/* * Copyright(c) 2015, 2016 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hfi.h" #include "sdma.h" #include "user_sdma.h" #include "verbs.h" /* for the headers */ #include "common.h" /* for struct hfi1_tid_info */ #include "trace.h" #include "mmu_rb.h" static uint hfi1_sdma_comp_ring_size = 128; module_param_named(sdma_comp_size, hfi1_sdma_comp_ring_size, uint, S_IRUGO); MODULE_PARM_DESC(sdma_comp_size, "Size of User SDMA completion ring. Default: 128"); /* The maximum number of Data io vectors per message/request */ #define MAX_VECTORS_PER_REQ 8 /* * Maximum number of packet to send from each message/request * before moving to the next one. */ #define MAX_PKTS_PER_QUEUE 16 #define num_pages(x) (1 + ((((x) - 1) & PAGE_MASK) >> PAGE_SHIFT)) #define req_opcode(x) \ (((x) >> HFI1_SDMA_REQ_OPCODE_SHIFT) & HFI1_SDMA_REQ_OPCODE_MASK) #define req_version(x) \ (((x) >> HFI1_SDMA_REQ_VERSION_SHIFT) & HFI1_SDMA_REQ_OPCODE_MASK) #define req_iovcnt(x) \ (((x) >> HFI1_SDMA_REQ_IOVCNT_SHIFT) & HFI1_SDMA_REQ_IOVCNT_MASK) /* Number of BTH.PSN bits used for sequence number in expected rcvs */ #define BTH_SEQ_MASK 0x7ffull /* * Define fields in the KDETH header so we can update the header * template. */ #define KDETH_OFFSET_SHIFT 0 #define KDETH_OFFSET_MASK 0x7fff #define KDETH_OM_SHIFT 15 #define KDETH_OM_MASK 0x1 #define KDETH_TID_SHIFT 16 #define KDETH_TID_MASK 0x3ff #define KDETH_TIDCTRL_SHIFT 26 #define KDETH_TIDCTRL_MASK 0x3 #define KDETH_INTR_SHIFT 28 #define KDETH_INTR_MASK 0x1 #define KDETH_SH_SHIFT 29 #define KDETH_SH_MASK 0x1 #define KDETH_HCRC_UPPER_SHIFT 16 #define KDETH_HCRC_UPPER_MASK 0xff #define KDETH_HCRC_LOWER_SHIFT 24 #define KDETH_HCRC_LOWER_MASK 0xff #define PBC2LRH(x) ((((x) & 0xfff) << 2) - 4) #define LRH2PBC(x) ((((x) >> 2) + 1) & 0xfff) #define KDETH_GET(val, field) \ (((le32_to_cpu((val))) >> KDETH_##field##_SHIFT) & KDETH_##field##_MASK) #define KDETH_SET(dw, field, val) do { \ u32 dwval = le32_to_cpu(dw); \ dwval &= ~(KDETH_##field##_MASK << KDETH_##field##_SHIFT); \ dwval |= (((val) & KDETH_##field##_MASK) << \ KDETH_##field##_SHIFT); \ dw = cpu_to_le32(dwval); \ } while (0) #define AHG_HEADER_SET(arr, idx, dw, bit, width, value) \ do { \ if ((idx) < ARRAY_SIZE((arr))) \ (arr)[(idx++)] = sdma_build_ahg_descriptor( \ (__force u16)(value), (dw), (bit), \ (width)); \ else \ return -ERANGE; \ } while (0) /* KDETH OM multipliers and switch over point */ #define KDETH_OM_SMALL 4 #define KDETH_OM_LARGE 64 #define KDETH_OM_MAX_SIZE (1 << ((KDETH_OM_LARGE / KDETH_OM_SMALL) + 1)) /* Last packet in the request */ #define TXREQ_FLAGS_REQ_LAST_PKT BIT(0) #define SDMA_REQ_IN_USE 0 #define SDMA_REQ_FOR_THREAD 1 #define SDMA_REQ_SEND_DONE 2 #define SDMA_REQ_HAVE_AHG 3 #define SDMA_REQ_HAS_ERROR 4 #define SDMA_REQ_DONE_ERROR 5 #define SDMA_PKT_Q_INACTIVE BIT(0) #define SDMA_PKT_Q_ACTIVE BIT(1) #define SDMA_PKT_Q_DEFERRED BIT(2) /* * Maximum retry attempts to submit a TX request * before putting the process to sleep. */ #define MAX_DEFER_RETRY_COUNT 1 static unsigned initial_pkt_count = 8; #define SDMA_IOWAIT_TIMEOUT 1000 /* in milliseconds */ struct sdma_mmu_node; struct user_sdma_iovec { struct list_head list; struct iovec iov; /* number of pages in this vector */ unsigned npages; /* array of pinned pages for this vector */ struct page **pages; /* * offset into the virtual address space of the vector at * which we last left off. */ u64 offset; struct sdma_mmu_node *node; }; #define SDMA_CACHE_NODE_EVICT 0 struct sdma_mmu_node { struct mmu_rb_node rb; struct list_head list; struct hfi1_user_sdma_pkt_q *pq; atomic_t refcount; struct page **pages; unsigned npages; unsigned long flags; }; struct user_sdma_request { struct sdma_req_info info; struct hfi1_user_sdma_pkt_q *pq; struct hfi1_user_sdma_comp_q *cq; /* This is the original header from user space */ struct hfi1_pkt_header hdr; /* * Pointer to the SDMA engine for this request. * Since different request could be on different VLs, * each request will need it's own engine pointer. */ struct sdma_engine *sde; u8 ahg_idx; u32 ahg[9]; /* * KDETH.Offset (Eager) field * We need to remember the initial value so the headers * can be updated properly. */ u32 koffset; /* * KDETH.OFFSET (TID) field * The offset can cover multiple packets, depending on the * size of the TID entry. */ u32 tidoffset; /* * KDETH.OM * Remember this because the header template always sets it * to 0. */ u8 omfactor; /* * We copy the iovs for this request (based on * info.iovcnt). These are only the data vectors */ unsigned data_iovs; /* total length of the data in the request */ u32 data_len; /* progress index moving along the iovs array */ unsigned iov_idx; struct user_sdma_iovec iovs[MAX_VECTORS_PER_REQ]; /* number of elements copied to the tids array */ u16 n_tids; /* TID array values copied from the tid_iov vector */ u32 *tids; u16 tididx; u32 sent; u64 seqnum; u64 seqcomp; u64 seqsubmitted; struct list_head txps; unsigned long flags; /* status of the last txreq completed */ int status; }; /* * A single txreq could span up to 3 physical pages when the MTU * is sufficiently large (> 4K). Each of the IOV pointers also * needs it's own set of flags so the vector has been handled * independently of each other. */ struct user_sdma_txreq { /* Packet header for the txreq */ struct hfi1_pkt_header hdr; struct sdma_txreq txreq; struct list_head list; struct user_sdma_request *req; u16 