/* * Copyright (c) 2006 Luc Verhaegen (quirks list) * Copyright (c) 2007-2008 Intel Corporation * Jesse Barnes * Copyright 2010 Red Hat, Inc. * * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from * FB layer. * Copyright (C) 2006 Dennis Munsie * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sub license, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include "drmP.h" #include "drm_edid.h" #include "drm_edid_modes.h" #define version_greater(edid, maj, min) \ (((edid)->version > (maj)) || \ ((edid)->version == (maj) && (edid)->revision > (min))) #define EDID_EST_TIMINGS 16 #define EDID_STD_TIMINGS 8 #define EDID_DETAILED_TIMINGS 4 /* * EDID blocks out in the wild have a variety of bugs, try to collect * them here (note that userspace may work around broken monitors first, * but fixes should make their way here so that the kernel "just works" * on as many displays as possible). */ /* First detailed mode wrong, use largest 60Hz mode */ #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0) /* Reported 135MHz pixel clock is too high, needs adjustment */ #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1) /* Prefer the largest mode at 75 Hz */ #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2) /* Detail timing is in cm not mm */ #define EDID_QUIRK_DETAILED_IN_CM (1 << 3) /* Detailed timing descriptors have bogus size values, so just take the * maximum size and use that. */ #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4) /* Monitor forgot to set the first detailed is preferred bit. */ #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5) /* use +hsync +vsync for detailed mode */ #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6) /* Force reduced-blanking timings for detailed modes */ #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7) struct detailed_mode_closure { struct drm_connector *connector; struct edid *edid; bool preferred; u32 quirks; int modes; }; #define LEVEL_DMT 0 #define LEVEL_GTF 1 #define LEVEL_GTF2 2 #define LEVEL_CVT 3 static struct edid_quirk { char vendor[4]; int product_id; u32 quirks; } edid_quirk_list[] = { /* Acer AL1706 */ { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 }, /* Acer F51 */ { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 }, /* Unknown Acer */ { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, /* Belinea 10 15 55 */ { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 }, { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 }, /* Envision Peripherals, Inc. EN-7100e */ { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH }, /* Envision EN2028 */ { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 }, /* Funai Electronics PM36B */ { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 | EDID_QUIRK_DETAILED_IN_CM }, /* LG Philips LCD LP154W01-A5 */ { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE }, { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE }, /* Philips 107p5 CRT */ { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, /* Proview AY765C */ { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, /* Samsung SyncMaster 205BW. Note: irony */ { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP }, /* Samsung SyncMaster 22[5-6]BW */ { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 }, { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 }, /* ViewSonic VA2026w */ { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING }, }; /*** DDC fetch and block validation ***/ static const u8 edid_header[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; /* * Sanity check the header of the base EDID block. Return 8 if the header * is perfect, down to 0 if it's totally wrong. */ int drm_edid_header_is_valid(const u8 *raw_edid) { int i, score = 0; for (i = 0; i < sizeof(edid_header); i++) if (raw_edid[i] == edid_header[i]) score++; return score; } EXPORT_SYMBOL(drm_edid_header_is_valid); static int edid_fixup __read_mostly = 6; module_param_named(edid_fixup, edid_fixup, int, 0400); MODULE_PARM_DESC(edid_fixup, "Minimum number of valid EDID header bytes (0-8, default 6)"); /* * Sanity check the EDID block (base or extension). Return 0 if the block * doesn't check out, or 1 if it's valid. */ bool drm_edid_block_valid(u8 *raw_edid, int block) { int i; u8 csum = 0; struct edid *edid = (struct edid *)raw_edid; if (edid_fixup > 8 || edid_fixup < 0) edid_fixup = 6; if (block == 0) { int score = drm_edid_header_is_valid(raw_edid); if (score == 8) ; else if (score >= edid_fixup) { DRM_DEBUG("Fixing EDID header, your hardware may be failing\n"); memcpy(raw_edid, edid_header, sizeof(edid_header)); } else { goto bad; } } for (i = 0; i < EDID_LENGTH; i++) csum += raw_edid[i]; if (csum) { DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum); /* allow CEA to slide through, switches mangle this */ if (raw_edid[0] != 0x02) goto bad; } /* per-block-type checks */ switch (raw_edid[0]) { case 0: /* base */ if (edid->version != 1) { DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version); goto bad; } if (edid->revision > 4) DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n"); break; default: break; } return 1; bad: if (raw_edid) { printk(KERN_ERR "Raw EDID:\n"); print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1, raw_edid, EDID_LENGTH, false); } return 0; } EXPORT_SYMBOL(drm_edid_block_valid); /** * drm_edid_is_valid - sanity check EDID data * @edid: EDID data * * Sanity-check an entire EDID record (including extensions) */ bool drm_edid_is_valid(struct edid *edid) { int i; u8 *raw = (u8 *)edid; if (!edid) return false; for (i = 0; i <= edid->extensions; i++) if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i)) return false; return