_addr)); laddr = (struct sockaddr_in *)&ep->com.local_addr; raddr = (struct sockaddr_in *)&ep->com.remote_addr; laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr; raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr; if (cm_id->m_remote_addr.ss_family == AF_INET) { iptype = 4; ra = (__u8 *)&raddr->sin_addr; /* * Handle loopback requests to INADDR_ANY. */ if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) { err = pick_local_ipaddrs(dev, cm_id); if (err) goto fail2; } /* find a route */ pr_debug("saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n", &laddr->sin_addr, ntohs(laddr->sin_port), ra, ntohs(raddr->sin_port)); ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, laddr->sin_addr.s_addr, raddr->sin_addr.s_addr, laddr->sin_port, raddr->sin_port, cm_id->tos); } else { iptype = 6; ra = (__u8 *)&raddr6->sin6_addr; /* * Handle loopback requests to INADDR_ANY. */ if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) { err = pick_local_ip6addrs(dev, cm_id); if (err) goto fail2; } /* find a route */ pr_debug("saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n", laddr6->sin6_addr.s6_addr, ntohs(laddr6->sin6_port), raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port)); ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, laddr6->sin6_addr.s6_addr, raddr6->sin6_addr.s6_addr, laddr6->sin6_port, raddr6->sin6_port, cm_id->tos, raddr6->sin6_scope_id); } if (!ep->dst) { pr_err("%s - cannot find route\n", __func__); err = -EHOSTUNREACH; goto fail3; } err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true, ep->com.dev->rdev.lldi.adapter_type, cm_id->tos); if (err) { pr_err("%s - cannot alloc l2e\n", __func__); goto fail4; } pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, ep->l2t->idx); state_set(&ep->com, CONNECTING); ep->tos = cm_id->tos; /* send connect request to rnic */ err = send_connect(ep); if (!err) goto out; cxgb4_l2t_release(ep->l2t); fail4: dst_release(ep->dst); fail3: xa_erase_irq(&ep->com.dev->atids, ep->atid); fail5: cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); fail2: skb_queue_purge(&ep->com.ep_skb_list); deref_cm_id(&ep->com); fail1: c4iw_put_ep(&ep->com); out: return err; } static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) { int err; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) &ep->com.local_addr; if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) { err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], (const u32 *)&sin6->sin6_addr.s6_addr, 1); if (err) return err; } c4iw_init_wr_wait(ep->com.wr_waitp); err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0], ep->stid, &sin6->sin6_addr, sin6->sin6_port, ep->com.dev->rdev.lldi.rxq_ids[0]); if (!err) err = c4iw_wait_for_reply(&ep->com.dev->rdev, ep->com.wr_waitp, 0, 0, __func__); else if (err > 0) err = net_xmit_errno(err); if (err) { cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], (const u32 *)&sin6->sin6_addr.s6_addr, 1); pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n", err, ep->stid, sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port)); } return err; } static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) { int err; struct sockaddr_in *sin = (struct sockaddr_in *) &ep->com.local_addr; if (dev->rdev.lldi.enable_fw_ofld_conn) { do { err = cxgb4_create_server_filter( ep->com.dev->rdev.lldi.ports[0], ep->stid, sin->sin_addr.s_addr, sin->sin_port, 0, ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0); if (err == -EBUSY) { if (c4iw_fatal_error(&ep->com.dev->rdev)) { err = -EIO; break; } set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(usecs_to_jiffies(100)); } } while (err == -EBUSY); } else { c4iw_init_wr_wait(ep->com.wr_waitp); err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0], ep->stid, sin->sin_addr.s_addr, sin->sin_port, 0, ep->com.dev->rdev.lldi.rxq_ids[0]); if (!err) err = c4iw_wait_for_reply(&ep->com.dev->rdev, ep->com.wr_waitp, 0, 0, __func__); else if (err > 0) err = net_xmit_errno(err); } if (err) pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n" , err, ep->stid, &sin->sin_addr, ntohs(sin->sin_port)); return err; } int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog) { int err = 0; struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); struct c4iw_listen_ep *ep; might_sleep(); ep = alloc_ep(sizeof(*ep), GFP_KERNEL); if (!ep) { pr_err("%s - cannot alloc ep\n", __func__); err = -ENOMEM; goto fail1; } skb_queue_head_init(&ep->com.ep_skb_list); pr_debug("ep %p\n", ep); ep->com.cm_id = cm_id; ref_cm_id(&ep->com); ep->com.dev = dev; ep->backlog = backlog; memcpy(&ep->com.local_addr, &cm_id->m_local_addr, sizeof(ep->com.local_addr)); /* * Allocate a server TID. */ if (dev->rdev.lldi.enable_fw_ofld_conn && ep->com.local_addr.ss_family == AF_INET) ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids, cm_id->m_local_addr.ss_family, ep); else ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, cm_id->m_local_addr.ss_family, ep); if (ep->stid == -1) { pr_err("%s - cannot alloc stid\n", __func__); err = -ENOMEM; goto fail2; } insert_handle(dev, &dev->stid_idr, ep, ep->stid); state_set(&ep->com, LISTEN); if (ep->com.local_addr.ss_family == AF_INET) err = create_server4(dev, ep); else err = create_server6(dev, ep); if (!err) { cm_id->provider_data = ep; goto out; } remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid); cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, ep->com.local_addr.ss_family); fail2: deref_cm_id(&ep->com); c4iw_put_ep(&ep->com); fail1: out: return err; } int c4iw_destroy_listen(struct iw_cm_id *cm_id) { int err; struct c4iw_listen_ep *ep = to_listen_ep(cm_id); pr_debug("ep %p\n", ep); might_sleep(); state_set(&ep->com, DEAD); if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn && ep->com.local_addr.ss_family == AF_INET) { err = cxgb4_remove_server_filter( ep->com.dev->rdev.lldi.ports[0], ep->stid, ep->com.dev->rdev.lldi.rxq_ids[0], 0); } else { struct sockaddr_in6 *sin6; c4iw_init_wr_wait(ep->com.wr_waitp); err = cxgb4_remove_server( ep->com.dev->rdev.lldi.ports[0], ep->stid, ep->com.dev->rdev.lldi.rxq_ids[0], 0); if (err) goto done; err = c4iw_wait_for_reply(&ep->com.dev->rdev, ep->com.wr_waitp, 0, 0, __func__); sin6 = (struct sockaddr_in6 *)&ep->com.local_addr; cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], (const u32 *)&sin6->sin6_addr.s6_addr, 1); } remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid); cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, ep->com.local_addr.ss_family); done: deref_cm_id(&ep->com); c4iw_put_ep(&ep->com); return err; } int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp) { int ret = 0; int close = 0; int fatal = 0; struct c4iw_rdev *rdev; mutex_lock(&ep->com.mutex); pr_debug("ep %p state %s, abrupt %d\n", ep, states[ep->com.state], abrupt); /* * Ref the ep here in case we have fatal errors causing the * ep to be released and freed. */ c4iw_get_ep(&ep->com); rdev = &ep->com.dev->rdev; if (c4iw_fatal_error(rdev)) { fatal = 1; close_complete_upcall(ep, -EIO); ep->com.state = DEAD; } switch (ep->com.state) { case MPA_REQ_WAIT: case MPA_REQ_SENT: case MPA_REQ_RCVD: case MPA_REP_SENT: case FPDU_MODE: case CONNECTING: close = 1; if (abrupt) ep->com.state = ABORTING; else { ep->com.state = CLOSING; /* * if we close before we see the fw4_ack() then we fix * up the timer state since we're reusing it. */ if (ep->mpa_skb && test_bit(STOP_MPA_TIMER, &ep->com.flags)) { clear_bit(STOP_MPA_TIMER, &ep->com.flags); stop_ep_timer(ep); } start_ep_timer(ep); } set_bit(CLOSE_SENT, &ep->com.flags); break; case CLOSING: if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) { close = 1; if (abrupt) { (void)stop_ep_timer(ep); ep->com.state = ABORTING; } else