flags; unsigned busycount; u64 seqnum; }; #define SDMA_DBG(req, fmt, ...) \ hfi1_cdbg(SDMA, "[%u:%u:%u:%u] " fmt, (req)->pq->dd->unit, \ (req)->pq->ctxt, (req)->pq->subctxt, (req)->info.comp_idx, \ ##__VA_ARGS__) #define SDMA_Q_DBG(pq, fmt, ...) \ hfi1_cdbg(SDMA, "[%u:%u:%u] " fmt, (pq)->dd->unit, (pq)->ctxt, \ (pq)->subctxt, ##__VA_ARGS__) static int user_sdma_send_pkts(struct user_sdma_request *, unsigned); static int num_user_pages(const struct iovec *); static void user_sdma_txreq_cb(struct sdma_txreq *, int); static inline void pq_update(struct hfi1_user_sdma_pkt_q *); static void user_sdma_free_request(struct user_sdma_request *, bool); static int pin_vector_pages(struct user_sdma_request *, struct user_sdma_iovec *); static void unpin_vector_pages(struct mm_struct *, struct page **, unsigned, unsigned); static int check_header_template(struct user_sdma_request *, struct hfi1_pkt_header *, u32, u32); static int set_txreq_header(struct user_sdma_request *, struct user_sdma_txreq *, u32); static int set_txreq_header_ahg(struct user_sdma_request *, struct user_sdma_txreq *, u32); static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *, struct hfi1_user_sdma_comp_q *, u16, enum hfi1_sdma_comp_state, int); static inline u32 set_pkt_bth_psn(__be32, u8, u32); static inline u32 get_lrh_len(struct hfi1_pkt_header, u32 len); static int defer_packet_queue( struct sdma_engine *, struct iowait *, struct sdma_txreq *, unsigned seq); static void activate_packet_queue(struct iowait *, int); static bool sdma_rb_filter(struct mmu_rb_node *, unsigned long, unsigned long); static int sdma_rb_insert(struct rb_root *, struct mmu_rb_node *); static void sdma_rb_remove(struct rb_root *, struct mmu_rb_node *, struct mm_struct *); static int sdma_rb_invalidate(struct rb_root *, struct mmu_rb_node *); static struct mmu_rb_ops sdma_rb_ops = { .filter = sdma_rb_filter, .insert = sdma_rb_insert, .remove = sdma_rb_remove, .invalidate = sdma_rb_invalidate }; static int defer_packet_queue( struct sdma_engine *sde, struct iowait *wait, struct sdma_txreq *txreq, unsigned seq) { struct hfi1_user_sdma_pkt_q *pq = container_of(wait, struct hfi1_user_sdma_pkt_q, busy); struct hfi1_ibdev *dev = &pq->dd->verbs_dev; struct user_sdma_txreq *tx = container_of(txreq, struct user_sdma_txreq, txreq); if (sdma_progress(sde, seq, txreq)) { if (tx->busycount++ < MAX_DEFER_RETRY_COUNT) goto eagain; } /* * We are assuming that if the list is enqueued somewhere, it * is to the dmawait list since that is the only place where * it is supposed to be enqueued. */ xchg(&pq->state, SDMA_PKT_Q_DEFERRED); write_seqlock(&dev->iowait_lock); if (list_empty(&pq->busy.list)) list_add_tail(&pq->busy.list, &sde->dmawait); write_sequnlock(&dev->iowait_lock); return -EBUSY; eagain: return -EAGAIN; } static void activate_packet_queue(struct iowait *wait, int reason) { struct hfi1_user_sdma_pkt_q *pq = container_of(wait, struct hfi1_user_sdma_pkt_q, busy); xchg(&pq->state, SDMA_PKT_Q_ACTIVE); wake_up(&wait->wait_dma); }; static void sdma_kmem_cache_ctor(void *obj) { struct user_sdma_txreq *tx = obj; memset(tx, 0, sizeof(*tx)); } int hfi1_user_sdma_alloc_queues(struct hfi1_ctxtdata *uctxt, struct file *fp) { struct hfi1_filedata *fd; int ret = 0; unsigned memsize; char buf[64]; struct hfi1_devdata *dd; struct hfi1_user_sdma_comp_q *cq; struct hfi1_user_sdma_pkt_q *pq; unsigned long flags; if (!uctxt || !fp) { ret = -EBADF; goto done; } fd = fp->private_data; if (!hfi1_sdma_comp_ring_size) { ret = -EINVAL; goto done; } dd = uctxt->dd; pq = kzalloc(sizeof(*pq), GFP_KERNEL); if (!pq) goto pq_nomem; memsize = sizeof(*pq->reqs) * hfi1_sdma_comp_ring_size; pq->reqs = kzalloc(memsize, GFP_KERNEL); if (!pq->reqs) goto pq_reqs_nomem; INIT_LIST_HEAD(&pq->list); pq->dd = dd; pq->ctxt = uctxt->ctxt; pq->subctxt = fd->subctxt; pq->n_max_reqs = hfi1_sdma_comp_ring_size; pq->state = SDMA_PKT_Q_INACTIVE; atomic_set(&pq->n_reqs, 0); init_waitqueue_head(&pq->wait); pq->sdma_rb_root = RB_ROOT; INIT_LIST_HEAD(&pq->evict); spin_lock_init(&pq->evict_lock); iowait_init(&pq->busy, 0, NULL, defer_packet_queue, activate_packet_queue, NULL); pq->reqidx = 0; snprintf(buf, 64, "txreq-kmem-cache-%u-%u-%u", dd->unit, uctxt->ctxt, fd->subctxt); pq->txreq_cache = kmem_cache_create(buf, sizeof(struct user_sdma_txreq), L1_CACHE_BYTES, SLAB_HWCACHE_ALIGN, sdma_kmem_cache_ctor); if (!pq->txreq_cache) { dd_dev_err(dd, "[%u] Failed to allocate TxReq cache\n", uctxt->ctxt); goto pq_txreq_nomem; } fd->pq = pq; cq = kzalloc(sizeof(*cq), GFP_KERNEL); if (!cq) goto cq_nomem; memsize = PAGE_ALIGN(sizeof(*cq->comps) * hfi1_sdma_comp_ring_size); cq->comps = vmalloc_user(memsize); if (!cq->comps) goto cq_comps_nomem; cq->nentries = hfi1_sdma_comp_ring_size; fd->cq = cq; ret = hfi1_mmu_rb_register(&pq->sdma_rb_root, &sdma_rb_ops); if (ret) { dd_dev_err(dd, "Failed to register with MMU %d", ret); goto done; } spin_lock_irqsave(&uctxt->sdma_qlock, flags); list_add(&pq->list, &uctxt->sdma_queues); spin_unlock_irqrestore(&uctxt->sdma_qlock, flags); goto done; cq_comps_nomem: kfree(cq); cq_nomem: kmem_cache_destroy(pq->txreq_cache); pq_txreq_nomem: kfree(pq->reqs); pq_reqs_nomem: kfree(pq); fd->pq = NULL; pq_nomem: ret = -ENOMEM; done: return ret; } int hfi1_user_sdma_free_queues(struct hfi1_filedata *fd) { struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_user_sdma_pkt_q *pq; unsigned long