true; } EXPORT_SYMBOL(drm_edid_is_valid); #define DDC_SEGMENT_ADDR 0x30 /** * Get EDID information via I2C. * * \param adapter : i2c device adaptor * \param buf : EDID data buffer to be filled * \param len : EDID data buffer length * \return 0 on success or -1 on failure. * * Try to fetch EDID information by calling i2c driver function. */ static int drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf, int block, int len) { unsigned char start = block * EDID_LENGTH; int ret, retries = 5; /* The core i2c driver will automatically retry the transfer if the * adapter reports EAGAIN. However, we find that bit-banging transfers * are susceptible to errors under a heavily loaded machine and * generate spurious NAKs and timeouts. Retrying the transfer * of the individual block a few times seems to overcome this. */ do { struct i2c_msg msgs[] = { { .addr = DDC_ADDR, .flags = 0, .len = 1, .buf = &start, }, { .addr = DDC_ADDR, .flags = I2C_M_RD, .len = len, .buf = buf, } }; ret = i2c_transfer(adapter, msgs, 2); if (ret == -ENXIO) { DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n", adapter->name); break; } } while (ret != 2 && --retries); return ret == 2 ? 0 : -1; } static bool drm_edid_is_zero(u8 *in_edid, int length) { int i; u32 *raw_edid = (u32 *)in_edid; for (i = 0; i < length / 4; i++) if (*(raw_edid + i) != 0) return false; return true; } static u8 * drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter) { int i, j = 0, valid_extensions = 0; u8 *block, *new; if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL) return NULL; /* base block fetch */ for (i = 0; i < 4; i++) { if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH)) goto out; if (drm_edid_block_valid(block, 0)) break; if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) { connector->null_edid_counter++; goto carp; } } if (i == 4) goto carp; /* if there's no extensions, we're done */ if (block[0x7e] == 0) return block; new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL); if (!new) goto out; block = new; for (j = 1; j <= block[0x7e]; j++) { for (i = 0; i < 4; i++) { if (drm_do_probe_ddc_edid(adapter, block + (valid_extensions + 1) * EDID_LENGTH, j, EDID_LENGTH)) goto out; if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j)) { valid_extensions++; break; } } if (i == 4) dev_warn(connector->dev->dev, "%s: Ignoring invalid EDID block %d.\n", drm_get_connector_name(connector), j); } if (valid_extensions != block[0x7e]) { block[EDID_LENGTH-1] += block[0x7e] - valid_extensions; block[0x7e] = valid_extensions; new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL); if (!new) goto out; block = new; } return block; carp: dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n", drm_get_connector_name(connector), j); out: kfree(block); return NULL; } /** * Probe DDC presence. * * \param adapter : i2c device adaptor * \return 1 on success */ static bool drm_probe_ddc(struct i2c_adapter *adapter) { unsigned char out; return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0); } /** * drm_get_edid - get EDID data, if available * @connector: connector we're probing * @adapter: i2c adapter to use for DDC * * Poke the given i2c channel to grab EDID data if possible. If found, * attach it to the connector. * * Return edid data or NULL if we couldn't find any. */ struct edid *drm_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter) { struct edid *edid = NULL; if (drm_probe_ddc(adapter)) edid = (struct edid *)drm_do_get_edid(connector, adapter); return edid; } EXPORT_SYMBOL(drm_get_edid); /*** EDID parsing ***/ /** * edid_vendor - match a string against EDID's obfuscated vendor field * @edid: EDID to match * @vendor: vendor string * * Returns true if @vendor is in @edid, false otherwise */ static bool edid_vendor(struct edid *edid, char *vendor) { char edid_vendor[3]; edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@'; edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) | ((edid->mfg_id[1] & 0xe0) >> 5)) + '@'; edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@'; return !strncmp(edid_vendor, vendor, 3); } /** * edid_get_quirks - return quirk flags for a given EDID * @edid: EDID to process * * This tells subsequent routines what fixes they need to apply. */ static u32 edid_get_quirks(struct edid *edid) { struct edid_quirk *quirk; int i; for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) { quirk = &edid_quirk_list[i]; if (edid_vendor(edid, quirk->vendor) && (EDID_PRODUCT_ID(edid) == quirk->product_id)) return quirk->quirks; } return 0; } #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay) #define MODE_REFRESH_DIFF(m,r) (abs((m)->vrefresh - target_refresh)) /** * edid_fixup_preferred - set preferred modes based on quirk list * @connector: has mode list to fix up * @quirks: quirks list * * Walk the mode list for @connector, clearing the preferred status * on existing modes and setting it anew for the right mode ala @quirks. */ static void edid_fixup_preferred(struct drm_connector *connector, u32 quirks) { struct drm_display_mode *t, *cur_mode, *preferred_mode; int target_refresh = 0; if (list_empty(&connector->probed_modes)) return; if (quirks & EDID_QUIRK_PREFER_LARGE_60) target_refresh = 60; if (quirks & EDID_QUIRK_PREFER_LARGE_75) target_refresh = 75; preferred_mode = list_first_entry(&connector->probed_modes, struct drm_display_mode, head); list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) { cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED; if (cur_mode == preferred_mode) continue; /* Largest mode is preferred */ if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode)) preferred_mode = cur_mode; /* At a given size, try to get closest to target refresh */ if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) && MODE_REFRESH_DIFF(cur_mode, target_refresh) < MODE_REFRESH_DIFF(preferred_mode, target_refresh)) { preferred_mode = cur_mode; } } preferred_mode->type |= DRM_MODE_TYPE_PREFERRED; } static bool mode_is_rb(const struct drm_display_mode *mode) { return (mode->htotal - mode->hdisplay == 160) && (mode->hsync_end - mode->hdisplay == 80) && (mode->hsync_end - mode->hsync_start == 32) && (mode->vsync_start - mode->vdisplay == 3); } /* * drm_mode_find_dmt - Create a copy of a mode if present in DMT * @dev: Device to duplicate against * @hsize: Mode width * @vsize: Mode height * @fresh: Mode refresh rate * @rb: Mode reduced-blanking-ness * * Walk the DMT mode list looking for a match for the given parameters. * Return a newly allocated copy of the mode, or NULL if not found. */ struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev, int hsize, int vsize, int fresh, bool rb) { int i; for (i = 0; i < drm_num_dmt_modes; i++) { const struct drm_display_mode *ptr = &drm_dmt_modes[i]; if (hsize != ptr->hdisplay) continue; if (vsize != ptr->vdisplay) continue; if (fresh != drm_mode_vrefresh(ptr)) continue; if (rb != mode_is_rb(ptr)) continue; return drm_mode_duplicate(dev, ptr); } return NULL; } EXPORT_SYMBOL(drm_mode_find_dmt); typedef void detailed_cb(struct detailed_timing *timing, void *closure); static void cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure) { int i, n = 0; u8 d = ext[0x02]; u8 *det_base = ext + d; n = (127 - d) / 18; for (i = 0; i < n; i++) cb((struct detailed_timing *)(det_base + 18 * i), closure); } static void vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure) { unsigned int i, n = min((int)ext[0x02], 6); u8 *det_base = ext + 5; if (ext[0x01] != 1) return; /* unknown version */ for (i = 0; i < n; i++) cb((struct detailed_timing *)(det_base + 18 * i), closure); } static void drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure) { int i; struct edid *edid = (struct edid *)raw_edid; if (edid == NULL) return; for (i = 0; i < EDID_DETAILED_TIMINGS; i++) cb(&(edid->detailed_timings[i]), closure); for (i = 1; i <= raw_edid[0x7e]; i++) { u8 *ext = raw_edid + (i * EDID_LENGTH); switch (*ext) { case CEA_EXT: cea_for_each_detailed_block(ext, cb, closure); break; case VTB_EXT: vtb_for_each_detailed_block(ext, cb, closure); break; default: break; } } } static void is_rb(struct detailed_timing *t, void *data) { u8 *r = (u8 *)t; if (r[3] == EDID_DETAIL_MONITOR_RANGE) if (r[15] & 0x10) *(bool *)data = true; } /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */ static bool drm_monitor_supports_rb(struct edid *edid) { if (edid->revision >= 4) { bool ret = false; drm_for_each_detailed_block((u8 *)edid, is_rb, &ret); return ret; } return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0); } static void find_gtf2(struct detailed_timing *t, void *data) { u8 *r = (u8 *)t; if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02) *(u8 **)data = r; } /* Secondary GTF curve kicks in above some break frequency */ static int drm_gtf2_hbreak(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? (r[12] * 2) : 0; } static int drm_gtf2_2c(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? r[13] : 0; } static int drm_gtf2_m(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? (r[15] << 8) + r[14] : 0; } static int drm_gtf2_k(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? r[16] : 0; } static int drm_gtf2_2j(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? r[17] : 0; } /** * standard_timing_level - get std. timing level(CVT/GTF/DMT) * @edid: EDID block to scan */ static int standard_timing_level(struct edid *edid) { if (edid->revision >= 2) { if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)) return LEVEL_CVT; if (drm_gtf2_hbreak(edid)) return LEVEL_GTF2; return LEVEL_GTF; } return LEVEL_DMT; } /* * 0 is reserved. The spec says 0x01 fill for unused timings. Some old * monitors fill with ascii space (0x20) instead. */ static int bad_std_timing(u8 a, u8 b) { return (a == 0x00 && b == 0x00) || (a == 0x01 && b == 0x01) || (a == 0x20 && b == 0x20); } /** * drm_mode_std - convert standard mode info (width, height, refresh) into mode * @t: standard timing params * @timing_level: standard timing level * * Take the standard timing params (in this case width, aspect, and refresh) * and convert them into a real mode using CVT/GTF/DMT. */ static struct drm_display_mode * drm_mode_std(struct drm_connector *connector, struct edid *edid, struct std_timing *t, int revision) { struct drm_device *dev = connector->dev; struct drm_display_mode *m, *mode = NULL; int hsize, vsize; int vrefresh_rate; unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK) >> EDID_TIMING_ASPECT_SHIFT; unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK) >> EDID_TIMING_VFREQ_SHIFT; int timing_level = standard_timing_level(edid); if (bad_std_timing(t->hsize, t->vfreq_aspect)) return NULL; /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */ hsize = t->hsize * 8 + 248; /* vrefresh_rate = vfreq + 60 */ vrefresh_rate = vfreq + 60; /* the vdisplay is calculated based on the aspect ratio */ if (aspect_ratio == 0) { if (revision < 3) vsize = hsize; else vsize = (hsize * 10) / 16; } else if (aspect_ratio == 1) vsize = (hsize * 3) / 4; else if (aspect_ratio == 2) vsize = (hsize * 4) / 5; else vsize = (hsize * 9) / 16; /* HDTV hack, part 1 */ if (vrefresh_rate == 60 && ((hsize == 1360 && vsize == 765) || (hsize == 1368 && vsize == 769))) { hsize = 1366; vsize = 768; } /* * If this connector already has a mode for this size and refresh * rate (because it came from detailed or CVT info), use that * instead. This way we don't have to guess at interlace or * reduced blanking. */ list_for_each_entry(m, &connector->probed_modes, head) if (m->hdisplay == hsize && m->vdisplay == vsize && drm_mode_vrefresh(m) == vrefresh_rate) return NULL; /* HDTV hack, part 2 */ if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) { mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0, false); mode->hdisplay = 1366; mode->hsync_start = mode->hsync_start - 1; mode->hsync_end = mode->hsync_end - 1; return mode; } /* check whether it can be found in default mode table */ if (drm_monitor_supports_rb(edid)) { mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, true); if (mode) return mode; } mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false); if (mode) return mode; /* okay, generate it */ switch (timing_level) { case LEVEL_DMT: break; case LEVEL_GTF: mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); break; case LEVEL_GTF2: /* * This is potentially wrong if there's ever a monitor with * more than one ranges section, each claiming a different * secondary GTF curve. Please don't do that. */ mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); if (!mode) return NULL; if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) { drm_mode_destroy(dev, mode); mode = drm_gtf_mode_complex(dev, hsize, vsize, vrefresh_rate, 0, 0, drm_gtf2_m(edid), drm_gtf2_2c(edid), drm_gtf2_k(edid), drm_gtf2_2j(edid)); } break; case LEVEL_CVT: mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0, false); break; } return mode; } /* * EDID is delightfully ambiguous about how interlaced modes are to be * encoded. Our internal representation is of frame height, but some * HDTV detailed timings are encoded as field height. * * The format list here is from CEA, in frame size. Technically we * should be checking refresh rate too. Whatever. */ static void drm_mode_do_interlace_quirk(struct drm_display_mode *mode, struct detailed_pixel_timing *pt) { int i; static const struct { int w, h; } cea_interlaced[] = { { 1920, 1080 }, { 720, 480 }, { 1440, 480 }, { 2880, 480 }, { 720, 576 }, { 1440, 576 }, { 2880, 576 }, }; if (!(pt->misc & DRM_EDID_PT_INTERLACED)) return; for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) { if ((mode->hdisplay == cea_interlaced[i].w) && (mode->vdisplay == cea_interlaced[i].h / 2)) { mode->vdisplay *= 2; mode->vsync_start *= 2; mode->vsync_end *= 2; mode->vtotal *= 2; mode->vtotal |= 1; } } mode->flags |= DRM_MODE_FLAG_INTERLACE; } /** * drm_mode_detailed - create a new mode from an EDID detailed timing section * @dev: DRM device (needed to create new mode) * @edid: EDID block * @timing: EDID detailed timing info * @quirks: quirks to apply * * An EDID detailed timing block contains enough info for us to create and * return a new struct drm_display_mode. */ static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev, struct edid *edid, struct detailed_timing *timing, u32 quirks) { struct drm_display_mode *mode; struct detailed_pixel_timing *pt = &timing->data.pixel_data; unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo; unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo; unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo; unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo; unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo; unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo; unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) >> 2 | pt->vsync_offset_pulse_width_lo >> 4; unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf); /* ignore tiny modes */ if (hactive < 64 || vactive < 64) return NULL; if (pt->misc & DRM_EDID_PT_STEREO) { printk(KERN_WARNING "stereo mode not supported\n"); return NULL; } if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) { printk(KERN_WARNING "composite sync not supported\n"); } /* it is incorrect if hsync/vsync width is zero */ if (!hsync_pulse_width || !vsync_pulse_width) { DRM_DEBUG_KMS("Incorrect Detailed timing. " "Wrong Hsync/Vsync pulse width\n"); return NULL; } if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) { mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false); if (!mode) return NULL; goto set_size; } mode = drm_mode_create(dev); if (!mode) return NULL; if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH) timing->pixel_clock = cpu_to_le16(1088); mode->clock = le16_to_cpu(timing->pixel_clock) * 10; mode->hdisplay = hactive; mode->hsync_start = mode->hdisplay + hsync_offset; mode->hsync_end = mode->hsync_start + hsync_pulse_width; mode->htotal = mode->hdisplay + hblank; mode->vdisplay = vactive; mode->vsync_start = mode->vdisplay + vsync_offset; mode->vsync_end = mode->vsync_start + vsync_pulse_width; mode->vtotal = mode->vdisplay + vblank; /* Some EDIDs have bogus h/vtotal values */ if (mode->hsync_end > mode->htotal) mode->htotal = mode->hsync_end + 1; if (mode->vsync_end > mode->vtotal) mode->vtotal = mode->vsync_end + 1; drm_mode_do_interlace_quirk(mode, pt); if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) { pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE; } mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; set_size: mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4; mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8; if (quirks & EDID_QUIRK_DETAILED_IN_CM) { mode->width_mm *= 10; mode->height_mm *= 10; } if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) { mode->width_mm = edid->width_cm * 10; mode->height_mm = edid->height_cm * 10; } mode->type = DRM_MODE_TYPE_DRIVER; drm_mode_set_name(mode); return mode; } static bool mode_in_hsync_range(const struct drm_display_mode *mode, struct edid *edid, u8 *t) { int hsync, hmin, hmax; hmin = t[7]; if (edid->revision >= 4) hmin += ((t[4] & 0x04) ? 