ep->com.state = MORIBUND; } break; case MORIBUND: case ABORTING: case DEAD: pr_debug("ignoring disconnect ep %p state %u\n", ep, ep->com.state); break; default: WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); break; } if (close) { if (abrupt) { set_bit(EP_DISC_ABORT, &ep->com.history); ret = send_abort(ep); } else { set_bit(EP_DISC_CLOSE, &ep->com.history); ret = send_halfclose(ep); } if (ret) { set_bit(EP_DISC_FAIL, &ep->com.history); if (!abrupt) { stop_ep_timer(ep); close_complete_upcall(ep, -EIO); } if (ep->com.qp) { struct c4iw_qp_attributes attrs; attrs.next_state = C4IW_QP_STATE_ERROR; ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); if (ret) pr_err("%s - qp <- error failed!\n", __func__); } fatal = 1; } } mutex_unlock(&ep->com.mutex); c4iw_put_ep(&ep->com); if (fatal) release_ep_resources(ep); return ret; } static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, struct cpl_fw6_msg_ofld_connection_wr_rpl *req) { struct c4iw_ep *ep; int atid = be32_to_cpu(req->tid); ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids, (__force u32) req->tid); if (!ep) return; switch (req->retval) { case FW_ENOMEM: set_bit(ACT_RETRY_NOMEM, &ep->com.history); if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { send_fw_act_open_req(ep, atid); return; } /* fall through */ case FW_EADDRINUSE: set_bit(ACT_RETRY_INUSE, &ep->com.history); if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { send_fw_act_open_req(ep, atid); return; } break; default: pr_info("%s unexpected ofld conn wr retval %d\n", __func__, req->retval); break; } pr_err("active ofld_connect_wr failure %d atid %d\n", req->retval, atid); mutex_lock(&dev->rdev.stats.lock); dev->rdev.stats.act_ofld_conn_fails++; mutex_unlock(&dev->rdev.stats.lock); connect_reply_upcall(ep, status2errno(req->retval)); state_set(&ep->com, DEAD); if (ep->com.remote_addr.ss_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ep->com.local_addr; cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], (const u32 *)&sin6->sin6_addr.s6_addr, 1); } xa_erase_irq(&dev->atids, atid); cxgb4_free_atid(dev->rdev.lldi.tids, atid); dst_release(ep->dst); cxgb4_l2t_release(ep->l2t); c4iw_put_ep(&ep->com); } static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, struct cpl_fw6_msg_ofld_connection_wr_rpl *req) { struct sk_buff *rpl_skb; struct cpl_pass_accept_req *cpl; int ret; rpl_skb = (struct sk_buff *)(unsigned long)req->cookie; if (req->retval) { pr_err("%s passive open failure %d\n", __func__, req->retval); mutex_lock(&dev->rdev.stats.lock); dev->rdev.stats.pas_ofld_conn_fails++; mutex_unlock(&dev->rdev.stats.lock); kfree_skb(rpl_skb); } else { cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb); OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, (__force u32) htonl( (__force u32) req->tid))); ret = pass_accept_req(dev, rpl_skb); if (!ret) kfree_skb(rpl_skb); } return; } static inline u64 t4_tcb_get_field64(__be64 *tcb, u16 word) { u64 tlo = be64_to_cpu(tcb[((31 - word) / 2)]); u64 thi = be64_to_cpu(tcb[((31 - word) / 2) - 1]); u64 t; u32 shift = 32; t = (thi << shift) | (tlo >> shift); return t; } static inline u32 t4_tcb_get_field32(__be64 *tcb, u16 word, u32 mask, u32 shift) { u32 v; u64 t = be64_to_cpu(tcb[(31 - word) / 2]); if (word & 0x1) shift += 32; v = (t >> shift) & mask; return v; } static int read_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_get_tcb_rpl *rpl = cplhdr(skb); __be64 *tcb = (__be64 *)(rpl + 1); unsigned int tid = GET_TID(rpl); struct c4iw_ep *ep; u64 t_flags_64; u32 rx_pdu_out; ep = get_ep_from_tid(dev, tid); if (!ep) return 0; /* Examine the TF_RX_PDU_OUT (bit 49 of the t_flags) in order to * determine if there's a rx PDU feedback event pending. * * If that bit is set, it means we'll need to re-read the TCB's * rq_start value. The final value is the one present in a TCB * with