flags; hfi1_cdbg(SDMA, "[%u:%u:%u] Freeing user SDMA queues", uctxt->dd->unit, uctxt->ctxt, fd->subctxt); pq = fd->pq; if (pq) { hfi1_mmu_rb_unregister(&pq->sdma_rb_root); spin_lock_irqsave(&uctxt->sdma_qlock, flags); if (!list_empty(&pq->list)) list_del_init(&pq->list); spin_unlock_irqrestore(&uctxt->sdma_qlock, flags); iowait_sdma_drain(&pq->busy); /* Wait until all requests have been freed. */ wait_event_interruptible( pq->wait, (ACCESS_ONCE(pq->state) == SDMA_PKT_Q_INACTIVE)); kfree(pq->reqs); kmem_cache_destroy(pq->txreq_cache); kfree(pq); fd->pq = NULL; } if (fd->cq) { vfree(fd->cq->comps); kfree(fd->cq); fd->cq = NULL; } return 0; } static u8 dlid_to_selector(u16 dlid) { static u8 mapping[256]; static int initialized; static u8 next; int hash; if (!initialized) { memset(mapping, 0xFF, 256); initialized = 1; } hash = ((dlid >> 8) ^ dlid) & 0xFF; if (mapping[hash] == 0xFF) { mapping[hash] = next; next = (next + 1) & 0x7F; } return mapping[hash]; } int hfi1_user_sdma_process_request(struct file *fp, struct iovec *iovec, unsigned long dim, unsigned long *count) { int ret = 0, i; struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_user_sdma_pkt_q *pq = fd->pq; struct hfi1_user_sdma_comp_q *cq = fd->cq; struct hfi1_devdata *dd = pq->dd; unsigned long idx = 0; u8 pcount = initial_pkt_count; struct sdma_req_info info; struct user_sdma_request *req; u8 opcode, sc, vl; int req_queued = 0; u16 dlid; u8 selector; if (iovec[idx].iov_len < sizeof(info) + sizeof(req->hdr)) { hfi1_cdbg( SDMA, "[%u:%u:%u] First vector not big enough for header %lu/%lu", dd->unit, uctxt->ctxt, fd->subctxt, iovec[idx].iov_len, sizeof(info) + sizeof(req->hdr)); return -EINVAL; } ret = copy_from_user(&info, iovec[idx].iov_base, sizeof(info)); if (ret) { hfi1_cdbg(SDMA, "[%u:%u:%u] Failed to copy info QW (%d)", dd->unit, uctxt->ctxt, fd->subctxt, ret); return -EFAULT; } trace_hfi1_sdma_user_reqinfo(dd, uctxt->ctxt, fd->subctxt, (u16 *)&info); if (info.comp_idx >= hfi1_sdma_comp_ring_size) { hfi1_cdbg(SDMA, "[%u:%u:%u:%u] Invalid comp index", dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx); return -EINVAL; } /* * Sanity check the header io vector count. Need at least 1 vector * (header) and cannot be larger than the actual io vector count. */ if (req_iovcnt(info.ctrl) < 1 || req_iovcnt(info.ctrl) > dim) { hfi1_cdbg(SDMA, "[%u:%u:%u:%u] Invalid iov count %d, dim %ld", dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx, req_iovcnt(info.ctrl), dim); return -EINVAL; } if (cq->comps[info.comp_idx].status == QUEUED || test_bit(SDMA_REQ_IN_USE, &pq->reqs[info.comp_idx].flags)) { hfi1_cdbg(SDMA, "[%u:%u:%u] Entry %u is in QUEUED state", dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx); return -EBADSLT; } if (!info.fragsize) { hfi1_cdbg(SDMA, "[%u:%u:%u:%u] Request does not specify fragsize", dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx); return -EINVAL; } /* * We've done all the safety checks that we can up to this point, * "allocate" the request entry. */ hfi1_cdbg(SDMA, "[%u:%u:%u] Using req/comp entry %u\n", dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx); req = pq->reqs + info.comp_idx; memset(req, 0, sizeof(*req)); /* Mark the request as IN_USE before we start filling it in. */ set_bit(SDMA_REQ_IN_USE, &req->flags); req->data_iovs = req_iovcnt(info.ctrl) - 1; /* subtract header vector */ req->pq = pq; req->cq = cq; req->status = -1; INIT_LIST_HEAD(&req->txps); memcpy(&req->info, &info, sizeof(info)); if (req_opcode(info.ctrl) == EXPECTED) { /* expected must have a TID info and at least one data vector */ if (req->data_iovs < 2) { SDMA_DBG(req, "Not enough vectors for expected request"); ret = -EINVAL; goto free_req; } req->data_iovs--; } if (!info.npkts || req->data_iovs > MAX_VECTORS_PER_REQ) { SDMA_DBG(req, "Too many vectors (%u/%u)", req->data_iovs, MAX_VECTORS_PER_REQ); ret = -EINVAL; goto free_req; } /* Copy the header from the user buffer */ ret = copy_from_user(&req->hdr, iovec[idx].iov_base + sizeof(info), sizeof(req->hdr)); if (ret) { SDMA_DBG(req, "Failed to copy header template (%d)", ret); ret = -EFAULT; goto free_req; } /* If Static rate control is not enabled, sanitize the header. */ if (!HFI1_CAP_IS_USET(STATIC_RATE_CTRL)) req->hdr.pbc[2] = 0; /* Validate the opcode. Do not trust packets from user space blindly. */ opcode = (be32_to_cpu(req->hdr.bth[0]) >> 24) & 0xff; if ((opcode & USER_OPCODE_CHECK_MASK) != USER_OPCODE_CHECK_VAL) { SDMA_DBG(req, "Invalid opcode (%d)", opcode); ret = -EINVAL; goto free_req; } /* * Validate the vl. Do not trust packets from user space blindly. * VL comes from PBC, SC comes from LRH, and the VL needs to * match the SC look up. */ vl = (le16_to_cpu(req->hdr.pbc[0]) >> 12) & 0xF; sc = (((be16_to_cpu(req->hdr.lrh[0]) >> 12) & 0xF) | (((le16_to_cpu(req->hdr.pbc[1]) >> 14) & 0x1) << 4)); if (vl >= dd->pport->vls_operational || vl != sc_to_vlt(dd, sc)) { SDMA_DBG(req, "Invalid SC(%u)/VL(%u)", sc, vl); ret = -EINVAL; goto free_req; } /* Checking P_KEY for requests from user-space */ if (egress_pkey_check(dd->pport, req->hdr.lrh, req->hdr.bth, sc, PKEY_CHECK_INVALID)) { ret = -EINVAL; goto free_req; } /* * Also should check the BTH.lnh. If it says the next header is GRH then * the RXE parsing will be off and will land in the middle of the KDETH * or miss it entirely. */ if ((be16_to_cpu(req->hdr.lrh[0]) & 0x3) == HFI1_LRH_GRH) { SDMA_DBG(req, "User tried to