255 : 0); hmax = t[8]; if (edid->revision >= 4) hmax += ((t[4] & 0x08) ? 255 : 0); hsync = drm_mode_hsync(mode); return (hsync <= hmax && hsync >= hmin); } static bool mode_in_vsync_range(const struct drm_display_mode *mode, struct edid *edid, u8 *t) { int vsync, vmin, vmax; vmin = t[5]; if (edid->revision >= 4) vmin += ((t[4] & 0x01) ? 255 : 0); vmax = t[6]; if (edid->revision >= 4) vmax += ((t[4] & 0x02) ? 255 : 0); vsync = drm_mode_vrefresh(mode); return (vsync <= vmax && vsync >= vmin); } static u32 range_pixel_clock(struct edid *edid, u8 *t) { /* unspecified */ if (t[9] == 0 || t[9] == 255) return 0; /* 1.4 with CVT support gives us real precision, yay */ if (edid->revision >= 4 && t[10] == 0x04) return (t[9] * 10000) - ((t[12] >> 2) * 250); /* 1.3 is pathetic, so fuzz up a bit */ return t[9] * 10000 + 5001; } static bool mode_in_range(const struct drm_display_mode *mode, struct edid *edid, struct detailed_timing *timing) { u32 max_clock; u8 *t = (u8 *)timing; if (!mode_in_hsync_range(mode, edid, t)) return false; if (!mode_in_vsync_range(mode, edid, t)) return false; if ((max_clock = range_pixel_clock(edid, t))) if (mode->clock > max_clock) return false; /* 1.4 max horizontal check */ if (edid->revision >= 4 && t[10] == 0x04) if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3)))) return false; if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid)) return false; return true; } static bool valid_inferred_mode(const struct drm_connector *connector, const struct drm_display_mode *mode) { struct drm_display_mode *m; bool ok = false; list_for_each_entry(m, &connector->probed_modes, head) { if (mode->hdisplay == m->hdisplay && mode->vdisplay == m->vdisplay && drm_mode_vrefresh(mode) == drm_mode_vrefresh(m)) return false; /* duplicated */ if (mode->hdisplay <= m->hdisplay && mode->vdisplay <= m->vdisplay) ok = true; } return ok; } static int drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid, struct detailed_timing *timing) { int i, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; for (i = 0; i < drm_num_dmt_modes; i++) { if (mode_in_range(drm_dmt_modes + i, edid, timing) && valid_inferred_mode(connector, drm_dmt_modes + i)) { newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } } return modes; } /* fix up 1366x768 mode from 1368x768; * GFT/CVT can't express 1366 width which isn't dividable by 8 */ static void fixup_mode_1366x768(struct drm_display_mode *mode) { if (mode->hdisplay == 1368 && mode->vdisplay == 768) { mode->hdisplay = 1366; mode->hsync_start--; mode->hsync_end--; drm_mode_set_name(mode); } } static int drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid, struct detailed_timing *timing) { int i, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; for (i = 0; i < num_extra_modes; i++) { const struct minimode *m = &extra_modes[i]; newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0); if (!newmode) return modes; fixup_mode_1366x768(newmode); if (!mode_in_range(newmode, edid, timing) || !valid_inferred_mode(connector, newmode)) { drm_mode_destroy(dev, newmode); continue; } drm_mode_probed_add(connector, newmode); modes++; } return modes; } static int drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid, struct detailed_timing *timing) { int i, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; bool rb = drm_monitor_supports_rb(edid); for (i = 0; i < num_extra_modes; i++) { const struct minimode *m = &extra_modes[i]; newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0); if (!newmode) return modes; fixup_mode_1366x768(newmode); if (!mode_in_range(newmode, edid, timing) || !valid_inferred_mode(connector, newmode)) { drm_mode_destroy(dev, newmode); continue; } drm_mode_probed_add(connector, newmode); modes++; } return modes; } static void do_inferred_modes(struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; struct detailed_non_pixel *data = &timing->data.other_data; struct detailed_data_monitor_range *range = &data->data.range; if (data->type != EDID_DETAIL_MONITOR_RANGE) return; closure->modes += drm_dmt_modes_for_range(closure->connector, closure->edid, timing); if (!version_greater(closure->edid, 1, 1)) return; /* GTF not defined yet */ switch (range->flags) { case 0x02: /* secondary gtf, XXX could do more */ case 0x00: /* default gtf */ closure->modes += drm_gtf_modes_for_range(closure->connector, closure->edid, timing); break; case 0x04: /* cvt, only in 1.4+ */ if (!version_greater(closure->edid, 1, 3)) break; closure->modes += drm_cvt_modes_for_range(closure->connector, closure->edid, timing); break; case 0x01: /* just the ranges, no formula */ default: break; } } static int add_inferred_modes(struct drm_connector *connector, struct edid *edid) { struct detailed_mode_closure closure = { connector, edid, 0, 0, 0 }; if (version_greater(edid, 1, 0)) drm_for_each_detailed_block((u8 *)edid, do_inferred_modes, &closure); return closure.modes; } static int drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing) { int i, j, m, modes = 0; struct drm_display_mode *mode; u8 *est = ((u8 *)timing) + 5; for (i = 0; i < 6; i++) { for (j = 7; j > 0; j--) { m = (i * 8) + (7 - j); if (m >= ARRAY_SIZE(est3_modes)) break; if (est[i] & (1 << j)) { mode = drm_mode_find_dmt(connector->dev, est3_modes[m].w, est3_modes[m].h, est3_modes[m].r, est3_modes[m].rb); if (mode) { drm_mode_probed_add(connector, mode); modes++; } } } } return modes; } static void do_established_modes(struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; struct detailed_non_pixel *data = &timing->data.other_data; if (data->type == EDID_DETAIL_EST_TIMINGS) closure->modes += drm_est3_modes(closure->connector, timing); } /** * add_established_modes - get est. modes from