the TF_RX_PDU_OUT bit cleared. */ t_flags_64 = t4_tcb_get_field64(tcb, TCB_T_FLAGS_W); rx_pdu_out = (t_flags_64 & TF_RX_PDU_OUT_V(1)) >> TF_RX_PDU_OUT_S; c4iw_put_ep(&ep->com); /* from get_ep_from_tid() */ c4iw_put_ep(&ep->com); /* from read_tcb() */ /* If TF_RX_PDU_OUT bit is set, re-read the TCB */ if (rx_pdu_out) { if (++ep->rx_pdu_out_cnt >= 2) { WARN_ONCE(1, "tcb re-read() reached the guard limit, finishing the cleanup\n"); goto cleanup; } read_tcb(ep); return 0; } ep->srqe_idx = t4_tcb_get_field32(tcb, TCB_RQ_START_W, TCB_RQ_START_W, TCB_RQ_START_S); cleanup: pr_debug("ep %p tid %u %016x\n", ep, ep->hwtid, ep->srqe_idx); if (test_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags)) finish_peer_abort(dev, ep); else if (test_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags)) send_abort_req(ep); else WARN_ONCE(1, "unexpected state!"); return 0; } static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_fw6_msg *rpl = cplhdr(skb); struct cpl_fw6_msg_ofld_connection_wr_rpl *req; switch (rpl->type) { case FW6_TYPE_CQE: c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]); break; case FW6_TYPE_OFLD_CONNECTION_WR_RPL: req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data; switch (req->t_state) { case TCP_SYN_SENT: active_ofld_conn_reply(dev, skb, req); break; case TCP_SYN_RECV: passive_ofld_conn_reply(dev, skb, req); break; default: pr_err("%s unexpected ofld conn wr state %d\n", __func__, req->t_state); break; } break; } return 0; } static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos) { __be32 l2info; __be16 hdr_len, vlantag, len; u16 eth_hdr_len; int tcp_hdr_len, ip_hdr_len; u8 intf; struct cpl_rx_pkt *cpl = cplhdr(skb); struct cpl_pass_accept_req *req; struct tcp_options_received tmp_opt; struct c4iw_dev *dev; enum chip_type type; dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); /* Store values from cpl_rx_pkt in temporary location. */ vlantag = cpl->vlan; len = cpl->len; l2info = cpl->l2info; hdr_len = cpl->hdr_len; intf = cpl->iff; __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header)); /* * We need to parse the TCP options from SYN packet. * to generate cpl_pass_accept_req. */ memset(&tmp_opt, 0, sizeof(tmp_opt)); tcp_clear_options(&tmp_opt); tcp_parse_options(&init_net, skb, &tmp_opt, 0, NULL); req = __skb_push(skb, sizeof(*req)); memset(req, 0, sizeof(*req)); req->l2info = cpu_to_be16(SYN_INTF_V(intf) | SYN_MAC_IDX_V(RX_MACIDX_G( be32_to_cpu(l2info))) | SYN_XACT_MATCH_F); type = dev->rdev.lldi.adapter_type; tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len)); ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len)); req->hdr_len = cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info)))); if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) { eth_hdr_len = is_t4(type) ? RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) : RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info)); req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) | IP_HDR_LEN_V(ip_hdr_len) | ETH_HDR_LEN_V(eth_hdr_len)); } else { /* T6 and later */ eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info)); req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) | T6_IP_HDR_LEN_V(ip_hdr_len) | T6_ETH_HDR_LEN_V(eth_hdr_len)); } req->vlan = vlantag; req->len = len; req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) | PASS_OPEN_TOS_V(tos)); req->tcpopt.mss = htons(tmp_opt.mss_clamp); if (tmp_opt.wscale_ok) req->tcpopt.wsf = tmp_opt.snd_wscale; req->tcpopt.tstamp = tmp_opt.saw_tstamp; if (tmp_opt.sack_ok) req->tcpopt.sack = 1; OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0)); return; } static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb, __be32 laddr, __be16 lport, __be32 raddr, __be16 rport, u32 rcv_isn, u32 filter, u16 window, u32 rss_qid, u8 port_id) { struct sk_buff *req_skb; struct