// SPDX-License-Identifier: GPL-2.0+ /* Copyright (c) 2016-2017 Hisilicon Limited. */ #include "hclge_err.h" static const struct hclge_hw_error hclge_imp_tcm_ecc_int[] = { { .int_msk = BIT(0), .msg = "imp_itcm0_ecc_1bit_err" }, { .int_msk = BIT(1), .msg = "imp_itcm0_ecc_mbit_err" }, { .int_msk = BIT(2), .msg = "imp_itcm1_ecc_1bit_err" }, { .int_msk = BIT(3), .msg = "imp_itcm1_ecc_mbit_err" }, { .int_msk = BIT(4), .msg = "imp_itcm2_ecc_1bit_err" }, { .int_msk = BIT(5), .msg = "imp_itcm2_ecc_mbit_err" }, { .int_msk = BIT(6), .msg = "imp_itcm3_ecc_1bit_err" }, { .int_msk = BIT(7), .msg = "imp_itcm3_ecc_mbit_err" }, { .int_msk = BIT(8), .msg = "imp_dtcm0_mem0_ecc_1bit_err" }, { .int_msk = BIT(9), .msg = "imp_dtcm0_mem0_ecc_mbit_err" }, { .int_msk = BIT(10), .msg = "imp_dtcm0_mem1_ecc_1bit_err" }, { .int_msk = BIT(11), .msg = "imp_dtcm0_mem1_ecc_mbit_err" }, { .int_msk = BIT(12), .msg = "imp_dtcm1_mem0_ecc_1bit_err" }, { .int_msk = BIT(13), .msg = "imp_dtcm1_mem0_ecc_mbit_err" }, { .int_msk = BIT(14), .msg = "imp_dtcm1_mem1_ecc_1bit_err" }, { .int_msk = BIT(15), .msg = "imp_dtcm1_mem1_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_imp_itcm4_ecc_int[] = { { .int_msk = BIT(0), .msg = "imp_itcm4_ecc_1bit_err" }, { .int_msk = BIT(1), .msg = "imp_itcm4_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_cmdq_nic_mem_ecc_int[] = { { .int_msk = BIT(0), .msg = "cmdq_nic_rx_depth_ecc_1bit_err" }, { .int_msk = BIT(1), .msg = "cmdq_nic_rx_depth_ecc_mbit_err" }, { .int_msk = BIT(2), .msg = "cmdq_nic_tx_depth_ecc_1bit_err" }, { .int_msk = BIT(3), .msg = "cmdq_nic_tx_depth_ecc_mbit_err" }, { .int_msk = BIT(4), .msg = "cmdq_nic_rx_tail_ecc_1bit_err" }, { .int_msk = BIT(5), .msg = "cmdq_nic_rx_tail_ecc_mbit_err" }, { .int_msk = BIT(6), .msg = "cmdq_nic_tx_tail_ecc_1bit_err" }, { .int_msk = BIT(7), .msg = "cmdq_nic_tx_tail_ecc_mbit_err" }, { .int_msk = BIT(8), .msg = "cmdq_nic_rx_head_ecc_1bit_err" }, { .int_msk = BIT(9), .msg = "cmdq_nic_rx_head_ecc_mbit_err" }, { .int_msk = BIT(10), .msg = "cmdq_nic_tx_head_ecc_1bit_err" }, { .int_msk = BIT(11), .msg = "cmdq_nic_tx_head_ecc_mbit_err" }, { .int_msk = BIT(12), .msg = "cmdq_nic_rx_addr_ecc_1bit_err" }, { .int_msk = BIT(13), .msg = "cmdq_nic_rx_addr_ecc_mbit_err" }, { .int_msk = BIT(14), .msg = "cmdq_nic_tx_addr_ecc_1bit_err" }, { .int_msk = BIT(15), .msg = "cmdq_nic_tx_addr_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_cmdq_rocee_mem_ecc_int[] = { { .int_msk = BIT(0), .msg = "cmdq_rocee_rx_depth_ecc_1bit_err" }, { .int_msk = BIT(1), .msg = "cmdq_rocee_rx_depth_ecc_mbit_err" }, { .int_msk = BIT(2), .msg = "cmdq_rocee_tx_depth_ecc_1bit_err" }, { .int_msk = BIT(3), .msg = "cmdq_rocee_tx_depth_ecc_mbit_err" }, { .int_msk = BIT(4), .msg = "cmdq_rocee_rx_tail_ecc_1bit_err" }, { .int_msk = BIT(5), .msg = "cmdq_rocee_rx_tail_ecc_mbit_err" }, { .int_msk = BIT(6), .msg = "cmdq_rocee_tx_tail_ecc_1bit_err" }, { .int_msk = BIT(7), .msg = "cmdq_rocee_tx_tail_ecc_mbit_err" }, { .int_msk = BIT(8), .msg = "cmdq_rocee_rx_head_ecc_1bit_err" }, { .int_msk = BIT(9), .msg = "cmdq_rocee_rx_head_ecc_mbit_err" }, { .int_msk = BIT(10), .msg = "cmdq_rocee_tx_head_ecc_1bit_err" }, { .int_msk = BIT(11), .msg = "cmdq_rocee_tx_head_ecc_mbit_err" }, { .int_msk = BIT(12), .msg = "cmdq_rocee_rx_addr_ecc_1bit_err" }, { .int_msk = BIT(13), .msg = "cmdq_rocee_rx_addr_ecc_mbit_err" }, { .int_msk = BIT(14), .msg = "cmdq_rocee_tx_addr_ecc_1bit_err" }, { .int_msk = BIT(15), .msg = "cmdq_rocee_tx_addr_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_tqp_int_ecc_int[] = { { .int_msk = BIT(0), .msg = "tqp_int_cfg_even_ecc_1bit_err" }, { .int_msk = BIT(1), .msg = "tqp_int_cfg_odd_ecc_1bit_err" }, { .int_msk = BIT(2), .msg = "tqp_int_ctrl_even_ecc_1bit_err" }, { .int_msk = BIT(3), .msg = "tqp_int_ctrl_odd_ecc_1bit_err" }, { .int_msk = BIT(4), .msg = "tx_que_scan_int_ecc_1bit_err" }, { .int_msk = BIT(5), .msg = "rx_que_scan_int_ecc_1bit_err" }, { .int_msk = BIT(6), .msg = "tqp_int_cfg_even_ecc_mbit_err" }, { .int_msk = BIT(7), .msg = "tqp_int_cfg_odd_ecc_mbit_err" }, { .int_msk = BIT(8), .msg = "tqp_int_ctrl_even_ecc_mbit_err" }, { .int_msk = BIT(9), .msg = "tqp_int_ctrl_odd_ecc_mbit_err" }, { .int_msk = BIT(10), .msg = "tx_que_scan_int_ecc_mbit_err" }, { .int_msk = BIT(11), .msg = "rx_que_scan_int_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_igu_com_err_int[] = { { .int_msk = BIT(0), .msg = "igu_rx_buf0_ecc_mbit_err" }, { .int_msk = BIT(1), .msg = "igu_rx_buf0_ecc_1bit_err" }, { .int_msk = BIT(2), .msg = "igu_rx_buf1_ecc_mbit_err" }, { .int_msk = BIT(3), .msg = "igu_rx_buf1_ecc_1bit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_igu_egu_tnl_err_int[] = { { .int_msk = BIT(0), .msg = "rx_buf_overflow" }, { .int_msk = BIT(1), .msg = "rx_stp_fifo_overflow" }, { .int_msk = BIT(2), .msg = "rx_stp_fifo_undeflow" }, { .int_msk = BIT(3), .msg = "tx_buf_overflow" }, { .int_msk = BIT(4), .msg = "tx_buf_underrun" }, { .int_msk = BIT(5), .msg = "rx_stp_buf_overflow" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ncsi_err_int[] = { { .int_msk = BIT(0), .msg = "ncsi_tx_ecc_1bit_err" }, { .int_msk = BIT(1), .msg = "ncsi_tx_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ppp_mpf_int0[] = { { .int_msk = BIT(0), .msg = "vf_vlan_ad_mem_ecc_1bit_err" }, { .int_msk = BIT(1), .msg = "umv_mcast_group_mem_ecc_1bit_err" }, { .int_msk = BIT(2), .msg = "umv_key_mem0_ecc_1bit_err" }, { .int_msk = BIT(3), .msg = "umv_key_mem1_ecc_1bit_err" }, { .int_msk = BIT(4), .msg = "umv_key_mem2_ecc_1bit_err" }, { .int_msk = BIT(5), .msg = "umv_key_mem3_ecc_1bit_err" }, { .int_msk = BIT(6), .msg = "umv_ad_mem_ecc_1bit_err" }, { .int_msk = BIT(7), .msg = "rss_tc_mode_mem_ecc_1bit_err" }, { .int_msk = BIT(8), .msg = "rss_idt_mem0_ecc_1bit_err" }, { .int_msk = BIT(9), .msg = "rss_idt_mem1_ecc_1bit_err" }, { .int_msk = BIT(10), .msg = "rss_idt_mem2_ecc_1bit_err" }, { .int_msk = BIT(11), .msg = "rss_idt_mem3_ecc_1bit_err" }, { .int_msk = BIT(12), .msg = "rss_idt_mem4_ecc_1bit_err" }, { .int_msk = BIT(13), .msg = "rss_idt_mem5_ecc_1bit_err" }, { .int_msk = BIT(14), .msg = "rss_idt_mem6_ecc_1bit_err" }, { .int_msk = BIT(15), .msg = "rss_idt_mem7_ecc_1bit_err" }, { .int_msk = BIT(16), .msg = "rss_idt_mem8_ecc_1bit_err" }, { .int_msk = BIT(17), .msg = "rss_idt_mem9_ecc_1bit_err" }, { .int_msk = BIT(18), .msg = "rss_idt_mem10_ecc_1bit_err" }, { .int_msk = BIT(19), .msg = "rss_idt_mem11_ecc_1bit_err" }, { .int_msk = BIT(20), .msg = "rss_idt_mem12_ecc_1bit_err" }, { .int_msk = BIT(21), .msg = "rss_idt_mem13_ecc_1bit_err" }, { .int_msk = BIT(22), .msg = "rss_idt_mem14_ecc_1bit_err" }, { .int_msk = BIT(23), .msg = "rss_idt_mem15_ecc_1bit_err" }, { .int_msk = BIT(24), .msg = "port_vlan_mem_ecc_1bit_err" }, { .int_msk = BIT(25), .msg = "mcast_linear_table_mem_ecc_1bit_err" }, { .int_msk = BIT(26), .msg = "mcast_result_mem_ecc_1bit_err" }, { .int_msk = BIT(27), .msg = "flow_director_ad_mem0_ecc_1bit_err" }, { .int_msk = BIT(28), .msg = "flow_director_ad_mem1_ecc_1bit_err" }, { .int_msk = BIT(29), .msg = "rx_vlan_tag_memory_ecc_1bit_err" }, { .int_msk = BIT(30), .msg = "Tx_UP_mapping_config_mem_ecc_1bit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ppp_mpf_int1[] = { { .int_msk = BIT(0), .msg = "vf_vlan_ad_mem_ecc_mbit_err" }, { .int_msk = BIT(1), .msg = "umv_mcast_group_mem_ecc_mbit_err" }, { .int_msk = BIT(2), .msg = "umv_key_mem0_ecc_mbit_err" }, { .int_msk = BIT(3), .msg = "umv_key_mem1_ecc_mbit_err" }, { .int_msk = BIT(4), .msg = "umv_key_mem2_ecc_mbit_err" }, { .int_msk = BIT(5), .msg = "umv_key_mem3_ecc_mbit_err" }, { .int_msk = BIT(6), .msg = "umv_ad_mem_ecc_mbit_erre" }, { .int_msk = BIT(7), .msg = "rss_tc_mode_mem_ecc_mbit_err" }, { .int_msk = BIT(8), .msg = "rss_idt_mem0_ecc_mbit_err" }, { .int_msk = BIT(9), .msg = "rss_idt_mem1_ecc_mbit_err" }, { .int_msk = BIT(10), .msg = "rss_idt_mem2_ecc_mbit_err" }, { .int_msk = BIT(11), .msg = "rss_idt_mem3_ecc_mbit_err" }, { .int_msk = BIT(12), .msg = "rss_idt_mem4_ecc_mbit_err" }, { .int_msk = BIT(13), .msg = "rss_idt_mem5_ecc_mbit_err" }, { .int_msk = BIT(14), .msg = "rss_idt_mem6_ecc_mbit_err" }, { .int_msk = BIT(15), .msg = "rss_idt_mem7_ecc_mbit_err" }, { .int_msk = BIT(16), .msg = "rss_idt_mem8_ecc_mbit_err" }, { .int_msk = BIT(17), .msg = "rss_idt_mem9_ecc_mbit_err" }, { .int_msk = BIT(18), .msg = "rss_idt_mem10_ecc_m1bit_err" }, { .int_msk = BIT(19), .msg = "rss_idt_mem11_ecc_mbit_err" }, { .int_msk = BIT(20), .msg = "rss_idt_mem12_ecc_mbit_err" }, { .int_msk = BIT(21), .msg = "rss_idt_mem13_ecc_mbit_err" }, { .int_msk = BIT(22), .msg = "rss_idt_mem14_ecc_mbit_err" }, { .int_msk = BIT(23), .msg = "rss_idt_mem15_ecc_mbit_err" }, { .int_msk = BIT(24), .msg = "port_vlan_mem_ecc_mbit_err" }, { .int_msk = BIT(25), .msg = "mcast_linear_table_mem_ecc_mbit_err" }, { .int_msk = BIT(26), .msg = "mcast_result_mem_ecc_mbit_err" }, { .int_msk = BIT(27), .msg = "flow_director_ad_mem0_ecc_mbit_err" }, { .int_msk = BIT(28), .msg = "flow_director_ad_mem1_ecc_mbit_err" }, { .int_msk = BIT(29), .msg = "rx_vlan_tag_memory_ecc_mbit_err" }, { .int_msk = BIT(30), .msg = "Tx_UP_mapping_config_mem_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ppp_pf_int[] = { { .int_msk = BIT(0), .msg = "Tx_vlan_tag_err" }, { .int_msk = BIT(1), .msg = "rss_list_tc_unassigned_queue_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ppp_mpf_int2[] = { { .int_msk = BIT(0), .msg = "hfs_fifo_mem_ecc_1bit_err" }, { .int_msk = BIT(1), .msg = "rslt_descr_fifo_mem_ecc_1bit_err" }, { .int_msk = BIT(2), .msg = "tx_vlan_tag_mem_ecc_1bit_err" }, { .int_msk = BIT(3), .msg = "FD_CN0_memory_ecc_1bit_err" }, { .int_msk = BIT(4), .msg = "FD_CN1_memory_ecc_1bit_err" }, { .int_msk = BIT(5), .msg = "GRO_AD_memory_ecc_1bit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ppp_mpf_int3[] = { { .int_msk = BIT(0), .msg = "hfs_fifo_mem_ecc_mbit_err" }, { .int_msk = BIT(1), .msg = "rslt_descr_fifo_mem_ecc_mbit_err" }, { .int_msk = BIT(2), .msg = "tx_vlan_tag_mem_ecc_mbit_err" }, { .int_msk = BIT(3), .msg = "FD_CN0_memory_ecc_mbit_err" }, { .int_msk = BIT(4), .msg = "FD_CN1_memory_ecc_mbit_err" }, { .int_msk = BIT(5), .msg = "GRO_AD_memory_ecc_mbit_err" }, { /* sentinel */ } }; struct hclge_tm_sch_ecc_info { const char *name; }; static const struct hclge_tm_sch_ecc_info hclge_tm_sch_ecc_err[7][15] = { { { .name = "QSET_QUEUE_CTRL:PRI_LEN TAB" }, { .name = "QSET_QUEUE_CTRL:SPA_LEN TAB" }, { .name = "QSET_QUEUE_CTRL:SPB_LEN TAB" }, { .name = "QSET_QUEUE_CTRL:WRRA_LEN TAB" }, { .name = "QSET_QUEUE_CTRL:WRRB_LEN TAB" }, { .name = "QSET_QUEUE_CTRL:SPA_HPTR TAB" }, { .name = "QSET_QUEUE_CTRL:SPB_HPTR TAB" }, { .name = "QSET_QUEUE_CTRL:WRRA_HPTR TAB" }, { .name = "QSET_QUEUE_CTRL:WRRB_HPTR TAB" }, { .name = "QSET_QUEUE_CTRL:QS_LINKLIST TAB" }, { .name = "QSET_QUEUE_CTRL:SPA_TPTR TAB" }, { .name = "QSET_QUEUE_CTRL:SPB_TPTR TAB" }, { .name = "QSET_QUEUE_CTRL:WRRA_TPTR TAB" }, { .name = "QSET_QUEUE_CTRL:WRRB_TPTR TAB" }, { .name = "QSET_QUEUE_CTRL:QS_DEFICITCNT TAB" }, }, { { .name = "ROCE_QUEUE_CTRL:QS_LEN TAB" }, { .name = "ROCE_QUEUE_CTRL:QS_TPTR TAB" }, { .name = "ROCE_QUEUE_CTRL:QS_HPTR TAB" }, { .name = "ROCE_QUEUE_CTRL:QLINKLIST TAB" }, { .name = "ROCE_QUEUE_CTRL:QCLEN TAB" }, }, { { .name = "NIC_QUEUE_CTRL:QS_LEN TAB" }, { .name = "NIC_QUEUE_CTRL:QS_TPTR TAB" }, { .name = "NIC_QUEUE_CTRL:QS_HPTR TAB" }, { .name = "NIC_QUEUE_CTRL:QLINKLIST TAB" }, { .name = "NIC_QUEUE_CTRL:QCLEN TAB" }, }, { { .name = "RAM_CFG_CTRL:CSHAP TAB" }, { .name = "RAM_CFG_CTRL:PSHAP TAB" }, }, { { .name = "SHAPER_CTRL:PSHAP TAB" }, }, { { .name = "MSCH_CTRL" }, }, { { .name = "TOP_CTRL" }, }, }; static const struct hclge_hw_error hclge_tm_sch_err_int[] = { { .int_msk = BIT(0), .msg = "tm_sch_ecc_1bit_err" }, { .int_msk = BIT(1), .msg = "tm_sch_ecc_mbit_err" }, { .int_msk = BIT(2), .msg = "tm_sch_port_shap_sub_fifo_wr_full_err" }, { .int_msk = BIT(3), .msg = "tm_sch_port_shap_sub_fifo_rd_empty_err" }, { .int_msk = BIT(4), .msg = "tm_sch_pg_pshap_sub_fifo_wr_full_err" }, { .int_msk = BIT(5), .msg = "tm_sch_pg_pshap_sub_fifo_rd_empty_err" }, { .int_msk = BIT(6), .msg = "tm_sch_pg_cshap_sub_fifo_wr_full_err" }, { .int_msk = BIT(7), .msg = "tm_sch_pg_cshap_sub_fifo_rd_empty_err" }, { .int_msk = BIT(8), .msg = "tm_sch_pri_pshap_sub_fifo_wr_full_err" }, { .int_msk = BIT(9), .msg = "tm_sch_pri_pshap_sub_fifo_rd_empty_err" }, { .int_msk = BIT(10), .msg = "tm_sch_pri_cshap_sub_fifo_wr_full_err" }, { .int_msk = BIT(11), .msg = "tm_sch_pri_cshap_sub_fifo_rd_empty_err" }, { .int_msk = BIT(12), .msg = "tm_sch_port_shap_offset_fifo_wr_full_err" }, { .int_msk = BIT(13), .msg = "tm_sch_port_shap_offset_fifo_rd_empty_err" }, { .int_msk = BIT(14), .msg = "tm_sch_pg_pshap_offset_fifo_wr_full_err" }, { .int_msk = BIT(15), .msg = "tm_sch_pg_pshap_offset_fifo_rd_empty_err" }, { .int_msk = BIT(16), .msg = "tm_sch_pg_cshap_offset_fifo_wr_full_err" }, { .int_msk = BIT(17), .msg = "tm_sch_pg_cshap_offset_fifo_rd_empty_err" }, { .int_msk = BIT(18), .msg = "tm_sch_pri_pshap_offset_fifo_wr_full_err" }, { .int_msk = BIT(19), .msg = "tm_sch_pri_pshap_offset_fifo_rd_empty_err" }, { .int_msk = BIT(20), .msg = "tm_sch_pri_cshap_offset_fifo_wr_full_err" }, { .int_msk = BIT(21), .msg = "tm_sch_pri_cshap_offset_fifo_rd_empty_err" }, { .int_msk = BIT(22), .msg = "tm_sch_rq_fifo_wr_full_err" }, { .int_msk = BIT(23), .msg = "tm_sch_rq_fifo_rd_empty_err" }, { .int_msk = BIT(24), .msg = "tm_sch_nq_fifo_wr_full_err" }, { .int_msk = BIT(25), .msg = "tm_sch_nq_fifo_rd_empty_err" }, { .int_msk = BIT(26), .msg = "tm_sch_roce_up_fifo_wr_full_err" }, { .int_msk = BIT(27), .msg = "tm_sch_roce_up_fifo_rd_empty_err" }, { .int_msk = BIT(28), .msg = "tm_sch_rcb_byte_fifo_wr_full_err" }, { .int_msk = BIT(29), .msg = "tm_sch_rcb_byte_fifo_rd_empty_err" }, { .int_msk = BIT(30), .msg = "tm_sch_ssu_byte_fifo_wr_full_err" }, { .int_msk = BIT(31), .msg = "tm_sch_ssu_byte_fifo_rd_empty_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_qcn_ecc_err_int[] = { { .int_msk = BIT(0), .msg = "qcn_byte_mem_ecc_1bit_err" }, { .int_msk = BIT(1), .msg = "qcn_byte_mem_ecc_mbit_err" }, { .int_msk = BIT(2), .msg = "qcn_time_mem_ecc_1bit_err" }, { .int_msk = BIT(3), .msg = "qcn_time_mem_ecc_mbit_err" }, { .int_msk = BIT(4), .msg = "qcn_fb_mem_ecc_1bit_err" }, { .int_msk = BIT(5), .msg = "qcn_fb_mem_ecc_mbit_err" }, { .int_msk = BIT(6), .msg = "qcn_link_mem_ecc_1bit_err" }, { .int_msk = BIT(7), .msg = "qcn_link_mem_ecc_mbit_err" }, { .int_msk = BIT(8), .msg = "qcn_rate_mem_ecc_1bit_err" }, { .int_msk = BIT(9), .msg = "qcn_rate_mem_ecc_mbit_err" }, { .int_msk = BIT(10), .msg = "qcn_tmplt_mem_ecc_1bit_err" }, { .int_msk = BIT(11), .msg = "qcn_tmplt_mem_ecc_mbit_err" }, { .int_msk = BIT(12), .msg = "qcn_shap_cfg_mem_ecc_1bit_err" }, { .int_msk = BIT(13), .msg = "qcn_shap_cfg_mem_ecc_mbit_err" }, { .int_msk = BIT(14), .msg = "qcn_gp0_barrel_mem_ecc_1bit_err" }, { .int_msk = BIT(15), .msg = "qcn_gp0_barrel_mem_ecc_mbit_err" }, { .int_msk = BIT(16), .msg = "qcn_gp1_barrel_mem_ecc_1bit_err" }, { .int_msk = BIT(17), .msg = "qcn_gp1_barrel_mem_ecc_mbit_err" }, { .int_msk = BIT(18), .msg = "qcn_gp2_barrel_mem_ecc_1bit_err" }, { .int_msk = BIT(19), .msg = "qcn_gp2_barrel_mem_ecc_mbit_err" }, { .int_msk = BIT(20), .msg = "qcn_gp3_barral_mem_ecc_1bit_err" }, { .int_msk = BIT(21), .msg = "qcn_gp3_barral_mem_ecc_mbit_err" }, { /* sentinel */ } }; static void hclge_log_error(struct device *dev, const struct hclge_hw_error *err_list, u32 err_sts) { const struct hclge_hw_error *err; int i = 0; while (err_list[i].msg) { err = &err_list[i]; if (!(err->int_msk & err_sts)) { i++; continue; } dev_warn(dev, "%s [error status=0x%x] found\n", err->msg, err_sts); i++; } } /* hclge_cmd_query_error: read the error information * @hdev: pointer to struct hclge_dev * @desc: descriptor for describing the command * @cmd: command opcode * @flag: flag for extended command structure * @w_num: offset for setting the read interrupt type. * @int_type: select which type of the interrupt for which the error * info will be read(RAS-CE/RAS-NFE/RAS-FE etc). * * This function query the error info from hw register/s using command */ static int hclge_cmd_query_error(struct hclge_dev *hdev, struct hclge_desc *desc, u32 cmd, u16 flag, u8 w_num, enum hclge_err_int_type int_type) { struct device *dev = &hdev->pdev->dev; int num = 1; int ret; hclge_cmd_setup_basic_desc(&desc[0], cmd, true); if (flag) { desc[0].flag |= cpu_to_le16(flag); hclge_cmd_setup_basic_desc(&desc[1], cmd, true); num = 2; } if (w_num) desc[0].data[w_num] = cpu_to_le32(int_type); ret = hclge_cmd_send(&hdev->hw, &desc[0], num); if (ret) dev_err(dev, "query error cmd failed (%d)\n", ret); return ret; } /* hclge_cmd_clear_error: clear the error status * @hdev: pointer to struct hclge_dev * @desc: descriptor for