pass in a GRH"); ret = -EINVAL; goto free_req; } req->koffset = le32_to_cpu(req->hdr.kdeth.swdata[6]); /* * Calculate the initial TID offset based on the values of * KDETH.OFFSET and KDETH.OM that are passed in. */ req->tidoffset = KDETH_GET(req->hdr.kdeth.ver_tid_offset, OFFSET) * (KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ? KDETH_OM_LARGE : KDETH_OM_SMALL); SDMA_DBG(req, "Initial TID offset %u", req->tidoffset); idx++; /* Save all the IO vector structures */ for (i = 0; i < req->data_iovs; i++) { INIT_LIST_HEAD(&req->iovs[i].list); memcpy(&req->iovs[i].iov, iovec + idx++, sizeof(struct iovec)); ret = pin_vector_pages(req, &req->iovs[i]); if (ret) { req->status = ret; goto free_req; } req->data_len += req->iovs[i].iov.iov_len; } SDMA_DBG(req, "total data length %u", req->data_len); if (pcount > req->info.npkts) pcount = req->info.npkts; /* * Copy any TID info * User space will provide the TID info only when the * request type is EXPECTED. This is true even if there is * only one packet in the request and the header is already * setup. The reason for the singular TID case is that the * driver needs to perform safety checks. */ if (req_opcode(req->info.ctrl) == EXPECTED) { u16 ntids = iovec[idx].iov_len / sizeof(*req->tids); if (!ntids || ntids > MAX_TID_PAIR_ENTRIES) { ret = -EINVAL; goto free_req; } req->tids = kcalloc(ntids, sizeof(*req->tids), GFP_KERNEL); if (!req->tids) { ret = -ENOMEM; goto free_req; } /* * We have to copy all of the tids because they may vary * in size and, therefore, the TID count might not be * equal to the pkt count. However, there is no way to * tell at this point. */ ret = copy_from_user(req->tids, iovec[idx].iov_base, ntids * sizeof(*req->tids)); if (ret) { SDMA_DBG(req, "Failed to copy %d TIDs (%d)", ntids, ret); ret = -EFAULT; goto free_req; } req->n_tids = ntids; idx++; } dlid = be16_to_cpu(req->hdr.lrh[1]); selector = dlid_to_selector(dlid); /* Have to select the engine */ req->sde = sdma_select_engine_vl(dd, (u32)(uctxt->ctxt + fd->subctxt + selector), vl); if (!req->sde || !sdma_running(req->sde)) { ret = -ECOMM; goto free_req; } /* We don't need an AHG entry if the request contains only one packet */ if (req->info.npkts > 1 && HFI1_CAP_IS_USET(SDMA_AHG)) { int ahg = sdma_ahg_alloc(req->sde); if (likely(ahg >= 0)) { req->ahg_idx = (u8)ahg; set_bit(SDMA_REQ_HAVE_AHG, &req->flags); } } set_comp_state(pq, cq, info.comp_idx, QUEUED, 0); atomic_inc(&pq->n_reqs); req_queued = 1; /* Send the first N packets in the request to buy us some time */ ret = user_sdma_send_pkts(req, pcount); if (unlikely(ret < 0 && ret != -EBUSY)) { req->status = ret; goto free_req; } /* * It is possible that the SDMA engine would have processed all the * submitted packets by the time we get here. Therefore, only set * packet queue state to ACTIVE if there are still uncompleted * requests. */ if (atomic_read(&pq->n_reqs)) xchg(&pq->state, SDMA_PKT_Q_ACTIVE); /* * This is a somewhat blocking send implementation. * The driver will block the caller until all packets of the * request have been submitted to the SDMA engine. However, it * will not wait for send completions. */ while (!test_bit(SDMA_REQ_SEND_DONE, &req->flags)) { ret = user_sdma_send_pkts(req, pcount); if (ret < 0) { if (ret != -EBUSY) { req->status = ret; set_bit(SDMA_REQ_DONE_ERROR, &req->flags); if (ACCESS_ONCE(req->seqcomp) == req->seqsubmitted - 1) goto free_req; return ret; } wait_event_interruptible_timeout( pq->busy.wait_dma, (pq->state == SDMA_PKT_Q_ACTIVE), msecs_to_jiffies( SDMA_IOWAIT_TIMEOUT)); } } *count += idx; return 0; free_req: user_sdma_free_request(req, true); if (req_queued) pq_update(pq); set_comp_state(pq, cq, info.comp_idx, ERROR, req->status); return ret; } static inline u32 compute_data_length(struct user_sdma_request *req, struct user_sdma_txreq *tx) { /* * Determine the proper size of the packet data. * The size of the data of the first packet is in the header * template. However, it includes the header and ICRC, which need * to be subtracted. * The minimum representable packet data length in a header is 4 bytes, * therefore, when the data length request is less than 4 bytes, there's * only one packet, and the packet data length is equal to that of the * request data length. * The size of the remaining packets is the minimum of the frag * size (MTU) or remaining data in the request. */ u32 len; if (!req->seqnum) { if (req->data_len < sizeof(u32)) len = req->data_len; else len = ((be16_to_cpu(req->hdr.lrh[2]) << 2) - (sizeof(tx->hdr) - 4)); } else if (req_opcode(req->info.ctrl) == EXPECTED) { u32 tidlen = EXP_TID_GET(req->tids[req->tididx], LEN) * PAGE_SIZE; /* * Get the data length based on the remaining space in the * TID pair. */ len = min(tidlen - req->tidoffset, (u32)req->info.fragsize); /* If we've filled up the TID pair, move to the next one. */ if (unlikely(!len) && ++req->tididx < req->n_tids && req->tids[req->tididx]) { tidlen = EXP_TID_GET(req->tids[req->tididx], LEN) * PAGE_SIZE; req->tidoffset = 0; len = min_t(u32, tidlen, req->info.fragsize); } /* * Since the TID pairs map entire pages, make sure that we * are not going to try to send more data that we have * remaining. */ len = min(len, req->data_len - req->sent); } else { len = min(req->data_len - req->sent, (u32)req->info.fragsize); } SDMA_DBG(req, "Data Length = %u", len); return len; } static inline u32 pad_len(u32 len) { if (len & (sizeof(u32) - 1)) len += sizeof(u32) - (len & (sizeof(u32) - 1)); return len; } static inline u32 get_lrh_len(struct hfi1_pkt_header hdr, u32 len) { /* (Size of complete header - size of PBC) + 4B ICRC + data length */ return ((sizeof(hdr) - sizeof(hdr.pbc)) + 4 + len); } static int user_sdma_send_pkts(struct user_sdma_request *req, unsigned maxpkts) { int ret = 0; unsigned npkts = 0; struct user_sdma_txreq *tx = NULL; struct hfi1_user_sdma_pkt_q *pq = NULL; struct user_sdma_iovec *iovec = NULL; if (!req->pq) return -EINVAL; pq = req->pq; /* If tx completion has reported an error, we are done. */ if (test_bit(SDMA_REQ_HAS_ERROR, &req->flags)) { set_bit(SDMA_REQ_DONE_ERROR, &req->flags); return -EFAULT; } /* * Check if we might have sent the entire request already */ if (unlikely(req->seqnum == req->info.npkts)) { if (!list_empty(&req->txps)) goto dosend; return ret; } if (!maxpkts || maxpkts > req->info.npkts - req->seqnum) maxpkts = req->info.npkts - req->seqnum; while (npkts < maxpkts) { u32 datalen = 0, queued = 0, data_sent = 0; u64 iov_offset = 0; /* * Check whether any of the completions have come back * with errors. If so, we are not going to process any * more packets from this request. */ if (test_bit(SDMA_REQ_HAS_ERROR, &req->flags)) { set_bit(SDMA_REQ_DONE_ERROR, &req->flags); return -EFAULT; } tx = kmem_cache_alloc(pq->txreq_cache, GFP_KERNEL); if (!tx) return -ENOMEM; tx->flags = 0; tx->req = req; tx->busycount = 0; INIT_LIST_HEAD(&tx->list); if (req->seqnum == req->info.npkts - 1) tx->flags |= TXREQ_FLAGS_REQ_LAST_PKT; /* * Calculate the payload size - this is min of the fragment * (MTU) size or the remaining bytes in the request but only * if we have payload data. */ if (req->data_len) { iovec = &req->iovs[req->iov_idx]; if (ACCESS_ONCE(iovec->offset) == iovec->iov.iov_len) { if (++req->iov_idx == req->data_iovs) { ret = -EFAULT; goto free_txreq; } iovec = &req->iovs[req->iov_idx]; WARN_ON(iovec->offset); } datalen = compute_data_length(req, tx); if (!datalen) { SDMA_DBG(req, "Request has data but pkt len is 0"); ret = -EFAULT; goto free_tx; } } if (test_bit(SDMA_REQ_HAVE_AHG, &req->flags)) { if (!req->seqnum) { u16 pbclen = le16_to_cpu(req->hdr.pbc[0]); u32 lrhlen = get_lrh_len(req->hdr, pad_len(datalen)); /* * Copy the request header into the tx header * because the HW needs a cacheline-aligned * address. * This copy can be optimized out if the hdr * member of user_sdma_request were also * cacheline aligned. */ memcpy(&tx->hdr, &req->hdr, sizeof(tx->hdr)); if (PBC2LRH(pbclen) != lrhlen) { pbclen = (pbclen & 0xf000) | LRH2PBC(lrhlen); tx->hdr.pbc[0] = cpu_to_le16(pbclen); } ret = sdma_txinit_ahg(&tx->txreq, SDMA_TXREQ_F_AHG_COPY, sizeof(tx->hdr) + datalen, req->ahg_idx, 0, NULL, 0, user_sdma_txreq_cb); if (ret) goto free_tx; ret = sdma_txadd_kvaddr(pq->dd, &tx->txreq, &tx->hdr, sizeof(tx->hdr)); if (ret) goto free_txreq; } else { int changes; changes = set_txreq_header_ahg(req, tx, datalen); if (changes < 0) goto free_tx; sdma_txinit_ahg(&tx->txreq, SDMA_TXREQ_F_USE_AHG, datalen, req->ahg_idx, changes, req->ahg, sizeof(req->hdr), user_sdma_txreq_cb); } } else { ret = sdma_txinit(&tx->txreq, 0, sizeof(req->hdr) + datalen, user_sdma_txreq_cb); if (ret) goto free_tx; /* * Modify the header for this packet. This only needs * to be done if we are not going to use AHG. Otherwise, * the HW will do it based on the changes we gave it * during sdma_txinit_ahg(). */ ret = set_txreq_header(req, tx, datalen); if (ret) goto free_txreq; } /* * If the request contains any data vectors, add up to * fragsize bytes to the descriptor. */ while (queued < datalen && (req->sent + data_sent) < req->data_len) { unsigned long base, offset; unsigned pageidx, len; base = (unsigned long)iovec->iov.iov_base; offset = offset_in_page(base + iovec->offset + iov_offset); pageidx = (((iovec->offset + iov_offset + base) - (base & PAGE_MASK)) >> PAGE_SHIFT); len = offset + req->info.fragsize > PAGE_SIZE ? PAGE_SIZE - offset : req->info.fragsize; len = min((datalen - queued), len); ret = sdma_txadd_page(pq->dd, &tx->txreq, iovec->pages[pageidx], offset, len); if (ret) { SDMA_DBG(req, "SDMA txreq add page failed %d\n", ret); goto free_txreq; } iov_offset += len; queued += len; data_sent += len; if (unlikely(queued < datalen && pageidx == iovec->npages && req->iov_idx < req->data_iovs - 1)) { iovec->offset += iov_offset; iovec = &req->iovs[++req->iov_idx]; iov_offset = 0; } } /* * The txreq was submitted successfully so we can update * the counters. */ req->koffset += datalen; if (req_opcode(req->info.ctrl) == EXPECTED) req->tidoffset += datalen; req->sent += data_sent; if (req->data_len) iovec->offset += iov_offset; list_add_tail(&tx->txreq.list, &req->txps); /* * It is important to increment this here as it is used to * generate the BTH.PSN and, therefore, can't be bulk-updated * outside of the loop. */ tx->seqnum = req->seqnum++; npkts++; } dosend: ret = sdma_send_txlist(req->sde, &pq->busy, &req->txps); if (list_empty(&req->txps)) { req->seqsubmitted = req->seqnum; if (req->seqnum == req->info.npkts) { set_bit(SDMA_REQ_SEND_DONE, &req->flags); /* * The txreq has already been submitted to the HW queue * so we can free the AHG entry now. Corruption will not * happen due to the sequential manner in which * descriptors are processed. */ if (test_bit(SDMA_REQ_HAVE_AHG, &req->flags)) sdma_ahg_free(req->sde, req->ahg_idx); } } else