fw_ofld_connection_wr *req; struct cpl_pass_accept_req *cpl = cplhdr(skb); int ret; req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL); if (!req_skb) return; req = __skb_put_zero(req_skb, sizeof(*req)); req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F); req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F); req->le.filter = (__force __be32) filter; req->le.lport = lport; req->le.pport = rport; req->le.u.ipv4.lip = laddr; req->le.u.ipv4.pip = raddr; req->tcb.rcv_nxt = htonl(rcv_isn + 1); req->tcb.rcv_adv = htons(window); req->tcb.t_state_to_astid = htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) | FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) | FW_OFLD_CONNECTION_WR_ASTID_V( PASS_OPEN_TID_G(ntohl(cpl->tos_stid)))); /* * We store the qid in opt2 which will be used by the firmware * to send us the wr response. */ req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid)); /* * We initialize the MSS index in TCB to 0xF. * So that when driver sends cpl_pass_accept_rpl * TCB picks up the correct value. If this was 0 * TP will ignore any value > 0 for MSS index. */ req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF)); req->cookie = (uintptr_t)skb; set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id); ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb); if (ret < 0) { pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__, ret); kfree_skb(skb); kfree_skb(req_skb); } } /* * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt * messages when a filter is being used instead of server to * redirect a syn packet. When packets hit filter they are redirected * to the offload queue and driver tries to establish the connection * using firmware work request. */ static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb) { int stid; unsigned int filter; struct ethhdr *eh = NULL; struct vlan_ethhdr *vlan_eh = NULL; struct iphdr *iph; struct tcphdr *tcph; struct rss_header *rss = (void *)skb->data; struct cpl_rx_pkt *cpl = (void *)skb->data; struct cpl_pass_accept_req *req = (void *)(rss + 1); struct l2t_entry *e; struct dst_entry *dst; struct c4iw_ep *lep = NULL; u16 window; struct port_info *pi; struct net_device *pdev; u16 rss_qid, eth_hdr_len; int step; struct neighbour *neigh; /* Drop all non-SYN packets */ if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F))) goto reject; /* * Drop all packets which did not hit the filter. * Unlikely to happen. */ if (!(rss->filter_hit && rss->filter_tid)) goto reject; /* * Calculate the server tid from filter hit index from cpl_rx_pkt. */ stid = (__force int) cpu_to_be32((__force u32) rss->hash_val); lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); if (!lep) { pr_warn("%s connect request on invalid stid %d\n", __func__, stid); goto reject; } switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) { case CHELSIO_T4: eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); break; case CHELSIO_T5: eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); break; case CHELSIO_T6: eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); break; default: pr_err("T%d Chip is not supported\n", CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)); goto reject; } if (eth_hdr_len == ETH_HLEN) { eh = (struct ethhdr *)(req + 1); iph = (struct iphdr *)(eh + 1); } else { vlan_eh = (struct vlan_ethhdr *)(req + 1); iph = (struct iphdr *)(vlan_eh + 1); __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan)); } if (iph->version != 0x4) goto reject; tcph = (struct tcphdr *)(iph + 1); skb_set_network_header(skb, (void *)iph - (void *)rss); skb_set_transport_header(skb, (void *)tcph - (void *)rss); skb_get(skb); pr_debug("lip 0x%x lport %u pip 0x%x pport %u tos %d\n", ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr), ntohs(tcph->source), iph->tos); dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, iph->daddr, iph->saddr, tcph->dest, tcph->source, iph->tos); if (!dst) { pr_err("%s - failed to find dst entry!