describing the command * @desc_src: prefilled descriptor from the previous command for reusing * @cmd: command opcode * @flag: flag for extended command structure * * This function clear the error status in the hw register/s using command */ static int hclge_cmd_clear_error(struct hclge_dev *hdev, struct hclge_desc *desc, struct hclge_desc *desc_src, u32 cmd, u16 flag) { struct device *dev = &hdev->pdev->dev; int num = 1; int ret, i; if (cmd) { hclge_cmd_setup_basic_desc(&desc[0], cmd, false); if (flag) { desc[0].flag |= cpu_to_le16(flag); hclge_cmd_setup_basic_desc(&desc[1], cmd, false); num = 2; } if (desc_src) { for (i = 0; i < 6; i++) { desc[0].data[i] = desc_src[0].data[i]; if (flag) desc[1].data[i] = desc_src[1].data[i]; } } } else { hclge_cmd_reuse_desc(&desc[0], false); if (flag) { desc[0].flag |= cpu_to_le16(flag); hclge_cmd_reuse_desc(&desc[1], false); num = 2; } } ret = hclge_cmd_send(&hdev->hw, &desc[0], num); if (ret) dev_err(dev, "clear error cmd failed (%d)\n", ret); return ret; } static int hclge_enable_common_error(struct hclge_dev *hdev, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc[2]; int ret; hclge_cmd_setup_basic_desc(&desc[0], HCLGE_COMMON_ECC_INT_CFG, false); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); hclge_cmd_setup_basic_desc(&desc[1], HCLGE_COMMON_ECC_INT_CFG, false); if (en) { /* enable COMMON error interrupts */ desc[0].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN); desc[0].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN | HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN); desc[0].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN); desc[0].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN); desc[0].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN); } else { /* disable COMMON error interrupts */ desc[0].data[0] = 0; desc[0].data[2] = 0; desc[0].data[3] = 0; desc[0].data[4] = 0; desc[0].data[5] = 0; } desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN_MASK); desc[1].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN_MASK | HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN_MASK); desc[1].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN_MASK); desc[1].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN_MASK); desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN_MASK); ret = hclge_cmd_send(&hdev->hw, &desc[0], 2); if (ret) dev_err(dev, "failed(%d) to enable/disable COMMON err interrupts\n", ret); return ret; } static int hclge_enable_ncsi_error(struct hclge_dev *hdev, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc; int ret; if (hdev->pdev->revision < 0x21) return 0; /* enable/disable NCSI error interrupts */ hclge_cmd_setup_basic_desc(&desc, HCLGE_NCSI_INT_EN, false); if (en) desc.data[0] = cpu_to_le32(HCLGE_NCSI_ERR_INT_EN); else desc.data[0] = 0; ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(dev, "failed(%d) to enable/disable NCSI error interrupts\n", ret); return ret; } static int hclge_enable_igu_egu_error(struct hclge_dev *hdev, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc; int ret; /* enable/disable error interrupts */ hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_COMMON_INT_EN, false); if (en) desc.data[0] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN); else desc.data[0] = 0; desc.data[1] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN_MASK); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(dev, "failed(%d) to enable/disable IGU common interrupts\n", ret); return ret; } hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_EGU_TNL_INT_EN, false); if (en) desc.data[0] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN); else desc.data[0] = 0; desc.data[1] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN_MASK); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(dev, "failed(%d) to enable/disable IGU-EGU TNL interrupts\n", ret); return ret; } ret = hclge_enable_ncsi_error(hdev, en); if (ret) dev_err(dev, "fail(%d) to en/disable err int\n", ret); return ret; } static int hclge_enable_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc[2]; int ret; /* enable/disable PPP error interrupts */ hclge_cmd_setup_basic_desc(&desc[0], cmd, false); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); hclge_cmd_setup_basic_desc(&desc[1], cmd, false); if (cmd == HCLGE_PPP_CMD0_INT_CMD) { if (en) { desc[0].data[0] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN); desc[0].data[1] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN); } else { desc[0].data[0] = 0; desc[0].data[1] = 0; } desc[1].data[0] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN_MASK); desc[1].data[1] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN_MASK); } else if (cmd == HCLGE_PPP_CMD1_INT_CMD) { if (en) { desc[0].data[0] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN); desc[0].data[1] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN); } else { desc[0].data[0] = 0; desc[0].data[1] = 0; } desc[1].data[0] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN_MASK); desc[1].data[1] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN_MASK); } ret = hclge_cmd_send(&hdev->hw, &desc[0], 2); if (ret) dev_err(dev, "failed(%d) to enable/disable PPP error interrupts\n", ret); return ret; } static int hclge_enable_ppp_error(struct hclge_dev *hdev, bool en) { struct device *dev = &hdev->pdev->dev; int ret; ret = hclge_enable_ppp_error_interrupt(hdev, HCLGE_PPP_CMD0_INT_CMD, en); if (ret) { dev_err(dev, "failed(%d) to enable/disable PPP error intr 0,1\n", ret); return ret; } ret = hclge_enable_ppp_error_interrupt(hdev, HCLGE_PPP_CMD1_INT_CMD, en); if (ret) dev_err(dev, "failed(%d) to enable/disable PPP error intr 2,3\n", ret); return ret; } int hclge_enable_tm_hw_error(struct hclge_dev *hdev, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc; int ret; /* enable TM SCH hw errors */ hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_SCH_ECC_INT_EN, false); if (en) desc.data[0] = cpu_to_le32(HCLGE_TM_SCH_ECC_ERR_INT_EN); else desc.data[0] = 0; ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(dev, "failed(%d) to configure TM SCH errors\n", ret); return ret; } /* enable TM QCN hw errors */ ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_QCN_MEM_INT_CFG, 0, 0, 0); if (ret) { dev_err(dev, "failed(%d) to read TM QCN CFG status\n", ret); return ret; } hclge_cmd_reuse_desc(&desc, false); if (en) desc.data[1] = cpu_to_le32(HCLGE_TM_QCN_MEM_ERR_INT_EN); else desc.data[1] = 0; ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(dev, "failed(%d) to configure TM QCN mem errors\n", ret); return ret; } static void hclge_process_common_error(struct hclge_dev *hdev, enum hclge_err_int_type type) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc[2]; u32 err_sts; int ret; /* read err sts */ ret = hclge_cmd_query_error(hdev, &desc[0], HCLGE_COMMON_ECC_INT_CFG, HCLGE_CMD_FLAG_NEXT, 0, 0); if (ret) { dev_err(dev, "failed(=%d) to query COMMON error interrupt status\n", ret); return; } /* log err */ err_sts = (le32_to_cpu(desc[0].data[0])) & HCLGE_IMP_TCM_ECC_INT_MASK; hclge_log_error(dev, &hclge_imp_tcm_ecc_int[0], err_sts); err_sts = (le32_to_cpu(desc[0].data[1])) & HCLGE_CMDQ_ECC_INT_MASK; hclge_log_error(dev, &hclge_cmdq_nic_mem_ecc_int[0], err_sts); err_sts = (le32_to_cpu(desc[0].data[1]) >> HCLGE_CMDQ_ROC_ECC_INT_SHIFT) & HCLGE_CMDQ_ECC_INT_MASK; hclge_log_error(dev, &hclge_cmdq_rocee_mem_ecc_int[0], err_sts); if ((le32_to_cpu(desc[0].data[3])) & BIT(0)) dev_warn(dev, "imp_rd_data_poison_err found\n"); err_sts = (le32_to_cpu(desc[0].data[3]) >> HCLGE_TQP_ECC_INT_SHIFT) & HCLGE_TQP_ECC_INT_MASK; hclge_log_error(dev, &hclge_tqp_int_ecc_int[0], err_sts); err_sts = (le32_to_cpu(desc[0].data[5])) & HCLGE_IMP_ITCM4_ECC_INT_MASK; hclge_log_error(dev, &hclge_imp_itcm4_ecc_int[0], err_sts); /* clear error interrupts */ desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_CLR_MASK); desc[1].data[1] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_CLR_MASK | HCLGE_CMDQ_ROCEE_ECC_CLR_MASK); desc[1].data[3] = cpu_to_le32(HCLGE_TQP_IMP_ERR_CLR_MASK); desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_CLR_MASK); ret = hclge_cmd_clear_error(hdev, &desc[0], NULL, 0, HCLGE_CMD_FLAG_NEXT); if (ret) dev_err(dev, "failed(%d) to clear COMMON error interrupt status\n", ret); } static void hclge_process_ncsi_error(struct hclge_dev *hdev, enum hclge_err_int_type type) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc_rd; struct hclge_desc desc_wr; u32 err_sts; int ret; if (hdev->pdev->revision < 0x21) return; /* read NCSI error status */ ret = hclge_cmd_query_error(hdev, &desc_rd, HCLGE_NCSI_INT_QUERY, 0, 1, HCLGE_NCSI_ERR_INT_TYPE); if (ret) { dev_err(dev, "failed(=%d) to query NCSI error interrupt status\n", ret); return; } /* log err */ err_sts = le32_to_cpu(desc_rd.data[0]); hclge_log_error(dev, &hclge_ncsi_err_int[0], err_sts); /* clear err int */ ret = hclge_cmd_clear_error(hdev, &desc_wr, &desc_rd, HCLGE_NCSI_INT_CLR, 0); if (ret) dev_err(dev, "failed(=%d) to clear NCSI interrupt status\n", ret); } static void hclge_process_igu_egu_error(struct hclge_dev *hdev, enum hclge_err_int_type int_type) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc_rd; struct hclge_desc desc_wr; u32 err_sts; int ret; /* read IGU common err sts */ ret = hclge_cmd_query_error(hdev, &desc_rd, HCLGE_IGU_COMMON_INT_QUERY, 0, 1, int_type); if (ret) { dev_err(dev, "failed(=%d) to query IGU common int status\n", ret); return; } /* log err */ err_sts = le32_to_cpu(desc_rd.data[0]) & HCLGE_IGU_COM_INT_MASK; hclge_log_error(dev, &hclge_igu_com_err_int[0], err_sts); /* clear err int */ ret = hclge_cmd_clear_error(hdev, &desc_wr, &desc_rd, HCLGE_IGU_COMMON_INT_CLR, 0); if (ret) { dev_err(dev, "failed(=%d) to clear IGU common int status\n", ret); return; } /* read IGU-EGU TNL err sts */ ret = hclge_cmd_query_error(hdev, &desc_rd, HCLGE_IGU_EGU_TNL_INT_QUERY, 0, 1, int_type); if (ret) { dev_err(dev, "failed(=%d) to query IGU-EGU TNL int status\n", ret); return; } /* log err */ err_sts = le32_to_cpu(desc_rd.data[0]) & HCLGE_IGU_EGU_TNL_INT_MASK; hclge_log_error(dev, &hclge_igu_egu_tnl_err_int[0], err_sts); /* clear err int */ ret = hclge_cmd_clear_error(hdev, &desc_wr, &desc_rd, HCLGE_IGU_EGU_TNL_INT_CLR, 0); if (ret) { dev_err(dev, "failed(=%d) to clear IGU-EGU TNL int status\n", ret); return; } hclge_process_ncsi_error(hdev, HCLGE_ERR_INT_RAS_NFE); } static int hclge_log_and_clear_ppp_error(struct hclge_dev *hdev, u32 cmd, enum hclge_err_int_type int_type) { struct device *dev = &hdev->pdev->dev; const struct hclge_hw_error *hw_err_lst1, *hw_err_lst2, *hw_err_lst3; struct hclge_desc desc[2]; u32 err_sts; int ret; /* read PPP INT sts */ ret = hclge_cmd_query_error(hdev, &desc[0], cmd, HCLGE_CMD_FLAG_NEXT, 5, int_type); if (ret) { dev_err(dev, "failed(=%d) to query PPP interrupt status\n", ret); return -EIO; } /* log error */ if (cmd == HCLGE_PPP_CMD0_INT_CMD) { hw_err_lst1 = &hclge_ppp_mpf_int0[0]; hw_err_lst2 = &hclge_ppp_mpf_int1[0]; hw_err_lst3 = &hclge_ppp_pf_int[0]; } else if (cmd == HCLGE_PPP_CMD1_INT_CMD) { hw_err_lst1 = &hclge_ppp_mpf_int2[0]; hw_err_lst2 = &hclge_ppp_mpf_int3[0]; } else { dev_err(dev, "invalid command(=%d)\n", cmd); return -EINVAL; } err_sts = le32_to_cpu(desc[0].data[2]); if (err_sts) hclge_log_error(dev, hw_err_lst1, err_sts); err_sts = le32_to_cpu(desc[0].data[3]); if (err_sts) hclge_log_error(dev, hw_err_lst2, err_sts); if (cmd == HCLGE_PPP_CMD0_INT_CMD) { err_sts = (le32_to_cpu(desc[0].data[4]) >> 8) & 0x3; if (err_sts) hclge_log_error(dev, hw_err_lst3, err_sts); } /* clear PPP INT */ ret = hclge_cmd_clear_error(hdev, &desc[0], NULL, 0, HCLGE_CMD_FLAG_NEXT); if (ret) { dev_err(dev, "failed(=%d) to clear PPP interrupt status\n", ret); return -EIO; } return 0; } static void hclge_process_ppp_error(struct hclge_dev *hdev, enum hclge_err_int_type int_type) { struct device *dev = &hdev->pdev->dev; int ret; /* read PPP INT0,1 sts */ ret = hclge_log_and_clear_ppp_error(hdev, HCLGE_PPP_CMD0_INT_CMD, int_type); if (ret < 0) { dev_err(dev, "failed(=%d) to clear PPP interrupt 0,1 status\n", ret); return; } /* read err PPP INT2,3 sts */ ret = hclge_log_and_clear_ppp_error(hdev, HCLGE_PPP_CMD1_INT_CMD, int_type); if (ret < 0) dev_err(dev, "failed(=%d) to clear PPP interrupt 2,3 status\n", ret); } static void hclge_process_tm_sch_error(struct hclge_dev *hdev) { struct device *dev = &hdev->pdev->dev; const struct hclge_tm_sch_ecc_info *tm_sch_ecc_info; struct hclge_desc desc; u32 ecc_info; u8 module_no; u8 ram_no; int ret; /* read TM scheduler errors */ ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_SCH_MBIT_ECC_INFO_CMD, 0, 0, 0); if (ret) { dev_err(dev, "failed(%d) to read SCH mbit ECC err info\n", ret); return; } ecc_info = le32_to_cpu(desc.data[0]); ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_SCH_ECC_ERR_RINT_CMD, 0, 0, 0); if (ret) { dev_err(dev, "failed(%d) to read SCH ECC err status\n", ret); return; } /* log TM scheduler errors */ if (le32_to_cpu(desc.data[0])) { hclge_log_error(dev, &hclge_tm_sch_err_int[0], le32_to_cpu(desc.data[0])); if (le32_to_cpu(desc.data[0]) & 0x2) { module_no = (ecc_info >> 20) & 0xF; ram_no = (ecc_info >> 16) & 0xF; tm_sch_ecc_info = &hclge_tm_sch_ecc_err[module_no][ram_no]; dev_warn(dev, "ecc err module:ram=%s\n", tm_sch_ecc_info->name); dev_warn(dev, "ecc memory address = 0x%x\n", ecc_info & 0xFFFF); } } /* clear TM scheduler errors */ ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0); if (ret) { dev_err(dev, "failed(%d) to clear TM SCH error status\n", ret); return; } ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_SCH_ECC_ERR_RINT_CE, 0, 0, 0); if (ret) { dev_err(dev, "failed(%d) to read SCH CE status\n", ret); return; } ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0); if (ret) { dev_err(dev, "failed(%d) to clear TM SCH CE status\n", ret); return; } ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_SCH_ECC_ERR_RINT_NFE, 0, 0, 0); if (ret) { dev_err(dev, "failed(%d) to read SCH NFE status\n", ret); return; } ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0); if (ret) { dev_err(dev, "failed(%d) to clear TM SCH NFE status\n", ret); return; } ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_SCH_ECC_ERR_RINT_FE, 0, 0, 0); if (ret) { dev_err(dev, "failed(%d) to read SCH FE status\n", ret); return; } ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0); if (ret) dev_err(dev, "failed(%d) to clear TM SCH FE status\n", ret); } static void hclge_process_tm_qcn_error(struct hclge_dev *hdev) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc; int ret; /* read QCN errors */ ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_QCN_MEM_INT_INFO_CMD, 0, 0, 0); if (ret) { dev_err(dev, "failed(%d) to read QCN ECC err status\n", ret); return; } /* log QCN errors */ if (le32_to_cpu(desc.data[0])) hclge_log_error(dev, &hclge_qcn_ecc_err_int[0], le32_to_cpu(desc.data[0])); /* clear QCN errors */ ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0); if (ret) dev_err(dev, "failed(%d) to clear QCN error status\n", ret); } static void hclge_process_tm_error(struct hclge_dev *hdev, enum hclge_err_int_type type) { hclge_process_tm_sch_error(hdev); hclge_process_tm_qcn_error(hdev); } static const struct hclge_hw_blk hw_blk[] = { { .msk = BIT(0), .name = "IGU_EGU", .enable_error = hclge_enable_igu_egu_error, .process_error = hclge_process_igu_egu_error, }, { .msk = BIT(5), .name = "COMMON", .enable_error = hclge_enable_common_error, .process_error = hclge_process_common_error, }, { .msk = BIT(4), .name = "TM", .enable_error = hclge_enable_tm_hw_error, .process_error = hclge_process_tm_error, }, { .msk = BIT(1), .name = "PPP", .enable_error = hclge_enable_ppp_error, .process_error = hclge_process_ppp_error, }, { /* sentinel */ } }; int hclge_hw_error_set_state(struct hclge_dev *hdev, bool state) { struct device *dev = &hdev->pdev->dev; int ret = 0; int i = 0; while (hw_blk[i].name) { if (!hw_blk[i].enable_error) { i++; continue; } ret = hw_blk[i].enable_error(hdev, state); if (ret) { dev_err(dev, "fail(%d) to en/disable err int\n", ret); return ret; } i++; } return ret; } pci_ers_result_t hclge_process_ras_hw_error(struct hnae3_ae_dev *ae_dev) { struct hclge_dev *hdev = ae_dev->priv; struct device *dev = &hdev->pdev->dev; u32 sts, val; int i = 0; sts = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG); /* Processing Non-fatal errors */ if (sts & HCLGE_RAS_REG_NFE_MASK) { val = (sts >> HCLGE_RAS_REG_NFE_SHIFT) & 0xFF; i = 0; while (hw_blk[i].name) { if (!(hw_blk[i].msk & val)) { i++; continue; } dev_warn(dev, "%s ras non-fatal error identified\n", hw_blk[i].name); if (hw_blk[i].process_error) hw_blk[i].process_error(hdev, HCLGE_ERR_INT_RAS_NFE); i++; } } return PCI_ERS_RESULT_NEED_RESET; }