if (ret > 0) { req->seqsubmitted += ret; ret = 0; } return ret; free_txreq: sdma_txclean(pq->dd, &tx->txreq); free_tx: kmem_cache_free(pq->txreq_cache, tx); return ret; } /* * How many pages in this iovec element? */ static inline int num_user_pages(const struct iovec *iov) { const unsigned long addr = (unsigned long)iov->iov_base; const unsigned long len = iov->iov_len; const unsigned long spage = addr & PAGE_MASK; const unsigned long epage = (addr + len - 1) & PAGE_MASK; return 1 + ((epage - spage) >> PAGE_SHIFT); } static u32 sdma_cache_evict(struct hfi1_user_sdma_pkt_q *pq, u32 npages) { u32 cleared = 0; struct sdma_mmu_node *node, *ptr; struct list_head to_evict = LIST_HEAD_INIT(to_evict); spin_lock(&pq->evict_lock); list_for_each_entry_safe_reverse(node, ptr, &pq->evict, list) { /* Make sure that no one is still using the node. */ if (!atomic_read(&node->refcount)) { set_bit(SDMA_CACHE_NODE_EVICT, &node->flags); list_del_init(&node->list); list_add(&node->list, &to_evict); cleared += node->npages; if (cleared >= npages) break; } } spin_unlock(&pq->evict_lock); list_for_each_entry_safe(node, ptr, &to_evict, list) hfi1_mmu_rb_remove(&pq->sdma_rb_root, &node->rb); return cleared; } static int pin_vector_pages(struct user_sdma_request *req, struct user_sdma_iovec *iovec) { int ret = 0, pinned, npages, cleared; struct page **pages; struct hfi1_user_sdma_pkt_q *pq = req->pq; struct sdma_mmu_node *node = NULL; struct mmu_rb_node *rb_node; rb_node = hfi1_mmu_rb_extract(&pq->sdma_rb_root, (unsigned long)iovec->iov.iov_base, iovec->iov.iov_len); if (rb_node && !IS_ERR(rb_node)) node = container_of(rb_node, struct sdma_mmu_node, rb); else rb_node = NULL; if (!node) { node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) return -ENOMEM; node->rb.addr = (unsigned long)iovec->iov.iov_base; node->pq = pq; atomic_set(&node->refcount, 0); INIT_LIST_HEAD(&node->list); } npages = num_user_pages(&iovec->iov); if (node->npages < npages) { pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL); if (!pages) { SDMA_DBG(req, "Failed page array alloc"); ret = -ENOMEM; goto bail; } memcpy(pages, node->pages, node->npages * sizeof(*pages)); npages -= node->npages; /* * If rb_node is NULL, it means that this is brand new node * and, therefore not on the eviction list. * If, however, the rb_node is non-NULL, it means that the * node is already in RB tree and, therefore on the eviction * list (nodes are unconditionally inserted in the eviction * list). In that case, we have to remove the node prior to * calling the eviction function in order to prevent it from * freeing this node. */ if (rb_node) { spin_lock(&pq->evict_lock); list_del_init(&node->list); spin_unlock(&pq->evict_lock); } retry: if (!hfi1_can_pin_pages(pq->dd, pq->n_locked, npages)) { cleared = sdma_cache_evict(pq, npages); if (cleared >= npages) goto retry; } pinned = hfi1_acquire_user_pages( ((unsigned long)iovec->iov.iov_base + (node->npages * PAGE_SIZE)), npages, 0, pages + node->npages); if (pinned < 0) { kfree(pages); ret = pinned; goto bail; } if (pinned != npages) { unpin_vector_pages(current->mm, pages, node->npages, pinned); ret = -EFAULT; goto bail; } kfree(node->pages); node->rb.len = iovec->iov.iov_len; node->pages = pages; node->npages += pinned; npages = node->npages; spin_lock(&pq->evict_lock); list_add(&node->list, &pq->evict); pq->n_locked += pinned; spin_unlock(&pq->evict_lock); } iovec->pages = node->pages; iovec->npages = npages; iovec->node = node; ret = hfi1_mmu_rb_insert(&req->pq->sdma_rb_root, &node->rb); if (ret) { spin_lock(&pq->evict_lock); if (!list_empty(&node->list)) list_del(&node->list); pq->n_locked -= node->npages; spin_unlock(&pq->evict_lock); iovec->node = NULL; goto bail; } return 0; bail: if (rb_node) unpin_vector_pages(current->mm, node->pages, 0, node->npages); kfree(node); return ret; } static void unpin_vector_pages(struct mm_struct *mm, struct page **pages, unsigned start, unsigned npages) { hfi1_release_user_pages(mm, pages + start, npages, false); kfree(pages); } static int check_header_template(struct user_sdma_request *req, struct hfi1_pkt_header *hdr, u32 lrhlen, u32 datalen) { /* * Perform safety checks for any type of packet: * - transfer size is multiple of 64bytes * - packet length is multiple of 4 bytes * - packet length is not larger than MTU size * * These checks are only done for the first packet of the * transfer since the header is "given" to us by user space. * For the remainder of the packets we compute the values. */ if (req->info.fragsize % PIO_BLOCK_SIZE || lrhlen & 0x3 || lrhlen > get_lrh_len(*hdr, req->info.fragsize)) return -EINVAL; if (req_opcode(req->info.ctrl) == EXPECTED) { /* * The header is checked only on the first packet. Furthermore, * we ensure that at least one TID entry is copied when the * request is submitted. Therefore, we don't have to verify that * tididx points to something sane. */ u32 tidval = req->tids[req->tididx], tidlen = EXP_TID_GET(tidval, LEN) * PAGE_SIZE, tididx = EXP_TID_GET(tidval, IDX), tidctrl = EXP_TID_GET(tidval, CTRL), tidoff; __le32 kval = hdr->kdeth.ver_tid_offset; tidoff = KDETH_GET(kval, OFFSET) * (KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ? KDETH_OM_LARGE : KDETH_OM_SMALL); /* * Expected receive packets have the following * additional checks: * - offset is not larger than the TID size * - TIDCtrl values match between