#include "util.h" #include "build-id.h" #include "hist.h" #include "session.h" #include "sort.h" #include "evlist.h" #include "evsel.h" #include "annotate.h" #include "ui/progress.h" #include static bool hists__filter_entry_by_dso(struct hists *hists, struct hist_entry *he); static bool hists__filter_entry_by_thread(struct hists *hists, struct hist_entry *he); static bool hists__filter_entry_by_symbol(struct hists *hists, struct hist_entry *he); static bool hists__filter_entry_by_socket(struct hists *hists, struct hist_entry *he); u16 hists__col_len(struct hists *hists, enum hist_column col) { return hists->col_len[col]; } void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) { hists->col_len[col] = len; } bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) { if (len > hists__col_len(hists, col)) { hists__set_col_len(hists, col, len); return true; } return false; } void hists__reset_col_len(struct hists *hists) { enum hist_column col; for (col = 0; col < HISTC_NR_COLS; ++col) hists__set_col_len(hists, col, 0); } static void hists__set_unres_dso_col_len(struct hists *hists, int dso) { const unsigned int unresolved_col_width = BITS_PER_LONG / 4; if (hists__col_len(hists, dso) < unresolved_col_width && !symbol_conf.col_width_list_str && !symbol_conf.field_sep && !symbol_conf.dso_list) hists__set_col_len(hists, dso, unresolved_col_width); } void hists__calc_col_len(struct hists *hists, struct hist_entry *h) { const unsigned int unresolved_col_width = BITS_PER_LONG / 4; int symlen; u16 len; /* * +4 accounts for '[x] ' priv level info * +2 accounts for 0x prefix on raw addresses * +3 accounts for ' y ' symtab origin info */ if (h->ms.sym) { symlen = h->ms.sym->namelen + 4; if (verbose) symlen += BITS_PER_LONG / 4 + 2 + 3; hists__new_col_len(hists, HISTC_SYMBOL, symlen); } else { symlen = unresolved_col_width + 4 + 2; hists__new_col_len(hists, HISTC_SYMBOL, symlen); hists__set_unres_dso_col_len(hists, HISTC_DSO); } len = thread__comm_len(h->thread); if (hists__new_col_len(hists, HISTC_COMM, len)) hists__set_col_len(hists, HISTC_THREAD, len + 8); if (h->ms.map) { len = dso__name_len(h->ms.map->dso); hists__new_col_len(hists, HISTC_DSO, len); } if (h->parent) hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); if (h->branch_info) { if (h->branch_info->from.sym) { symlen = (int)h->branch_info->from.sym->namelen + 4; if (verbose) symlen += BITS_PER_LONG / 4 + 2 + 3; hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); symlen = dso__name_len(h->branch_info->from.map->dso); hists__new_col_len(hists, HISTC_DSO_FROM, symlen); } else { symlen = unresolved_col_width + 4 + 2; hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); } if (h->branch_info->to.sym) { symlen = (int)h->branch_info->to.sym->namelen + 4; if (verbose) symlen += BITS_PER_LONG / 4 + 2 + 3; hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); symlen = dso__name_len(h->branch_info->to.map->dso); hists__new_col_len(hists, HISTC_DSO_TO, symlen); } else { symlen = unresolved_col_width + 4 + 2; hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); } if (h->branch_info->srcline_from) hists__new_col_len(hists, HISTC_SRCLINE_FROM, strlen(h->branch_info->srcline_from)); if (h->branch_info->srcline_to) hists__new_col_len(hists, HISTC_SRCLINE_TO, strlen(h->branch_info->srcline_to)); } if (h->mem_info) { if (h->mem_info->daddr.sym) { symlen = (int)h->mem_info->daddr.sym->namelen + 4 + unresolved_col_width + 2; hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); hists__new_col_len(hists, HISTC_MEM_DCACHELINE, symlen + 1); } else { symlen = unresolved_col_width + 4 + 2; hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); hists__new_col_len(hists, HISTC_MEM_DCACHELINE, symlen); } if (h->mem_info->iaddr.sym) { symlen = (int)h->mem_info->iaddr.sym->namelen + 4 + unresolved_col_width + 2; hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); } else { symlen = unresolved_col_width + 4 + 2; hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); } if (h->mem_info->daddr.map) { symlen = dso__name_len(h->mem_info->daddr.map->dso); hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, symlen); } else { symlen = unresolved_col_width + 4 + 2; hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); } } else { symlen = unresolved_col_width + 4 + 2; hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); } hists__new_col_len(hists, HISTC_CPU, 3); hists__new_col_len(hists, HISTC_SOCKET, 6); hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); hists__new_col_len(hists, HISTC_MEM_TLB, 22); hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3); hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); if (h->srcline) hists__new_col_len(hists, HISTC_SRCLINE, strlen(h->srcline)); if (h->srcfile) hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); if (h->transaction) hists__new_col_len(hists, HISTC_TRANSACTION, hist_entry__transaction_len()); if (h->trace_output) hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); } void hists__output_recalc_col_len(struct hists *hists, int max_rows) { struct rb_node *next = rb_first(&hists->entries); struct hist_entry *n; int row = 0; hists__reset_col_len(hists); while (next && row++ < max_rows) { n = rb_entry(next, struct hist_entry, rb_node); if (!n->filtered) hists__calc_col_len(hists, n); next = rb_next(&n->rb_node); } } static void he_stat__add_cpumode_period(struct he_stat *he_stat, unsigned int cpumode, u64 period) { switch (cpumode) { case PERF_RECORD_MISC_KERNEL: he_stat->period_sys += period; break; case PERF_RECORD_MISC_USER: he_stat->period_us += period; break; case PERF_RECORD_MISC_GUEST_KERNEL: he_stat->period_guest_sys += period; break; case PERF_RECORD_MISC_GUEST_USER: he_stat->period_guest_us += period; break; default: break; } } static void he_stat__add_period(struct he_stat *he_stat, u64 period, u64 weight) { he_stat->period += period; he_stat->weight += weight; he_stat->nr_events += 1; } static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) { dest->period += src->period; dest->period_sys += src->period_sys; dest->period_us += src->period_us; dest->period_guest_sys += src->period_guest_sys; dest->period_guest_us += src->period_guest_us; dest->nr_events += src->nr_events; dest->weight += src->weight; } static void he_stat__decay(struct he_stat *he_stat) { he_stat->period = (he_stat->period * 7) / 8; he_stat->nr_events = (he_stat->nr_events * 7) / 8; /* XXX need decay for weight too? */ } static void hists__delete_entry(struct hists *hists, struct hist_entry *he); static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) { u64 prev_period = he->stat.period; u64 diff; if (prev_period == 0) return true; he_stat__decay(&he->stat); if (symbol_conf.cumulate_callchain) he_stat__decay(he->stat_acc); decay_callchain(he->callchain); diff = prev_period - he->stat.period; if (!he->depth) { hists->stats.total_period -= diff; if (!he->filtered) hists->stats.total_non_filtered_period -= diff; } if (!he->leaf) { struct hist_entry *child; struct rb_node *node = rb_first(&he->hroot_out); while (node) { child = rb_entry(node, struct hist_entry, rb_node); node = rb_next(node); if (hists__decay_entry(hists, child)) hists__delete_entry(hists, child); } } return he->stat.period == 0; } static void hists__delete_entry(struct hists *hists, struct hist_entry *he) { struct rb_root *root_in; struct rb_root *root_out; if (he->parent_he) { root_in = &he->parent_he->hroot_in; root_out = &he->parent_he->hroot_out; } else { if (hists__has(hists, need_collapse)) root_in = &hists->entries_collapsed; else root_in = hists->entries_in; root_out = &hists->entries; } rb_erase(&he->rb_node_in, root_in); rb_erase(&he->rb_node, root_out); --hists->nr_entries; if (!he->filtered) --hists->nr_non_filtered_entries; hist_entry__delete(he); } void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) { struct rb_node *next = rb_first(&hists->entries); struct hist_entry *n; while (next) { n = rb_entry(next, struct hist_entry, rb_node); next = rb_next(&n->rb_node); if (((zap_user && n->level == '.') || (zap_kernel && n->level != '.') || hists__decay_entry(hists, n))) { hists__delete_entry(hists, n); } } } void hists__delete_entries(struct hists *hists) { struct rb_node *next = rb_first(&hists->entries); struct hist_entry *n; while (next) { n = rb_entry(next, struct hist_entry, rb_node); next = rb_next(&n->rb_node); hists__delete_entry(hists, n); } } /* * histogram, sorted on item, collects periods */ static int hist_entry__init(struct hist_entry *he, struct hist_entry *template, bool sample_self) { *he = *template; if (symbol_conf.cumulate_callchain) { he->stat_acc = malloc(sizeof(he->stat)); if (he->stat_acc == NULL) return -ENOMEM; memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); if (!sample_self) memset(&he->stat, 0, sizeof(he->stat)); } map__get(he->ms.map); if (he->branch_info) { /* * This branch info is (a part of) allocated from * sample__resolve_bstack() and will be freed after * adding new entries. So we need to save a copy. */ he->branch_info = malloc(sizeof(*he->branch_info)); if (he->branch_info == NULL) { map__zput(he->ms.map); free(he->stat_acc); return -ENOMEM; } memcpy(he->branch_info, template->branch_info, sizeof(*he->branch_info)); map__get(he->branch_info->from.map); map__get(he->branch_info->to.map); } if (he->mem_info) { map__get(he->mem_info->iaddr.map); map__get(he->mem_info->daddr.map); } if (symbol_conf.use_callchain) callchain_init(he->callchain); if (he->raw_data) { he->raw_data = memdup(he->raw_data, he->raw_size); if (he->raw_data == NULL) { map__put(he->ms.map); if (he->branch_info) { map__put(he->branch_info->from.map); map__put(he->branch_info->to.map); free(he->branch_info); } if (he->mem_info) { map__put(he->mem_info->iaddr.map); map__put(he->mem_info->daddr.map); } free(he->stat_acc); return -ENOMEM; } } INIT_LIST_HEAD(&he->pairs.node); thread__get(he->thread); if (!symbol_conf.report_hierarchy) he->leaf = true; return 0; } static void *hist_entry__zalloc(size_t size) { return zalloc(size + sizeof(struct hist_entry)); } static void hist_entry__free(void *ptr) { free(ptr); } static struct hist_entry_ops default_ops = { .new = hist_entry__zalloc, .free = hist_entry__free, }; static struct hist_entry *hist_entry__new(struct hist_entry *template, bool sample_self) { struct hist_entry_ops *ops = template->ops; size_t callchain_size = 0; struct hist_entry *he; int err = 0; if (!ops) ops = template->ops = &default_ops; if (symbol_conf.use_callchain) callchain_size = sizeof(struct callchain_root); he = ops->new(callchain_size); if (he) { err = hist_entry__init(he, template, sample_self); if (err) { ops->free(he); he = NULL; } } return he; } static u8 symbol__parent_filter(const struct symbol *parent) { if (symbol_conf.exclude_other && parent == NULL) return 1 << HIST_FILTER__PARENT; return 0; } static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) { if (!symbol_conf.use_callchain) return; he->hists->callchain_period += period; if (!he->filtered) he->hists->callchain_non_filtered_period += period; } static struct hist_entry *hists__findnew_entry(struct hists *hists, struct hist_entry *entry, struct addr_location *al, bool sample_self) { struct rb_node **p; struct rb_node *parent = NULL; struct hist_entry *he; int64_t cmp; u64 period = entry->stat.period; u64 weight = entry->stat.weight; p = &hists->entries_in->rb_node; while (*p != NULL) { parent = *p; he = rb_entry(parent, struct hist_entry, rb_node_in); /* * Make sure that it receives arguments in a same order as * hist_entry__collapse() so that we can use an appropriate * function when searching an entry regardless which sort * keys were used. */ cmp = hist_entry__cmp(he, entry); if (!cmp) { if (sample_self) { he_stat__add_period(&he->stat, period, weight); hist_entry__add_callchain_period(he, period); } if (symbol_conf.cumulate_callchain) he_stat__add_period(he->stat_acc, period, weight); /* * This mem info was allocated from sample__resolve_mem * and will not be used anymore. */ zfree(&entry->mem_info); /* If the map of an existing hist_entry has * become out-of-date due to an exec() or * similar, update it. Otherwise we will * mis-adjust symbol addresses when computing * the history counter to increment. */ if (he->ms.map != entry->ms.map) { map__put(he->ms.map); he->ms.map = map__get(entry->ms.map); } goto out; } if (cmp < 0) p = &(*p)->rb_left; else p = &(*p)->rb_right; } he = hist_entry__new(entry, sample_self); if (!he) return NULL; if (sample_self) hist_entry__add_callchain_period(he, period); hists->nr_entries++; rb_link_node(&he->rb_node_in, parent, p); rb_insert_color(&he->rb_node_in, hists->entries_in); out: if (sample_self) he_stat__add_cpumode_period(&he->stat, al->cpumode, period); if (symbol_conf.cumulate_callchain) he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); return he; } static struct hist_entry* __hists__add_entry(struct hists *hists, struct addr_location *al, struct symbol *sym_parent, struct branch_info *bi, struct mem_info *mi, struct perf_sample *sample, bool sample_self, struct hist_entry_ops *ops) { struct hist_entry entry = { .thread = al->thread, .comm = thread__comm(al->thread), .ms = { .map = al->map, .sym = al->sym, }, .socket = al->socket, .cpu = al->cpu, .cpumode = al->cpumode, .ip = al->addr, .level = al->level, .stat = { .nr_events = 1, .period = sample->period, .weight = sample->weight, }, .parent = sym_parent, .filtered = symbol__parent_filter(sym_parent) | al->filtered, .hists = hists, .branch_info = bi, .mem_info = mi, .transaction = sample->transaction, .raw_data = sample->raw_data, .raw_size = sample->raw_size, .ops = ops, }; return hists__findnew_entry(hists, &entry, al, sample_self); } struct hist_entry *hists__add_entry(struct hists *hists, struct addr_location *al, struct symbol *sym_parent, struct branch_info *bi, struct mem_info *mi, struct perf_sample *sample, bool sample_self) { return __hists__add_entry(hists, al, sym_parent, bi, mi, sample, sample_self, NULL); } struct hist_entry *hists__add_entry_ops(struct hists *hists, struct hist_entry_ops *ops, struct addr_location *al, struct symbol *sym_parent, struct branch_info *bi, struct mem_info *mi, struct perf_sample *sample, bool sample_self) { return __hists__add_entry(hists, al, sym_parent, bi, mi, sample, sample_self, ops); } static int iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, struct addr_location *al __maybe_unused) { return 0; } static int iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, struct addr_location *al __maybe_unused) { return 0; } static int iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) { struct perf_sample *sample = iter->sample; struct mem_info *mi; mi = sample__resolve_mem(sample, al); if (mi == NULL) return -ENOMEM; iter->priv = mi; return 0; } static int iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) { u64 cost; struct mem_info *mi = iter->priv; struct hists *hists = evsel__hists(iter->evsel); struct perf_sample *sample = iter->sample; struct hist_entry *he; if (mi == NULL) return -EINVAL; cost = sample->weight; if (!cost) cost = 1; /* * must pass period=weight in order to get the correct * sorting from hists__collapse_resort() which is solely * based on periods. We want sorting be done on nr_events * weight * and this is indirectly achieved by passing period=weight here * and the he_stat__add_period() function. */ sample->period = cost; he = hists__add_entry(hists, al, iter->parent, NULL, mi, sample, true); if (!he) return -ENOMEM; iter->he = he; return 0; } static int iter_finish_mem_entry(struct hist_entry_iter *iter, struct addr_location *al __maybe_unused) { struct perf_evsel *evsel = iter->evsel; struct hists *hists = evsel__hists(evsel); struct hist_entry *he = iter->he; int err = -EINVAL; if (he == NULL) goto out; hists__inc_nr_samples(hists, he->filtered); err = hist_entry__append_callchain(he, iter->sample); out: /* * We don't need to free iter->priv (mem_info) here since the mem info * was either already freed in hists__findnew_entry() or passed to a * new hist entry by hist_entry__new(). */ iter->priv = NULL; iter->he = NULL; return err; } static int iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) { struct branch_info *bi; struct perf_sample *sample = iter->sample; bi = sample__resolve_bstack(sample, al); if (!bi) return -ENOMEM; iter->curr = 0; iter->total = sample->branch_stack->nr; iter->priv = bi; return 0; } static int iter_add_single_branch_entry(struct hist_entry_iter *iter, struct addr_location *al __maybe_unused) { /* to avoid calling callback function */ iter->he = NULL; return 0; } static int iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) { struct branch_info *bi = iter->priv; int i = iter->curr; if (bi == NULL) return 0; if (iter->curr >= iter->total) return 0; al->map = bi[i].to.map; al->sym = bi[i].to.sym; al->addr = bi[i].to.addr; return 1; } static int iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) { struct branch_info *bi; struct perf_evsel *evsel = iter->evsel; struct hists *hists = evsel__hists(evsel); struct perf_sample *sample = iter->sample; struct hist_entry *he = NULL; int i = iter->curr; int err = 0; bi = iter->priv; if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym)) goto out; /* * The report shows the percentage of total branches captured * and not events sampled. Thus we use a pseudo period of 1. */ sample->period = 1; sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, sample, true); if (he == NULL) return -ENOMEM; hists__inc_nr_samples(hists, he->filtered); out: iter->he = he; iter->curr++; return err; } static int iter_finish_branch_entry(struct hist_entry_iter *iter, struct addr_location *al __maybe_unused) { zfree(&iter->priv); iter->he = NULL; return iter->curr >= iter->total ? 0 : -1; } static int iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, struct addr_location *al __maybe_unused) { return 0; } static int iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) { struct perf_evsel *evsel = iter->evsel; struct perf_sample *sample = iter->sample; struct hist_entry *he; he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, sample, true); if (he == NULL) return -ENOMEM; iter->he = he; return 0; } static int iter_finish_normal_entry(struct hist_entry_iter *iter, struct addr_location *al __maybe_unused) { struct hist_entry *he = iter->he; struct perf_evsel *evsel = iter->evsel; struct perf_sample *sample = iter->sample; if (he == NULL) return 0; iter->he = NULL; hists__inc_nr_samples(evsel__hists(evsel), he->filtered); return hist_entry__append_callchain(he, sample); } static int iter_prepare_cumulative_entry(struct hist_entry_iter *iter, struct addr_location *al __maybe_unused) { struct hist_entry **he_cache; callchain_cursor_commit(&callchain_cursor); /* * This is for detecting cycles or recursions so that they're * cumulated only one time to prevent entries more than 100% * overhead. */ he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1)); if (he_cache == NULL) return -ENOMEM; iter->priv = he_cache; iter->curr = 0; return 0; } static int iter_add_single_cumulative_entry(struct hist_entry_iter *iter, struct addr_location *al) { struct perf_evsel *evsel = iter->evsel; struct hists *hists = evsel__hists(evsel); struct perf_sample *sample = iter->sample; struct hist_entry **he_cache = iter->priv; struct hist_entry *he; int err = 0; he = hists__add_entry(hists, al, iter->parent, NULL, NULL, sample, true); if (he == NULL) return -ENOMEM; iter->he = he; he_cache[iter->curr++] = he; hist_entry__append_callchain(he, sample); /* * We need to re-initialize the cursor since callchain_append() * advanced the cursor to the end. */ callchain_cursor_commit(&callchain_cursor); hists__inc_nr_samples(hists, he->filtered); return err; } static int iter_next_cumulative_entry(struct hist_entry_iter *iter, struct addr_location *al) { struct callchain_cursor_node *node; node = callchain_cursor_current(&callchain_cursor); if (node == NULL) return 0; return fill_callchain_info(al, node, iter->hide_unresolved); } static int iter_add_next_cumulative_entry(struct hist_entry_iter *iter, struct addr_location *al) { struct perf_evsel *evsel = iter->evsel; struct perf_sample *sample = iter->sample; struct hist_entry **he_cache = iter->priv; struct hist_entry *he; struct hist_entry he_tmp = { .hists = evsel__hists(evsel), .cpu = al->cpu, .thread = al->thread, .comm = thread__comm(al->thread), .ip = al->addr, .ms = { .map = al->map, .sym = al->sym, }, .parent = iter->parent, .raw_data = sample->raw_data, .raw_size = sample->raw_size, }; int i; struct callchain_cursor cursor; callchain_cursor_snapshot(&cursor, &callchain_cursor); callchain_cursor_advance(&callchain_cursor); /* * Check if there's duplicate entries in the callchain. * It's possible that it has cycles or recursive calls. */ for (i = 0; i < iter->curr; i++) { if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { /* to avoid calling callback function */ iter->he = NULL; return 0; } } he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, sample, false); if (he == NULL) return -ENOMEM; iter->he = he; he_cache[iter->curr++] = he; if (symbol_conf.use_callchain) callchain_append(he->callchain, &cursor, sample->period); return 0; } static int iter_finish_cumulative_entry(struct hist_entry_iter *iter, struct addr_location *al __maybe_unused) { zfree(&iter->priv); iter->he = NULL; return 0; } const struct hist_iter_ops hist_iter_mem = { .prepare_entry = iter_prepare_mem_entry, .add_single_entry = iter_add_single_mem_entry, .next_entry = iter_next_nop_entry, .add_next_entry = iter_add_next_nop_entry, .finish_entry = iter_finish_mem_entry, }; const struct hist_iter_ops hist_iter_branch = { .prepare_entry = iter_prepare_branch_entry, .add_single_entry = iter_add_single_branch_entry, .next_entry = iter_next_branch_entry, .add_next_entry = iter_add_next_branch_entry, .finish_entry = iter_finish_branch_entry, }; const struct hist_iter_ops hist_iter_normal = { .prepare_entry = iter_prepare_normal_entry, .add_single_entry = iter_add_single_normal_entry, .next_entry = iter_next_nop_entry, .add_next_entry = iter_add_next_nop_entry, .finish_entry = iter_finish_normal_entry, }; const struct hist_iter_ops hist_iter_cumulative = { .prepare_entry = iter_prepare_cumulative_entry, .add_single_entry = iter_add_single_cumulative_entry, .next_entry = iter_next_cumulative_entry, .add_next_entry = iter_add_next_cumulative_entry, .finish_entry = iter_finish_cumulative_entry, }; int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, int max_stack_depth, void *arg) { int err, err2; err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, iter->evsel, al, max_stack_depth); if (err) return err; iter->max_stack = max_stack_depth; err = iter->ops->prepare_entry(iter, al); if (err) goto out; err = iter->ops->add_single_entry(iter, al); if (err) goto out; if (iter->he && iter->add_entry_cb) { err = iter->add_entry_cb(iter, al, true, arg); if (err) goto out; } while (iter->ops->next_entry(iter, al)) { err = iter->ops->add_next_entry(iter, al); if (err) break; if (iter->he && iter->add_entry_cb) { err = iter->add_entry_cb(iter, al, false, arg); if (err) goto out; } } out: err2 = iter->ops->finish_entry(iter, al); if (!err) err = err2; return err; } int64_t hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) { struct hists *hists = left->hists; struct perf_hpp_fmt *fmt; int64_t cmp = 0; hists__for_each_sort_list(hists, fmt) { if (perf_hpp__is_dynamic_entry(fmt) && !perf_hpp__defined_dynamic_entry(fmt, hists)) continue; cmp = fmt->cmp(fmt, left, right); if (cmp) break; } return cmp; } int64_t hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) { struct hists *hists = left->hists; struct perf_hpp_fmt *fmt; int64_t cmp = 0; hists__for_each_sort_list(hists, fmt) { if (perf_hpp__is_dynamic_entry(fmt) && !perf_hpp__defined_dynamic_entry(fmt, hists)) continue; cmp = fmt->collapse(fmt, left, right); if (cmp) break; } return cmp; } void hist_entry__delete(struct hist_entry *he) { struct hist_entry_ops *ops = he->ops; thread__zput(he->thread); map__zput(he->ms.map); if (he->branch_info) { map__zput(he->branch_info->from.map); map__zput(he->branch_info->to.map); free_srcline(he->branch_info->srcline_from); free_srcline(he->branch_info->srcline_to); zfree(&he->branch_info); } if (he->mem_info) { map__zput(he->mem_info->iaddr.map); map__zput(he->mem_info->daddr.map); zfree(&he->mem_info); } zfree(&he->stat_acc); free_srcline(he->srcline); if (he->srcfile && he->srcfile[0]) free(he->srcfile); free_callchain(he->callchain); free(he->trace_output); free(he->raw_data); ops->free(he); } /* * If this is not the last column, then we need to pad it according to the * pre-calculated max lenght for this column, otherwise don't bother adding * spaces because that would break viewing this with, for instance, 'less', * that would show tons of trailing spaces when a long C++ demangled method * names is sampled. */ int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, struct perf_hpp_fmt *fmt, int printed) { if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { const int width = fmt->width(fmt, hpp, he->hists); if (printed < width) { advance_hpp(hpp, printed); printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); } } return printed; } /* * collapse the histogram */ static void hists__apply_filters(struct hists *hists, struct hist_entry *he); static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, enum hist_filter type); typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); static bool check_thread_entry(struct perf_hpp_fmt *fmt) { return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); } static void hist_entry__check_and_remove_filter(struct hist_entry *he, enum hist_filter type, fmt_chk_fn check) { struct perf_hpp_fmt *fmt; bool type_match = false; struct hist_entry *parent = he->parent_he; switch (type) { case HIST_FILTER__THREAD: if (symbol_conf.comm_list == NULL && symbol_conf.pid_list == NULL && symbol_conf.tid_list == NULL) return; break; case HIST_FILTER__DSO: if (symbol_conf.dso_list == NULL) return; break; case HIST_FILTER__SYMBOL: if (symbol_conf.sym_list == NULL) return; break; case HIST_FILTER__PARENT: case HIST_FILTER__GUEST: case HIST_FILTER__HOST: case HIST_FILTER__SOCKET: default: return; } /* if it's filtered by own fmt, it has to have filter bits */ perf_hpp_list__for_each_format(he->hpp_list, fmt) { if (check(fmt)) { type_match = true; break; } } if (type_match) { /* * If the filter is for current level entry, propagate * filter marker to parents. The marker bit was * already set by default so it only needs to clear * non-filtered entries. */ if (!