EDID and add them * @edid: EDID block to scan * * Each EDID block contains a bitmap of the supported "established modes" list * (defined above). Tease them out and add them to the global modes list. */ static int add_established_modes(struct drm_connector *connector, struct edid *edid) { struct drm_device *dev = connector->dev; unsigned long est_bits = edid->established_timings.t1 | (edid->established_timings.t2 << 8) | ((edid->established_timings.mfg_rsvd & 0x80) << 9); int i, modes = 0; struct detailed_mode_closure closure = { connector, edid, 0, 0, 0 }; for (i = 0; i <= EDID_EST_TIMINGS; i++) { if (est_bits & (1<data.other_data; struct drm_connector *connector = closure->connector; struct edid *edid = closure->edid; if (data->type == EDID_DETAIL_STD_MODES) { int i; for (i = 0; i < 6; i++) { struct std_timing *std; struct drm_display_mode *newmode; std = &data->data.timings[i]; newmode = drm_mode_std(connector, edid, std, edid->revision); if (newmode) { drm_mode_probed_add(connector, newmode); closure->modes++; } } } } /** * add_standard_modes - get std. modes from EDID and add them * @edid: EDID block to scan * * Standard modes can be calculated using the appropriate standard (DMT, * GTF or CVT. Grab them from @edid and add them to the list. */ static int add_standard_modes(struct drm_connector *connector, struct edid *edid) { int i, modes = 0; struct detailed_mode_closure closure = { connector, edid, 0, 0, 0 }; for (i = 0; i < EDID_STD_TIMINGS; i++) { struct drm_display_mode *newmode; newmode = drm_mode_std(connector, edid, &edid->standard_timings[i], edid->revision); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } if (version_greater(edid, 1, 0)) drm_for_each_detailed_block((u8 *)edid, do_standard_modes, &closure); /* XXX should also look for standard codes in VTB blocks */ return modes + closure.modes; } static int drm_cvt_modes(struct drm_connector *connector, struct detailed_timing *timing) { int i, j, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; struct cvt_timing *cvt; const int rates[] = { 60, 85, 75, 60, 50 }; const u8 empty[3] = { 0, 0, 0 }; for (i = 0; i < 4; i++) { int uninitialized_var(width), height; cvt = &(timing->data.other_data.data.cvt[i]); if (!memcmp(cvt->code, empty, 3)) continue; height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2; switch (cvt->code[1] & 0x0c) { case 0x00: width = height * 4 / 3; break; case 0x04: width = height * 16 / 9; break; case 0x08: width = height * 16 / 10; break; case 0x0c: width = height * 15 / 9; break; } for (j = 1; j < 5; j++) { if (cvt->code[2] & (1 << j)) { newmode = drm_cvt_mode(dev, width, height, rates[j], j == 0, false, false); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } } } return modes; } static void do_cvt_mode(struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; struct detailed_non_pixel *data = &timing->data.other_data; if (data->type == EDID_DETAIL_CVT_3BYTE) closure->modes += drm_cvt_modes(closure->connector, timing); } static int add_cvt_modes(struct drm_connector *connector, struct edid *edid) { struct detailed_mode_closure closure = { connector, edid, 0, 0, 0 }; if (version_greater(edid, 1, 2)) drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure); /* XXX should also look for CVT codes in VTB blocks */ return closure.modes; } static void do_detailed_mode(struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; struct drm_display_mode *newmode; if (timing->pixel_clock) { newmode = drm_mode_detailed(closure->connector->dev, closure->edid, timing, closure->quirks); if (!newmode) return; if (closure->preferred) newmode->type |= DRM_MODE_TYPE_PREFERRED; drm_mode_probed_add(closure->connector, newmode); closure->modes++; closure->preferred = 0; } } /* * add_detailed_modes - Add modes from detailed timings * @connector: attached connector * @edid: EDID block to scan * @quirks: quirks to apply */ static int add_detailed_modes(struct drm_connector *connector, struct edid *edid, u32 quirks) { struct detailed_mode_closure closure = { connector, edid, 1, quirks, 0 }; if (closure.preferred && !version_greater(edid, 1, 3)) closure.preferred = (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING); drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure); return closure.modes; } #define HDMI_IDENTIFIER 0x000C03 #define AUDIO_BLOCK 0x01 #define VIDEO_BLOCK 0x02 #define VENDOR_BLOCK 0x03 #define SPEAKER_BLOCK 0x04 #define EDID_BASIC_AUDIO (1 << 6) #define EDID_CEA_YCRCB444 (1 << 5) #define EDID_CEA_YCRCB422 (1 << 4) /** * Search EDID for CEA extension block. */ u8 *drm_find_cea_extension(struct edid *edid) { u8 *edid_ext = NULL; int i; /* No EDID or EDID extensions */ if (edid == NULL || edid->extensions == 0) return NULL; /* Find CEA extension */ for (i = 0; i < edid->extensions; i++) { edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1); if (edid_ext[0] == CEA_EXT) break; } if (i == edid->extensions) return NULL; return edid_ext; } EXPORT_SYMBOL(drm_find_cea_extension); static int do_cea_modes (struct drm_connector *connector, u8 *db, u8 len) { struct drm_device *dev = connector->dev; u8 * mode, cea_mode; int modes = 0; for (mode = db; mode < db + len; mode++) { cea_mode = (*mode & 127) - 1; /* CEA modes are numbered 1..127 */ if (cea_mode < drm_num_cea_modes) { struct drm_display_mode *newmode; newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } } return modes; } static int cea_db_payload_len(const u8 *db) { return db[0] & 0x1f; } static int cea_db_tag(const u8 *db) { return db[0] >> 5; } static int cea_revision(const u8 *cea) { return cea[1]; } static int cea_db_offsets(const u8 *cea, int *start, int *end) { /* Data block offset in CEA extension block */ *start = 4; *end = cea[2]; if (*end == 0) *end = 127; if (*end < 4 || *end > 127) return -ERANGE; return 0; } #define for_each_cea_db(cea, i, start, end) \ for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1) static int add_cea_modes(struct drm_connector *connector, struct edid *edid) { u8 * cea = drm_find_cea_extension(edid); u8 * db, dbl; int modes = 0; if (cea && cea_revision(cea) >= 3) { int i, start, end; if (cea_db_offsets(cea, &start, &end)) return 0; for_each_cea_db(cea, i, start, end) { db = &cea[i]; dbl = cea_db_payload_len(db); if (cea_db_tag(db) == VIDEO_BLOCK) modes += do_cea_modes (connector, db+1, dbl); } } return modes; } static void parse_hdmi_vsdb(struct drm_connector *connector, uint8_t *db) { connector->eld[5] |= (db[6] >> 7) << 1; /* Supports_AI */ connector->dvi_dual = db[6] & 1; connector->max_tmds_clock = db[7] * 5; connector->latency_present[0] = db[8] >> 7; connector->latency_present[1] = (db[8] >> 6) & 1; connector->video_latency[0] = db[9]; connector->audio_latency[0] = db[10]; connector->video_latency[1] = db[11]; connector->audio_latency[1] = db[12]; DRM_LOG_KMS("HDMI: DVI dual %d, " "max TMDS clock %d, " "latency present %d %d, " "video latency %d %d, " "audio latency %d %d\n", connector->dvi_dual, connector->max_tmds_clock, (int) connector->latency_present[0], (int) connector->latency_present[1], connector->video_latency[0], connector->video_latency[1], connector->audio_latency[0], connector->audio_latency[1]); } static void monitor_name(struct detailed_timing *t, void *data) { if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME) *(u8 **)data = t->data.other_data.data.str.str; } /** * drm_edid_to_eld - build ELD from EDID * @connector: connector corresponding to the HDMI/DP sink * @edid: EDID to parse * * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. * Some ELD fields are left to the graphics driver caller: * - Conn_Type * - HDCP * - Port_ID */ void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid) { uint8_t *eld = connector->eld; u8 *cea; u8 *name; u8 *db; int sad_count = 0; int mnl; int dbl; memset(eld, 0, sizeof(connector->eld)); cea = drm_find_cea_extension(edid); if (!cea) { DRM_DEBUG_KMS("ELD: no CEA Extension found\n"); return; } name = NULL; drm_for_each_detailed_block((u8 *)edid, monitor_name, &name); for (mnl = 0; name && mnl < 13; mnl++) { if (name[mnl] == 0x0a) break; eld[20 + mnl] = name[mnl]; } eld[4] = (cea[1] << 5) | mnl; DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20); eld[0] = 2 << 3; /* ELD version: 2 */ eld[16] = edid->mfg_id[0]; eld[17] = edid->mfg_id[1]; eld[18] = edid->prod_code[0]; eld[19] = edid->prod_code[1]; if (cea_revision(cea) >= 3) { int i, start, end; if (cea_db_offsets(cea, &start, &end)) { start = 0; end = 0; } for_each_cea_db(cea, i, start, end) { db = &cea[i]; dbl = cea_db_payload_len(db); switch (cea_db_tag(db)) { case AUDIO_BLOCK: /* Audio Data Block, contains SADs */ sad_count = dbl / 3; if (dbl >= 1) memcpy(eld + 20 + mnl, &db[1], dbl); break; case SPEAKER_BLOCK: /* Speaker Allocation Data Block */ if (dbl >= 1) eld[7] = db[1]; break; case VENDOR_BLOCK: /* HDMI Vendor-Specific Data Block */ if (db[1] == 0x03 && db[2] == 0x0c && db[3] == 0) parse_hdmi_vsdb(connector, db); break; default: break; } } } eld[5] |= sad_count << 4; eld[2] = (20 + mnl + sad_count * 3 + 3) / 4; DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count); } EXPORT_SYMBOL(drm_edid_to_eld); /** * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond * @connector: connector associated with the HDMI/DP sink * @mode: the display mode */ int drm_av_sync_delay(struct drm_connector *connector, struct drm_display_mode *mode) { int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE); int a, v; if (!connector->latency_present[0]) return 0; if (!connector->latency_present[1]) i = 0; a = connector->audio_latency[i]; v = connector->video_latency[i]; /* * HDMI/DP sink doesn't support audio or video? */ if (a == 255 || v == 255) return 0; /* * Convert raw EDID values to millisecond. * Treat unknown latency as 0ms. */ if (a) a = min(2 * (a - 1), 500); if (v) v = min(2 * (v - 1), 500); return max(v - a, 0); } EXPORT_SYMBOL(drm_av_sync_delay); /** * drm_select_eld - select one ELD from multiple HDMI/DP sinks * @encoder: the encoder just changed display mode * @mode: the adjusted display mode * * It's possible for one encoder to be associated with multiple HDMI/DP sinks. * The policy is now hard coded to simply use the first HDMI/DP sink's ELD. */ struct drm_connector *drm_select_eld(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct drm_connector *connector; struct drm_device *dev = encoder->dev; list_for_each_entry(connector, &dev->mode_config.connector_list, head) if (connector->encoder == encoder && connector->eld[0]) return connector; return NULL; } EXPORT_SYMBOL(drm_select_eld); /** * drm_detect_hdmi_monitor - detect whether monitor is hdmi. * @edid: monitor EDID information * * Parse the CEA extension according to CEA-861-B. * Return true if HDMI, false if not or unknown. */ bool drm_detect_hdmi_monitor(struct edid *edid) { u8 *edid_ext; int i, hdmi_id; int start_offset, end_offset; bool is_hdmi = false; edid_ext = drm_find_cea_extension(edid); if (!edid_ext) goto end; if (cea_db_offsets(edid_ext, &start_offset, &end_offset)) goto end; /* * Because HDMI identifier is in Vendor Specific Block, * search it from all data blocks of CEA extension. */ for_each_cea_db(edid_ext, i, start_offset, end_offset) { /* Find vendor specific block */ if (cea_db_tag(&edid_ext[i]) == VENDOR_BLOCK) { hdmi_id = edid_ext[i + 1] | (edid_ext[i + 2] << 8) | edid_ext[i + 3] << 16; /* Find HDMI identifier */ if (hdmi_id == HDMI_IDENTIFIER) is_hdmi = true; break; } } end: return is_hdmi; } EXPORT_SYMBOL(drm_detect_hdmi_monitor); /** * drm_detect_monitor_audio - check monitor audio capability * * Monitor should have CEA extension block. * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic * audio' only. If there is any audio extension block and supported * audio format, assume at least 'basic audio' support, even if 'basic * audio' is not defined in EDID. * */ bool drm_detect_monitor_audio(struct edid *edid) { u8 *edid_ext; int i, j; bool has_audio = false; int start_offset, end_offset; edid_ext = drm_find_cea_extension(edid); if (!edid_ext) goto end; has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0); if (has_audio) { DRM_DEBUG_KMS("Monitor has basic audio support\n"); goto end; } if (cea_db_offsets(edid_ext, &start_offset, &end_offset)) goto end; for_each_cea_db(edid_ext, i, start_offset, end_offset) { if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) { has_audio = true; for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3) DRM_DEBUG_KMS("CEA audio format %d\n", (edid_ext[i + j] >> 3) & 0xf); goto end; } } end: return has_audio; } EXPORT_SYMBOL(drm_detect_monitor_audio); /** * drm_add_display_info - pull display info out if present * @edid: EDID data * @info: display info (attached to connector) * * Grab any available display info and stuff it into the drm_display_info * structure that's part of the connector. Useful for tracking bpp and * color spaces. */ static void drm_add_display_info(struct edid *edid, struct drm_display_info *info) { u8 *edid_ext; info->width_mm = edid->width_cm * 10; info->height_mm = edid->height_cm * 10; /* driver figures it out in this case */ info->bpc = 0; info->color_formats = 0; if (edid->revision < 3) return; if (!(edid->input & DRM_EDID_INPUT_DIGITAL)) return; /* Get data from CEA blocks if present */ edid_ext = drm_find_cea_extension(edid); if (edid_ext) { info->cea_rev = edid_ext[1]; /* The existence of a CEA block should imply RGB support */ info->color_formats = DRM_COLOR_FORMAT_RGB444; if (edid_ext[3] & EDID_CEA_YCRCB444) info->color_formats |= DRM_COLOR_FORMAT_YCRCB444; if (edid_ext[3] & EDID_CEA_YCRCB422) info->color_formats |= DRM_COLOR_FORMAT_YCRCB422; } /* Only defined for 1.4 with digital displays */ if (edid->revision < 4) return; switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) { case DRM_EDID_DIGITAL_DEPTH_6: info->bpc = 6; break; case DRM_EDID_DIGITAL_DEPTH_8: info->bpc = 8; break; case DRM_EDID_DIGITAL_DEPTH_10: info->bpc = 10; break; case DRM_EDID_DIGITAL_DEPTH_12: info->bpc = 12; break; case DRM_EDID_DIGITAL_DEPTH_14: info->bpc = 14; break; case DRM_EDID_DIGITAL_DEPTH_16: info->bpc = 16; break; case DRM_EDID_DIGITAL_DEPTH_UNDEF: default: info->bpc = 0; break; } info->color_formats |= DRM_COLOR_FORMAT_RGB444; if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444) info->color_formats |= DRM_COLOR_FORMAT_YCRCB444; if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422) info->color_formats |= DRM_COLOR_FORMAT_YCRCB422; } /** * drm_add_edid_modes - add modes from EDID data, if available * @connector: connector we're probing * @edid: edid data * * Add the specified modes to the connector's mode list. * * Return number of modes added or 0 if we couldn't find any. */ int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid) { int num_modes = 0; u32 quirks; if (edid == NULL) { return 0; } if (!drm_edid_is_valid(edid)) { dev_warn(connector->dev->dev, "%s: EDID invalid.\n", drm_get_connector_name(connector)); return 0; } quirks = edid_get_quirks(edid); /* * EDID spec says modes should be preferred in this order: * - preferred detailed mode * - other detailed modes from base block * - detailed modes from extension blocks * - CVT 3-byte code modes * - standard timing codes * - established timing codes * - modes inferred from GTF or CVT range information * * We get this pretty much right. * * XXX order for additional mode types in extension blocks? */ num_modes += add_detailed_modes(connector, edid, quirks); num_modes += add_cvt_modes(connector, edid); num_modes += add_standard_modes(connector, edid); num_modes += add_established_modes(connector, edid); num_modes += add_inferred_modes(connector, edid); num_modes += add_cea_modes(connector, edid); if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75)) edid_fixup_preferred(connector, quirks); drm_add_display_info(edid, &connector->display_info); return num_modes; } EXPORT_SYMBOL(drm_add_edid_modes); /** * drm_add_modes_noedid - add modes for the connectors without EDID * @connector: connector we're probing * @hdisplay: the horizontal display limit * @vdisplay: the vertical display limit * * Add the specified modes to the connector's mode list. Only when the * hdisplay/vdisplay is not beyond the given limit, it will be added. * * Return number of modes added or 0 if we couldn't find any. */ int drm_add_modes_noedid(struct drm_connector *connector, int hdisplay, int vdisplay) { int i, count, num_modes = 0; struct drm_display_mode *mode; struct drm_device *dev = connector->dev; count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode); if (hdisplay < 0) hdisplay = 0; if (vdisplay < 0) vdisplay = 0; for (i = 0; i < count; i++) { const struct drm_display_mode *ptr = &drm_dmt_modes[i]; if (hdisplay && vdisplay) { /* * Only when two are valid, they will be used to check * whether the mode should be added to the mode list of * the connector. */ if (ptr->hdisplay > hdisplay || ptr->vdisplay > vdisplay) continue; } if (drm_mode_vrefresh(ptr) > 61) continue; mode = drm_mode_duplicate(dev, ptr); if (mode) { drm_mode_probed_add(connector, mode); num_modes++; } } return num_modes; } EXPORT_SYMBOL(drm_add_modes_noedid);