header and TID array * - TID indexes match between header and TID array */ if ((tidoff + datalen > tidlen) || KDETH_GET(kval, TIDCTRL) != tidctrl || KDETH_GET(kval, TID) != tididx) return -EINVAL; } return 0; } /* * Correctly set the BTH.PSN field based on type of * transfer - eager packets can just increment the PSN but * expected packets encode generation and sequence in the * BTH.PSN field so just incrementing will result in errors. */ static inline u32 set_pkt_bth_psn(__be32 bthpsn, u8 expct, u32 frags) { u32 val = be32_to_cpu(bthpsn), mask = (HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffffull : 0xffffffull), psn = val & mask; if (expct) psn = (psn & ~BTH_SEQ_MASK) | ((psn + frags) & BTH_SEQ_MASK); else psn = psn + frags; return psn & mask; } static int set_txreq_header(struct user_sdma_request *req, struct user_sdma_txreq *tx, u32 datalen) { struct hfi1_user_sdma_pkt_q *pq = req->pq; struct hfi1_pkt_header *hdr = &tx->hdr; u16 pbclen; int ret; u32 tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(datalen)); /* Copy the header template to the request before modification */ memcpy(hdr, &req->hdr, sizeof(*hdr)); /* * Check if the PBC and LRH length are mismatched. If so * adjust both in the header. */ pbclen = le16_to_cpu(hdr->pbc[0]); if (PBC2LRH(pbclen) != lrhlen) { pbclen = (pbclen & 0xf000) | LRH2PBC(lrhlen); hdr->pbc[0] = cpu_to_le16(pbclen); hdr->lrh[2] = cpu_to_be16(lrhlen >> 2); /* * Third packet * This is the first packet in the sequence that has * a "static" size that can be used for the rest of * the packets (besides the last one). */ if (unlikely(req->seqnum == 2)) { /* * From this point on the lengths in both the * PBC and LRH are the same until the last * packet. * Adjust the template so we don't have to update * every packet */ req->hdr.pbc[0] = hdr->pbc[0]; req->hdr.lrh[2] = hdr->lrh[2]; } } /* * We only have to modify the header if this is not the * first packet in the request. Otherwise, we use the * header given to us. */ if (unlikely(!req->seqnum)) { ret = check_header_template(req, hdr, lrhlen, datalen); if (ret) return ret; goto done; } hdr->bth[2] = cpu_to_be32( set_pkt_bth_psn(hdr->bth[2], (req_opcode(req->info.ctrl) == EXPECTED), req->seqnum)); /* Set ACK request on last packet */ if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT)) hdr->bth[2] |= cpu_to_be32(1UL << 31); /* Set the new offset */ hdr->kdeth.swdata[6] = cpu_to_le32(req->koffset); /* Expected packets have to fill in the new TID information */ if (req_opcode(req->info.ctrl) == EXPECTED) { tidval = req->tids[req->tididx]; /* * If the offset puts us at the end of the current TID, * advance everything. */ if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) * PAGE_SIZE)) { req->tidoffset = 0; /* * Since we don't copy all the TIDs, all at once, * we have to check again. */ if (++req->tididx > req->n_tids - 1 || !req->tids[req->tididx]) { return -EINVAL; } tidval = req->tids[req->tididx]; } req->omfactor = EXP_TID_GET(tidval, LEN) * PAGE_SIZE >= KDETH_OM_MAX_SIZE ? KDETH_OM_LARGE : KDETH_OM_SMALL; /* Set KDETH.TIDCtrl based on value for this TID. */ KDETH_SET(hdr->kdeth.ver_tid_offset, TIDCTRL, EXP_TID_GET(tidval, CTRL)); /* Set KDETH.TID based on value for this TID */ KDETH_SET(hdr->kdeth.ver_tid_offset, TID, EXP_TID_GET(tidval, IDX)); /* Clear KDETH.SH only on the last packet */ if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT)) KDETH_SET(hdr->kdeth.ver_tid_offset, SH, 0); /* * Set the KDETH.OFFSET and KDETH.OM based on size of * transfer. */ SDMA_DBG(req, "TID offset %ubytes %uunits om%u", req->tidoffset, req->tidoffset / req->omfactor, req->omfactor != KDETH_OM_SMALL); KDETH_SET(hdr->kdeth.ver_tid_offset, OFFSET, req->tidoffset / req->omfactor); KDETH_SET(hdr->kdeth.ver_tid_offset, OM, req->omfactor != KDETH_OM_SMALL); } done: trace_hfi1_sdma_user_header(pq->dd, pq->ctxt, pq->subctxt, req->info.comp_idx, hdr, tidval); return sdma_txadd_kvaddr(pq->dd, &tx->txreq, hdr, sizeof(*hdr)); } static int set_txreq_header_ahg(struct user_sdma_request *req, struct user_sdma_txreq *tx, u32 len) { int diff = 0; struct hfi1_user_sdma_pkt_q *pq = req->pq; struct hfi1_pkt_header *hdr = &req->hdr; u16 pbclen = le16_to_cpu(hdr->pbc[0]); u32 val32, tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(len)); if (PBC2LRH(pbclen) != lrhlen) { /* PBC.PbcLengthDWs */ AHG_HEADER_SET(req->ahg, diff, 0, 0, 12, cpu_to_le16(LRH2PBC(lrhlen))); /* LRH.PktLen (we need the full 16 bits due to byte swap) */ AHG_HEADER_SET(req->ahg, diff, 3, 0, 16, cpu_to_be16(lrhlen >> 2)); } /* * Do the common updates */ /* BTH.PSN and BTH.A */ val32 = (be32_to_cpu(hdr->bth[2]) + req->seqnum) & (HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffff : 0xffffff); if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT)) val32 |= 1UL << 31; AHG_HEADER_SET(req->ahg, diff, 6, 0, 16, cpu_to_be16(val32 >> 16)); AHG_HEADER_SET(req->ahg, diff, 6, 16, 16, cpu_to_be16(val32 & 0xffff)); /* KDETH.Offset */ AHG_HEADER_SET(req->ahg, diff, 15, 0, 16, cpu_to_le16(req->koffset & 0xffff)); AHG_HEADER_SET(req->ahg, diff, 15, 16, 16, cpu_to_le16(req->koffset >> 16)); if (req_opcode(req->info.ctrl) == EXPECTED) { __le16 val; tidval = req->tids[req->tididx]; /* * If the offset puts us at the end of the current TID, * advance everything. */ if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) * PAGE_SIZE)) { req->tidoffset = 0; /* * Since we don't copy all the TIDs, all at once, * we have to check again. */ if (++req->tididx > req->n_tids - 1 || !req->tids[req->tididx]) { return -EINVAL; } tidval = req->tids[req->tididx]; } req->omfactor = ((EXP_TID_GET(tidval, LEN) * PAGE_SIZE) >= KDETH_OM_MAX_SIZE) ? KDETH_OM_LARGE : KDETH_OM_SMALL; /* KDETH.OM and KDETH.OFFSET (TID) */ AHG_HEADER_SET(req->ahg, diff, 7, 0, 16, ((!!