(he->filtered & (1 << type))) { while (parent) { parent->filtered &= ~(1 << type); parent = parent->parent_he; } } } else { /* * If current entry doesn't have matching formats, set * filter marker for upper level entries. it will be * cleared if its lower level entries is not filtered. * * For lower-level entries, it inherits parent's * filter bit so that lower level entries of a * non-filtered entry won't set the filter marker. */ if (parent == NULL) he->filtered |= (1 << type); else he->filtered |= (parent->filtered & (1 << type)); } } static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) { hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, check_thread_entry); hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, perf_hpp__is_dso_entry); hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, perf_hpp__is_sym_entry); hists__apply_filters(he->hists, he); } static struct hist_entry *hierarchy_insert_entry(struct hists *hists, struct rb_root *root, struct hist_entry *he, struct hist_entry *parent_he, struct perf_hpp_list *hpp_list) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct hist_entry *iter, *new; struct perf_hpp_fmt *fmt; int64_t cmp; while (*p != NULL) { parent = *p; iter = rb_entry(parent, struct hist_entry, rb_node_in); cmp = 0; perf_hpp_list__for_each_sort_list(hpp_list, fmt) { cmp = fmt->collapse(fmt, iter, he); if (cmp) break; } if (!cmp) { he_stat__add_stat(&iter->stat, &he->stat); return iter; } if (cmp < 0) p = &parent->rb_left; else p = &parent->rb_right; } new = hist_entry__new(he, true); if (new == NULL) return NULL; hists->nr_entries++; /* save related format list for output */ new->hpp_list = hpp_list; new->parent_he = parent_he; hist_entry__apply_hierarchy_filters(new); /* some fields are now passed to 'new' */ perf_hpp_list__for_each_sort_list(hpp_list, fmt) { if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) he->trace_output = NULL; else new->trace_output = NULL; if (perf_hpp__is_srcline_entry(fmt)) he->srcline = NULL; else new->srcline = NULL; if (perf_hpp__is_srcfile_entry(fmt)) he->srcfile = NULL; else new->srcfile = NULL; } rb_link_node(&new->rb_node_in, parent, p); rb_insert_color(&new->rb_node_in, root); return new; } static int hists__hierarchy_insert_entry(struct hists *hists, struct rb_root *root, struct hist_entry *he) { struct perf_hpp_list_node *node; struct hist_entry *new_he = NULL; struct hist_entry *parent = NULL; int depth = 0; int ret = 0; list_for_each_entry(node, &hists->hpp_formats, list) { /* skip period (overhead) and elided columns */ if (node->level == 0 || node->skip) continue; /* insert copy of 'he' for each fmt into the hierarchy */ new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); if (new_he == NULL) { ret = -1; break; } root = &new_he->hroot_in; new_he->depth = depth++; parent = new_he; } if (new_he) { new_he->leaf = true; if (symbol_conf.use_callchain) { callchain_cursor_reset(&callchain_cursor); if (callchain_merge(&callchain_cursor, new_he->callchain, he->callchain) < 0) ret = -1; } } /* 'he' is no longer used */ hist_entry__delete(he); /* return 0 (or -1) since it already applied filters */ return ret; } static int hists__collapse_insert_entry(struct hists *hists, struct rb_root *root, struct hist_entry *he) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct hist_entry *iter; int64_t cmp; if (symbol_conf.report_hierarchy) return hists__hierarchy_insert_entry(hists, root, he); while (*p != NULL) { parent = *p; iter = rb_entry(parent, struct hist_entry, rb_node_in); cmp = hist_entry__collapse(iter, he); if (!cmp) { int ret = 0; he_stat__add_stat(&iter->stat, &he->stat); if (symbol_conf.cumulate_callchain) he_stat__add_stat(iter->stat_acc, he->stat_acc); if (symbol_conf.use_callchain) { callchain_cursor_reset(&callchain_cursor); if (callchain_merge(&callchain_cursor, iter->callchain, he->callchain) < 0) ret = -1; } hist_entry__delete(he); return ret; } if (cmp < 0) p = &(*p)->rb_left; else p = &(*p)->rb_right; } hists->nr_entries++; rb_link_node(&he->rb_node_in, parent, p); rb_insert_color(&he->rb_node_in, root); return 1; } struct rb_root *hists__get_rotate_entries_in(struct hists *hists) { struct rb_root *root; pthread_mutex_lock(&hists->lock); root = hists->entries_in; if (++hists->entries_in > &hists->entries_in_array[1]) hists->entries_in = &hists->entries_in_array[0]; pthread_mutex_unlock(&hists->lock); return root; } static void hists__apply_filters(struct hists *hists, struct hist_entry *he) { hists__filter_entry_by_dso(hists, he); hists__filter_entry_by_thread(hists, he); hists__filter_entry_by_symbol(hists, he); hists__filter_entry_by_socket(hists, he); } int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) { struct rb_root *root; struct rb_node *next; struct hist_entry *n; int ret; if (!hists__has(hists, need_collapse)) return 0; hists->nr_entries = 0; root = hists__get_rotate_entries_in(hists); next = rb_first(root); while (next) { if (session_done()) break; n = rb_entry(next, struct hist_entry, rb_node_in); next = rb_next(&n->rb_node_in); rb_erase(&n->rb_node_in, root); ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); if (ret < 0) return -1; if (ret) { /* * If it wasn't combined with one of the entries already * collapsed, we need to apply the filters that may have * been set by, say, the hist_browser. */ hists__apply_filters(hists, n); } if (prog) ui_progress__update(prog, 1); } return 0; } static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b) { struct hists *hists = a->hists; struct perf_hpp_fmt *fmt; int64_t cmp = 0; hists__for_each_sort_list(hists, fmt) { if (perf_hpp__should_skip(fmt, a->hists)) continue; cmp = fmt->sort(fmt, a, b); if (cmp) break; } return cmp; } static void hists__reset_filter_stats(struct hists *hists) { hists->nr_non_filtered_entries = 0; hists->stats.total_non_filtered_period = 0; } void hists__reset_stats(struct hists *hists) { hists->nr_entries = 0; hists->stats.total_period = 0; hists__reset_filter_stats(hists); } static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) { hists->nr_non_filtered_entries++; hists->stats.total_non_filtered_period += h->stat.period; } void hists__inc_stats(struct hists *hists, struct hist_entry *h) { if (!h->filtered) hists__inc_filter_stats(hists, h); hists->nr_entries++; hists->stats.total_period += h->stat.period; } static void hierarchy_recalc_total_periods(struct hists *hists) { struct rb_node *node; struct hist_entry *he; node = rb_first(&hists->entries); hists->stats.total_period = 0; hists->stats.total_non_filtered_period = 0; /* * recalculate total period using top-level entries only * since lower level entries only see non-filtered entries * but upper level entries have sum of both entries. */ while (node) { he = rb_entry(node, struct hist_entry, rb_node); node = rb_next(node); hists->stats.total_period += he->stat.period; if (!he->filtered) hists->stats.total_non_filtered_period += he->stat.period; } } static void hierarchy_insert_output_entry(struct rb_root *root, struct hist_entry *he) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct hist_entry *iter; struct perf_hpp_fmt *fmt; while (*p != NULL) { parent = *p; iter = rb_entry(parent, struct hist_entry, rb_node); if (hist_entry__sort(he, iter) > 0) p = &parent->rb_left; else p = &parent->rb_right; } rb_link_node(&he->rb_node, parent, p); rb_insert_color(&he->rb_node, root); /* update column width of dynamic entry */ perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { if (perf_hpp__is_dynamic_entry(fmt)) fmt->sort(fmt, he, NULL); } } static void hists__hierarchy_output_resort(struct hists *hists, struct ui_progress *prog, struct rb_root *root_in, struct rb_root *root_out, u64 min_callchain_hits, bool use_callchain) { struct rb_node *node; struct hist_entry *he; *root_out = RB_ROOT; node = rb_first(root_in); while (node) { he = rb_entry(node, struct hist_entry, rb_node_in); node = rb_next(node); hierarchy_insert_output_entry(root_out, he); if (prog) ui_progress__update(prog, 1); if (!he->leaf) { hists__hierarchy_output_resort(hists, prog, &he->hroot_in, &he->hroot_out, min_callchain_hits, use_callchain); hists->nr_entries++; if (!he->filtered) { hists->nr_non_filtered_entries++; hists__calc_col_len(hists, he); } continue; } if (!use_callchain) continue; if (callchain_param.mode == CHAIN_GRAPH_REL) { u64 total = he->stat.period; if (symbol_conf.cumulate_callchain) total = he->stat_acc->period; min_callchain_hits = total * (callchain_param.min_percent / 100); } callchain_param.sort(&he->sorted_chain, he->callchain, min_callchain_hits, &callchain_param); } } static void __hists__insert_output_entry(struct rb_root *entries, struct hist_entry *he, u64 min_callchain_hits, bool use_callchain) { struct rb_node **p = &entries->rb_node; struct rb_node *parent = NULL; struct hist_entry *iter; struct perf_hpp_fmt *fmt; if (use_callchain) { if (callchain_param.mode == CHAIN_GRAPH_REL) { u64 total = he->stat.period; if (symbol_conf.cumulate_callchain) total = he->stat_acc->period; min_callchain_hits = total * (callchain_param.min_percent / 100); } callchain_param.sort(&he->sorted_chain, he->callchain, min_callchain_hits, &callchain_param); } while (*p != NULL) { parent = *p; iter = rb_entry(parent, struct hist_entry, rb_node); if (hist_entry__sort(he, iter) > 0) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(&he->rb_node, parent, p); rb_insert_color(&he->rb_node, entries); perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { if (perf_hpp__is_dynamic_entry(fmt) && perf_hpp__defined_dynamic_entry(fmt, he->hists)) fmt->sort(fmt, he, NULL); /* update column width */ } } static void output_resort(struct hists *hists, struct ui_progress *prog, bool use_callchain, hists__resort_cb_t cb) { struct rb_root *root; struct rb_node *next; struct hist_entry *n; u64 callchain_total; u64 min_callchain_hits; callchain_total = hists->callchain_period; if (symbol_conf.filter_relative) callchain_total = hists->callchain_non_filtered_period; min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); hists__reset_stats(hists); hists__reset_col_len(hists); if (symbol_conf.report_hierarchy) { hists__hierarchy_output_resort(hists, prog, &hists->entries_collapsed, &hists->entries, min_callchain_hits, use_callchain); hierarchy_recalc_total_periods(hists); return; } if (hists__has(hists, need_collapse)) root = &hists->entries_collapsed; else root = hists->entries_in; next = rb_first(root); hists->entries = RB_ROOT; while (next) { n = rb_entry(next, struct hist_entry, rb_node_in); next = rb_next(&n->rb_node_in); if (cb && cb(n)) continue; __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); hists__inc_stats(hists, n); if (!n->filtered) hists__calc_col_len(hists, n); if (prog) ui_progress__update(prog, 1); } } void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog) { bool use_callchain; if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN; else use_callchain = symbol_conf.use_callchain; output_resort(evsel__hists(evsel), prog, use_callchain, NULL); } void hists__output_resort(struct hists *hists, struct ui_progress *prog) { output_resort(hists, prog, symbol_conf.use_callchain, NULL); } void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, hists__resort_cb_t cb) { output_resort(hists, prog, symbol_conf.use_callchain, cb); } static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) { if (he->leaf || hmd == HMD_FORCE_SIBLING) return false; if (he->unfolded || hmd == HMD_FORCE_CHILD) return true; return false; } struct rb_node *rb_hierarchy_last(struct rb_node *node) { struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); while (can_goto_child(he, HMD_NORMAL)) { node = rb_last(&he->hroot_out); he = rb_entry(node, struct hist_entry, rb_node); } return node; } struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) { struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); if (can_goto_child(he, hmd)) node = rb_first(&he->hroot_out); else node = rb_next(node); while (node == NULL) { he = he->parent_he; if (he == NULL) break; node = rb_next(&he->rb_node); } return node; } struct rb_node *rb_hierarchy_prev(struct rb_node *node) { struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); node = rb_prev(node); if (node) return rb_hierarchy_last(node); he = he->parent_he; if (he == NULL) return NULL; return &he->rb_node; } bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) { struct rb_node *node; struct hist_entry *child; float percent; if (he->leaf) return false; node = rb_first(&he->hroot_out); child = rb_entry(node, struct hist_entry, rb_node); while (node && child->filtered) { node = rb_next(node); child = rb_entry(node, struct hist_entry, rb_node); } if (node) percent = hist_entry__get_percent_limit(child); else percent = 0; return node && percent >= limit; } static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, enum hist_filter filter) { h->filtered &= ~(1 << filter); if (symbol_conf.report_hierarchy) { struct hist_entry *parent = h->parent_he; while (parent) { he_stat__add_stat(&parent->stat, &h->stat); parent->filtered &= ~(1 << filter); if (parent->filtered) goto next; /* force fold unfiltered entry for simplicity */ parent->unfolded = false; parent->has_no_entry = false; parent->row_offset = 0; parent->nr_rows = 0; next: parent = parent->parent_he; } } if (h->filtered) return; /* force fold unfiltered entry for simplicity */ h->unfolded = false; h->has_no_entry = false; h->row_offset = 0; h->nr_rows = 0; hists->stats.nr_non_filtered_samples += h->stat.nr_events; hists__inc_filter_stats(hists, h); hists__calc_col_len(hists, h); } static bool hists__filter_entry_by_dso(struct hists *hists, struct hist_entry *he) { if (hists->dso_filter != NULL && (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { he->filtered |= (1 << HIST_FILTER__DSO); return true; } return false; } static bool hists__filter_entry_by_thread(struct hists *hists, struct hist_entry *he) { if (hists->thread_filter != NULL && he->thread != hists->thread_filter) { he->filtered |= (1 << HIST_FILTER__THREAD); return true; } return false; } static bool hists__filter_entry_by_symbol(struct hists *hists, struct hist_entry *he) { if (hists->symbol_filter_str != NULL && (!he->ms.sym || strstr(he->ms.sym->name, hists->symbol_filter_str) == NULL)) { he->filtered |= (1 << HIST_FILTER__SYMBOL); return true; } return false; } static bool hists__filter_entry_by_socket(struct hists *hists, struct hist_entry *he) { if ((hists->socket_filter > -1) && (he->socket != hists->socket_filter)) { he->filtered |= (1 << HIST_FILTER__SOCKET); return true; } return false; } typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) { struct rb_node *nd; hists->stats.nr_non_filtered_samples = 0; hists__reset_filter_stats(hists); hists__reset_col_len(hists); for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) { struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); if (filter(hists, h)) continue; hists__remove_entry_filter(hists, h, type); } } static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct hist_entry *iter; struct rb_root new_root = RB_ROOT; struct rb_node *nd; while (*p != NULL) { parent = *p; iter = rb_entry(parent, struct hist_entry, rb_node); if (hist_entry__sort(he, iter) > 0) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(&he->rb_node, parent, p); rb_insert_color(&he->rb_node, root); if (he->leaf || he->filtered) return; nd = rb_first(&he->hroot_out); while (nd) { struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); nd = rb_next(nd); rb_erase(&h->rb_node, &he->hroot_out); resort_filtered_entry(&new_root, h); } he->hroot_out = new_root; } static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) { struct rb_node *nd; struct rb_root new_root = RB_ROOT; hists->stats.nr_non_filtered_samples = 0; hists__reset_filter_stats(hists); hists__reset_col_len(hists); nd = rb_first(&hists->entries); while (nd) { struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); int ret; ret = hist_entry__filter(h, type, arg); /* * case 1. non-matching type * zero out the period, set filter marker and move to child */ if (ret < 0) { memset(&h->stat, 0, sizeof(h->stat)); h->filtered |= (1 << type); nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); } /* * case 2. matched type (filter out) * set filter marker and move to next */ else if (ret == 1) { h->filtered |= (1 << type); nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); } /* * case 3. ok (not filtered) * add period to hists and parents, erase the filter marker * and move to next sibling */ else { hists__remove_entry_filter(hists, h, type); nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); } } hierarchy_recalc_total_periods(hists); /* * resort output after applying a new filter since filter in a lower * hierarchy can change periods in a upper hierarchy. */ nd = rb_first(&hists->entries); while (nd) { struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); nd = rb_next(nd); rb_erase(&h->rb_node, &hists->entries); resort_filtered_entry(&new_root, h); } hists->entries = new_root; } void hists__filter_by_thread(struct hists *hists) { if (symbol_conf.report_hierarchy) hists__filter_hierarchy(hists, HIST_FILTER__THREAD, hists->thread_filter); else hists__filter_by_type(hists, HIST_FILTER__THREAD, hists__filter_entry_by_thread); } void hists__filter_by_dso(struct hists *hists) { if (symbol_conf.report_hierarchy) hists__filter_hierarchy(hists, HIST_FILTER__DSO, hists->dso_filter); else hists__filter_by_type(hists, HIST_FILTER__DSO, hists__filter_entry_by_dso); } void hists__filter_by_symbol(struct hists *hists) { if (symbol_conf.report_hierarchy) hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, hists->symbol_filter_str); else hists__filter_by_type(hists, HIST_FILTER__SYMBOL, hists__filter_entry_by_symbol); } void hists__filter_by_socket(struct hists *hists) { if (symbol_conf.report_hierarchy) hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, &hists->socket_filter); else hists__filter_by_type(hists, HIST_FILTER__SOCKET, hists__filter_entry_by_socket); } void events_stats__inc(struct events_stats *stats, u32 type) { ++stats->nr_events[0]; ++stats->nr_events[type]; } void hists__inc_nr_events(struct hists *hists, u32 type) { events_stats__inc(&hists->stats, type); } void hists__inc_nr_samples(struct hists *hists, bool filtered) { events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE); if (!filtered) hists->stats.nr_non_filtered_samples++; } static struct hist_entry *hists__add_dummy_entry(struct hists *hists, struct hist_entry *pair) { struct rb_root *root; struct rb_node **p; struct rb_node *parent = NULL; struct hist_entry *he; int64_t cmp; if (hists__has(hists, need_collapse)) root = &hists->entries_collapsed; else root = hists->entries_in; p = &root->rb_node; while (*p != NULL) { parent = *p; he = rb_entry(parent, struct hist_entry, rb_node_in); cmp = hist_entry__collapse(he, pair); if (!cmp) goto out; if (cmp < 0) p = &(*p)->rb_left; else p = &(*p)->rb_right; } he = hist_entry__new(pair, true); if (he) { memset(&he->stat, 0, sizeof(he->stat)); he->hists = hists; if (symbol_conf.cumulate_callchain) memset(he->stat_acc, 0, sizeof(he->stat)); rb_link_node(&he->rb_node_in, parent, p); rb_insert_color(&he->rb_node_in, root); hists__inc_stats(hists, he); he->dummy = true; } out: return he; } static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, struct rb_root *root, struct hist_entry *pair) { struct rb_node **p; struct rb_node *parent = NULL; struct hist_entry *he; struct perf_hpp_fmt *fmt; p = &root->rb_node; while (*p != NULL) { int64_t cmp = 0; parent = *p; he = rb_entry(parent, struct hist_entry, rb_node_in); perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { cmp = fmt->collapse(fmt, he, pair); if (cmp) break; } if (!cmp) goto out; if (cmp < 0) p = &parent->rb_left; else p = &parent->rb_right; } he = hist_entry__new(pair, true); if (he) { rb_link_node(&he->rb_node_in, parent, p); rb_insert_color(&he->rb_node_in, root); he->dummy = true; he->hists = hists; memset(&he->stat, 0, sizeof(he->stat)); hists__inc_stats(hists, he); } out: return he; } static struct hist_entry *hists__find_entry(struct hists *hists, struct hist_entry *he) { struct rb_node *n; if (hists__has(hists, need_collapse)) n = hists->entries_collapsed.rb_node; else n = hists->entries_in->rb_node; while (n) { struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); int64_t cmp = hist_entry__collapse(iter, he); if (cmp < 0) n = n->rb_left; else if (cmp > 0) n = n->rb_right; else return