/* * Copyright (c) 2010-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include "ath9k.h" #include "mci.h" static const u8 ath_mci_duty_cycle[] = { 55, 50, 60, 70, 80, 85, 90, 95, 98 }; static struct ath_mci_profile_info* ath_mci_find_profile(struct ath_mci_profile *mci, struct ath_mci_profile_info *info) { struct ath_mci_profile_info *entry; if (list_empty(&mci->info)) return NULL; list_for_each_entry(entry, &mci->info, list) { if (entry->conn_handle == info->conn_handle) return entry; } return NULL; } static bool ath_mci_add_profile(struct ath_common *common, struct ath_mci_profile *mci, struct ath_mci_profile_info *info) { struct ath_mci_profile_info *entry; if ((mci->num_sco == ATH_MCI_MAX_SCO_PROFILE) && (info->type == MCI_GPM_COEX_PROFILE_VOICE)) return false; if (((NUM_PROF(mci) - mci->num_sco) == ATH_MCI_MAX_ACL_PROFILE) && (info->type != MCI_GPM_COEX_PROFILE_VOICE)) return false; entry = kzalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) return false; memcpy(entry, info, 10); INC_PROF(mci, info); list_add_tail(&entry->list, &mci->info); return true; } static void ath_mci_del_profile(struct ath_common *common, struct ath_mci_profile *mci, struct ath_mci_profile_info *entry) { if (!entry) return; DEC_PROF(mci, entry); list_del(&entry->list); kfree(entry); } void ath_mci_flush_profile(struct ath_mci_profile *mci) { struct ath_mci_profile_info *info, *tinfo; mci->aggr_limit = 0; mci->num_mgmt = 0; if (list_empty(&mci->info)) return; list_for_each_entry_safe(info, tinfo, &mci->info, list) { list_del(&info->list); DEC_PROF(mci, info); kfree(info); } } static void ath_mci_adjust_aggr_limit(struct ath_btcoex *btcoex) { struct ath_mci_profile *mci = &btcoex->mci; u32 wlan_airtime = btcoex->btcoex_period * (100 - btcoex->duty_cycle) / 100; /* * Scale: wlan_airtime is in ms, aggr_limit is in 0.25 ms. * When wlan_airtime is less than 4ms, aggregation limit has to be * adjusted half of wlan_airtime to ensure that the aggregation can fit * without collision with BT traffic. */ if ((wlan_airtime <= 4) && (!mci->aggr_limit || (mci->aggr_limit > (2 * wlan_airtime)))) mci->aggr_limit = 2 * wlan_airtime; } static void ath_mci_update_scheme(struct ath_softc *sc) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_btcoex *btcoex = &sc->btcoex; struct ath_mci_profile *mci = &btcoex->mci; struct ath9k_hw_mci *mci_hw = &sc->sc_ah->btcoex_hw.mci; struct ath_mci_profile_info *info; u32 num_profile = NUM_PROF(mci); if (mci_hw->config & ATH_MCI_CONFIG_DISABLE_TUNING) goto skip_tuning; mci->aggr_limit = 0; btcoex->duty_cycle = ath_mci_duty_cycle[num_profile]; btcoex->btcoex_period = ATH_MCI_DEF_BT_PERIOD; if (NUM_PROF(mci)) btcoex->bt_stomp_type = ATH_BTCOEX_STOMP_LOW; else btcoex->bt_stomp_type = mci->num_mgmt ? ATH_BTCOEX_STOMP_ALL : ATH_BTCOEX_STOMP_LOW; if (num_profile == 1) { info = list_first_entry(&mci->info, struct ath_mci_profile_info, list); if (mci->num_sco) { if (info->T == 12) mci->aggr_limit = 8; else if (info->T == 6) { mci->aggr_limit = 6; btcoex->duty_cycle = 30; } else mci->aggr_limit = 6; ath_dbg(common, MCI, "Single SCO, aggregation limit %d 1/4 ms\n", mci->aggr_limit); } else if (mci->num_pan || mci->num_other_acl) { /* * For single PAN/FTP profile, allocate 35% for BT * to improve WLAN throughput. */ btcoex->duty_cycle = 35; btcoex->btcoex_period = 53; ath_dbg(common, MCI, "Single PAN/FTP bt period %d ms dutycycle %d\n", btcoex->duty_cycle, btcoex->btcoex_period); } else if (mci->num_hid) { btcoex->duty_cycle = 30; mci->aggr_limit = 6; ath_dbg(common, MCI, "Multiple attempt/timeout single HID " "aggregation limit 1.5 ms dutycycle 30%%\n"); } } else if (num_profile == 2) { if (mci->num_hid == 2) btcoex->duty_cycle = 30; mci->aggr_limit = 6; ath_dbg(common, MCI, "Two BT profiles aggr limit 1.5 ms dutycycle %d%%\n", btcoex->duty_cycle); } else if (num_profile >= 3) { mci->aggr_limit = 4; ath_dbg(common, MCI, "Three or more profiles aggregation limit 1 ms\n"); } skip_tuning: if (IS_CHAN_2GHZ(sc->sc_ah->curchan)) { if (IS_CHAN_HT(sc->sc_ah->curchan)) ath_mci_adjust_aggr_limit(btcoex); else btcoex->btcoex_period >>= 1; } ath9k_btcoex_timer_pause(sc); ath9k_hw_btcoex_disable(sc->sc_ah); if (IS_CHAN_5GHZ(sc->sc_ah->curchan)) return; btcoex->duty_cycle += (mci->num_bdr ? ATH_MCI_BDR_DUTY_CYCLE : 0); if (btcoex->duty_cycle > ATH_MCI_MAX_DUTY_CYCLE) btcoex->duty_cycle = ATH_MCI_MAX_DUTY_CYCLE; btcoex->btcoex_no_stomp = btcoex->btcoex_period * 1000 * (100 - btcoex->duty_cycle) / 100; ath9k_hw_btcoex_enable(sc->sc_ah); ath9k_btcoex_timer_resume(sc); } static void ath_mci_wait_btcal_done(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; /* Stop tx & rx */ ieee80211_stop_queues(sc->hw); ath_stoprecv(sc); ath_drain_all_txq(sc, false); /* Wait for cal done */ ar9003_mci_start_reset(ah, ah->curchan); /* Resume tx & rx */ ath_startrecv(sc); ieee80211_wake_queues(sc->hw); } static void ath_mci_cal_msg(struct ath_softc *sc, u8 opcode, u8 *rx_payload) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci; u32 payload[4] = {0, 0, 0, 0}; switch (opcode) { case MCI_GPM_BT_CAL_REQ: if (mci_hw->bt_state == MCI_BT_AWAKE) { mci_hw->bt_state = MCI_BT_CAL_START; ath_mci_wait_btcal_done(sc); } ath_dbg(common, MCI, "MCI State : %d\n", mci_hw->bt_state); break; case MCI_GPM_BT_CAL_GRANT: MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_DONE); ar9003_mci_send_message(sc->sc_ah, MCI_GPM, 0, payload, 16, false, true); break; default: ath_dbg(common, MCI, "Unknown GPM CAL message\n"); break; } } static void ath9k_mci_work(struct work_struct *work) { struct ath_softc *sc = container_of(work, struct ath_softc, mci_work); ath_mci_update_scheme(sc); } static void ath_mci_process_profile(struct ath_softc *sc, struct ath_mci_profile_info *info) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_btcoex *btcoex = &sc->btcoex; struct ath_mci_profile *mci = &btcoex->mci; struct ath_mci_profile_info *entry = NULL; entry = ath_mci_find_profile(mci, info); if (entry) { /* * Two MCI interrupts are generated while connecting to * headset and A2DP profile, but only one MCI interrupt * is generated with last added profile type while disconnecting * both profiles. * So while adding second profile type decrement * the first one. */ if (entry->type != info->type) { DEC_PROF(mci, entry); INC_PROF(mci, info); } memcpy(entry, info, 10); } if (info->start) { if (!entry && !ath_mci_add_profile(common, mci, info)) return; } else ath_mci_del_profile(common, mci, entry); ieee80211_queue_work(sc->hw, &sc->mci_work); } static void ath_mci_process_status(struct ath_softc *sc, struct ath_mci_profile_status *status) { struct ath_btcoex *btcoex = &sc->btcoex; struct ath_mci_profile *mci = &btcoex->mci; struct ath_mci_profile_info info; int i = 0, old_num_mgmt = mci->num_mgmt; /* Link status type are not handled */ if (status->is_link) return; info.conn_handle = status->conn_handle; if (ath_mci_find_profile(mci, &info)) return; if (status->conn_handle >= ATH_MCI_MAX_PROFILE) return; if (status->is_critical) __set_bit(status->conn_handle, mci->status); else __clear_bit(status->conn_handle, mci->status); mci->num_mgmt = 0; do { if (test_bit(i, mci->status)) mci->num_mgmt++; } while (++i < ATH_MCI_MAX_PROFILE); if (old_num_mgmt != mci->num_mgmt) ieee80211_queue_work(sc->hw, &sc->mci_work); } static void ath_mci_msg(struct ath_softc *sc, u8 opcode, u8 *rx_payload) { struct ath_hw *ah = sc->sc_ah; struct ath_mci_profile_info profile_info; struct ath_mci_profile_status profile_status; struct ath_common *common = ath9k_hw_common(sc->sc_ah); u8 major, minor; u32 seq_num; if (ar9003_mci_state(ah, MCI_STATE_NEED_FLUSH_BT_INFO) && ar9003_mci_state(ah, MCI_STATE_ENABLE)) { ath_dbg(common, MCI, "(MCI) Need to flush BT profiles\n"); ath_mci_flush_profile(&sc->btcoex.mci); ar9003_mci_state(ah, MCI_STATE_SEND_STATUS_QUERY); } switch (opcode) { case MCI_GPM_COEX_VERSION_QUERY: ar9003_mci_state(ah, MCI_STATE_SEND_WLAN_COEX_VERSION); break; case MCI_GPM_COEX_VERSION_RESPONSE: major = *(rx_payload + MCI_GPM_COEX_B_MAJOR_VERSION); minor = *(rx_payload + MCI_GPM_COEX_B_MINOR_VERSION); ar9003_mci_set_bt_version(ah, major, minor); break; case MCI_GPM_COEX_STATUS_QUERY: ar9003_mci_send_wlan_channels(ah); break; case MCI_GPM_COEX_BT_PROFILE_INFO: memcpy(&profile_info, (rx_payload + MCI_GPM_COEX_B_PROFILE_TYPE), 10); if ((profile_info.type == MCI_GPM_COEX_PROFILE_UNKNOWN) || (profile_info.type >= MCI_GPM_COEX_PROFILE_MAX)) { ath_dbg(common, MCI, "Illegal profile type = %d, state = %d\n", profile_info.type, profile_info.start); break; } ath_mci_process_profile(sc, &profile_info); break; case MCI_GPM_COEX_BT_STATUS_UPDATE: profile_status.is_link = *(rx_payload + MCI_GPM_COEX_B_STATUS_TYPE); profile_status.conn_handle = *(rx_payload + MCI_GPM_COEX_B_STATUS_LINKID); profile_status.is_critical = *(rx_payload + MCI_GPM_COEX_B_STATUS_STATE); seq_num = *((u32 *)(rx_payload + 12)); ath_dbg(common, MCI, "BT_Status_Update: is_link=%d, linkId=%d, state=%d, SEQ=%u\n", profile_status.is_link, profile_status.conn_handle, profile_status.is_critical, seq_num); ath_mci_process_status(sc, &profile_status); break; default: ath_dbg(common, MCI, "Unknown GPM COEX message = 0x%02x\n", opcode); break; } } int ath_mci_setup(struct ath_softc *sc) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_mci_coex *mci = &sc->mci_coex; struct ath_mci_buf *buf = &mci->sched_buf; buf->bf_addr = dma_alloc_coherent(sc->dev, ATH_MCI_SCHED_BUF_SIZE + ATH_MCI_GPM_BUF_SIZE, &buf->bf_paddr, GFP_KERNEL); if (buf->bf_addr == NULL) { ath_dbg(common, FATAL, "MCI buffer alloc failed\n"); return -ENOMEM; } memset(buf->bf_addr, MCI_GPM_RSVD_PATTERN, ATH_MCI_SCHED_BUF_SIZE + ATH_MCI_GPM_BUF_SIZE); mci->sched_buf.bf_len = ATH_MCI_SCHED_BUF_SIZE; mci->gpm_buf.bf_len = ATH_MCI_GPM_BUF_SIZE; mci->gpm_buf.bf_addr = (u8 *)mci->sched_buf.bf_addr + mci->sched_buf.bf_len; mci->gpm_buf.bf_paddr = mci->sched_buf.bf_paddr + mci->sched_buf.bf_len; ar9003_mci_setup(sc->sc_ah, mci->gpm_buf.bf_paddr, mci->gpm_buf.bf_addr, (mci->gpm_buf.bf_len >> 4), mci->sched_buf.bf_paddr); INIT_WORK(&sc->mci_work, ath9k_mci_work); ath_dbg(common, MCI, "MCI Initialized\n"); return 0; } void ath_mci_cleanup(struct ath_softc *sc) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_hw *ah = sc->sc_ah; struct ath_mci_coex *mci = &sc->mci_coex; struct ath_mci_buf *buf = &mci->sched_buf; if (buf->bf_addr) dma_free_coherent(sc->dev, ATH_MCI_SCHED_BUF_SIZE + ATH_MCI_GPM_BUF_SIZE, buf->bf_addr, buf->bf_paddr); ar9003_mci_cleanup(ah); ath_dbg(common, MCI, "MCI De-Initialized\n"); } void ath_mci_intr(struct ath_softc *sc) { struct ath_mci_coex *mci = &sc->mci_coex; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci; u32 mci_int, mci_int_rxmsg; u32 offset, subtype, opcode; u32 *pgpm; u32 more_data = MCI_GPM_MORE; bool skip_gpm = false; ar9003_mci_get_interrupt(sc->sc_ah, &mci_int, &mci_int_rxmsg); if (ar9003_mci_state(ah, MCI_STATE_ENABLE) == 0) { ar9003_mci_get_next_gpm_offset(ah, true, NULL); return; } if (mci_int_rxmsg & AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE) { u32 payload[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffff00}; /* * The following REMOTE_RESET and SYS_WAKING used to sent * only when BT wake up. Now they are always sent, as a * recovery method to reset BT MCI's RX alignment. */ ar9003_mci_send_message(ah, MCI_REMOTE_RESET, 0, payload, 16, true, false); ar9003_mci_send_message(ah, MCI_SYS_WAKING, 0, NULL, 0, true, false); mci_int_rxmsg &= ~AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE; ar9003_mci_state(ah, MCI_STATE_RESET_REQ_WAKE); /* * always do this for recovery and 2G/5G toggling and LNA_TRANS */ ar9003_mci_state(ah, MCI_STATE_SET_BT_AWAKE); } if (mci_int_rxmsg & AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING) { mci_int_rxmsg &= ~AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING; if ((mci_hw->bt_state == MCI_BT_SLEEP) && (ar9003_mci_state(ah, MCI_STATE_REMOTE_SLEEP) != MCI_BT_SLEEP)) ar9003_mci_state(ah, MCI_STATE_SET_BT_AWAKE); } if (mci_int_rxmsg & AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING) { mci_int_rxmsg &= ~AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING; if ((mci_hw->bt_state == MCI_BT_AWAKE) && (ar9003_mci_state(ah, MCI_STATE_REMOTE_SLEEP) != MCI_BT_AWAKE)) mci_hw->bt_state = MCI_BT_SLEEP; } if ((mci_int & AR_MCI_INTERRUPT_RX_INVALID_HDR) || (mci_int & AR_MCI_INTERRUPT_CONT_INFO_TIMEOUT)) { ar9003_mci_state(ah, MCI_STATE_RECOVER_RX); skip_gpm = true; } if (mci_int_rxmsg & AR_MCI_INTERRUPT_RX_MSG_SCHD_INFO) { mci_int_rxmsg &= ~AR_MCI_INTERRUPT_RX_MSG_SCHD_INFO; offset = ar9003_mci_state(ah, MCI_STATE_LAST_SCHD_MSG_OFFSET); } if (mci_int_rxmsg & AR_MCI_INTERRUPT_RX_MSG_GPM) { mci_int_rxmsg &= ~AR_MCI_INTERRUPT_RX_MSG_GPM; while (more_data == MCI_GPM_MORE) { pgpm = mci->gpm_buf.bf_addr; offset = ar9003_mci_get_next_gpm_offset(ah, false, &more_data); if (offset == MCI_GPM_INVALID) break; pgpm += (offset >> 2); /* * The first dword is timer. * The real data starts from 2nd dword. */ subtype = MCI_GPM_TYPE(pgpm); opcode = MCI_GPM_OPCODE(pgpm); if (skip_gpm) goto recycle; if (MCI_GPM_IS_CAL_TYPE(subtype)) { ath_mci_cal_msg(sc, subtype, (u8 *)pgpm); } else { switch (subtype) { case MCI_GPM_COEX_AGENT: ath_mci_msg(sc, opcode, (u8 *)pgpm); break; default: break; } } recycle: MCI_GPM_RECYCLE(pgpm); } } if (mci_int_rxmsg & AR_MCI_INTERRUPT_RX_HW_MSG_MASK) { if (mci_int_rxmsg & AR_MCI_INTERRUPT_RX_MSG_LNA_CONTROL) mci_int_rxmsg &= ~AR_MCI_INTERRUPT_RX_MSG_LNA_CONTROL; if (mci_int_rxmsg & AR_MCI_INTERRUPT_RX_MSG_LNA_INFO) mci_int_rxmsg &= ~AR_MCI_INTERRUPT_RX_MSG_LNA_INFO; if (mci_int_rxmsg & AR_MCI_INTERRUPT_RX_MSG_CONT_INFO) { int value_dbm = MS(mci_hw->cont_status, AR_MCI_CONT_RSSI_POWER); mci_int_rxmsg &= ~AR_MCI_INTERRUPT_RX_MSG_CONT_INFO; ath_dbg(common, MCI, "MCI CONT_INFO: (%s) pri = %d pwr = %d dBm\n", MS(mci_hw->cont_status, AR_MCI_CONT_TXRX) ? "tx" : "rx", MS(mci_hw->cont_status, AR_MCI_CONT_PRIORITY), value_dbm); } if (mci_int_rxmsg & AR_MCI_INTERRUPT_RX_MSG_CONT_NACK) mci_int_rxmsg &= ~AR_MCI_INTERRUPT_RX_MSG_CONT_NACK; if (mci_int_rxmsg & AR_MCI_INTERRUPT_RX_MSG_CONT_RST) mci_int_rxmsg &= ~AR_MCI_INTERRUPT_RX_MSG_CONT_RST; } if ((mci_int & AR_MCI_INTERRUPT_RX_INVALID_HDR) || (mci_int & AR_MCI_INTERRUPT_CONT_INFO_TIMEOUT)) { mci_int &= ~(AR_MCI_INTERRUPT_RX_INVALID_HDR | AR_MCI_INTERRUPT_CONT_INFO_TIMEOUT); ath_mci_msg(sc, MCI_GPM_COEX_NOOP, NULL); } } void ath_mci_enable(struct ath_softc *sc) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); if (!common->btcoex_enabled) return; if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_MCI) sc->sc_ah->imask |= ATH9K_INT_MCI; }