(req->omfactor - KDETH_OM_SMALL)) << 15 | ((req->tidoffset / req->omfactor) & 0x7fff))); /* KDETH.TIDCtrl, KDETH.TID */ val = cpu_to_le16(((EXP_TID_GET(tidval, CTRL) & 0x3) << 10) | (EXP_TID_GET(tidval, IDX) & 0x3ff)); /* Clear KDETH.SH on last packet */ if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT)) { val |= cpu_to_le16(KDETH_GET(hdr->kdeth.ver_tid_offset, INTR) >> 16); val &= cpu_to_le16(~(1U << 13)); AHG_HEADER_SET(req->ahg, diff, 7, 16, 14, val); } else { AHG_HEADER_SET(req->ahg, diff, 7, 16, 12, val); } } trace_hfi1_sdma_user_header_ahg(pq->dd, pq->ctxt, pq->subctxt, req->info.comp_idx, req->sde->this_idx, req->ahg_idx, req->ahg, diff, tidval); return diff; } /* * SDMA tx request completion callback. Called when the SDMA progress * state machine gets notification that the SDMA descriptors for this * tx request have been processed by the DMA engine. Called in * interrupt context. */ static void user_sdma_txreq_cb(struct sdma_txreq *txreq, int status) { struct user_sdma_txreq *tx = container_of(txreq, struct user_sdma_txreq, txreq); struct user_sdma_request *req; struct hfi1_user_sdma_pkt_q *pq; struct hfi1_user_sdma_comp_q *cq; u16 idx; if (!tx->req) return; req = tx->req; pq = req->pq; cq = req->cq; if (status != SDMA_TXREQ_S_OK) { SDMA_DBG(req, "SDMA completion with error %d", status); set_bit(SDMA_REQ_HAS_ERROR, &req->flags); } req->seqcomp = tx->seqnum; kmem_cache_free(pq->txreq_cache, tx); tx = NULL; idx = req->info.comp_idx; if (req->status == -1 && status == SDMA_TXREQ_S_OK) { if (req->seqcomp == req->info.npkts - 1) { req->status = 0; user_sdma_free_request(req, false); pq_update(pq); set_comp_state(pq, cq, idx, COMPLETE, 0); } } else { if (status != SDMA_TXREQ_S_OK) req->status = status; if (req->seqcomp == (ACCESS_ONCE(req->seqsubmitted) - 1) && (test_bit(SDMA_REQ_SEND_DONE, &req->flags) || test_bit(SDMA_REQ_DONE_ERROR, &req->flags))) { user_sdma_free_request(req, false); pq_update(pq); set_comp_state(pq, cq, idx, ERROR, req->status); } } } static inline void pq_update(struct hfi1_user_sdma_pkt_q *pq) { if (atomic_dec_and_test(&pq->n_reqs)) { xchg(&pq->state, SDMA_PKT_Q_INACTIVE); wake_up(&pq->wait); } } static void user_sdma_free_request(struct user_sdma_request *req, bool unpin) { if (!list_empty(&req->txps)) { struct sdma_txreq *t, *p; list_for_each_entry_safe(t, p, &req->txps, list) { struct user_sdma_txreq *tx = container_of(t, struct user_sdma_txreq, txreq); list_del_init(&t->list); sdma_txclean(req->pq->dd, t); kmem_cache_free(req->pq->txreq_cache, tx); } } if (req->data_iovs) { struct sdma_mmu_node *node; int i; for (i = 0; i < req->data_iovs; i++) { node = req->iovs[i].node; if (!node) continue; if (unpin) hfi1_mmu_rb_remove(&req->pq->sdma_rb_root, &node->rb); else atomic_dec(&node->refcount); } } kfree(req->tids); clear_bit(SDMA_REQ_IN_USE, &req->flags); } static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *pq, struct hfi1_user_sdma_comp_q *cq, u16 idx, enum hfi1_sdma_comp_state state, int ret) { hfi1_cdbg(SDMA, "[%u:%u:%u:%u] Setting completion status %u %d", pq->dd->unit, pq->ctxt, pq->subctxt, idx, state, ret); cq->comps[idx].status = state; if (state == ERROR) cq->comps[idx].errcode = -ret; trace_hfi1_sdma_user_completion(pq->dd, pq->ctxt, pq->subctxt, idx, state, ret); } static bool sdma_rb_filter(struct mmu_rb_node *node, unsigned long addr, unsigned long len) { return (bool)(node->addr == addr); } static int sdma_rb_insert(struct rb_root *root, struct mmu_rb_node *mnode) { struct sdma_mmu_node *node = container_of(mnode, struct sdma_mmu_node, rb); atomic_inc(&node->refcount); return 0; } static void sdma_rb_remove(struct rb_root *root, struct mmu_rb_node *mnode, struct mm_struct *mm) { struct sdma_mmu_node *node = container_of(mnode, struct sdma_mmu_node, rb); spin_lock(&node->pq->evict_lock); /* * We've been called by the MMU notifier but this node has been * scheduled for eviction. The eviction function will take care * of freeing this node. * We have to take the above lock first because we are racing * against the setting of the bit in the eviction function. */ if (mm && test_bit(SDMA_CACHE_NODE_EVICT, &node->flags)) { spin_unlock(&node->pq->evict_lock); return; } if (!list_empty(&node->list)) list_del(&node->list); node->pq->n_locked -= node->npages; spin_unlock(&node->pq->evict_lock); /* * If mm is set, we are being called by the MMU notifier and we * should not pass a mm_struct to unpin_vector_page(). This is to * prevent a deadlock when hfi1_release_user_pages() attempts to * take the mmap_sem, which the MMU notifier has already taken. */ unpin_vector_pages(mm ? NULL : current->mm, node->pages, 0, node->npages); /* * If called by the MMU notifier, we have to adjust the pinned * page count ourselves. */ if (mm) mm->pinned_vm -= node->npages; kfree(node); } static int sdma_rb_invalidate(struct rb_root *root, struct mmu_rb_node *mnode) { struct sdma_mmu_node *node = container_of(mnode, struct sdma_mmu_node, rb); if (!atomic_read(&node->refcount)) return 1; return 0; }