iter; } return NULL; } static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root, struct hist_entry *he) { struct rb_node *n = root->rb_node; while (n) { struct hist_entry *iter; struct perf_hpp_fmt *fmt; int64_t cmp = 0; iter = rb_entry(n, struct hist_entry, rb_node_in); perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { cmp = fmt->collapse(fmt, iter, he); if (cmp) break; } if (cmp < 0) n = n->rb_left; else if (cmp > 0) n = n->rb_right; else return iter; } return NULL; } static void hists__match_hierarchy(struct rb_root *leader_root, struct rb_root *other_root) { struct rb_node *nd; struct hist_entry *pos, *pair; for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) { pos = rb_entry(nd, struct hist_entry, rb_node_in); pair = hists__find_hierarchy_entry(other_root, pos); if (pair) { hist_entry__add_pair(pair, pos); hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); } } } /* * Look for pairs to link to the leader buckets (hist_entries): */ void hists__match(struct hists *leader, struct hists *other) { struct rb_root *root; struct rb_node *nd; struct hist_entry *pos, *pair; if (symbol_conf.report_hierarchy) { /* hierarchy report always collapses entries */ return hists__match_hierarchy(&leader->entries_collapsed, &other->entries_collapsed); } if (hists__has(leader, need_collapse)) root = &leader->entries_collapsed; else root = leader->entries_in; for (nd = rb_first(root); nd; nd = rb_next(nd)) { pos = rb_entry(nd, struct hist_entry, rb_node_in); pair = hists__find_entry(other, pos); if (pair) hist_entry__add_pair(pair, pos); } } static int hists__link_hierarchy(struct hists *leader_hists, struct hist_entry *parent, struct rb_root *leader_root, struct rb_root *other_root) { struct rb_node *nd; struct hist_entry *pos, *leader; for (nd = rb_first(other_root); nd; nd = rb_next(nd)) { pos = rb_entry(nd, struct hist_entry, rb_node_in); if (hist_entry__has_pairs(pos)) { bool found = false; list_for_each_entry(leader, &pos->pairs.head, pairs.node) { if (leader->hists == leader_hists) { found = true; break; } } if (!found) return -1; } else { leader = add_dummy_hierarchy_entry(leader_hists, leader_root, pos); if (leader == NULL) return -1; /* do not point parent in the pos */ leader->parent_he = parent; hist_entry__add_pair(pos, leader); } if (!pos->leaf) { if (hists__link_hierarchy(leader_hists, leader, &leader->hroot_in, &pos->hroot_in) < 0) return -1; } } return 0; } /* * Look for entries in the other hists that are not present in the leader, if * we find them, just add a dummy entry on the leader hists, with period=0, * nr_events=0, to serve as the list header. */ int hists__link(struct hists *leader, struct hists *other) { struct rb_root *root; struct rb_node *nd; struct hist_entry *pos, *pair; if (symbol_conf.report_hierarchy) { /* hierarchy report always collapses entries */ return hists__link_hierarchy(leader, NULL, &leader->entries_collapsed, &other->entries_collapsed); } if (hists__has(other, need_collapse)) root = &other->entries_collapsed; else root = other->entries_in; for (nd = rb_first(root); nd; nd = rb_next(nd)) { pos = rb_entry(nd, struct hist_entry, rb_node_in); if (!hist_entry__has_pairs(pos)) { pair = hists__add_dummy_entry(leader, pos); if (pair == NULL) return -1; hist_entry__add_pair(pos, pair); } } return 0; } void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, struct perf_sample *sample, bool nonany_branch_mode) { struct branch_info *bi; /* If we have branch cycles always annotate them. */ if (bs && bs->nr && bs->entries[0].flags.cycles) { int i; bi = sample__resolve_bstack(sample, al); if (bi) { struct addr_map_symbol *prev = NULL; /* * Ignore errors, still want to process the * other entries. * * For non standard branch modes always * force no IPC (prev == NULL) * * Note that perf stores branches reversed from * program order! */ for (i = bs->nr - 1; i >= 0; i--) { addr_map_symbol__account_cycles(&bi[i].from, nonany_branch_mode ? NULL : prev, bi[i].flags.cycles); prev = &bi[i].to; } free(bi); } } } size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp) { struct perf_evsel *pos; size_t ret = 0; evlist__for_each_entry(evlist, pos) { ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos)); ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp); } return ret; } u64 hists__total_period(struct hists *hists) { return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : hists->stats.total_period; } int parse_filter_percentage(const struct option *opt __maybe_unused, const char *arg, int unset __maybe_unused) { if (!strcmp(arg, "relative")) symbol_conf.filter_relative = true; else if (!strcmp(arg, "absolute")) symbol_conf.filter_relative = false; else return -1; return 0; } int perf_hist_config(const char *var, const char *value) { if (!strcmp(var, "hist.percentage")) return parse_filter_percentage(NULL, value, 0); return 0; } int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) { memset(hists, 0, sizeof(*hists)); hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; hists->entries_in = &hists->entries_in_array[0]; hists->entries_collapsed = RB_ROOT; hists->entries = RB_ROOT; pthread_mutex_init(&hists->lock, NULL); hists->socket_filter = -1; hists->hpp_list = hpp_list; INIT_LIST_HEAD(&hists->hpp_formats); return 0; } static void hists__delete_remaining_entries(struct rb_root *root) { struct rb_node *node; struct hist_entry *he; while (!RB_EMPTY_ROOT(root)) { node = rb_first(root); rb_erase(node, root); he = rb_entry(node, struct hist_entry, rb_node_in); hist_entry__delete(he); } } static void hists__delete_all_entries(struct hists *hists) { hists__delete_entries(hists); hists__delete_remaining_entries(&hists->entries_in_array[0]); hists__delete_remaining_entries(&hists->entries_in_array[1]); hists__delete_remaining_entries(&hists->entries_collapsed); } static void hists_evsel__exit(struct perf_evsel *evsel) { struct hists *hists = evsel__hists(evsel); struct perf_hpp_fmt *fmt, *pos; struct perf_hpp_list_node *node, *tmp; hists__delete_all_entries(hists); list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { list_del(&fmt->list); free(fmt); } list_del(&node->list); free(node); } } static int hists_evsel__init(struct perf_evsel *evsel) { struct hists *hists = evsel__hists(evsel); __hists__init(hists, &perf_hpp_list); return 0; } /* * XXX We probably need a hists_evsel__exit() to free the hist_entries * stored in the rbtree... */ int hists__init(void) { int err = perf_evsel__object_config(sizeof(struct hists_evsel), hists_evsel__init, hists_evsel__exit); if (err) fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); return err; } void perf_hpp_list__init(struct perf_hpp_list *list) { INIT_LIST_HEAD(&list->fields); INIT_LIST_HEAD(&list->sorts); }