\n", __func__); goto reject; } neigh = dst_neigh_lookup_skb(dst, skb); if (!neigh) { pr_err("%s - failed to allocate neigh!\n", __func__); goto free_dst; } if (neigh->dev->flags & IFF_LOOPBACK) { pdev = ip_dev_find(&init_net, iph->daddr); e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, pdev, 0); pi = (struct port_info *)netdev_priv(pdev); dev_put(pdev); } else { pdev = get_real_dev(neigh->dev); e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, pdev, 0); pi = (struct port_info *)netdev_priv(pdev); } neigh_release(neigh); if (!e) { pr_err("%s - failed to allocate l2t entry!\n", __func__); goto free_dst; } step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan; rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step]; window = (__force u16) htons((__force u16)tcph->window); /* Calcuate filter portion for LE region. */ filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple( dev->rdev.lldi.ports[0], e)); /* * Synthesize the cpl_pass_accept_req. We have everything except the * TID. Once firmware sends a reply with TID we update the TID field * in cpl and pass it through the regular cpl_pass_accept_req path. */ build_cpl_pass_accept_req(skb, stid, iph->tos); send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr, tcph->source, ntohl(tcph->seq), filter, window, rss_qid, pi->port_id); cxgb4_l2t_release(e); free_dst: dst_release(dst); reject: if (lep) c4iw_put_ep(&lep->com); return 0; } /* * These are the real handlers that are called from a * work queue. */ static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = { [CPL_ACT_ESTABLISH] = act_establish, [CPL_ACT_OPEN_RPL] = act_open_rpl, [CPL_RX_DATA] = rx_data, [CPL_ABORT_RPL_RSS] = abort_rpl, [CPL_ABORT_RPL] = abort_rpl, [CPL_PASS_OPEN_RPL] = pass_open_rpl, [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl, [CPL_PASS_ACCEPT_REQ] = pass_accept_req, [CPL_PASS_ESTABLISH] = pass_establish, [CPL_PEER_CLOSE] = peer_close, [CPL_ABORT_REQ_RSS] = peer_abort, [CPL_CLOSE_CON_RPL] = close_con_rpl, [CPL_RDMA_TERMINATE] = terminate, [CPL_FW4_ACK] = fw4_ack, [CPL_GET_TCB_RPL] = read_tcb_rpl, [CPL_FW6_MSG] = deferred_fw6_msg, [CPL_RX_PKT] = rx_pkt, [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe, [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe }; static void process_timeout(struct c4iw_ep *ep) { struct c4iw_qp_attributes attrs; int abort = 1; mutex_lock(&ep->com.mutex); pr_debug("ep %p tid %u state %d\n", ep, ep->hwtid, ep->com.state); set_bit(TIMEDOUT, &ep->com.history); switch (ep->com.state) { case MPA_REQ_SENT: connect_reply_upcall(ep, -ETIMEDOUT); break; case MPA_REQ_WAIT: case MPA_REQ_RCVD: case MPA_REP_SENT: case FPDU_MODE: break; case CLOSING: case MORIBUND: if (ep->com.cm_id && ep->com.qp) { attrs.next_state = C4IW_QP_STATE_ERROR; c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); } close_complete_upcall(ep, -ETIMEDOUT); break; case ABORTING: case DEAD: /* * These states are expected if the ep timed out at the same * time as another thread was calling stop_ep_timer(). * So we silently do nothing for these states. */ abort = 0; break; default: WARN(1, "%s unexpected state ep %p tid %u state %u\n", __func__, ep, ep->hwtid, ep->com.state); abort = 0; } mutex_unlock(&ep->com.mutex); if (abort) c4iw_ep_disconnect(ep, 1, GFP_KERNEL); c4iw_put_ep(&ep->com); } static void process_timedout_eps(void) { struct c4iw_ep *ep; spin_lock_irq(&timeout_lock); while (!list_empty(&timeout_list)) { struct list_head *tmp; tmp = timeout_list.next; list_del(tmp); tmp->next = NULL; tmp->prev = NULL; spin_unlock_irq(&timeout_lock); ep = list_entry(tmp, struct c4iw_ep, entry); process_timeout(ep); spin_lock_irq(&timeout_lock); } spin_unlock_irq(&timeout_lock); } static void process_work(struct work_struct *work) { struct sk_buff *skb = NULL; struct c4iw_dev *dev; struct cpl_act_establish *rpl; unsigned int opcode; int ret; process_timedout_eps(); while ((skb = skb_dequeue(&rxq))) { rpl = cplhdr(skb); dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); opcode = rpl->ot.opcode; if (opcode >= ARRAY_SIZE(work_handlers) || !work_handlers[opcode]) { pr_err("No handler for opcode 0x%x.\n", opcode); kfree_skb(skb); } else { ret = work_handlers[opcode](dev, skb); if (!ret) kfree_skb(skb); } process_timedout_eps(); } } static DECLARE_WORK(skb_work, process_work); static void ep_timeout(struct timer_list *t) { struct c4iw_ep *ep = from_timer(ep, t, timer); int kickit = 0; spin_lock(&timeout_lock); if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { /* * Only insert if it is not already on the list. */ if (!ep->entry.next) { list_add_tail(&ep->entry, &timeout_list); kickit = 1; } } spin_unlock(&timeout_lock); if (kickit) queue_work(workq, &skb_work); } /* * All the CM events are handled on a work queue to have a safe context. */ static int sched(struct c4iw_dev *dev, struct sk_buff *skb) { /* * Save dev in the skb->cb area. */ *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev; /* * Queue the skb and schedule the worker thread. */ skb_queue_tail(&rxq, skb); queue_work(workq, &skb_work); return 0; } static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_set_tcb_rpl *rpl = cplhdr(skb); if (rpl->status != CPL_ERR_NONE) { pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n", rpl->status, GET_TID(rpl)); } kfree_skb(skb); return 0; } static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_fw6_msg *rpl = cplhdr(skb); struct c4iw_wr_wait *wr_waitp; int ret; pr_debug("type %u\n", rpl->type); switch (rpl->type) { case FW6_TYPE_WR_RPL: ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff); wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1]; pr_debug("wr_waitp %p ret %u\n", wr_waitp, ret); if (wr_waitp) c4iw_wake_up_deref(wr_waitp, ret ? -ret : 0); kfree_skb(skb); break; case FW6_TYPE_CQE: case FW6_TYPE_OFLD_CONNECTION_WR_RPL: sched(dev, skb); break; default: pr_err("%s unexpected fw6 msg type %u\n", __func__, rpl->type); kfree_skb(skb); break; } return 0; } static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_abort_req_rss *req = cplhdr(skb); struct c4iw_ep *ep; unsigned int tid = GET_TID(req); ep = get_ep_from_tid(dev, tid); /* This EP will be dereferenced in peer_abort() */ if (!ep) { pr_warn("Abort on non-existent endpoint, tid %d\n", tid); kfree_skb(skb); return 0; } if (cxgb_is_neg_adv(req->status)) { pr_debug("Negative advice on abort- tid %u status %d (%s)\n", ep->hwtid, req->status, neg_adv_str(req->status)); goto out; } pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, ep->com.state); c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); out: sched(dev, skb); return 0; } /* * Most upcalls from the T4 Core go to sched() to * schedule the processing on a work queue. */ c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = { [CPL_ACT_ESTABLISH] = sched, [CPL_ACT_OPEN_RPL] = sched, [CPL_RX_DATA] = sched, [CPL_ABORT_RPL_RSS] = sched, [CPL_ABORT_RPL] = sched, [CPL_PASS_OPEN_RPL] = sched, [CPL_CLOSE_LISTSRV_RPL] = sched, [CPL_PASS_ACCEPT_REQ] = sched, [CPL_PASS_ESTABLISH] = sched, [CPL_PEER_CLOSE] = sched, [CPL_CLOSE_CON_RPL] = sched, [CPL_ABORT_REQ_RSS] = peer_abort_intr, [CPL_RDMA_TERMINATE] = sched, [CPL_FW4_ACK] = sched, [CPL_SET_TCB_RPL] = set_tcb_rpl, [CPL_GET_TCB_RPL] = sched, [CPL_FW6_MSG] = fw6_msg, [CPL_RX_PKT] = sched }; int __init c4iw_cm_init(void) { spin_lock_init(&timeout_lock); skb_queue_head_init(&rxq); workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM); if (!workq) return -ENOMEM; return 0; } void c4iw_cm_term(void) { WARN_ON(!list_empty(&timeout_list)); flush_workqueue(workq); destroy_workqueue(workq); }